Voice as a musical controller for
real-time synthesis

by

Jordi Janer i Mestres
Submitted in partial fulfillment of the requirements for
the degree of Diploma of Advanced Studies.

Doctorate in Computer Science and Digital Communication

Department of Technology

Tutor: Dr. Xavier Serra

Universitat Pompeu Fabra

Barcelona, September 2004

Abstract

The aim of this document is to explore the singing voice as a valid musical
controller for real-time synthesis. We address the identification and extraction
of the voice features, and the mapping of those features to a synthesis engine.
Since the advent of digital music synthesis and MIDI, many controllers have been
developed, ranging from the traditional keyboard to sophisticated computer
vision systems. We propose to employ an ubiquitous and highly expressive
instrument: the voice. This work first reviews aspects of voice analysis, and
the control of different synthesis techniques. Finally, we present a prototype of
Vocal Controller that synthesizes a bass guitar using two techniques: Physical
Models and Spectral Models.

The proposal for the PhD dissertation consists of extending the current
prototype, allowing for real-time performance situations; and validating the
system with two groups of subjects: naive users and skilled musicians.

Preface

The evolution of Computer Music has brought in past years advanced algo-
rithms for synthesizing sounds in real-time. Some of these algorithms target to
simulate existing acoustical instruments by using different techniques such as
physical models or sample triggering. A second group of algorithms explores
ways to create new artificial sounds, for instance granular synthesis. A problem
that arises with all these synthesis techniques is how these algorithms can be
controlled by a musician in a performance situation. One of the goals of any
controller should be to capture the performer’s execution and transmit it to the
synthesis engine in order to produce a musical experience as expressive as it is
with a real instrument. Most control interfaces for electronic instruments are
replicas of traditional instruments provided with several sensors that get de-
tail of the performer’s execution. Typically, keyboards are used for controlling
synthesizers but other attempts like wind controllers fall within this category.
Finally, there are the so-called Gestural Controllers, in which the performer in-
teracts with the instrument by means of body gestures that are captured by an
interface such as a Computer Vision based system.

In this work we present an approach that exploits the human voice as a
meaningful expression controller for synthesizing sounds in real-time. In other
words, to consider the voice as a multi-parametric controller. Taking advantage
of the past research done in the field of Voice Analysis/Synthesis, we can ex-
tract from the voice many nuances, more than just Loudness and Pitch, such
as Timber Characteristic, Breathiness, Attack or Hoarseness. If we are able to
map these descriptors meaningfully onto a synthesizer’s engine, we will have
an ubiquitous intuitive controller that drives the voice’s expression to specific
nuances of a target instrument synthesis. This lead us to think in two different
situations, first, naive users could “play” an instrument just by controlling pitch
and loudness. On the other hand, a very skilled singer can use his highly expres-
sive performance for controlling, for instance, a trumpet sound. Another basic
example would be to map the roughness factor of the input voice to the dis-
tortion amount in the extended plucked-string algorithm. An aspect tha plays
an important role is the real-time performance. Our system can be considered
altogether as a musical instrument, therefore it should react instantly to per-
former’s gestures.

In the system we can identify three blocks: Analysis, Mapping and Synthesis;
in addition there is a feed-back signal consisting of the output, which will help
the user to learn from the sound. In this work, the research focuses basically
on the first two blocks, and explore how they can be applied for synthesizing
a bass sound in real-time using two different techniques physical-models and
spectral-models.

Finally, this work could not be done without the collaboration and support
of many people. I thank Professor Xavier Serra for giving me the opportunity to
work at the Music Technology Group. Also I would like to thank for their knowl-
edge and advise Perfe, Alex, Lars, Jordi, Sergi, OscarM, Fabien, Pedro, Giinter,
Martin, Alvaro, Pau, Emilia, OscarC, ex-Cre@mworkers, Pierre Dutilleux and
Paulo F.L.

Contents

1 Introduction 6
1.1 Contexto e e e 6
1.1.1 Motivation 6
1.1.2 The Author L 7
113 ThePlace o 8
1.1.4 Past Projectso .. 9
1.1.5 Semantic HiFi Project 9

1.2 Sound Synthesis or Sound Transformation.. 10
1.2.1 Brief Survey of Processors and Synthesizers. 10
1.2.2 A New Musical Controller? 11

2 Background and Related Work 14
2.1 Voice Analysis 14
2.1.1 Physiology of the human voice 14
2.1.1.1 Source and Articulation 15

2.1.1.2 Control 17

2.1.2 Voicemodels 20
2.1.3 Speech Processing 22
2.1.3.1 Vowel Estimator 23

2.1.3.2 Techniques, 24

2.1.3.3 Considerations 28

2.14 Spectral Analysis 29
2.1.4.1 Sinusoidal Model 30

2.1.4.2 Modified Phase-Locked Vocoder 32

2.2 Control of electronic instruments 33
2.2.1 Control of acoustic instruments 33
2.2.2 Regarding MIDI protocol 34
2.2.3 Traditional design in musical controllers 36
2.2.3.1 Embedded keyboards 36

2.2.3.2 Breath controllers 36

2.2.4 Innovative design in musical controllers 37
2.24.1 Theremin 37

2.24.2 Body-Sensors 37

2.2.4.3 Computer Vision- HCI 38

2.3

2.4

Synthesis Control
2.3.1 Mapping layer
2.3.2 Abstract techniques Lo
2.3.3 Sample-basedo Lo
2.3.4 Physical Modeling
2.3.5 Spectral Models,
Overview of related systems
2.4.1 Voice-driven interactive systems
2411 The Singing Tree.
2.4.1.2 Akademie Schloss Solitude’s Auracle
2.4.2 Voice to MIDI converters
2.4.2.1 An example: Epinoisis’ Digital Ear
2.4.3 Audio controlled synthesizers
2.4.3.1 Audio-Driven Perceptual Timbre Synthesizer . .
2432 Antareskantos 1.0

3 Contributions

3.1
3.2

3.3

Initial Objectiveso
Voice Features Extraction
3.2.1 Excitation Descriptors
3.2.1.1 Pitch information
3.2.1.2 Loudness information
3.2.2 Vocal Tract Descriptors
3.2.2.1 Formant Estimation. Vowel Vector
3.2.2.2 Brightness information
3.2.2.3 Spectral Shape
3.2.3 Voice Quality Descriptors
3.2.3.1 Hoarseness descriptor
3.2.3.2 Breathiness descriptor
3.24 Note Descriptors
3.24.1 Energy Factor
3.24.2 Attack Factor
3.2.4.3 Timing description
Mapping of the Extracted Features
3.3.1 Justification for discarding MIDI
3.3.2 Mapping Model for the Singing Voice
3.3.3 Mapping to a Physical Model Algorithm
3.3.4 Mapping to Spectral Model Algorithm (Morph)

4 Implemented System

4.1

4.2

Framework
4.1.1 Libraries utilized
4.1.2 Prototypeo
Synthesis of a Basssound,
4.2.1 Adapting the Karplus-Strong String Algorithm
4.2.2 Spectral Morphing Model

5 Discussion and Future Work
5.1 Summary and conclusions
5.2 Future work

Chapter 1

Introduction

In this chapter we introduce the problem faced in this work, as well as the con-
text in which the research has been carried out. In addition, some preliminary
discussions are addressed.

1.1 Context

1.1.1 Motivation

This work is part of the Doctorate Program in Computer Science and Commu-
nication of the Universitat Pompeu Fabra, Barcelona. With this document, we
aim at setting the foundations towards the fulfilment of the PhD dissertation.
We study the human voice as a meaningful musical controller, and the research
proposal is to provide a model for transmitting features of the voice to a syn-
thesis engine.

The human voice, and particularly the singing voice, is an enormously ex-
pressive instrument, which offers a wide range of possibilities. The author was
enlightened by this during the work for another project related with the singing
voice. In that case, the project consisted in developing a Vocal Processor, a
system capable of changing the voice quality. Target users of the system were
professional recording studios.

The initial idea of this work was to extract automatically features form the
voice signal, and then, use those features to control the generation of sound. This
led us to consider the voice as a musical controller, in other words, to present
the voice as a substitute for the omnipresent keyboard or other controllers in
the domain of digital music synthesis.

Moreover the voice offers several advantages. First, even an absolutely novel
user is capable of control basic features of the voice such as pitch variation and
loudness. More skilled individuals like trained singers can attain control over
more interesting and complex nuances such as vibrato, breathiness amount,
etc. This fact appears to be significant, since the proposed system can be

used by beginners, while maintaining interest for experimented users, who can
accomplish a much richer musical experience. Second, the voice is ubiquitous,
we all can sing without any extra equipment but a microphone. This relieves
our system from expensive input electronic devices with plenty of sensors and
microprocessors. Finally, a side benefit is that it can be employed by disabled
people, who could “play” otherwise unplayable instruments.

Although there are certainly other systems that attempt to control digital
synthesis by an audio stream, such as Pitch-to-MIDI converters, the author
could not find in the literature references that explored the voice as a complex
musical controller.

Our purpose is to use the Voice Controller for synthesizing any sound, pri-
marily to control digital simulations of acoustic instruments, but to other extent
also to explore any experimental synthesized sound. As we present in the chap-
ter 4, a first prototype has been developed, which synthesizes a bass guitar. The
main reason for choosing a bass guitar in the first prototype is our intention of
integrate the system in a DJ-oriented application. In order to provide the DJ
with new expressive resources, we thought of an application in which the DJ
triggers a rhythm and “sings” the bass line on top. However, the bass sound has
obvious drawbacks. First, is a less rewarding instrument, hardly used in solos
and thus, apparently less enjoyable. It is usually employed as support instru-
ment for accompanying the melody or keeping the rhythm in popular music.
Second, using the bass as target instrument, we may narrow the expressivity
present in the performers voice. The degree of expression is larger in the singing
voice than in a bass guitar sound. Hence, our system will lose expression.

On the other hand, this is also an advantage, since we can concentrate on
the main aspects of the system, seeking its viability as a real-time controller.
The full potential of the voice expressivity can be addressed in a further step.

1.1.2 The Author

Here you find a brief description of my trajectory.

I graduated as Technical Telecommunication Engineer for La Salle School
of Engineering, Universitat Ramon Llull, Barcelona in December 1997. The
End-studies Report was FIR Filters. Static and Adaptive Methods, in Dep. of
Signal Theory.

I graduated as Electronic Engineer, Sound and Image Specialty, for La Salle
School of Engineering, Universitat Ramon Llull, Barcelona in July 2000. The
End-studies Project was titled AML — Architecture and Music Laboratory.
Porting an interactive installation from NeXT/ISPW to Macintosh/Maz-MSP,
and was achieved at ZKM — Institut fiir Musik und Akustik!, Karlsruhe, Ger-
many.

Ihttp://www.zkm.de

Since December 2003 I am Researcher and PhD student at the Music Tech-
nology Group of the Audiovisual Institute of the Universitat Pompeu Fabra,
Barcelona. In the year 2004, I was also Assistant Lecturer in Signal Processing
at the ESUP, UPF.

From December 2000 until December 2003, I was employed as DSP Engi-
neer in the R&D Department for the audio company Creamware Datentechnik
GmbH2, Siegburg, Germany.

