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1 Introduction

Many sounds that surround us and that we perceive in our daily lives have textural properties – yet
sound texture it is a term difficult to define, because the sounds subsumed are usually not perceived
consciously and a definition might also strongly depend on the context the sound is perceived in.

Sound textures do convey information, and yet they exhibit some of the statistical properties that
are normally attributed to noise. This section is an attempt to introduce the notions of sound texture
within its broader context, the soundscape, sum up definitions previously expressed in the literature and
provide a “working definition” of the notion of sound texture that shall be the subject of this research.

1.1 Soundscape and sound texture

In his book “The Soundscape” [33], R. Murray Schafer describes the notion of “acoustic ecology” as
our level of awareness of our acoustic environment [40]. He groups the sounds that make up our sonic
environment into three broad categories:

Keynote sounds are background sounds that define our acoustic and emotional environment, similar
to keynotes in music defining the fundamental underlying tonality. Keynote sounds are not listened
to consciously, but perceived unconsciously.

Sound signals are foreground sounds that are intended to attract attention and generally bear a mean-
ing to be transported to the listener.

Soundmarks are sounds that have –in analogy to landmarks– a particular meaning for a community
and its visitors.

Were we to undertake a preliminous classification of “sound texture”, it would be found in the
category of keynote sounds rather than sound signals, while soundmark intuitively describes a broader
concept that might contain sounds from both categories.

One of the earliest attempts of defining the term “sound texture” can be found in N. Saint-Arnaud’s
Master thesis “Classification of Sound Textures” [31] and later in a book chapter in “Computational
Auditory Scene Analysis” [32]. Saint-Arnaud assumes a sound texture model to be comprised of two
elements:

Sound atoms are basic building blocks in an arbitrary (often time-frequency) feature space that make
up the textural sound source.

Transition rules between atoms that model the statistics of atom (co-)occurrence in feature space.

Furthermore, an important characterization of sound texture implies its evolvement over time: Saint-
Arnaud and other authors require the signal to exhibit the properties of a stationary statistical process on
a certain time scale [41, 2]. Textures are thus characterized by their perceptual and statistical properties
and not by individual events [31]. Saint-Arnaud explicitly limits the time window in which the signal
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is to be regarded stationary to the “attention span”, i.e. the amount of time that can pass before two
events are perceived to be distinct, which lies in the proximity of a few seconds.

Zhu [41] defines sound textures as “[...] sounds for which there exists a window length such that the
statistics of the features measured within the window are stable with different window positions”, which
again refers to a stationary signal, and seems to be the most intuitive and practical definition.

In extension of this notion, the class of sounds subject of this research shall be described as multi-
variate, multi-resolution time series, where the signal might be a superposition of various independent
stationary stochastical processes, each exhibiting stationarity on a potentially different time scale. Being
able to specify or predict the extent to which the model to be developed is able to capture the statistics
of this signal mixture is one of the goals to be pursued.

In order to get an impression of the sounds to be modeled, Table 1 lists some examples.

Applause
Running water
Waves
Rainfall
Fire
Birdsong
People babble
Machine sounds
Traffic noise and urban ambiances

Table 1: Examples of sound textures.

2 Motivation

Schafer’s categorization suggests, that sound texture transports information not in an information the-
oretic sense, but rather as a carrier of emotional and situational percepts. Indeed, sound texture –often
denoted atmosphere– forms an important part of the sound scene in real life, in movies, games and
virtual environments in general.

The ability to model texture in a statistical sense, without detailed knowledge or assumptions about
the source material, leads to several desirable properties that a texture model should possess:

Compactness of representation The model should require (significantly) less parameters than the
original coded audio.

Statistical properties The signal statistics should be discoverable using a limited amount of training
data.

Research in sound texture modeling has been promising, but it also leaves open some questions and
poses new problems:

• Sound texture research is still lacking a formal framework for subjective evaluation of the perceptual
qualities, and in fact the minority of previous approaches have been rigorously evaluated, neither
subjectively nor objectively.

• Recent findings in multi-layer, perceptually relevant signal models have not been systematically
incorporated in sound texture modeling, a deficiency that is all the more substantial, as in general
a particular source signal model cannot be assumed, due to the statistical nature of the sound
material.

• Recent research contributions to highly expressive generative models for multi-variate time series
has not yet found its way into statistical modeling of sound signals.

