
CLAM, an Object Oriented Framework for Audio and Music

Pau Arumı́ and Xavier Amatriain
Music Technology Group, Universitat Pompeu Fabra

08003 Barcelona, Spain
{parumi,xamat}@iua.upf.es

Abstract

CLAM is a C++ framework that is being developed
at the Music Technology Group of the Universitat
Pompeu Fabra (Barcelona, Spain). The framework
offers a complete development and research platform
for the audio and music domain. Apart from offering
an abstract model for audio systems, it also includes
a repository of processing algorithms and data types
as well as a number of tools such as audio or MIDI
input/output. All these features can be exploited to
build cross-platform applications or to build rapid
prototypes to test signal processing algorithms.

Keywords

Development framework, DSP, audio, music, object-
oriented

1 Introduction

CLAM stands for C++ Library for Audio and
Music and is a full-fledged software framework
for research and application development in the
audio and music domain. It offers a conceptual
model as well as tools for the analysis, synthesis
and transformation of audio signals.

The initial objective of the CLAM project
was to offer a complete, flexible and platform in-
dependent sound analysis/synthesis C++ plat-
form to meet the needs of all the projects of the
Music Technology Group (?) at the Universitat
Pompeu Fabra in Barcelona. Those initials ob-
jectives have slightly changed since then, mainly
because the library is no longer seen as an in-
ternal tool for the MTG but as a framework
licensed under the GPL (?).

CLAM became public and Free in the course
of the AGNULA IST European project (?).
Some of the resulting applications as well as the
framework itself were included in the Demudi
distribution.

Although nowadays most the development is
done under GNU/Linux, the framework is cross-
platform. All the code is ANSI C++ and it
is regularly compiled under GNU/Linux, Win-

dows and Mac OSX using the GNU C++ com-
piler but also the Microsoft compiler.

CLAM is Free Software and all its code and
documentation can be obtained though its web
page (?).

2 What CLAM has to offer ?

Although other audio-related environments ex-
ist 1 —see (Amatriain, 2004) for an extensive
study and comparison of most of them— there
are some important features of our framework
that make it somehow different:

• All the code is object-oriented and written
in C++ for efficiency. Though the choice
of a specific programming language is no
guarantee of any style at all, we have tried
to follow solid design principles like design
patterns (?) and C++ idioms (?), good
development practices like test-driven de-
velopment (?) and refactoring (?), as well
as constant peer reviewing.

• It is efficient because the design decisions
concerning the generic infrastructure have
been taken to favor efficiency (i.e. inline
code compilation, no virtual methods calls
in the core process tasks, avoidance of un-
necessary copies of data objects, etc.)

• It is comprehensive since it not only in-
cludes classes for processing (i.e. anal-
ysis, synthesis, transformation) but also
for audio and MIDI input/output, XML
and SDIF serialization services, algorithms,
data visualization and interaction, and
multi-threading.

• CLAM deals with wide variety of extensible
data types that range from low-level signals
(such as audio or spectrum) to higher-level
semantic-structures (a musical phrase or an
audio segment)

1to cite only some of them: OpenSoundWorld, PD,
Marsyas, Max, SndObj and SuperCollider



Figure 1: CLAM modules

• As stated before, it is cross-platform

• The project is licensed under the GPL
terms and conditions.

• The framework can be used either as a reg-
ular C++ library or as a prototyping tool.

In order to organise all these features CLAM
is divided into different architectonic modules.
Figure 1 shows the modules and submodules
that exist in CLAM. The most important ones
are those related to the processing kernel, with
its repositories and infrastructure modules. Fur-
thermore, a number of auxiliary tools are also
included.

In that sense, CLAM is both a black-box and
a white-box framework (?). It is black-box be-
cause already built-in components included in
the repositories can be connected with mini-
mum programmer effort in order to build new
applications. And it is white-box because the
abstract classes that make up the infrastruc-
ture can be easily derived in order to extend
the framework components with new processes
or data classes.