Between the years 1999 and 2000, I did an 11-month training stage at the
ZKM — Center for Art and Media, in the Institute for Music and Acoustics,
Karlsruhe, Germany.

Apart from my professional and academic trajectory in the audio field, my
passion for music (a reason for working at the MTG) started long ago. Besides
being a very limited keyboard player, I enjoy listen to music, discovering new
sounds, and Co-directing a weekly musical program in a local radio station.

1.1.3 The Place

This work has been carried out at the Music Technology Group (MTG) 2 of the
Audiovisual Institute (IUA) 4, Universitat Pompeu Fabra (UPF) ® in Barcelona.
The MTG is a research group founded in 1994 by Dr. Xavier Serra, having now
more than forty researchers working on computer music and audio technologies.
From the initial work on spectral modeling, the research activities cover cur-
rently different areas such as sound synthesis, audio identification, audio content
analysis, description and transformation, interactive systems and others.

Among the various areas of expertise within the MTG, two topics are spe-
cially related to our work:

e Spectral Voice Processing
e Musical Content Description

Referring to Voice Processing, research carried out in the MTG has been
integrated in a Singing Synthesizer, commercialized by Yamaha Corp. under
the name of Vocaloid. Other specific work related to the singing voice applied
to Karaoke systems and Vocal Processors.

On the other hand, a rapid emergent topic in the Computer Music commu-
nity is the so-called Music Information Retrieval. Within this area, the MTG
is also specially active by participating in European projects such as Cuidado

2http:/ /www.creamware.de
3http://www.iua.upf.es/mtg
4http://www.iua.upf.es
Shttp://www.upf.edu

or SIMAC 8. Here the group’s expertise lies in Audio Description Algorithms,
which can be further integrated in larger systems. A sample of the potential
integration of such algorithms is the SoundPalette [9], an application developed
in collaboration with the German company Creamware for the Cuidado Project.

1.1.4 Past Projects

Here we mention the projects in which the author has been involved in the
period 2003-2004 as part of his research activities

e CUIDADO. EU Project
I was responsible for maintaining the SoundPalette Offline application,
and building a ready-to-use installation package. This application will be
shown at the 25th International AES Conference (AES-Metadata) [9].

e Voice Fx Vocal Processor. External project for Yamaha
I joined this project in its final stage. My task was the development of
voice analysis and transformation algorithms. Also, I was involved in the
preparation of the demo sounds.

e OpenDrama. EU Project.
One of the developed applications is the OperaTutor. This tool helps
singing students in reaching the expressivity of a professional singer. I
was responsible for the application’s real-time processing, which consisted
in the integration of several voice transformations algorithms.

1.1.5 Semantic HiFi Project

This work is partially carried out under the umbrella of the EU-Project Semantic
HiF;i 7, FP6 - IST - 507913, which started in 2004 and has as duration of three
years. Semantic HiFi’s goal is to develop the HiFi system of the future, which is
hard-disk based. This novel system should deal with meta-data, as well as with
sound transformations, bringing to the home user, not the traditional passive
but an interactive experience when listening to music. The partners involved
in this project are IRCAM (Paris) as coordinator, Native Instruments (Berlin),
Fraunhofer Institut (Illmenau), Universitat Pompeu Fabra (Barcelona), Sony
CSL (Paris) and Ben Gurion University (Israel).

In addition, the project contemplates the development of several software
applications targeted to the DJ community. Certainly, the work presented here
fits in this part. As we have mentioned, our final goal is to come up with a system
capable of using the voice as a musical instrument. From our perspective, this
appears to be pretty fascinating, which can widen the musical expression of a
DJ performance. Although the DJ began as a “pure decorative” figure in clubs
and dance-halls, it has gained a major reputation during the last decades. With
the emergence and popularity of certain electronic music styles (techno, house,

Shttp://www.semanticaudio.org/
"http://shf.ircam.fr/

d’n’b, etc.), the DJ has acquired in many cases the status of rock’n’roll star.
The main topics involved in our work for the Semantic HiFi Project are:

e Audio Transformation
e Voice Control

e User Interaction devices

1.2 Sound Synthesis or Sound Transformation.

The main goal of this work is to use the singing voice for producing a different
palette of sounds, or, in a broader sense, to use our voice for playing a trum-
pet, a guitar, drums, a flute, or any other, existing or non-existing, musical
instrument. But before going into the actual research carried out, a preliminary
significant question arises:

Are we controlling Sound Synthesis or are we doing Sound Transformation ?

The answer is neither evident nor totally objective, but will put us into con-
text, and additionally, help us to define better the characteristics of the system.
This discussion explores the evolution of some electronic musical devices, such
as synthesizers or sound processors. We try also to point out, concepts and
techniques in order to clarify this question.

By observing the proposed system, we find sound at both ends: the singing
voice acting as input; and the synthesized sound as output. Hence, we could
define it as a sound processor. If we look at it from another perspective, the
generated sound has its source in the synthesis algorithm and not in the actual
input voice, which only controls the algorithm. In this case, we could refer
to the system as a voice-driven synthesizer. This question actually addresses
to three different areas in the field of Computer Music: Digital Audio Effects,
Musical Interfaces and Sound Synthesis. We find some emerging Conferences
and Journals concerning these areas such as DAFX [44] for Audio Effects and
NIME [42] for musical interfaces. Researchers strive to find new ways of manip-
ulating sound, from building new instruments to transforming sonic material by
using the current technologies.

1.2.1 Brief Survey of Processors and Synthesizers.

In this section, we pose the differences between sound transformation and syn-
thesis control. As we have mentioned our particular approach can be observed
from different perspectives. From one side, we can justify that we are trans-
forming the input voice by altering its characteristics; from the other side, we
can also argue that in our system, there is an explicit synthesizer’s engine con-
trolled arbitrarily by an input audio stream. In any case, it is clear that the

10

boundaries between transformation and synthesis blur. In order to demonstrate
such a statement, we may have a look at the table 1.1. This table contains a list
of several electronic music devices, sorted from keyboard synthesizers to general
audio processors. Note here that we have omitted any historical classification.

[[Device | Description

Products I

CONTROLLED SYNTHESIS

Keyboard Synthesizers

External-controlled synthesis

MiniMoog, YamahaDX7

Gestural Controllers

Embodied-controlled synthesis

Theremin, EyesWeb

Pitch-to-MIDI

Basic Audio-driven synthesis

IVL-PitchRider, DigitalEar

Vocal Controller Augmented Voice-driven Synthesis | (this work)

Vocoder Cross-Synthesis Roland VP330
Harmonizer Synthesis of new voices Eventide

Auto-Tune Automatic pitch-shift Antares’ AutoTune
Voice Processor Transform voice characteristics TC-Helicon’s VoicePrism
Compressors Enhance the voice’s quality dbx 160A

Reverberators, EQ’s, etc.

General-audio processing units

Lexicon 480L

PROCESSING

Table 1.1: author’s classification of electronic devices, from controlled synthesis
to audio processing.

In the table 1.1, we put on one end standard controlled synthesizers, such
as a keyboard. On the other end, we put general audio processing units such

as reverberation or equalizers. On the other hand, this classification focuses
on the singing voice. Both ends of the table converge in the middle with de-
vices concerning the singing voice. We argue that the differences between an
Harmonizer and a Pitch-to-MIDI based synthesizer are not extreme. For ex-
ample, by experimenting with an Auto-Tune processor, the output voice can
resemble to a guitar-like sound, if we sing with fast pitch changes and activate
the Pitch Quantize option. However, Pitch-to-MIDI systems failed, at least so
far, in achieving a relevant success. The causes should be further investigated,
since they probably reveal us aspects to take into account in the design of our
system. Regarding our approach of Voice-Controlled Synthesis, this is actually
a particular case of Spectral Morphing. Here, we are not trying to go from one
sound to another, what is commonly accepted as Audio Morph. Rather, we
attempt to control the characteristics of a target sound by another. [13]

We have addressed an issue that can gain importance during the next years
involving the design of new music synthesizers and audio effects. It seems clear
that with the growing potential of real-time techniques, the boundaries between
sound transformation and sound synthesis vanish. Specially, it becomes clearer
using spectral processing techniques.

1.2.2 A New Musical Controller ?

We have seen that the boundary between sound transformation and sound syn-
thesis can be fuzzy. Nevertheless, we decided to include our approach in the
category of Voice Controlled Synthesis. We argue that our system consists of

11

two well-defined blocks: voice analysis and instrument synthesis; with an inter-
face layer bridging both. The next paragraphs aim at justifying this decision.

Acoustical Instruments are designed in order to allow the performer to con-
trol the sound production mechanism. It requires years of practice before one is
able to control the nuances of an instrument. In this case, the instrument’s con-
trol and the sound production shares the same physical elements. For instance,
in a violin, the performer moves the bow on the string, which starts vibrating
and thus, generating sound.

A second type of instruments are organs. The organ is conceptually different,
since the performer plays on a keyboard situated separately from the pipes. In
this case, the keyboard switches air valves that open or close the air flow to the
pipes. This switching system was originally mechanic, but was later replaced
by a circuit of electronic switches. Later, appeared the first analog synthesizer
that work in a similar way. By means of potentiometers or keys, an electric
signal controls the oscillators generating the signal driven to the output.

The third category of instruments are the digital instruments of all variety.
Here, we find a layer in the middle working as interface in form of a digital data
stream. This layer maps input musical gestures into parameters of the synthesis
algorithm.

bowing

violin))

control

itting keys airflow
hiting keys keyboard ™ pipes))

digital
data .
steam | digital

" algorithm

hitting keys

D)

keyboard

Figure 1.1: Three models of musical instruments. top: violin; middle: organ,
bottom: digital keyboard synthesizer.

It is not necessary to say that our interest lies in the third model. The goal
is to study how this model can be modified in order to have the human voice
as input. However, it is interesting to observe that, from a certain point of
view, our system could resemble the first model. The figure 1.1 shows the three
models.

Concentrating on the third model, since the inception of MIDI in early 80’s,
this protocol has become the standard way of controlling digital music synthesis.
Nowadays, there is probably none commercial synthesizer on the market without
MIDI ports. Despite its popularity, MIDI presents also some limitations, mainly
due to its reduced bandwidth. Note that, we are referring to a protocol specified

12

20 years ago, which has no adopted since then any modification. As we discuss
later in section 3.3.1, our system does not incorporate MIDI communication,
freeing ourselves of bandwidth limitations.

Our approach is still concerned with a “control plus synthesis” model, though.
Musical gestures are captured by analysis algorithms that extract information
from the input voice. A mapping layer, converts these features to parameters
of a synthesis engine that generates the final sound. A first diagram of the
functionality of the system is shown in the figure 1.2.

Voice . . . Instrument
Voice Analysis > Mapping »| Synthesis Engine >
Voice descriptors A MIDI (?)
Feedback
(acoustic)

User configurable
Presets for synthesis engine

Figure 1.2: Functional block diagram: voice analysis, mapping and synthesis.

In the next chapters, we do a review of the main topics involving: Voice
Analysis, Mapping and Synthesis. In the chapter 3, we present our contribu-
tions in considering the voice as a meaningful musical controller. Our goal will
be to define which features are at the same time relevant and intuitive from
performer’s point of view.