• The extension of sound texture modeling to capture the full perceptual fidelity of a binaural or
multichannel sound field is only in its beginnings.

2



• The possibility of capturing various source textures in a single model and provide a meaningful,
data-driven parameterization of the synthesis has not been systematically explored yet.

In the following, the goals and possible contributions of this proposed research are laid out, followed
by a list of prospective applications and the concrete embedding of the research in a funded project of
applied research.

2.1 Research goals and contributions

This proposal is intended to address a number of problems still open in this area of research.
The first priority is to develop a systematic framework for perceptual evaluation of sound texture

models in the context of virtual environment sonification. This is an important step in order to compare
existing and future sound texture models in terms of their performance during synthesis.

Another important contribution is to extend the previously used signal models by more sophisticated,
perceptually motivated signal decompositions in the hope of modeling the signal statistics in a feature
space closer to human perception. Closely related is the development of a more capable statistical model
in feature space –based on recent advances in time series models, see 3.3– with the intention of being
able to model larger-scale interdepencies of features and thus extending the types of sounds that can be
modeled in a perceptually meaningful way.

The application of the probabilistic model to the task of sound texture classification is a logical step,
given that a generative model can be optimized for classification with relatively minor modifications [14].

2.2 Applications

Generative sound texture models are applicable in diverse fields of research and applications.
The generation of perceptually convincing soundscapes for Virtual Reality applications is an impor-

tant means of conveying a sense of presence and immersion for the user. Parameterized models, that are
capable of synthesizing soundscapes according to the situational and geographical position of an avatar,
can potentially provide a sense of movement and presence in the virtual environment, that is hard to
achieve with methods based on audio sample playback. In this vein, sound texture models can help in
ambience generation in computer games and sound installations, where often the textural background
needs to be provided for an indefinite amount of time while data storage capacities are limited.

Textural properties are not only present in sound, but also in images and more generally in many
physical processes. An appropriate parametric texture model could be a building block in sonification
and auditory display applications.

In electroacoustic music and soundscape composition, sound textures and their parametric manipula-
tion play an important role [38]. Generative, probabilistic sound texture models can not only be creatively
employed by composers in their work, but can also aid in the automated analysis and classification of
such music.

In the related field of Computational Auditory Scene analysis, statistical models can be a useful tool
for sound scene description and classification and database indexing. Similarly, classifiers derived from
a generative model, can be employed as a tool in model-based scene analysis [10, 11].

Statistical models provide an extreme form of perceptual data reduction and can be employed in
abstract level audio coding applications [2] as well as in audio restoration tasks [21].

The researched proposed here is to be conducted within the bigger framework of the three-year
research project Metaverse11, that has the general goal of developing standards for emerging virtual
environments. The research at the Music Technology Group is focused on automatic soundscape gen-
eration from a community-built corpus of synthetic and environmental sounds, that are tagged with
user-supplied textual keywords2. Sound texture modeling plays an important role, not only in trans-
porting a certain sustained sense of “auditory scene realism”, but also in reducing the amount of data
needed for each scene to be modeled. Sound texture models certainly cannot account for the entire inter-
active soundscape, simply because the amount of deterministic interaction is naturally limited, but they
can provide a background for otherwise more prominent “signal” sounds found in the acoustic virtual
environment.

1http://www.metaverse1.org/
2http://www.freesound.org/
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3 State of the art

The relatively sparse amount of works related to sound texture modeling is contrasted by a vast amount
of research in image and video texture synthesis, which also had a direct influence on some of the methods
proposed for sound texture modeling.

Feature space

Statistical
Model

Feature extraction

Structure inference

Sampling the model

Feature space

Inverse transformation

Figure 1: Architecture of a typical sound texture modeling system.

A depiction of a general sound texture modeling framework is shown in Figure 1. A preprocessing
and feature extraction step is followed by a structural inference algorithm, that learns a model of the
signal statistics in feature space. Generating new, random textures that are statistically –and ideally
also perceptually– similar to the source texture involves sampling the model to generate random vectors
in feature space according to the belief the model has of the signal statistics and transforming those
feature vectors back to the time domain to obtain a PCM coded audio sample.

Research in computational modeling and synthesis of sound textures has started in the late 1990’s
and the signal analysis –or feature extraction– approaches can be categorized in three different categories:

Methods based on multiresolution signal decomposition The multiresolution wavelet transform
is used to extract signal features at multiple time and frequency resolutions.