2.1 The CLAM infrastructure
The CLAM infrastructure is defined as the set
of abstract classes that are responsible for the
white-box functionality of the framework and

define a related metamodel 2. This metamodel
is very much related to the Object-Oriented
paradigm and to Graphical Models of Compu-
tation as it defines the object-oriented encap-
sulation of a mathematical graph that can be
effectively used for modeling signal processing
systems in general and audio systems in partic-
ular.

The metamodel clearly distinguishes between
two different kinds of objects: Processing ob-
jects and Processing Data objects. Out of the
two, the first one is clearly more important as
the managing of Processing Data constructs can
be almost transparent for the user. Therefore,
we can view a CLAM system as a set of Process-
ing objects connected in a graph called Network.

Processing objects are connected through in-
termediate channels. These channels are the
only mechanism for communicating between
Processing objects and with the outside world.
Messages are enqueued (produced) and de-
queued (consumed) in these channels, which
acts as FIFO queues.

In CLAM we clearly differentiate two kinds
of communication channels: ports and controls.

2The word metamodel is here understood as a “model
of a family of related models”, see (Amatriain, 2004) for
a thorough discussion on the use of metamodels and how
frameworks generate them.



Ports have a synchronous data flow nature while
controls have an asynchronous nature. By syn-
chronous, we mean that messages get produced
and consumed at a predictable —if not fixed—
rate. And by asynchronous we mean that such
a rate doesn’t exist and the communication fol-
lows an event-driven schema.

Figure 2 is a representation of a CLAM pro-
cessing. If we imagine, for example, a processing
that performs a frequency-filter transformation
on an audio stream, it will have an input and
an out-port for the incoming audio stream and
processed output stream. But apart from the
incoming and outcoming data, some other en-
tity —probably the user through a GUI slider—
might want to change some parameters of the
algorithm.

This control data (also called events) will ar-
rive, unlike the audio stream, sparsely or in
bursts. In this case the processing would want
to receive these control events through vari-
ous (input) control channels: one for the gain
amount, another for the frequency, etc.

The streaming data flows through the ports
when a processing is fired (by receiving a Do()
message).

Different processings can consume and pro-
duce at different velocities or, likewise, a dif-
ferent number of tokens. Connecting these pro-
cessings is not a problem as long as the ports are
of the same data type. The connection is han-
dled by a FlowControl entity that figures out
how to schedule the firings in a way that avoids
firing a processing with not enough data in its
input-port or not enough space into its output-
ports.
Configurations: why not just controls?
Apart from the input-controls, a processing re-
ceives another kind of parameter: the configu-
rations.

Configurations parameters, unlike controls
parameters, are dedicated to expensive or struc-
tural changes in the processing. For instance, a
configuration parameter can decide the number
of ports that a processing will have. Therefore,
a main difference with controls is that they can
only be set into a processing when they are not
in running state.
Composites: static vs dynamic It is very
convenient to encapsulate a group of process-
ings that works together into a new composite
processing. Thus, enhancing the abstraction of
processes.

CLAM have two kinds of composites: static

or hardcoded and dynamic or nested-networks.
In both cases inner ports and controls can pub-
lished to the parent processing.

Choosing between the static vs dynamic com-
posites is a trade-off between boosting efficiency
or understandability. See in-band pattern in
(?).

2.2 The CLAM repositories
The Processing Repository contains a large set
of ready-to-use processing algorithms, and the
Processing Data Repository contains all the
classes corresponding to the objects being pro-
cessed by these algorithms.

The Processing Repository includes around
150 different Processing classes, classified in the
following categories: Analysis, ArithmeticOper-
ators, AudioFileIO, AudioIO, Controls, Genera-
tors, MIDIIO, Plugins, SDIFIO, Synthesis, and
Transformations.