13

Chapter 2

Background and Related
Work

This chapter is structured in four sections that try to set the background topics
for the research proposal. We give an overview of related concepts, techniques
and systems, which in fact, is necessary before start doing any research activity.
The analysis of the human voice is reviewed in the first section. Primarily,
we will concentrate on the singing voice. In the second section, we explore
the musical controllers, observing the evolution from acoustic instruments to
the current devices of the digital era. The third section is dedicated to the
sound generation process. We review different synthesis techniques, focusing on
the mapping or how the algorithms can be controlled. Finally, the last section
presents existing systems of different nature but with the common characteristic
of generating sound from a singing voice’s features.

2.1 Voice Analysis

In this section, we study the voice as a complex sound generator from different
perspectives . The final goal of this work is to parameterize the singing voice
in order to map the features onto a sound generator. Therefore, after an in-
troduction of the physiology of the human voice, different techniques used in
Voice Analysis/Synthesis and Speech Processing are reviewed. An important
issue in our context is the fact that the extracted parameters are two-fold, these
parameters must be musically-meaningful, and at the same time intuitive for
the user (e.g.producing a continuous pitch while changing from one vowel to
another results in a sustained note with a varying timbre).

2.1.1 Physiology of the human voice

We can arbitrarily define voice as the sound generated by our voice organ by
means of an air-stream from the lungs, modified first by the vibrating vocal folds,

14

and then by the rest of the larynx, the pharynx, the mouth and some time by
the nasal cavities. The voice is typically explained as a source/filter system,
where an excitation is filtered by the vocal tract resonances. The physiology
of the voice is how we use the voice organ to produce sound. In this part, we
see why the vocal folds start to vibrate, why they generate sounds and how the
timbre characteristics of a voiced sounds depends on the shape of the tongue,
the lips, and the jaw opening. A special attention will be put on the articulation
and the other parts that can be controlled by the singer.

2.1.1.1 Source and Articulation

Three different mechanisms constitute the voice organ: the breathing appara-
tus, the vocal folds, and the vocal tract. The air is compressed in the lungs and
then, an air-stream is generated passing through the glottis and the vocal tract.
Looking at these systems from a functional point of view, we can describe them
as compression, phonation and articulation. The compressed air produces an
air-stream, and when it passes the vocal folds, they may start vibrating, open-
ing and closing alternatively the passage for the air-stream. This way, the air
pressure is raised above the glottis at regular intervals, generating an acoustic
signal composed of variations in the air pressure. The duration of these intervals
determine the vibration frequency of the vocal folds, which corresponds to the
frequency of a certain perceived tone freq =1/Tpyise-

Now, we can observe in more detail why the vocal folds vibrate. In the
vibration process, the so-called Bernoulli force plays an important role. This
force is activated when the air-stream passes through the glottis, generating an
underpressure, which strives to close the glottis. But when the glottis is closed,
the air pressure is higher below the glottis than above it. Since in case of phona-
tion the vocal folds don’t resist this air pressure difference, they open and allow
a new air pulse to escape. Then the Bernoulli force comes again and shuts the
glottis.

There are other factors that contribute to the vibration of the vocal folds,
such as our muscles for adduction and abduction, or our nerve signals, but there
are much too slow for produce vibrations of hundreds per second. Nevertheless,
adduction and abduction muscles are significant in the control of the voice
source. Adduction is required for phonations to take place, and abduction is
necessary for both taking a breath, and produce voiceless sounds. When we
generate a voiced sound of a certain frequency, it was mentioned that the vocal
folds are opening and closing at this precise frequency. Moreover, we are able to
change this frequency, which is for us essential when dealing with singing voice.
Two factors affect the change of frequency: the overpressure of the air in the
lungs (subglottic pressure), and the langyreal musculature, which determines the
length, tension, and vibration mass of the vocal folds. We will see later in more
detail all aspects related to the control of the voice.

Thanks of photographic techniques, as it is explained in [61], some aspects of
the movement of the vocal folds were revealed. For lower frequencies, the glottal

15

closure is initiated far down in the glottis. The closure rolls upward toward the
upper part of the vocal folds, producing the so-called mucosal wave. On the
other hand, when the phonation frequency is high, the vocal folds are thin and
tense, and no clear wave can be seen.

The range of the phonation frequency can go from 35Hz to 1500 Hz, although
a person has a range of usually no more than 2 octaves. Now, if we observe the
signal of the Voice Source in the spectral domain, we appreciate a more complex
spectra than a single delta placed at the vibration frequency of the vocal folds.
Certainly, the vibration produces a series of harmonic partials, multiple of the
fundamental frequency or frequency of vibration f;.

It has been shown that the level of this partials decrease by 12 dB/octave,
therefore the spectrum of the voice source presents a negative slope in a loga-
rithmic scale. However, this slope suffers of important deviations in the voice
source spectrum of real subjects. Some experiments presented in [61], show that
these deviations affect the difference of timbre between male and female voices.
On the other hand, variations of phonation frequency and loudness result also
in deviations of the aforementioned slope. Finally, it is necessary to mention
that we find often in the literature the term Voice Source referred as Glottal
Source. In this work, we will use both with no distinction.

We have seen how the vocal folds produce a pulsed excitation in form of
variation of the air pressure. This glottal pulse passes through the vocal tract,
which is in fact a resonant filter. The acoustic tube of the oropharynx and
the various chambers of the naso-pharynx form a resonant system which filters
the glottal pulse, shaping the spectrum of the final output voice sound. This
shaping is finally controlled by the so-called articulation. In a resonator, the
sounds decays slowly, emphasizing at the same time some frequencies (resonance
frequencies). In our case, the resonator is the vocal tract, and these frequencies
are called formant frequencies. The four or the five first formants are the most
relevant in the vocal tract. The two lowest are responsible for determining the
vowel color, although all of them are of great significance to voice timbre. The
partials generated in the glottal oscillator will be treated in various ways because
of the formants, which will raise or attenuate certain frequencies. Therefore, we
can conclude that the shape of the vocal tract is decisive to vowel quality and
voice color.

The formant frequencies depend on the length and the shape of the vocal
tract, defined the former as the distance between the glottis and the lips; the
latter is determined by the positioning of the articulators: the lip and jaw
openings, the tongue shape, the velum and the larynx.

For instance, the length of the vocal tract is varied continuously when we
speak or sing. By extending the length of the vocal tract, we can easily see that
the formant frequencies will be lowered.

Once a configuration of articulators is set, the transfer function of the for-
mants is defined, and hence the spectrum envelope. We have mentioned four
or five predominant formant frequencies, which are placed between 200 Hz and

16

J\/_/\/\

Figure 2.1: Spectrum of glottal source, formants and output spectrum.

4kHz . Due to the sound radiation characteristics and the high formant poles
above 4 kHz, the amplitude of the formant frequencies is corrected with a high
pass function. As we will see in the next part about control, we think of artic-
ulation in terms of the produced sounds rather than in positioning articulators.

2.1.1.2 Control

We have already mentioned that the goal of this work is to understand the voice
in terms of a valid musical controller. In this section, we review the parts of
our phonatory system that are controllable, and how they are involved in the
sound production. Later, it will help us in order to identify potential control
parameters that can be mapped to the synthesis engine.

In the previous section, we presented the phonatory organ as a system con-
sisting of two parts: Source and Articulation. When we produce a sound we
are controlling elements of both parts simultaneously. Moreover, the necessary
actions for this control are mostly performed unconsciously. For instance, and
simplifying, in case of producing a vowel of a certain pitch, we must tense the
vocal folds muscles with a precise amount (source control), and at the same
time place the articulators in a particular position (articulation control). It
is obvious that when we speak or sing, we do not think of jaw’s opening an-
gle or muscle tension, instead we focus on the produced sound and adapt our
phonatory system unconsciously.

However, there is a third participant, apart from Source and Articulation,
which spectrum of glottal source, formants and output spectrum plays an impor-
tant role in terms of control: Breathing. The vocal folds need an overpressure
from the respiratory mechanism in order to start vibrating. This overpressure,
called subglottic pressure [61] is significant for the amplitude and also, to some
degree to the phonation frequency. It appears to be clear the importance of the
breathing system, since these are two parameters over which a singer needs an
excellent control. On the other hand, it explains the attention that is given to

17

the respiratory system in both therapy and training of the singing voice.

The sub-glottic pressure, air-pressure in the lungs, is raised when the ab-
dominal muscles contract. It is related to the phonation loudness, as we can
imagine. In reality, the sub-glottic pressure is a parameter that can vary quickly,
and it can depend on factors such as the type of singing, tempo, etc. From our
point of view, we will consider the breathing system, and more precisely the
sub-glottic pressure the main parameter for controlling the phonation loudness.

In the larynx, we find the functional part responsible for the oscillation: the
vocal folds. The interaction between a given air-pressure and the cords that
conform the vocal folds, generates a modulation of the air-pressure that results
in phonation. The phonation takes place when the laryngeal muscles are tensed
(adduction), the vocal folds vibrate at a given frequency which corresponds with
the frequency of the modulated air-pressure, and therefore with the frequency of
the generated sound spectrum of glottal source, formants and output spectrum.
We can all change the pitch of our voice. This is important not only in singing
but also in speech, where the pitch variation may bring a lot of information.
The prosody in questions differentiates from regular sentences by means of the
pitch contour. Basically, when changing the pitch, the laryngeal musculature
determines the length, tension and vibrating mass of the vocal folds. For rais-
ing or lowering the pitch, the musculature will determinate the properties of the
vocal folds. They can be stretched to different degrees, becoming thiner and
more tensed. In this case, the vocal folds will vibrate with higher frequency,
and thus produce a tone with higher frequency. On the other hand, we should
also consider that if the sub-glottic pressure is raised, the phonation frequency
will also increase, although not excessively.

Another important issue related to voice control that takes place in the lar-
ynx is the generation of vocal disorders. When we talk of vocal disorders, we
consider both unintentionally and intentionally produced. The former is widely
studied in medicine, and is treated as a misfunction of the voice organ. We are
more interested in the latter, and in which way we can control voice disorders.
A clear example in singing voice is the growl effect. In jazz or popular music, we
find often singers that alter his or her voice in order to increase the expression by
producing a rough sound. Another example, is the breathy effect. In this case,
we can modify the tension of the vocal folds, lowering the amount of vibration,
while maintaining air-flow and pitch. Regarding voice disorders, our goal will
be to identify them, and use them as control parameters. In the next sections
3.2.3, we present examples of this process.

Finally, in order to control the voice color, we need to deal with the formant
frequencies of the vocal tract. As we have mentioned, the formant frequencies
depend on the length and the shape of the vocal tract. The pronunciation of
different vowel sounds is thus determined by the position of the articulators.
The vocal tract length is defined as the distance between the glottis and the lips.
The vocal tract can be considered as a tube with variable cross-sectional area.

18

Therefore, the shape of the vocal tract can be determined by an area function
along the longitudinal axis, as we can observe in figure 2.2.

10
cm2

0 4 8 12 16
Distance to the lip opening (cm)

Figure 2.2: Approximative representation of the cross sectional area function of
the vocal tract for the vowel /i/, as shown in [61].