Methods based on time-domain signal decomposition Atomic grains are extracted from the source
signal and recomposed in the time domain.

Methods based on a source-filter signal model Source filter analysis –more specifically linear pre-
dictive coding (LPC)– is used to analyse the signal in both the time and the frequency domain.

In section 3.1, previous work on sound texture modeling is reviewed.
The statistical models employed so far in sound texture modeling have been comparatively inexpres-

sive; often the signal statistics are modeled with simple Markov chain models on the feature vectors.
Recently, progress has been made in training deep hierarchical generative models that can adequately
capture the fast varying statistics in multidimensional time series, e.g. raw video frames. Section 3.3
reviews some of these models and relates them to the ones used in current methods of sound texture
modeling.

Other relevant research includes works on presence in virtual environments and sound texture de-
scription and classification in general, some of which are summarized in section 3.4.
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3.1 Sound and image texture synthesis

3.1.1 Methods based on multiresolution signal decomposition

Multi-resolution analysis (MRA), in particular the discrete wavelet transform (DWT, see Figure 2), is
potentially well suited to modeling the dynamics of sound textures, where important perceptual detail
is present in various frequency bands and on different time scales. Using quadrature mirror (QMF)
lowpass and highpass filters, the signal is recursively split in low-resolution approximation coefficients
and high-resolution detail coefficients, which are obtained by applying the wavelet transfer function Ψ(z).

↓ 2Ψ(z)H(z)

L(z)

Ω(z) Coefficients N

↓ 2Ψ(z)H(z)

L(z)

Ω(z) …

↓ 2Ψ(z)H(z)

L(z)

Ω(z) Coefficients 0

Figure 2: Filterbank interpretation of the multi-resolution discrete wavelet transform.

One of the earliest attempts of modeling sound textures for synthesis is described in [32]. Although the
authors do not use the wavelet transform, they employ a simple filter bank of octave-spaced quadrature
mirror filters to split the signal into frequency bands. Feature vectors are extracted by grouping amplitude
features in the frequency bands in time and thus capturing the temporal evolvement of the signal by
transitions of features. The feature vectors are then clustered by a probabilistic algorithm (K-means)
to model the high-dimensional probability mass function (PMF). During synthesis, the one-dimensional
PMF conditioned on the preceding feature values is estimated from the clusters and an appropriate
feature vector is selected and transformed to the time domain to form the resulting texture.

Bar-Joseph et al. [3] analyse static image and time-varying video textures by means of a hierar-
chical, multi-resolution analysis, where wavelet coefficients of different temporal and spectral scales are
represented as an N-ary tree. Based on work by Basseville [4], the statistical model assumes that the
tree was generated by a stationary statistical process and models paths in the tree to a given hierarchy
by a simple linear sequence model. A new tree is generated by sampling from the path model and
successively adding layers, starting from the low-resolution signal components and gradually filling in
the high-resolution details. Bar-Joseph at al. also describe the synthesis of textures with a mixture of
features from two source textures by statistically merging the analysis trees of the texture sources and
generating from the merged tree.

Dubnov et al. [7] apply wavelet analysis to sound texture synthesis. They extend the idea of learning
conditional probabilities along paths in a wavelet tree by also learning the predecessor probabilities of
nodes in a given hierarchy level, thus estimating the statistics of the temporal order of coefficients.
The algorithm introduces a parameter ε that provides a threshold for the distance computation when
determining path prefixes for the Markov chain statistics and which determines the “randomness” of the
signal, or, conversely, its similarity to the input signal.

In [24], Miner and Caudell 3 describe a wavelet synthesis technique for realistic texture –stochastic,
non-pitched– sounds. The DTW is used to analyse the signal on different time and frequency scales,
and various textural sounds are obtained from a single source analysis by parametric modification of
wavelet coefficients before resynthesis by means of the inverse wavelet transform (IWT). Interestingly,
Miner followed an iterative design process, in which modifications in the synthesis model are followed by
systematic perceptual evaluation by means of listening experiments (see 3.4); however, no attempt was
made to model the statistics of the wavelet coefficients.

3This work was preceeded by Miner’s PhD thesis [23], which unfortunately wasn’t available for this assessment.
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Figure 3: Filterbank interpretation of the dual-tree complex wavelet transform.