Although the repository has a strong bias
toward spectral-domain processing because of
our group’s background and interests, there are
enough encapsulated algorithms and tools so as
to cover a broad range of possible applications.

On the other hand, in the Processing Data
Repository we offer the encapsulated versions
of the most commonly used data types such as
Audio, Spectrum, SpectralPeaks, Envelope or
Segment. It is interesting to note that all of
these classes have interesting features such as
a homogeneous interface or built-in automatic
XML persistence.

2.3 Tools
XML Any CLAM Component can be stored
to XML as long as StoreOn and LoadFrom meth-
ods are provided for that particular type (?).
Furthermore, Processing Data and Processing
Configurations –which are in fact Components–
make use of a macro-derived mechanism that
provides automatic XML support without hav-
ing to add a single line of code (?).
GUI Just as almost any other framework in
any domain, CLAM had to think about ways of
integrating the core of the framework tools with
a graphical user interface that may be used as
a front-end of the framework functionalities.

The usual way to work around this issue is to
decide on a graphical toolkit or framework and
add support to it, offering ways of connecting
the framework under development to the wid-
gets and other graphical tools included in the
graphical framework. The CLAM team, how-
ever, aimed at offering a toolkit-independent



Figure 2: CLAM processing detailed representation

support. This is accomplished through the
CLAM Visualization Module.

This general Visualization infrastructure is
completed by some already implemented pre-
sentations and widgets. These are offered both
for the FLTK toolkit (?) and the QT frame-
work (?; ?). An example of such utilities are
convenient debugging tools called Plots. Plots
offer ready-to-use independent widgets that in-
clude the presentation of the main Processing
Data in the CLAM framework such as audio,
spectrum, spectral peaks. . .

Platform Abstraction Under this category
we include all those CLAM tools that encap-
sulate system-level functionalities and allow a
CLAM user to access them transparently from
the operating system or platform.

Using these tools a number of services –such
as Audio input/output, MIDI input/output or
SDIF file support– can be added to an applica-
tion and then used on different operating sys-
tems without changing a single line of code.

3 Levels of automation

The CLAM framework offers three different lev-
els of automation to a user who wants to use its
repositories, which can also be seen as different
levels of use of the generic infrastructure:

Library functions The user has explicit ob-
jects with processings and processing data and
calls processings Do methods with data as its
parameters. Similarly as any function library.

Figure 3: a CLAM processing network

Processing Networks The user has explicit
processing objects but streaming data is made
implicit, through the use of ports. Nevertheless,
the user is in charge of firing, or calling a Do()
method without parameters.

Automatic Processing Networks It offers
a higher level interface: processing objects are
hidden behind a layer called Network, see Fig-
ure 3 Thus, instantiation of processing objects
are made through passing strings identifiers to a
factory. Static factories are a well documented
C++ idiom (?) that allow us to decouple the
factory class with its registered classes in a very
convenient way. They makes the process of
adding or removing processings to the reposi-



tory as easy as issuing a single line of code in
the processing class declaration.

Apart from instantiation, the Network class
offers interface for connecting the components
processings and, most important, it automati-
cally controls the firing of processings (calling
its Do method).

Actually, the firing scheduling can follow dif-
ferent strategies, for example a push strategy
starting firing the up-source processings, or a
pull strategy where we start querying for data
to the most down-stream processings, as well
as being dynamic or static (fixed list of fir-
ings). See (?; ?) for more details on scheduling
dataflow systems.

To accommodate all this variability CLAM
offers different FlowControl sub-classes which
are in charge of the firing strategy, and are plug-
gable to the Network processing container.

4 Integration with GNU/Linux
Audio infrastructure

CLAM input/output processings can deal with
a different kinds of device abstraction architec-
tures. In the GNU/Linux platform, CLAM can
use audio and midi devices through the ALSA
layer (?), and also through the portaudio and
portmidi (?; ?) layers.