In an adult male, the vocal tract length is about 17 cm. and 20 cm, but
it depends on the individual morphology. This is the first parameter that we
can control. The larynx can be raised and lowered, extending the vocal tract
length. Additionally, we can modify the mouth corners by protruding the lips.
These variations in the vocal tract length affect the position of the formant
frequencies. The longer the vocal tract length, the lower the formant frequencies.
Regarding the shape of the vocal tract, the area function is determined by the
position of the articulators: jaw opening, lips, tongue, velum and the larynx. In
general, any movement of the articulators affects the frequencies of the formants.
The first formant frequency is sensitive to the jaw opening. The shape of the
tongue is mostly responsible for the second formant. The third formants is
particularly sensitive to the cavity direct behind the incisors. If this cavity
is large the third formant frequency decreases. However, when we speak we
are obviously not aware of the position of the articulators. Instead, we have
patterns associated to different vowel sounds, and intuitively we apply one of
these patterns. These patterns are not identical in all languages. We may find
vowel sounds in one language that are missing in others. Each articulation
corresponds to the formant frequencies characteristic of that vowel. Basically, it
is the two lowest formant frequencies that are important for the vowel quality.
Furthermore, the vowels can be observed in a two-dimensional plane with the
first and seconds formants frequencies as axes. The figure 2.3 shows the vowels
scattered along a triangular contour. The vowels /a/, /i/ and /u/ are the
corners of the triangle.

As we have mentioned, the articulators are responsible for: first, to char-
acterize our personal voice’s timbre; and second, to determine the produced
vowel.

Summarizing this section, we have seen that the voice production is con-
trolled in different ways in three different parts of the phonatory system: breath-
ing, vocal folds and vocal tract.

19

o
=
o

“
= 600 1
[
-]
E
£
= 400 1
E i
—. Second
200 t { t = Formanl
800 1200 1600 2000 (F2} (Hz)

Figure 2.3: Vowel’s triangle from [45]

2.1.2 Voice models

In this section, we review different approaches for the modelling of the singing
voice, which were developed in the past years. Our study focuses on the voice’s
analysis. Nevertheless, we are aware of the fact that these models were conceived
for Analysis/Synthesis systems. For many years, it has been the goal of many
scientists and engineers to synthesize singing voice. It is necessary to mention
that other relevant models particularity oriented to the synthesis of the singing
voice are not discussed here. In this category we find the FOF(Formant Wave
Functions) [51], which was used in the IRCAM’s singing voice synthesizer called
Chant. We identify three relevant approaches that tackle the analysis of the
singing voice from different viewpoints:

e Formant Filter model

e Acoustic Tube model

Traditionally, the voice has been viewed as a source/filter system. An early
but still prominent parametric model is the one proposed by G. Fant in [18].
By means of different sources and filters, we are able to generate a wide range
of sounds with our voice. The Formant Filter model aims at identifying of
filter’s parameters and source’s parameters. As we have already mentioned, the
filter is composed of a number of resonances existing in the vocal tract. Each
one of these resonances is one of the so-called formants. The main issue in
the Formant Filter model is to parameterize correctly all resonances. In this
model, three parameters characterize a formant: formant frequency, bandwidth
and amplitude. Usually, a filter consisting of three formants is sufficient for
recognizing a vowel. An attractive feature of the Formant Filter model is that
Fourier or LPC (see 2.1.3.2) analysis can be employed to automatically extract
the parameters. On the other hand, the source can have two different natures:
voiced or unvoiced. Simplifying, the former is represented by its pitch and its
amplitude, while the latter is characterized by its amplitude.

20

This model has been used in voice synthesis since early 70’s. Nowadays, it
could not be considered for voice synthesis in terms of quality. Although, we
do take into account the Formant Filter model, since it allows a very straight-
forward parameterization. The mapping from vowel’s pronunciation to formant
filters’ frequencies, and then from formant frequencies to any control parameter,
seems very promising.

The second model discussed here is the Acoustic Tube model. This can be
considered completely as a Physical Model, since it simulates acoustically the
vocal tract. In the section 2.1.1, we have seen that an air-flow (modulated in
the glottis), passes through the vocal tract producing sound. We have seen also,
that the sound’s timbre is determined by the shape of the vocal tract. In this
model, the vocal tract is considered as an acoustic tube that modifies a sound
wave with a particular transfer function. The transfer function is simulated by
solving the one dimensional wave equation inside a tube. The justification for
approximating the wave equation to one dimensions is that the vocal tract’s
length is larger than the width in any position. Therefore, only the longitudinal
modes are relevant for frequencies up to 4K Hz [13].

Previous work with the acoustic tube model in the Speech Synthesis field
was carried out at Bell Labs. Kelly and Lochbaum developed a model for a
smoothly varying tube [33], which consisted of approximating the tube by several
cylindrical sections of different cross-sectional area. This model can be simulated
by a digital WaveGuide Filter (WGF) [11] [59]. The tube is divided by sections
of the same length. The acoustic impedance of each tube section is function
of the cross-sectional area, which results from physical tract measurements.
The filter has a ladder filter structure, with scattering junctions connecting
the different tube sections. The scattering junctions is known as the Kelly-
Lochbaum junction [33]. The figure 2.4 shows the acoustic tube in its different
forms: smooth varying, sampled version and the digital filter simulation.

vocal folds lips

Figure 2.4: Acoustic tube model.
Additionally, this model has been used in the implementation of the singing

synthesizer SPASM (Singing Physical Articulatory Synthesis Model) [12]. The
system provided a graphical interactive environment, in which the user could

21

change the physical parameters of the vocal tract.

Now in the spectral domain, the Sinusoidal Model’s approach presents yet
another alternative for analyzing the singing voice. Here, the voice signal is
modelled as a sum of sinusoidal components (2.1).

R
(1) = 3 As(0) cos(@r(1) (2.1)
r=1

In order to get the representation of the sound, we need to estimate the
amplitude, frequency and phase of each sinusoidal. This estimation is done by
first computing the SFTF (Short Fourier Transfer function) of the sound, and
then, detecting spectral peaks. However, this representation would lack of re-
alism, since in real voices there are more things than pure sinusoidals. A big
improvement to this model is the Sinusoidal plus Residual Model [56]. In ad-
dition to the sinusoidal components, the analysis extract a residual signal e(t),
which in fact is assumed to be an stochastic signal. In order to model the signal
e(t), we can use white noise filtered by a time-varying filter. For identifying the
characteristics of the filter, we can approximate the magnitude spectrum with
connected linear segments. Another method is to perform an LPC analysis of
the e(t) signal, and extract the filter’s coefficients. Due to its flexibility, this
model is useful for applying transformations such as pitch transposition, mor-
phing, time scaling, etc. It achieves remarkable sound quality particularity for
pseudo-harmonic sounds. A more detailed explanation of the Sinusoidal plus
Residual Model is found in [64], including some practical applications. The most

relevant processes are peak detection, pitch estimation and peak tracking.

For singing voice analysis, this model appears to be very convenient, since
the extracted parameters can be easily mapped to the synthesis engine. Some
of these parameters are: pitch, energy, sinusoidals spectral shape, residual spec-
tral shape, sub-harmonicity, etc. We have commented that this spectral model
performs the SFTF of the signal. It is necessary to mention, that the settings
of the SFTF (window type, window size, zero-padding, etc.) are fundamental
in order to attain good results. We review the characteristics of the Spectral
Analysis more extensively in the section 2.1.4.

Furthermore, an application of this model for the synthesis of the singing
voice can be found in [3]. In this approach, a Sinusoidal plus Residual model
is combined with a newly developed model called Ezcitation plus Resonance
(EpR).

2.1.3 Speech Processing

This work intends to present the voice as a valid musical controller. With this
premise, we have considered through these pages the voice always as sung voice.
At this point, we can not forget that most of the voice research carried out
in the past is in the field of Speech Processing. Obviously, the impact of the

22

telephony and communications in general motivated the rapid emergence of this
field. While during the initial years, speech and singing voice processing shared
the same techniques and resources, nowadays are considered as two complete
different research fields. Nevertheless, we summarize in this section some Speech
Processing techniques that will be of interest in our study.

Instead of doing speech recognition, this approach aims at using the vowel’s
timbre information for controlling parameters in a sound synthesis framework.
Another important particularity is that in our case, the input signal is not
speech but singing voice. We can extract certainly a large number of parameters
(descriptors) from the analysis of the voice. However, since our system relates
to user interaction, these descriptors should be equally intuitive. Therefore, it
seems interesting to think of vowels as a control parameter. We present two
different techniques used in formant estimation: Linear Prediction, Cepstral
Analysis. Additionally, a novel approach using spectral centroids is presented
in the section 3.2.2.1. The results are compared, keeping in mind the final goal
of the system: to generate a control parameter that depends on the pronounced
vowel. We will see that the resulting parameter is well represented by a point
in a two-dimensional space, the vowel’s space.

2.1.3.1 Vowel Estimator

The human voice has deserved a lot of studies in various scientific fields, such as
medicine or signal processing. In the literature, we find our phonatory system
often explained as a Source/F'ilter model. The Source are the vocal folds, and
the vocal tract is a Filter with several resonances (also called formants). By
changing the position of the articulators, we modify the shape and frequency
of the formants and, in consequence, the characteristics of the produced sound.
In general, if we assume that by estimating the frequencies of the first two for-
mants, we can derive the vowel as shown in figure 2.5 from [45]. In this graph,
the first formant frequency is displayed along the x-axis, and the second formant
frequency along the y-axis.

In speech, we can basically differentiate two type of sounds: voiced and un-
voiced. Among voiced sounds, we find in addition to vowels, also ”sonorous
consonants” (e.g. /m/, /n/, /1/, etc.). Moreover, each language has its own
phonetics and a particular set of sounds associated. As we have mentioned, our
system deals only with vowels, though. In fact, representing the vowels as a
function of first and second formant in a two-dimensional space is our final goal.
More precisely, to let the user determine the position of the vowel point inside
the space by changing the articulators (i.e. the pronounced vowel). The im-
plementation of visual feedback is also foreseen. Next, the output of the vowel
estimator can be mapped to any control parameter of the synthesis algorithm,
thus working as a controller. Here, we concentrate only on the formant estima-
tion process.

Formant analysis can be traced back to the 1950’s, and there are vari-

23

3500 1
3000 1

2500 1

2000 1

1500 1

Second-Formant Frequency (Hr)

1000 A

500

200 400 &0 800 1000 1200 1400

Firsl-Formant Frequency (Hr)

Figure 2.5: Vowels as a function of first and second formant. Extracted from [45]

ous existing techniques. Basically, these techniques achieve different types of
“peak-picking” in the spectral domain. Some try to identify formants frequen-
cies directly from the magnitude of the Discrete Fourier Transform. In other
techniques, the “peak-picking” is performed on a smoothed spectrum such as
Cepstral Analysis or LPC.