O’Regan and Kokaram [27] propose the use of the Dual-Tree Complex Wavelet Transform (DTCWT,
see Figure 3), which has the desirable property of shift-invariance [19]. They model the sound texture
statistics by a Markov-Random-Field (MRF) on the wavelet tree coefficients, similar to the approach
taken by Efros and Leung for image texture synthesis [9]. The authors report improved results compared
to the ones obtained by [7], although selecting parameters for the synthesis algorithm seems crucial for
good results.

In [26], Misra et al. describe an analysis and resynthesis system for entire soundscapes. A source
sound is decomposed into its transient and sinusoidal components [34] and the residual is modeled by
wavelet tree learning as described in [7]. Transient events and harmonic components are not modeled
stochastically, but can be manipulated in a user interface for later recomposition and resynthesis.

3.1.2 Methods based on time-domain signal decomposition

In this section we subsum sound texture models for synthesis, that attempt to decompose the signal on
a single time scale, segmenting accross the whole frequency band and recomposing the resultant pieces
according to some statistical model.

In [16] and later in [17] Hoskinson describes a sound texture synthesis model, that first segments
the audio signal into “natural grains” –loosely corresponding to phonemes in speech– based a speech
segmentation algorithm proposed by Alani and Deriche [1]. From the extracted grains a first-order
markov chain of grain transition probabilities is built according to a simple estimate of “smoothness
of transition” between pairs of grains. The synthesis process then samples from the markov chain and
concatenates grains into the output stream.

In [21], Lu et al. develop a method of audio texture synthesis based on spectral and temporal features
extracted from the audio signal. The idea of audio texture is inspired by video textures, and refers to
sounds that are “relatively monotonic in nature” and which can be used to generate infinite streams of
audio for game and background music applications, and for filling transmission gaps in audio restoration.
The proposed method first extracts Mel-Frequency Cepstral Coefficients (MFCC) from the audio signal
and attempts to infer patterns –or “subclips”– from a frame similarity matrix based on an algorithm
borrowed from music information retrieval research [12]. MFCC vectors for new audio textures are
sampled from the frame and subclip similarity matrices and are –after an optional step of time- and
frequency-scale modification– transformed into the time domain and concatenated.
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Other time-domain decomposition and resynthesis approaches include [28], where equal length “chunks”
extracted from the audio signal are concatenated according to a least-squares similarity measure and pre-
venting repeated reuse of the same chunk by means of a least-recently used (LRU) algorithm. [18] maps
human motion gestures obtained by video feed analysis to a “sonic grain space”, that enhances an achi-
tectural space by a sound texture in an installative setting. Hoffman et al. [15] describe a recomposition
procedure for musical audio, where a feature extraction stage (MFCC) is followed by a statistical analysis
based on Dirichlet-Process Hidden Markov Models (DP-HMMs) –allowing to model a large sparse state
space– and an extension that allows to incorporate the features of multiple musical sequences into a
single model.

3.1.3 Methods based on a source-filter signal model

A very different approach to sound texture modeling involves the assumption of a source filter signal
model.

Athineos and Ellis [2] consider sound textures to be

• Noisy, i.e. without strong periodic components

• Rough, i.e. amplitude modulated in the 20-200Hz range

They model a source sound by first estimating the spectral power envelope by Linear Predictive
Coding (LPC) analysis [22], whitening the signal by inverse filtering with the obtained IIR filters and
estimating the temporal envelope of audio signal by performing an LPC analysis in the frequency domain
–a procedure called Temporal Noise Shaping (TNS) [13]. This implicit extraction of transients and
microtransients –captured in the temporal envelope– is claimed to be essential for modeling the fine
temporal microrstructure present in many sound textures: “The technique has greatest success with
sounds that include both broadband noise and densely-packed microtransients. Such sounds are very
difficult to represent by methods that detect and separate transients from the rest of the residual.” In
order to assess the quality of the resynthesis, the authors introduce an error metric based on the short
time Fourier transform (STFT) magnitude.

Zhu and Wyse [41] also use the Time-Frequency LPC (TFLPC) to model sound textures. In contrast
to Athineos and Ellis’ approach, they estimate event on- and offsets from a salience function based on
the LPC filter gain derivative. Events are extracted from the source signal and the “background din” is
concatenated and modeled separately. A further data reduction step for modeling events is performed
by converting the polynomial time- and frequency-domain LPC coefficients to the reflection domain and
clustering by use of K-means. During resynthesis, event onsets are modeled by a Poisson distribution
and event feature vector sequences are drawn from the distributions estimated by the cluster means and
variances. Event sequence are transformed separately and mixed in the time domain to obtain an output
texture.