ALSA: ALSA low-latency drivers are very
important to obtain real-time input/output pro-
cessing. CLAM programs using a good sound-
card in conjunction with ALSA drivers and
a well tuned GNU/Linux system —with the
real-time patch— obtains back-to-back laten-
cies around 10ms.

Audio file libraries: Adding audio file writ-
ing and reading capability to CLAM has been a
very straight-forward task since we could del-
egate the task on other good GNU/Linux li-
braries: libsndfile for uncompressed audio for-
mats, libvorbis for ogg-vorbis format and finally
libmad and libid3 for the mp3 format.

Jack: Jack support is one of the big to-dos
in CLAM. It’s planned for the 1.0 release or
before —so in a matter of months. The main
problem now is that Jack is callback based while
current CLAM I/O is blocking based. So we
should build an abstraction that would hide this
peculiarity and would show those sources and
sinks as regular ones.

LADSPA plugins: LADSPA architecture is
fully supported by CLAM. On one hand, CLAM
can host LADSPA plugins. On the other hand,

processing objects can be compiled as LADSPA
plugins.

LADSPA plugins transform buffers of audio
while can receive control events. Therefore
these plugins map very well with CLAM pro-
cessings that have exclusively audio ports (and
not other data types ports) and controls.

CLAM takes advantage of this fact on two
ways: The LADSPA-loader gets a .so library file
and a plugin name and it automatically instan-
tiate a processing with the correspondent audio
ports and controls. On the other hand, we can
create new LADSPA plugins by just compiling
a C++ template class called LadspaProcessing-
Wrapper, where the template argument is the
wrapped processing class.

DSSI plugins: Although CLAM still does
not have support for DSSI plugins, the re-
cent development of this architecture allowing
graphical user interface and audio-instruments
results very appealing for CLAM. Thus addi-
tions in this direction are very likely. Since
CLAM provides visual tools for rapid prototyp-
ing applications with graphical interface, these
applications are very suitable to be DSSI plug-
ins.

4.1 What CLAM can be used for ?
The framework has been tested on —but also
has been driven by— a number of applica-
tions, for instance: SMSTools, a SMS Analy-
sis/Synthesis (?) graphical tool; Salto (?), a
sax synthesizer; Rappid (?) a real-time proces-
sor used in live performances.

Other applications using CLAM developed at
the research group includes: audio features ex-
traction tools, time-stretching plugins, voice ef-
fect processors, etc.

Apart from being a programmers framework
to develop applications, the latest developments
in CLAM have brought important features that
fall into the black-box and visual builder cate-
gories.

That lets a user concentrate on the research
of algorithms forgetting about application de-
velopment. And, apart from research, it is also
valuable for rapid application prototyping of ap-
plications and audio-plugins.

5 Rappid Prototyping in CLAM

5.1 Visual Builder
Another important pattern that CLAM uses
is the visual builder which arises from the ob-
servation that in a black-box framework, when



Figure 4: NetworkEditor, the CLAM visual
builder

connecting objects the connection script is very
similar from one application to another.

Acting as the visual builder, CLAM have a
graphical program called NetworkEditor that
allows to generate an application –or at least
its processing engine– by graphically connecting
objects. And another application called Proto-
typer, that acts as the glue between an applica-
tion GUI designed with a graphical tool and the
processing engine defined with the NetworkEd-
itor.

5.2 An example
Here we will show how we can set up a graphical
stand-alone program in just few minutes. The
purpose of this program is to make some spec-
tral transformations in real-time with the audio
taken from the audio-card, apply the transfor-
mations and send the result back to the audio-
card. The graphical interface will consist in a
simple pane with different animated representa-
tions of the result of the spectral analysis, and
three sliders to change transformation parame-
ters.

First step: building the processing net-
work (Figure 4) Patching with NetworkEd-
itor is a very intuitive task to do. See Figure 4.
We can load the desired processings by dragging
them from the left panel of the window. Once
in the patching panel, processings are viewed as
little boxes with attached inlets and outlets rep-
resenting its ports and control. The application
allows all the typical mouse operations like se-
lect, move, delete and finally, connect ports and
controls.