Additionally, it is important to mention that the formant analysis of the
singing voice has implicitly some added difficulties. The major difference with
speech is that sung voice has a considerable higher pitch. On the other hand,
formant analysis needs a low pitch in order to have the formant structure with
enough resolution. The explanation is rather straight-forward: if the pitch
is about 500H z, only one harmonic component will be found within the first
formant frequency region (typically, from 300 to 1000H z for women). Clearly, it
is not feasible to determine the formant with just one peak value. Unfortunately,
we do not present any alternative method to overcome this issue. Therefore,
the system performance will be limited by the pitch.

2.1.3.2 Techniques

Modern methods commonly used nowadays in speech recognition systems are
MFCC (Mel Frequency Cepstrum Coefficients) and PLP (Perceptual Linear
Prediction). These techniques are based on two traditional approaches: Cepstral
Analysis and Linear Prediction. In this section we review these two mentioned
techniques for estimating the frequency of the first two formants. Moreover, a
third approach, based on Spectral Peak Analysis, is presented.

24

Formant Estimation using LPC Linear Prediction is a popular technique
for identifying linear systems. Regarding speech processing, its applications are
analysis, compression and synthesis. Linear prediction models the human vo-
cal tract as an infinite impulse response (ITR) system that produces the speech
signal. For vowel sounds and other voiced regions of speech, which have a reso-
nant structure and high degree of similarity over time shifts that are multiples
of their pitch period, this modeling produces an efficient representation of the
sound.

The linear prediction problem can be stated as finding the coefficients ay,
which result in the best prediction (which minimizes mean-squared prediction
error) of the speech sample s[n] in terms of the past samples s[n—k], k = {1..P}.
The predicted sample §[n] is then given by Rabiner and Juang [47].

3[n] = Zaks[n — k] (2.2)

where P is the number of past samples of s[n] which we wish to examine.
Next we derive the frequency response of the system in terms of the prediction
coefficients ay. In equation 2.2, when the predicted sample equals the actual
signal (i.e.,§[n]] = s[n], we have

S[z] = ZakS[z]z_k (2.3)
k=1

1

Sz]=——5——
g 1-— Ef:o apz—*

In order to find the prediction coefficients ay, Rabiner and Juang [47] pro-
pose to use the autocorrelation signal r,, with the correlation matrix R. The ay,
are: a, = R™'r,,. Since R is a Toeplitz matrix (it is symmetric with equal di-
agonal elements), the system can be optimally solved with the Levinson-Durbin
algorithm. This is an iterative technique that allows to calculate the a coeffi-
cients without calculating the inverse of the matrix R. Although efficient, this
algorithm does require numerical precision [20]. Once given the model struc-
ture, we need to know indeed the number of coefficients required, in order to
represent the spectral resonances. Clearly, using a large number of coefficients
will yield model spectra that better matches the original. However, this is not
always an advantage. In our particular case, we want an estimation that is not
affected by the pitch, thus the spectral envelope should remain unaffected by
the harmonic’s frequencies.

We implemented an LPC system in Matlab [26], using the built-in Levinson-

Durbin algorithm. The complete function can be found in the appendix A.
Additionally, we ran the system several vowel sounds at different pitch, yielding

25

the results presented in the following figures. For our particular case, the LPC
estimator uses 14 coefficients.

LPC Formant Estimation /a/, pitch=80Hz, fs=11025Hz

L L L L L L
500 1000 1500 2000 2500 3000 3500

freq

Figure 2.6: Spectrum of the vowel /a/ with pitch = 80Hz. Superimposed, the
LPC approximation with 14 coefficients of the spectral envelope.

LPC Formant Estimation aciou @ 11025 khz

(] 50 100 150 200 250 300 350 o 50 100 150 200 250 300

Figure 2.7: LPC. Formant frequencies F'1 and F2 of a vowel sequence /a/-/¢/-
/i/-/o/-/u/, with a)pitch = 80Hz and b) pitch = 170H z.

Formant Estimation using Cepstral Analysis The second technique pre-
sented is the formant estimation algorithm developed by Rabiner and Schafer
based on cepstrum analysis and the chirp-z transform [54]. In our experiments,
we ignored the chirp-z transform, though. This model includes the Glottal
Source G(z) and Radiation Load Spectra R(z), which jointly with the Vocal
Tract transfer function V(2), will determine the frequency response of voiced
sounds. As described in [54], the entire model can be expressed as,

26

Hyystem(2) = G(2)V (2)R(z) = (G(2)R(2)) [] Hi(2) (2.5)

note that G(z) R(z) are grouped together because they are speaker dependant
and can be approximated with a constant for all users with typical values of a
and b,as written in equation 2.6. The vocal tract V() is modeled as a cascade
of resonators H;(z).

a=400m
1 —eoT 1— e oL b=5007
G(2)R(2) = 1—2"1e0aTs 1 — 21 ¢eaTs | T, = samplingperiod (26)
f > 5000H 2

The formant frequencies will corresponds to the poles in the |Hysterm (exp?®)|
expression. Once we have seen the mathematical expression of our model, a
block diagram of the complete formant estimation algorithm is shown in figure
2.8. The yielded result is the cepstrally smoothed spectrum of the input signal
F[k].

win] greyH
L DFT || logix [IDFT | LT %»G%@H

Figure 2.8: Cepstral Analysis. Block diagram of the entire algorithm

The Discrete Fourier Transform of the input signal is computed using the
FFT algorithm. Next, the log of the FFT’s magnitude is calculated, and finally,
the inverse DFT gives the real cepstrum &[n].

4

&[n] = IDFT{log |X ()|} = puln] + grln] + Y _ hil (2.7)
k=1

For t > T, we can ignore the term p,,[n] from the expression, since it contains
the periodicity information. Where T is the period of the signal, which is
analyzed previously. Next, we subtract the glottal plus radiation component
grese|n]. The remaining signal is transformed to the frequency domain again
using the FFT algorithm. The yielded result is F[k] = Zizl H;[k]. Where
H;[k] is one of the four first formants. At this point, the formant frequencies
need to be estimated from F[k] with a peak-picking algorithm. Typically, for
male voice, the first formant occurs in a range from 200 to 900H z, and the
second from 550 to 2700H z.

27

Given an assumed frequency range, some rules help to find the formant
frequencies F'1 and F2 from F'[k].

F[k]/F[k — 3] > 1.005
F[k]/F[k + 3] > 1.005
o F1< F2

e F2— F1>200Hz2

We implemented this algorithm in Matlab [26], and ran it with different
audio examples. Each analyzed example is a sequence of vowels with a constant
pitch. The following figures (fig. 2.10) show the performance of the system
with vowel sequences with a pitch at 80Hz and 170H 2. The figure 2.9 depicts
the spectrum of the vowel /a/ with a pitch of 80 Hz in a range from 0 to
3500H z. Superimposed we see the cepstrally smoothed log spectrum. By finding
the two first relevant peaks of the smoothed spectrum, gives us the formant
frequencies. On the other hand, in the figure 2.10, 4we observe the evolution of
the calculated formant frequencies F'1 and F2 in a sequence of vowels /a/-/e/-
/i/-/o/-/u/. Clearly, the ”peak-picking” algorithms lacks of robustness when
the pitch increases. As we mentioned, the original algorithm [54] is extended
with the Chirp-z Transform in order to get a better frequency resolution. This
can be useful if the poles are located too close together, making it impossible
to identify the formant frequencies from the unit circle.

Spectrum and cepstral smoothed spectrum in dB's, pitch=80Hz
30

‘ 1|WM |

| HWWM a
A

Figure 2.9: Spectrum and cepstrally smoothed spectrum of the vowel /a/ with
pitch = 80H z

i

|
500 1000 1500 2000 2500 3000 3500
freq

2.1.3.3 Considerations

We have presented two different methods for estimating vowels in the special
case of the singing voice. Assuming that a vowel can be represented by its first

28

Formant Estimation /aeiou with Cepstral Analysis @ 11kHz, pitch = 80Hz Formant Estimation fasiou with Cepstral Analysis @ 11kHz, pitch = 170Hz

&00|
1000

600|

00|
500|
o 50 100 150 200 250 300 350 o 50 100 150 200 250 300
frame frame.

Figure 2.10: Cepstral Analysis. Formant frequencies F'1 and F2 of a vowel
sequence /a/-/e/-/i/-/o/-/u/ with (a) pitch = 80H z and (b) pitch = 170H 2

two formant frequencies, we restrict our problem to a formant detection system.
Traditionally, for extracting a model of the vocal tract, Linear Prediction and
Cepstral Analysis have been used in multiple applications. We may find these
approaches applied to either recognition or synthesis systems. Here, we discuss
the differences encountered among the two implementations, and which method
was finally chosen.

Linear Prediction is more efficient computationally than Cepstral Analysis,
which needs several Fourier Transformations. The estimation of the first for-
mant appears to be more stable, compared to the cepstral analysis. Anyway,
in both techniques, the major problem encountered is the “peak-picking” algo-
rithm, which should output stable values for the formant frequencies. A possible
solution would be to build an additional Formant Tracking system, which should
ensure the continuity and consistence of the formant frequencies. However, we
decided to implement a new much simpler algorithm, Details about the im-
plementation are found in section 3.2.2.1. We argue that even though we are
losing accuracy, the results yielded by the Dual Centroid Formant Estimation
are robust while maintaining enough consistency. As we have mentioned, the
Formant Estimator is integrated in a larger framework. Although, the DCFE
algorithm needs a pre-processing stage for spectral peak analysis, this is per-
formed already within our framework. Thus, the added computational cost is
minimum when compared to the other techniques, which would require a larger
implementation.

Concluding, we studied two different methods for estimating formant fre-
quencies in order to represent vowel sounds. Although, it lacks of certain preci-
sion, the DCFE method was chosen for its simplicity and robustness.

2.1.4 Spectral Analysis

Since early 90’s Spectral Processing has gained a major role in the field of
musical signal processing. An explanation for this success is related to psy-
choacoustics, since our auditory system works internally similar to a spectrum
analyzer. A common utility of spectrum analysis is to identify timbres. How-

29

ever, spectrum is a physical property that can be characterized as a distribution
of energy as a function of frequency; while timbre is a perceptual concept that
allow us to differentiate between two sounds of same pitch and loudness.

There are several methods for analyzing the spectrum of a signal. Here
in this work we describe methods that are based on the Fourier Transform,
which models the input sound as a sum of harmonically related sinusoids. To
adapt Fourier analysis to the practical world, dealing with sampled time-varying
signals, the Short-Time Fourier Transform. A complete process of the STFT
includes windowing the input signal and calculating the DFT (Discrete Fourier
Transform), which yields the magnitude and phases of the spectrum. For effi-
ciency, the FFT(Fast Fourier Transform) technique is commonly employed.

Two different techniques are presented here. First, the Sinusoidal and the
Spectral Modeling Synthesis [56], based on Deterministic plus Stochastic Anal-
ysis. Second the modified Phase-Locked Vocoder by Jean Laroche [34], which
splits the spectrum in several harmonic regions in order to characterize the
signal more accurately.

2.1.4.1 Sinusoidal Model

In the spectral domain, the Sinusoidal Model’s approach presents an alterna-
tive for analyzing audio signals [39]. Here, the signal is modelled as a sum of
sinusoidal components (2.8).