3.2 Signal models

Recent advances in phase vocoder signal analysis (Figure 4) improve the detection and classification of
spectral peaks in the phase vocoder frequency spectrum. In [29], a new method for transient detection
and processing in the phase vocoder is described.

The transient detection scheme operates in the frequency domain and is based on the determination
of the Center of Graphity (COG) of a spectral peak within the analysis window [6]. A probabilistic
model, sampled from the signal, is used to adaptively derive the threshold for the assignment of peaks
to transients based on the COG.

In [30], the same author derives spectral peak feature descriptors from a STFT analysis:

• Frequency coherence as the peak distance from the bin center

• Energy location within the anlysis window

• Time duration

• Normalized bandwith
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●Sinusoidal peak tracking

Figure 4: Phase vocoder block diagram.

The extracted features are then used in a decision tree classifier, that has been built by hand from
the analysis prototypical signal (Figure 5).

Sinusoidal

Noise Sidelobe

Spectral peak

Non-sinusoidal

Figure 5: Peak classification in the phase vocoder.

3.3 Generative models for multivariate time series

Many time series data –in particular audio data– contain detail on multiple temporal and spectral scales.
This section reviews some statistical approaches to modeling multi-variate, multi-resolution time series.

Basseville et al. [4] provide a theoretical formulation of a statistical, multi-resolution signal model,
by assuming a generative statistical source, that, when sampled, generates a signal statistically similar to
the source signal. They show that stationary signals can be represented and generated in a hierarchical
fashion, such that the low-resolution parts of the signal are generated first, and the finer details are gen-
erated with a probability, that only depends on the low-resolution details in the proximity of the current
hierarchy level. This hierarchical representation was successfully applied to modeling the statistics of
two-dimensional image textures.

One possible strategy to model multiscale input is to design hierarchical feature extractors, where
the modules on different hierarchy levels model features on different scales and levels of abstraction.
Bengio and LeCun [5] provide an interesting discussion from a statistical point of view why hierarchical
architectures are indispensable when dealing with complex, multi-variate data.

Recently, there has been a surge of research in hierarchical distributed representations, due to the
discovery by Hinton et al. that certain layered architectures can be learned efficiently in a greedy manner,
one layer at a time [14].

Taylor et al, [37] use a modification of Hinton’s approach to model time-series data, in this case
skeletal angles of human motion tracking recordings, that are highly non-linear in the observed feature
space of joint angles.

The basic building block of the multi-layer architecture is the Restricted Boltzmann Machine (RBM,
see Figure 6), a two-layer neural network with logistic units and non-directed between-layer connections
(but no within-layer connections). The RBM comprises an undirected energy-based probabilistic model
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Figure 1: A Restricted Boltzmann Machine

• It has non-linear dynamics and it can make multi-
modal predictions.

• There is a very simple on-line filtering procedure
which provides a good approximation to the true con-

ditional distribution over the hidden variables given

the data observed so far.

• Even though maximum likelihood learning is in-

tractable, there is a simple and efficient learning al-

gorithm that finds good values for the parameters.

• There is a simple way to learn multiple layers of hid-
den variables and this can greatly improve the overall

generative model.

By using approximations for both inference and learning,

we obtain a family of models that are much more powerful

than those that are normally used for modeling sequential

data. The empirical question is whether our approxima-

tions are good enough to allow us to exploit the power of

this family for modeling real sequences in which each time-

frame is high-dimensional and the past has high-bandwidth

non-linear effects on the future.

2 The generative model

2.1 The Restricted Boltzmann Machine

We begin by reviewing the Restricted Boltzmann Machine

(RBM) [6, 14]. It has a simple, exact inference procedure

for the hidden variables and an efficient approximate learn-

ing algorithm for the parameters. These two properties

make the RBM very useful as an observation model for se-

quential data. When an RBM is modified to be conditioned

on previous hidden and/or visible states, we get a temporal

RBM (TRBM) which can be used to model sequences.