Since CLAM ports are typed, not all out-
ports are compatible with all in-ports. For
example in the Figure 4, the second process-
ing in the chain is called SMSAnalysis and re-

Figure 5: the QT GUI designer tool

ceives audio samples and produces: sinusoidal
peaks, fundamental, several spectrums (one cor-
responding to the original audio and another
corresponding to the residual resulting of sub-
tracting the sinusoidal component).

Connected to SMSAnalysis out-ports we have
placed three processings to perform transforma-
tions: one for controlling the gain of the sinu-
soidal component, another to control the gain
of the residual component and the last one for
shifting the pitch. The latest modifies both si-
nusoidal and residual components.

Then the signal chain gets into the SMSSyn-
thesis which output the resynthesizes audio
ready to feed the AudioOut (which makes the
audio-card to sound)

Before starting the execution of the network,
we can right click upon any processing view to
open a dialog with its configuration. For in-
stance, the SMSAnalysis configuration includes
the window type and window size parameters
among many others.

Another interesting feature of the Net-
workEditor is that it allows loading visual plots
widgets for examining the flowing data in any
out-port. And also, slider widgets to connect to
the in-control inlets.

Once the patch is finished we are ready to
move on directly to the graphical user interface.

Second step: designing the program GUI
(Figure 5) The screen-shot in Figure 5 is
taken while creating a front end for our process-
ing network. The designer is a tool for creating
graphical user interfaces that comes with the
QT toolkit (?; ?).



Figure 6: the running prototype

Normal sliders can be connected to process-
ing in-ports by just setting a suited name in
the properties box of the widget. Basically this
name specify three things in a row: that we
want to connect to an in-control, the name that
the processing object have in the network and
the name of the specific in-control.

On the other hand we provide the designer
with a CLAM Plots plugin that offers a set of
plotting widgets that can be connected to out-
ports.

In the example in Figure 5 the black boxes
corresponds to different plots for spectrum, au-
dio and sinusoidal peaks data.

Now we just have to connect the plots widgets
by specifying —like we did for the sliders— the
out-ports we want to inspect.

We save the designer .ui file and we are ready
to run the application.

Third step: running the prototype (Fig-
ure 6) Finally we run the prototyper pro-
gram. Figure 6. It takes two arguments, in
one hand, the xml file with the network speci-
fication and in the other hand, the designer ui
file.

This program is in charge to load the network
from its xml file —which contains also each pro-
cessing configuration parameters— and create
objects in charge of converting QT signals and
slots with CLAM ports and controls.

And done! we have created, in a matter of
minutes, a prototype that runs fast C++ com-
piled code without compiling a single line.

6 Conclusions

CLAM has already been presented in other con-
ferences like the OOPSLA’02 (?; ?) but since
then, a lot of progress have been taken in dif-
ferent directions, and specially in making the
framework more black-box with visual builder
tools.

CLAM has proven being useful in many ap-
plications and is becoming more and more easy
to use, and so, we expect new projects to be-
gin using the framework. Anyway it has still
not reached a the stable 1.0 release, and some
improvements needs to be done.

See the CLAM roadmap in the web (?) for
details on things to be done. The most promi-
nent are: Library-binaries and separate sub-
modules, since at this moment modularity is
mostly conceptual and at the source code or-
ganization level. Finish the audio feature-
extraction framework which is work-in-progress.
Simplify parts of the code, specially the parts
related with processing data and configurations
classes. Have working nested networks

7 Acknowledgements

The authors wish to recognize all the people
who have contributed to the development of
the CLAM framework. A non-exhaustive list
should at least include Maarten de Boer, David
Garcia, Miguel Ramı́rez, Xavi Rubio and En-
rique Robledo.