R
s(t) = D Ar(t) cos(n (1)) (2.8)
r=1

In order to get the representation of the sound, we need to estimate the
amplitude, frequency and phase of each sinusoidal. This estimation is done
by first computing the SFTF (Short Fourier Transfer function) of the sound,
and then, detecting spectral peaks. However, this representation would lack
of realism, since in real voices there are more things than pure sinusoidals. A
big improvement to this model is the Sinusoidal plus Residual Model [56]. In
addition to the sinusoidal components, the analysis extract a residual signal e(t),
which in fact is assumed to be an stochastic signal. In order to model the signal
e(t), we can use white noise filtered by a time-varying filter. For identifying the
characteristics of the filter, we can approximate the magnitude spectrum with
connected linear segments. Another method is to perform an LPC analysis
of the e(t) signal, and extract the filter’s coefficients. Due to its flexibility,
this model is useful for applying transformations such as pitch transposition,
morphing, time scaling, etc. It achieves remarkable sound quality particularity
for pseudo-harmonic sounds. A more detailed explanation of the Sinusoidal plus
Residual Model is found in [64], including some practical applications. The most

relevant processes are peak detection, pitch estimation and peak tracking.
For singing voice analysis, this model appears to be very convenient, since
the extracted parameters can be easily mapped to the synthesis engine. Some

30

of these parameters are: pitch, energy, sinusoidals spectral shape, residual spec-
tral shape, sub-harmonicity, etc. We have commented that this spectral model
performs the SFTF of the signal. It is necessary to mention, that the settings
of the SFTF (window type, window size, zero-padding, etc.) are fundamental
in order to attain good results.

Furthermore, an application of this model for the synthesis of the singing
voice can be found in [3]. In this approach, a Sinusoidal plus Residual model
is combined with a newly developed model called FExcitation plus Resonance
(EpR).

The SMS model proposed by X. Serra [56] [57] assumes that the sound is
composed by stable sinusoid (partials) plus noise (residual component). The
analysis procedure studies the time-varying spectral characteristics of a sound.
For pseudo-harmonic sounds, the harmonically related partials are grouped to-
gether, leaving the non-harmonic components and the noise as residual. As we
can observe in the equation 2.9, the input sound is modeled by a number si-
nusoids plus a residual signal e(¢). This model assumes that the sinousids are
stable partials of the sound, with slowly varying amplitude and frequency.

R
s(t) = D An(t) cos [()] + e(?) (2.9)
r=0

In the analysis stage, a spectral frame can be classified either as pitched
or unpitched. For the pitched frames, the separation of the harmonic and the
noisy components relies on the peak-detection and continuations, and, on the
fundamental frequency estimation. If we know the value of the fundamental
frequency, we can set an appropriate window size that is related to a specific
number of pitch periods.

Several methods for pitch estimation have been proposed in both frequency
and time domain. In SMS, the fundamental frequency uses a similar method to
the one proposed by Mahler and Beauchamp [37]. In the Two-Way Mismatch
procedure the estimated Fy is chosen as to minimize differences between the
measured partials (detected peaks), and the series of harmonic frequencies gen-
erated by Fy. For the implementation in SMS, the following modifications were
introduced: pitch dependent analysis window, optimization of Fy candidates,
and optimization of the Peak Selection. A detailed description of this proce-
dure can be found in [8].

The output data provided by the SMS analysis consists of the frequencies
and amplitudes of the sinusoidal partials, plus the spectral shape of the residual
component. Although, we overviewed here shortly the fundamentals of the
Spectral Model’s analysis, we address you to the references [56], [64] for further
details.

31

2.1.4.2 Modified Phase-Locked Vocoder

The Phase Vocoder was first developed by Flanagan [19] in 1966 at Bell Labora-
tories, and was used for speech processing. Later, in its FFT form was brought
to musical applications by J.A. Moore and M. Dolson. Primarily, this technique
was used for modifying the time scale or the pitch of incoming voice or mono-
phonic signals. A problem that arouse with the Phase-Vocoder algorithm is the
loss of presence, or artificial reverberation after processing the sound. In order
to overcome this, M. Puckette proposed the Phase-Locked Vocoder [46], which
introduces phase-locking between adjacent pairs of FF'T channels. Puckette’s
article gives a more thorough description about this technique.

A further step in the Phase-vocoder development is the new algorithm pro-
posed by J. Laroche in [34]. This technique allows direct manipulation of the
signal in the frequency domain. Some of the application are pitch-shifting, cho-
rusing and harmonizing. The underlying idea behind the algorithm is to identify
peaks in the Sort-Time Fourier Transform, and translate them to new arbitrary
frequencies of the spectrum. Here, the spectrum is divided in several regions
around peaks.

This technique was integrated in the Spectral Peak Processing [4] framework
by Bonada and Loscos, which can be considered as a further step of the sinu-
soidal plus residual approach. It performs a frame based spectral analysis of the
audio, giving as output of the STFT, the harmonic peaks and the pitch. Oppo-
site to Laroche’s approach, here the spectral peaks are calculated by parabolic
approximation [56]. For the pitch detection, the same technique as in the SMS
Analysis is used [8]. Basically, the SPP considers the spectrum as a set of re-
gions, each of which belongs to one harmonic peaks and its surroundings. The
main goal of such technique is to preserve the local convolution of the analy-
sis window after transposition and equalization transformations. In SPP, any
transformation applies on all bins within an harmonic region. Common trans-
formations include pitch-shift and equalization (timbre modification). A block
diagram of the overall process of SPP Analysis is depicted in the figure 2.11.
Compared to the SMS model, it maintains more faithfully the characteristics
of the original sound, overcoming the problem of the “too sinusoidal” sound
usually found in SMS.

di Pitch
audio Detection
—» windowing —> FFT > Spgggilﬁf(’;ak/ i
Harmonic Peak
Selection

Figure 2.11: SPP Analysis process.

Note that this technique will be adopted as a analysis stage in our final
implemented system, as we describe in the section 4. In addition, SPP Trans-
formation/Synthesis framework is also used when the Morphing synthesis is
applied.

32

2.2 Control of electronic instruments

The origins of electronic music can be traced back to the end of the 19th. Cen-
tury with the first electromagnetic systems that generated sound. During the
20th. century some developments acquired relevance, such as the Hammond
organs in the mid 1950’s, which used Tone-Wheels to generate multiple har-
monics.

The discovery of the transistor popularized the analog synthesizers, being
Robert Moog’s synthesizer the most venerated one. The next historical step is
the birth of the digital synthesis with the appearance of the first computers.
This fact supposed the emergence of a new research field: Computer Music.
Electronic instruments have evolved rapidly, being now well accepted both mu-
sically and socially.

It is not our purpose to review here the evolution of the electronic music,
instead, we discuss the control of interfaces of some electronic instruments.

With the introduction of electronic instruments, the synthesis layer became
dissociated from the control layer. This fact turned out to be a very “exciting”
issue addressed in the design of electronic instruments, since it gave a radically
new perspective for building new musical instruments. Actually, one might
assume that the notion of musical controller appears with the introduction of
the first MIDI and digital controller and synthesizers.

In acoustic instruments, the designer was confined with several limitations,
such as the physical dimensions of the sound generation mechanism, and the
way the performer controls the instrument. Moreover, this control should al-
low some kind of expertise in order to create an experience musically interesting.

On the other hand, Digital Lutherie - term employed by Sergi Jorda for
referring to the design of digital instruments - has explored multiple alternatives
as input devices. Still far from being a closed issue, new control interfaces are
continuously developed. Nowadays, these new interfaces are closely tied to the
research in the Human Computer Interaction (HCI) field.

In this section, we pursue to give an overview of some key ideas, topics
and main achievements within this field. Additionally, an extensively review of
musical input devices can be found in [49], where a list with more than forty
different musical controllers is presented.

2.2.1 Control of acoustic instruments

Before going into detail in the control of electronic musical instruments, we
should take a look at the acoustic instruments. In acoustic instruments, the
sound generation mechanism is intimately coupled to the playing interface. The
sound of a guitar string, is produced by its vibration after being excited/plucked.
A common fact in all acoustic instruments is that in all such cases the musician’s
energy is transformed into the output’s sound energy [24]. Even in a piano,
in which the interface (keyboard) is separated from the producing mechanism
(strings), is the user’s energy that produces the sound. Apart from putting

33

energy into the system, the performer controls the sound interacting with the
sound production mechanism, as well. Changes of pitch in a string instrument, is
done by sliding the fingers up and down on the string. The same concept serves
for wind instruments, where a change of pitch is controlled by the position of
the fingers on the bore holes.

The most notable exception in traditional instruments is the organ, which
has in many ways resemblances with electronic instruments. Firstly, the user’s
energy does not create the produced sound. Instead the player just control a
keyboard and pedals that act as switches for several valves. The actual produced
sound energy comes from the air generated by bellows that goes through the
pipes. In the case of the organ, the interface is isolated from the sound produc-
ing system. Thus, actually, organs could have been build having a completely
different user interface, maybe more innovative the omnipresent keyboard.

2.2.2 Regarding MIDI protocol

Despite its impact on the world of music in the last decades, MIDI is not a
musical language, nor does not directly describe musical sounds. Rather, it is
a communication protocol that permits the exchange of musical information by
means of control signals. Actually, it was motivated by an agreement among
manufacturer of music equipment, computers and software. The full MIDI 1.0
Detailed Specification was first released in 1983 [2].

MIDI brought a large number of possibilities to the electronic music. It sep-
arated the input device from the sound generator. This separation means that
any input device (keyboard, breath controller, etc.) can control a synthesizer.
Another important point is that device-independent musical software is easier
to develop, since a MIDI application can work jointly with a bunch of different
synthesizers.

The MIDI specification describes a language of message sent from device to
device. A MIDI Message comprises one or more 10-bit words. For signaling
the start of a musical event, MIDI uses the Note-On Message, which contains
also the pitch information stored in 7 bits. That means that the pitch range
extends over 128 notes, numbered from key 0 (CO) to the key 127 (G10). We
find two categories in which MIDI Messages can fall: Channel messages and
System messages. Channel messages target a specific channel. MIDI protocol
supports up to 16 channels, which can be controlled differently. In contrast,
System Messages refer to the whole system regardless of the channel. Usually
these messages correspond to synchronization tasks.

As we have mentioned, the MIDI data does not provide any information
about the actual sound(instrument, timbre, etc.); thus this depends entirely on
the sound generator. In 1990, a new standard was added to the MIDI specifica-
tion under the name of General MIDI. This provided a set of 128 fixed timbres,
which added a degree of uniformity among the different commercial instruments.
For example, selecting a given timbre (trumpet), it is expected that all instru-
ment compliant with General MIDI produce a trumpet-like sound. Obviously,
that does not guarantee in any case that what a manufacturer provides under

34

the Trumpet label, sounds actually as a trumpet.

[Sound Generator '—Dﬂ
Signal Logic j !

Figure 2.12: Standard MIDI controller /synthesizer system.

Timing is another issue addressed by the MIDI specification. It can be
done by means of MIDI Clock Messages or MIDI Timecode. MIDI Clock allows
synchronization with a sequencer by sending tempo information (song position).
MIDI Timecode targets the film and video studios, and helped to synchronize
music and images by sending absolute time signals (measured in hour, minutes,
seconds, etc.).