The RBM defines a distribution over (V, H) ∈ {0, 1}NV ×
{0, 1}NH , with being V the visible variables and H the

hidden variables, via the equation

P (V, H) = exp (V ′WH + a′V + b′H) /Z, (1)

be used, but for sequences in which there are several indepen-
dent things going on at once, it is easy to use different subsets of
the hidden units to model different components of the sequential
structure.

whereW are the connection weights of the RBM, a and b

are the biases for V and H , and the variables NV and NH

are the number of dimensions of V and H . V and H are

column vectors andW has dimensionsNV ×NH . We use

the notation V ′ for V transpose, since the standard nota-

tion creates confusion in later sections. We use P (V, H) to
mean either a distribution or a single probability, depend-

ing on the context. We use the more cumbersome notation

P (V = v, H = h) to clarify the ambiguous cases. The
joint distribution P (V, H) is from the exponential family

and V H ′ is its sufficient statistics, subject to the constraint

that (V, H) is a binary vector. The conditional distributions
P (V |H) and P (H |V ) are factorial and are given by

P (Hj = 1|V ) = σ
(

bj + W ′
:,jV

)

(2)

P (Vi = 1|H) = σ (ai + Wi,:H) , (3)

where σ(z) = (1+exp(−z))−1 is the logistic function and

W:,j , Wi,: are the jth column and the ith row ofW .

The derivative of the average log likelihood L with respect
to the parameters is given by the very simple equations

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P (V,H) (4)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P (V ) (5)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P (H), (6)

where P̃ (V ) denotes the empirical data distribution which
is the average of the datapoints in the training set, and

P (H |V )P̃ (V ) is the RBM distribution that arises when V
is set by the data distribution. Maximum likelihood esti-

mation is difficult due to the need to compute expectations

with respect to the model’s distribution, 〈·〉P (V,H). An ob-

vious way to compute these expectations is to use alternat-

ing Gibbs sampling. Starting from an arbitrary initial dis-

tribution, we alternate between updating all of the hidden

units in parallel using Eq. 2 and updating all of the visi-

ble units in parallel using Eq. 3. After a sufficient number

of iterations, this method gives unbiased samples from the

distribution P (V, H) [12]. It is generally much better than
brute-force calculation of the expectation which takes ex-

ponential time in the size of the RBM, but it is still slow in

practice, since the Markov chain needs to be run for each

iteration of the learning algorithm.

Fortunately, there is another parameter estimation method

which we call Contrastive Divergence (CD) because it fol-

lows the approximate gradient of an objective function that

is the difference of two Kullback-Liebler divergences [6].

CD is much more efficient than maximum likelihood learn-

ing and it works well in practice – RBM’s learned with CD

produce high-quality generative models [3]. The weight

updates for CD are given by

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P1(V,H) (7)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P1(V ) (8)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P1(H), (9)

Figure 6: Restricted Boltzmann Machine (RBM).

(as opposed to a directed belief-net), where the probability of a hidden logistic unit hj being “on” given
the visible data vector v is:

p(hj = 1|v) = f(bj +
∑

i

viwij)

where f is the logistic function, b is a bias term and w is a symmetric connection weight matrix.
Taylor et al. model visible data vectors by a Gaussian distribution of variance 1, where the mean is
estimated by the bias term c:

p(vi|h) = N (ci +
∑

j

hjwij , 1)

Maximum likelihood learning is slow in RBMs, but [14] showed that following the gradient of another
function called contrastive divergence works well in practice:

∆wij ∝ 〈vihj〉data − 〈vihj〉recon
where 〈·〉 is the expected value with respect to the data distribution and the distribution of the

reconstruction, respectively.
Taylor et al. extend the single RBM model to a Conditional Restricted Boltzmann Machine (CRBM)

that is able to model temporal dependencies. The model adds directed connections from visible variables
in the previous n time steps to the visible state (bias) in the current time step and similarly undirected
connections from previous visibles to the current hidden state. Given the data at time t, t − 1, ..., t − n
the hidden units at time t are conditionally independent and the CRBM can be trained by contrastive
divergence.

The autoregressive weights from previous visibles to current visibles can model short-term temporal
structure well, while the hidden units capture longer-term, higher-level structural information. This
effect can be improved by stacking modules of CRBMs similar to Deep Belief Networks [14], where
hidden units are treated as fully observed variables in higher layers.

Taylor et al. report their model to be able to capture the features of various different motion sequences,
where transitions either come from recorded transitions in the training data, or can be approximated
by adding noise to the hidden variables during the reconstruction in order to encourage the model to
explore different regions of the feature space.

