Biblio

Export 191 results:
Sort by: Author Title Type [ Year  (Desc)]
Filters: First Letter Of Last Name is C  [Clear All Filters]
2019
Cimarone, L., Bozkurt B., & Serra X. (2019).  Automatic Dastgah Recognition Using Markov Models. 14th International Symposium on Computer Music Multidisciplinary Research (CMMR). 51-58. Abstract
Chandna, P., Blaauw M., Bonada J., & Gomez E. (2019).  A Vocoder Based Method For Singing Voice Extraction. 44th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019). Abstract
Won, M., Chun S., Nieto O., & Serra X. (2019).  Automatic music tagging with Harmonic CNN. International Society for Music Information Retrieval (ISMIR). Abstract
Porcaro, L., Castillo C., & Gómez E. (2019).  Music recommendation diversity: a tentative framework and preliminary results. 20th annual conference of the International Society for Music Information Retrieval (ISMIR). Abstract
2018
Caro Repetto, R., Pretto N., Chaachoo A., Bozkurt B., & Serra X. (2018).  An open corpus for the computational research of Arab-Andalusian music. 5th International Conference on Digital Libraries for Musicology (DLfM 2018). 78-86. Abstract
Gomez, E., Blaauw M., Bonada J., Chandna P., & Cuesta H. (2018).  Deep Learning for Singing Processing: Achievements, Challenges and Impact on Singers and Listeners. Keynote speech, 2018 Joint Workshop on Machine Learning for Music. The Federated Artificial Intelligence Meeting (FAIM), a joint workshop program of ICML, IJCAI/ECAI, and AAMAS.
Cuesta, H., Gómez E., Martorell A., & Loáiciga F. (2018).  Analysis of Intonation in Unison Choir Singing. 15th International Conference on Music Perception and Cognition (ICMPC).
2017
Caro Repetto, R., & Serra X. (2017).  A collection of music scores for corpus based jingju singing research. 18th International Society for Music Information Retrieval Conference. 46-52. Abstract
Chandna, P., Miron M., Janer J., & Gómez E. (2017).  Monoaural Audio Source Separation Using Deep Convolutional Neural Networks. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA ICA2017).
intranet