Moreover, the MIDI protocol defines a specific format for interchanging data
in files, the called Standard MIDI Files (SMF). This let the user to store MIDI
data from any input device, and later to interchange it with any software appli-
cation available (e.g. sequencer).

In the context of this work, MIDI appears potentially as an appropriate
signaling between our analysis and synthesis stages, thus being our Mapping
protocol. Rather, MIDI presents some limitations that with the current tech-
nologies do not seem the best choice. As Curtis Roads points out in [49], these
limitations can be grouped in three categories: bandwidth, network routing,
and music representation. We are concerned with the first and third group.
Firstly, the bandwidth of MIDI can be overwhelmed by a single performer with
a heavy use of continuous controllers such as foot pedals, or a breath controllers.
The bandwidth would be for us a major limitation, since our system works on
a frame by frame basis (usually at a rate of 172 frames per second).

The second constrain of the MIDI specification is the musical representation,
since it was primarily conceived for equal tempered popular songs played on
a musical keyboard. Digital Synthesis is now far beyond these boundaries,
and therefore a new representation would be desirable. Probably, the main
problem is the lack of timbre representation. Even with General MIDI, the
timbre representation is minimal compared to the wide range of possible timbres
found in the computer music. More detailed information on the MIDI can be
found in [52], [2] and [49].

35

2.2.3 Traditional design in musical controllers

The reasons for building electronic musical instruments after traditional ones
are several. First, it permits a musician to start playing it immediately, since
hoe or she is already familiar with the instrument, and can apply his skills. In
some cases, these electronic instruments try, at the same time, to imitate the
original sound (e.g. electronic pianos). Another reason, although less scien-
tific, is the potentially higher commercial success. We give an overview of two
electronic musical controllers designed after traditional instruments: Embedded
Keyboards and Breath Controllers. It is worth to mention that some of these
controllers can be considered as extended controllers, when they are equipped
with the add-on of extra sensors that extend the music control possibilities of
the traditional instrument. In this category, we should include Tod Machover’s
Hyperinstruments[35], with the goal of building expanded instruments to give
extra power to virtuoso performers. Some of the developments include percus-
sion, keyboard and string instruments.

2.2.3.1 Embedded keyboards

As we have presented, playing a digital real-time musical instrument requires an
input device, also called musical controller. There are certainly a large amount
of different controllers, but without any doubt, most of the digital instruments
have a keyboard. This fact was accentuated with the popularization of the MIDI
1.0 Specification. Above, we have already pointed that MIDI was designed with
a keyboard performance in mind.

An electronic keyboard is the natural extension of an organ console. It
is basically an array of on/off switches that indicate which notes are pressed.
With the introduction of the MIDI standard, and the development of more
sophisticated devices, the keyboards send also additional information about the
performance, such as note velocity or aftertouch. This parameters are gathered
by means of sensors placed along the keyboard.

In addition, some keyboards are equipped with other sensors in order to
extent the number of transmitted performer’s actions. It includes among others:
thumb-wheels for pitch bend, touch-sensitive keys for changing the timbre, or
vibrato; or more recently, some devices include infrared light-beam. A list with
the most common parameters sent by a keyboard follows:

e Note On/Off
o Note Velocity
o Aftertouch
e Pitch Bend

2.2.3.2 Breath controllers

With the emergence of breath controllers, wind players were able to use synthe-
sizers. In the 70’s, appeared the first devices that could capture the physical

36

gestures and send it to a synthesis engine. Later, in late 80’s, Yamaha intro-
duced the WX-7, the first breath controller to output MIDI, with a fingering
layout close to a saxophone.

The breath controllers captures the player’s gestures, that is, the state of
the valves are replaced by switches, and the reed by breath and bite sensors.

Usually, these devices have aided researchers in the control of new Physical
Modelling algorithms of wind instruments and other computer-based synthesis
algorithms [53].

2.2.4 Innovative design in musical controllers

New Digital Music Controllers can be classified in many different ways. In
the category of innovative design, we consider only Gestural Interfaces, which
strive to capture the performer’s gestures, either with the hands or with the
entire body (dancers). It is worth to mention, though, that other non-gestural
controllers such as Donald Buchla’s [5] interface should also be included into a
category of innovative controllers. In Buchla’s designs, keyboards were replaced
by pressure- and position-sensing touch-plates. Here, we describe briefly three
different technological approaches towards the design of new musical instru-
ments. An advantage of these innovative input devices is that they can exploit
the possibilities of the digital music synthesis, since they are not bound up with
any performance limitation.

2.2.4.1 Theremin

Although it was invented by Leon Theremin back in the 1920’s, this wonder-
ful instrument first acquired notable popularity in the decade of the 1960’s.
Conceptually, it can be considered as a new instrument, and not only as a con-
trollers, since it generates the sound. It was the first musical instrument that
could be played without physical contact. Pitch and amplitude were controlled
by moving the hands through space over sensor plates and oscillators.

2.2.4.2 Body-Sensors

Sensing technology has brought a bunch of analog to MIDI converters, capable
of transforming any physical gesture into a MIDI message. These interfaces
have been widely used often in conjunction with software such as Max/MSP or
Pd. Commonly these devices are found in real-time performances or interactive
installations, some popular names are: Steim’s Sensorlab, Infuncion System’s
ICube, Ircam’s AtomicPro, and finally, La-Kitchen’s Toaster and Kroonde.

A recurrent goal in gestural controllers is to provide ways of converting
dancing events into music. In this sense, several wearable interfaces have been
developed. A body suit incorporates several position and motion sensors that
track the movement of the performer. Other applications of sensor interfaces
is data-acquisition of musical expression. In the MIT’s Conductor Jacket [38],

37

they extract parameters in order to describe the emotional state of an orchestra
conductor.

2.2.4.3 Computer Vision - HCI

More recently, Computer Vision (CV), within the Human Computer Interaction
(HCI) field, has also been employed as input device for musical performances,
that is, using a camera for capturing body’s gestures. Computer Vision consists
basically of two parts. First, a camera, nothing else than a high-resolution light
sensor; and second, image processing algorithms that extract some useful infor-
mation data from the captured scene. Such a scenario is indicated for systems
that allow to play with the whole body, like dancers. In this cases, the performer
is freed of controllers, cables and sensors, thus, favoring the expressivity.

Certainly a very popular CV system for real-time musical performances has
been the Eyes Web, developed by Antonio Camurri’s group [7]. With the ap-
plication, the user can program patches “ la Maz’ that connect input devices
(video, audio or data) with processing algorithms. The outputs can then com-
bine video stream, sound or data stream such as MIDI or OSC !. A set of built-in
functions include several image and audio processing algorithms. Commonly,
Eyesweb has been found in dancing performances for converting dancer’s move-
ments into sound.

On the other hand, Computer Vision has been used in the design of novel
digital instruments such as the reac Table* [31] developed at the UPF’s Audiovi-
sual Institute. This project under development leaded by Sergi Jorda, consists
of a flat surface (table), upon which several objects are spread. It employs
Computer Vision and Tangible Interfaces technologies, and aims at creating
an instrument that is satisfactory for both kind of potential users: novice and
trained musicians. One or more users move the objects, then , these actions
are captured by the Computer Vision system that maps this data to the sound
synthesis engine. The sound generation part is developed with Pd (PureData,).

1Open Sound Control. http://www.cnmat.berkeley.edu/OpenSoundControl/

38

2.3 Synthesis Control

In the previous section, we have presented an overview of acoustical and elec-
tronic musical instruments from the perspective of control. We have seen that
particularly in acoustical instruments the performer’s interaction with the in-
strument is done directly over the sound generation mechanism (e.g bowing a
violin string). After the introduction of the electronic instruments first, and the
posterior digital instruments, this tight relationship between control and sound
production is no longer valid. Focusing now only on digital instruments, we can
differentiate two layers a) user’s interface and b) sound production or synthesis.

A definition for Digital Instrument will not provide us with much information
about either the actual sound or about physical shape of the device. Instead,
it only indicates that some step within the sound production’s chain is done by
manipulating 1’s and 0’s. Leaving apart philosophical discussions about digital
signals, our interest in Digital Instruments is motivated by the broad range of
techniques, sounds and devices that are involved. A general overview of different
digital synthesis techniques can be found in [58]. In this article, Julius O. Smith
presents a complete taxonomy for digital synthesis (see figure 2.13).

Processed Spectral Physical Abstract
Recording Model Model Algorithm
Concréte Wavetable F Ruiz Strings VCO,VCA VCF
Wavetable T Additive Karplus-Strong Ext. Some Music V
Sampling Phase Vocoder Wavegnide Original FM
Vector PARSHL Modal Feedback FM
Granular Sines+Noise (Serra) Cordis-Anima Waveshaping
Prin. Comp. T Prin. Comp. F Mosaic Phase Distortion
Wavelet T Chant Karplus-Strong
VOosmM
Risset FM Brass
Chowning FM Voice
Subtractive
LPC
Inverse FET
Kenakis Line Clusters

Figure 2.13: J. Smith’s taxonomy of digital synthesis techniques [58].

In this section, we survey different synthesis techniques and their interface
layer. More precisely, we will identify which parameters of the algorithms are
controllable by the musician. The interface layer, known as Mapping differs ob-
viously among the presented techniques, but also among the characteristics of
the synthesized sound. We discuss first some aspects and trends of the mapping
in the design of electronic instruments. Next, we review the most common con-
trols for Abstract Techniques, Physical Models, Sample-Based and Morphing.
However, we will not cover here controls for specific instrument sounds though.

39

2.3.1 Mapping layer

The playing interface in acoustic instruments is inherently bound up with the
sound source (e.g. a guitar string). The connection between these two are
complex and determined by physical laws. The situation is radically different for
electronic instruments, where this relationship has to be defined. The connection
of these, traditionally inseparable, component in a real-time musical system is
known as mapping. The mapping layer is very important [25] and in fact non-
trivial, and must not be overlooked by the designers of new musical instruments.

Mapping has acquired some relevance in the past years, partially due to the
growth of the computational power of real-time systems, which has widened
the design of new musical instruments. Several research works (Wanderley [62],
Metois [40]) address the question of mapping from different perspectives. Basi-
cally, all these works try to explore the art of mapping in order to find a general
model for digital instruments. A very promising approach is to model a map-
ping consisting of multiple layers. In the figure 2.14, we show an example of a
two layer mapping. This give more flexibility, since for the same set of inter-
mediate parameters and synthesis variables, the second layer is independent of
the choice of controller being used. The same would be true in the other sense:
for the same controller and set of parameters, multiple synthesis engines can be
used just by adapting the second mapping layer, the first being constant.

| Layer 1 (abstract) !
\

\
| ; | Mapping
Layer 2 (low-level)

Figure 2.14: Block diagram of a two layer mapping.

As we will cover later (section 3.3 of this work), the multi-layer mapping
approach is very well adapted to our goals. We pursuit to find a general mapping
model for using the human voice, as musical controller, with different synthesis
algorithms.