A similar multi-layer stacking of temporal RBMs is described in [35], where it is used to model the
statistics of raw video pixel frames. The model is able to capture the highly non-linear dynamics of
a physical simulation of bouncing balls; due to the deep architecture a significantly lower number of
parameters has to be optimized compared to a Hidden Markov Model.

3.4 Evaluation methodologies

In this section some previous research on determination of the perceptual properties of sound texture
and the perceptual validation of synthesis results shall be reviewed.
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Saint-Arnaud [31] provides informal textual descriptions of sound textures and a list of some possible
perceptual properties, determined in a series of “brainstorming” sessions in group meetings.

Miner and Caudell [25] evaluate the results of wavelet based sound texture synthesis with a number
of listening experiments. The listening test design encompasses similarity rating, freeform identification
and context-based rating experiments. The data obtained from the experiments was analyzed using data
mining techniques like multidimensional scaling (MDS) and Pathfinder analysis, and the results were
used in turn to modify the synthesis algorithm in a perceptually informed manner.

Witmer and Singer [39] present questionnaires for assessing the sense of presence in virtual environ-
ments. They define “presence” in terms of the underlying concepts “involvement” and “immersion”:

• “Involvement is a psychological state experienced as a consequence of focusing one’s energy and
attention on a coherent set of stimuli or meaningfully related activities and events.”

• “Immersion is a psychological state characterized by perceiving oneself to be enveloped by, in-
cluded in, and interacting with an environment that provides a continuous stream of stimuli and
experiences.”

• “Presence is defined as the subjective experience of being in one place or environment, even when
one is physically situated in another. [...] Both involvement and immersion are necessary for
experiencing presence.”

Based on these definitions, they develop two questionnaires: The Presence Questionnaire (PQ) mea-
sures the degree of presence of an individual in a virtual environment and the influence of the contributing
factors. The prerequisite Immersive Tendencies Questionnair measures the tendency of an individual to
be involved or immersed. Both questionnaires employ a seven-point scale format based on semantic
differential principle [8].

4 Framework and methodology

The goal of this research is to develop a perceptually sound, adaptive statistical model of a certain class
of sounds called sound textures that exhibit properties of a stationary process on a certain timescale. In
contrast to CASA systems, that try to model the statistics one or several sound sources in the presence
of noise, the aim is to model the joint statistics of all sound sources present in the mixture.

Previous research in sound texture modeling has focused on signal models, that could only explain one
aspect of the signal properties, such as wavelet tree analysis or LPC methods for mostly stochastic sounds
or time-domain methods focusing on clearly separable atomic sound events. This proposed research tries
to answer two basic questions (from which a number of others arise):

• Can the use of a layered signal model help in reducing the number of correlations in feature space
to be modeled by the statistical model?

• Can a more powerful statistical model significantly improve the quality of synthesis and extend the
range of sounds that can be modeled?

Recent advances in the representational power of generative models [14, 35, 37, 36] suggest that those
models can be successfully applied to the statistics of features in a psychoacoustic signal model. The
proposed architecture is shown in Figure 7. One branch of evaluation should be performed comparatively,
i.e. comparing synthesis results with real textures; the goal is to develop a listening experiment frame-
work that focuses on the perceptually relevant features of the sound textures being modeled. Another
important evaluation criteria is the performance of the developed models in the context they are being
employed in; thus, another branch of evaluation should be the performance assessment in the context of
a virtual environment soundscape, based on the presence questionnaires developed by [39].

To summarize, the cornerstones of the proposed research are:

• Multi-layer signal model

• Multi-layer generative model for signal statistics
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Figure 7: Proposed sound texture model.

• Systematic evaluation of synthesis results

• Application to multi-texture modeling

• Application to texture classification

In the following an approximate research plan, divided in annual research goals is laid out:

• First year

– Develop an evaluation framework

– Implement and evaluate the most promising existing approaches ([26] and [27]) within this
framework

– Extend the signal model in [26] with the improved residual modeling from [27]

– Improved signal decomposition by sinusoidal peak classification [30]

– Evaluate the resulting models

• Second year

– Model signal statistics with a deep architecture (CRBM, TRBM, RTRBM)

– Extend the model to multiple texture modeling and parameterization

– Evaluate the resulting models

• Third year

– Apply the generative model to classification tasks and evaluate the performance

– Final evaluation of the resulting models
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