Some of the the work explained in this paper
has been partially funded by the Agnula Eu-
ropan Project num.IST-2001-34879.

References

A. Alexandrescu. 2001. Modern C++ Design.
Addison-Wesley, Pearson Education.

X. Amatriain, P. Arumı́, and M. Ramı́rez.
2002a. CLAM, Yet Another Library for Au-
dio and Music Processing? In Proceed-
ings of the 2002 Conference on Object Ori-
ented Programming, Systems and Applica-
tion (OOPSLA 2002)(Companion Material),
Seattle, USA. ACM.

X. Amatriain, M. de Boer, E. Robledo, and
D. Garcia. 2002b. CLAM: An OO Frame-
work for Developing Audio and Music Appli-
cations. In Proceedings of the 2002 Confer-
ence on Object Oriented Programming, Sys-
tems and Application (OOPSLA 2002)(Com-
panion Material), Seattle, USA. ACM.

X. Amatriain. 2004. An Object-Oriented Meta-



model for Digital Signal Processing. Univer-
sitat Pompeu Fabra.

K Beck. 2000. Test Driven Development by Ex-
ample. Addison-Wesley.

J. Blanchette and M. Summerfield. 2004. C++
GUI Programming with QT 3. Pearson Edu-
cation.

AGNULA Consortium. 2004. AGNULA (A
GNU Linux Audio Distribution) homepage,
http://www.agnula.org.

FLTK. 2004. The fast light toolkit (fltk) home-
page: http://www.fltk.org.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. 1999. Refactoring: Improving
the Design of Existing Code. Addison-Wesley.

Free Software Foundation. 2004. Gnu gen-
eral public license (gpl) terms and conditions.
http://www.gnu.org/copyleft/gpl.html.

Johnson R. Gamma E., Helm R. and Vlissides J.
1996. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley.

D. Garcia and X. Amatrian. 2001. XML as a
means of control for audio processing, syn-
thesis and analysis. In Proceedings of the
MOSART Workshop on Current Research
Directions in Computer Music, Barcelona,
Spain.

J. Haas. 2001. SALTO - A Spectral Do-
main Saxophone Synthesizer. In Proceedings
of MOSART Workshop on Current Research
Directions in Computer Music, Barcelona,
Spain.

C. Hylands et al. 2003. Overview of the
Ptolemy Project. Technical report, Depart-
ment of Electrical Engineering and Computer
Science, University of California, Berklee,
California.

D. A. Manolescu. 1997. A Dataflow Pattern
Language. In Proceedings of the 4th Pattern
Languages of Programming Conference.

MTG. 2004. Homepage of the Music Technol-
ogy Group (MTG) from the Universitat Pom-
peu Fabra. http://www.iua.upf.es/mtg.

D. Roberts and R. Johnson. 1996. Evolve
Frameworks into Domain-Specific Languages.
In Procedings of the 3rd International Confer-
ence on Pattern Languages for Programming,
Monticelli, IL, USA, September.

E. Robledo. 2002. RAPPID: Robust Real Time
Audio Processing with CLAM. In Proceed-
ings of 5th International Conference on Dig-
ital Audio Effects, Hamburg, Germany.

X. Serra, 1996. Musical Signal Processing,

chapter Musical Sound Modeling with Sinu-
soids plus Noise. Swets Zeitlinger Publishers.

Trolltech. 2004. Qt homepage by trolltech.
http://www.trolltech.com.

www ALSA. 2004. Alsa project home page.
http://www.alsa-project.org.

www CLAM. 2004. CLAM website:
http://www.iua.upf.es/mtg/clam.

www PortAudio. 2004. PortAudio homepage:
www.portaudio.com.

www PortMidi. 2004. Port Music home-
page: http://www-2.cs.cmu.edu/ mu-
sic/portmusic/.

www Ptolemy. 2004. Ptolemy project home
page. http://ptolemy.eecs.berkely.edu.


