Biblio

Export 33 results:
Sort by: [ Author  (Asc)] Title Type Year
Filters: First Letter Of Last Name is O  [Clear All Filters]
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
Ong, B. (2007).  Structural Analysis and Segmentation of Music Signals. Department of Information and Communication Technologies. Abstract
Oramas, S., Ostuni V. C., Di Noia T., Serra X., & Di Sciascio E. (2016).  Sound and Music Recommendation with Knowledge Graphs. ACM Transactions on Intelligent Systems and Technology (TIST). 8(2), 1-21. Abstract
Oramas, S., & Sordo M. (2015).  Knowledge Acquisition from Music Digital Libraries. International Association of Music Libraries and International Musicological Society IAML/IMS Conference. Abstract
Oramas, S., & Cornelis O. (2012).  Past, Present and Future in Ethnomusicology: The Computational challenge. ISMIR late breaking demo session, 13th International Society of Music Information Retrieval. Abstract
Oramas, S., Nieto O., Barbieri F., & Serra X. (2017).  Multi-label Music Genre Classification from Audio, Text and Images Using Deep Features. 18th International Society for Music Information Retrieval Conference (ISMIR 2017). Abstract
Oramas, S., Espinosa-Anke L., Lawlor A., Serra X., & Saggion H. (2016).  Exploring Customer Reviews for Music Genre Classification and Evolutionary Studies. 17th International Society for Music Information Retrieval Conference (ISMIR 2016). 150-156. Abstract
Oramas, S., Nieto O., Sordo M., & Serra X. (2017).  A Deep Multimodal Approach for Cold-start Music Recommendation. 2nd Workshop on Deep Learning for Recommender Systems, at RecSys 2017. Abstract
Oramas, S., Sordo M., Espinosa-Anke L., & Serra X. (2015).  A Semantic-based Approach for Artist Similarity. 16th International Society for Music Information Retrieval Conference. 100-106. Abstract
Oramas, S., Barbieri F., Nieto O., & Serra X. (2018).  Multimodal Deep Learning for Music Genre Classification. Transactions of the International Society for Music Information Retrieval. 1(1), 4-21. Abstract
intranet