40

2.3.2 Abstract techniques

Under Abstract technigques, we understand those methods that are not derived
from any physical law but arbitrarily aims to reconstruct complex dynamic
spectra. As it has been demonstrated in many commercial synthesizers, these
techniques are computationally cheap and very flexible in terms of producing a
large variety of sounds.

If we trace back to the origins of electronic music, we find that the first
techniques employes for generating sound electronically were additive and sub-
tractive synthesis. By the additive synthesis, a particular timbre is achieved
by summing multiple sinusoidals of different amplitude and certain frequencies,
following an harmonic series.It shares the same principle used in organs, where
a fixed set of oscillator are capable of producing a variety of timbre (registers).
In terms of cost, it needs one oscillator per sinusoidal, which makes it rather
expensive compared to other techniques.

Opposite to the additive synthesis, there is the subtractive synthesis, which
also allows a broad range of timbre. Here, a single highly harmonic oscillator
is used. In this category, rather than a pure sinusoidal, the oscillators generate
a more complex waveform such as triangular, square or saw-tooth. Looking at
the spectrum of the generated signal, we observe that the harmonic components
extend over the whole frequency range. Given one oscillator with a particular
fundamental frequency, the next step is to generate a variety of timbres. To do
S0, the signal passes through filters that subtract energy from the original signal,
and thus modifying the spectral information.

Probably the most referenced example of abstract technique is the FM2. Be-
sides FM, we may find other techniques such as Granular or Waveshaping. FM
produces a wide variety of complex timbres by rapidly varying the frequency of
one oscillator in proportion to the amplitude of another oscillator. Functionally
speaking, we can control three parameters of a basic FM structure: amplitude
and frequency of the modulator z,,, and amplitude of the carrier z,,;, as we
observe in the equation 2.11. The most interesting feature of this equation is
that the instant frequency f;(t) of 4, will be also a sinusoidal function. A
proper choice of modulating frequencies will produce a fundamental frequency
and several overtones, creating a complex timbre.

Tout(t) = A(t)cos((t)) (2.10)
W(t) =2nf. + I(t)cos(2m frut + bm) + P (2.11)

This technique was indeed a major achievement, having at the same time a
lot of success in the commercial market when it was implemented in the mas-
sively sold Yamaha’s DX7 Synthesizer.

A different and conceptually new approach is the granular synthesis. As
Curtis Roads describes in [49]: “ Granular Synthesis build up acoustic events

2Frequency Modulation synthesis, developed by Chowning in 1973 [10].

41

from thousands of sound grains. A sound grain lasts a brief moment (typically 1
to 100 ms), which approaches the minimum perceivable event time for duration,
frequency, and amplitude discrimination.”

The sonic grains are shaped by an envelope, which can take different forms.
On the other hand, the content of the grain, i.e. the waveform inside the grain,
can be of two types: synthetic or sampled.

In terms of control, the granular synthesis requires a large number of pa-
rameters, since for each grain we need to specify starting time, amplitude, etc.
Therefore, a higher-level control layer is necessary. The higher-level layer should
generate automatically parameters to generate thousands of grains. Among var-
ious approaches developed to overcome this problem, we find the Asynchronous
clouds that derives to the AGS (Asynchronous Granular Synthesis). AGS scat-
ters grains in a statistical manner within a defined time-frequency region (the
so-called clouds). This approach provides the following parameters for control-
ling the generated sound:

o Cloud’s start time and duration.
e Grain duration.
e Density of grain per second.

Bandwidth of the cloud.

Amplitude envelope of the cloud.
o Waveform within the grain.

A practical application of the granular synthesis is the flexibility in the gener-
ation of sound textures such as explosions, rain, breaking glass, and the crushing
of rocks, to name a few.

Finally, the third abstract technique is the Waveshaping Synthesis, first car-
ried out by Jean-Claude Risset in 1969. Like FM this is musically interesting
because of the wide ranges of possible timbres in an efficient manner. Actu-
ally, waveshaping is a non-linear distortion, where an input value z in a range
[-1,+1] is mapped by a transfer function w to an output value w(z) in the
same range. In its digital form, the transfer function is a table of N values.
Depending on the functions stored in the waveshape, the input’s spectrum can
be modified in such a way that resembles an acoustic instrument.

Regarding the control, it has been demonstrated by Arfib [1], that is possible
to predict the output spectrum of a waveshaper by restricting the input signal
to be a cosine, and using Chebychev functions as transfer function. Moreover,
this will produce rich harmonic sounds that can be controlled by changing either
the amplitude of the input cosine, or the Chebychev polynomial function.

2.3.3 Sample-based

During the 70’s and 80’s most commercial synthesizers implemented abstract
techniques (FM, Phase-distortion, etc.). Sampling synthesis appeared later as

42

an attempt to get a better sound quality for synthesizing acoustic instruments.
The principle is to record with accuracy a large number of samples of an acoustic
instrument. By means of a controller, usually a keyboard, the user triggers the
playback of a sample. Although, in the 1970’s appeared the first predigital
sampling synthesizer (Mellotron), it was many years later that this technique
became very popular, primarily due to the lower prices of the memory-chips and
to the many libraries of sounds available.

A major problem with the sampling synthesis technique, which tries to imi-
tate existing instruments, is its lack of the so-called “prosodic rules” for musical
phrasing. Individual notes may sound like realistic reproductions of traditional
instrument tones. But when these tones are played in sequence, the nuances
of the note-to-note transitions are missing. Partially, this problem is due to
the little flexibility of the controllers. Most of the commercial synthesizers are
keyboards that have very few controls, i.e. note on/off, pitch and velocity.

To summarize, the sampling synthesis technique can be well suited for certain
experimental music. But for a musician, in terms of expression it is very far
from the experience of playing an acoustic instrument.

2.3.4 Physical Modeling

Physical Modeling synthesis (PhM) strives to emulate acoustical methods for
sounds production, and in particular, to model the physical acoustics of mu-
sical instruments. This technique aims at finding the mathematical equations
that describe a mechanic-acoustic process. In other words, instead of trying
to reproduce a waveform directly (as in the sampling synthesis), the Physical
Modeling simulates first the producing mechanism, and this model will “pro-
duce” the desired sound output. Because of the mathematical nature of these
methods and, on the other hand, their high computational burden, the PhM
have not been widely used in commercial synthesizers. In any case, Yamaha
VL1 included PhM algorithms, though.

Apart from recreating faithfully existing instruments, the PhM opens new
ways for “unreal” sounds; for example, once we have simulated a cymbal, we
can generate a sound of a cymbal with a diameter of 25 m.

In general, there are two types of Physical Models used in music sound
synthesis: lumped and distributed. The former method consists of masses,
springs, dampers, and non-linear elements. They can be used to model the
players’ lips in a brass instrument. Considering this approximation, when a mass
and a spring are connected, an elementary second-order resonator is formed,
which in terms of Digital Signal Processing corresponds typically to a second-
order digital filter.

The distributed methods implement delay lines in combination with digital
filter and non-linear elements. These delay lines, also referred as Digital Waveg-
uides [59], model wave propagation in distributed media such as strings, bores,
horns, plates, and acoustic spaces. In order to model losses and dispersion, the
distributed methods can be combined with lumped elements, so that, a better
simulation of the acoustic instrument is achieved. A basic waveguide building

43

mass spring

‘WOLW@IUOL-WL-

Figure 2.15: Simple Mass-Spring model for vibrating strings.

block is a pair of digital delay lines. This pair represents a wavefront travel-
ling up and down the waveguide, due to the reflections. Basically, we have two
waves travelling in opposite direction, which causes a resonances and interfer-
ences. Figure 2.16 depicts a general model for a waveguide instrument model
that can simulate string and woodwind instruments. It is important to mention
that Waveguide Synthesis is an efficient method that allows implementations in
real-time.

Dela : Dela
Nonlinear > Y Scattering % Y e Filter
excitation | g junction
- Delay [| Delay ™
Simulated
signal

Figure 2.16: Generic waveguide instrument model. [49]

As we have mentioned, in the section 4.2.1 we describe the implementation
of a virtual bass based on physical models. We use the Karplus-Strong algo-
rithm, which simulates the sound of plucked-string instruments such as guitars,
mandolins and harpsichords.

A drawback of physical models synthesis is that each instrument is modeled
in a very specific way, following the inherent acoustic properties of the mechan-
ical system. This fact leads to a very poor generalization in terms of control
parameters. Furthermore, a physical model is controlled by dozens of parame-
ters. If we refer to a computer implementation, controlling the PhM instrument
with a mouse and an alphanumeric keyboard would be really difficult. Hence, in
parallel to the implementation of new PhM algorithms, researchers have often
developed input devices consisting of several sensors. The devices should aid
the player in transmitting his or her musical gestures to the algorithm.

Finally, within the scope of Physical Modeling Synthesis we find also other
algorithms that attain a great realism in generating non-musical sounds. A
good example is the work achieved by Davide Rocchesso and others [50], who
investigated the synthesis of the so-called “everyday contact sounds” by using

44

physical modeling. The models presented, impact and friction, are versatile
enough to represent a wide range of contact sounds. For instance, the impact
model can be tuned to render the material and size of the resonators. There
are several ecological auditory phenomena, such as bouncing, breaking, rolling,
crumpling are based on specific temporal compositions of impacts.

2.3.5 Spectral Models

Spectral Models attempts to characterize the sound in the frequency domain,
which is more related to how our hearing system works. Roughly speaking,
what Physical Models is to the sound generation mechanism, Spectral Models
is to the perception organs. This approach decomposes the sound in two parts:
deterministic and stochastic [56]. The deterministic part consists of multiple
time-varying sinusoids, and the stochastic part is modeled as noise with a par-
ticular spectral shape. This synthesis technique is also known as Sinusoidal plus
Residual. The main advantage of this technique is the existence of analysis pro-
cedures that extract the synthesis parameters out of real sounds, thus being able
to reproduce and modify (transform) actual sounds. The different components
are added to a spectral frame. Then, a single IFFT for each frame is com-
puted; and, finally the output is generated after windowing and the add-overlap
process. As we observe in the figure 2.17, the spectral synthesis needs various
input parameters: sine frequencies, sine magnitudes, sine phases, and residual
spectral data. Therefore, the next step is to see how all these data is generated,
and how we modify it in order to attain particular sound transformation.

) magnitude
Sine spectrum
frequencies
sine Spectral polar to
magnitudes sine rectangular
— = conversion
sine generator window
phases) phase generation
spectrum
complex
spectrum
—»
magnitudeT
idual spectrum synthesis window
residua
spectral data | Spectral |~ ¥ polarto
> sine rectangular
generator |—p» conversion

phase
spectrum

Figure 2.17: Block diagram of the spectral synthesis. [64]
The most remarkable advantage of Spectral Models over other synthesis tech-

niques (e.g. Physical Models) is the fact that a number of musically meaningful
parameters are closely related to spectral processing algorithms.

45

In the next paragraphs we describe SALTO [22], a practical implementa-
tion of Spectral Models for synthesizing a saxophone. Using Deterministic plus
Residual components, it aims at reproducing a saxophone with a high degree
of flexibility by using either a Breath-Controller or a Keyboard via MIDI. A
database (Timbre Template Database) holds pre-analyzed spectral sound seg-
ments, which are then used as anchor-points for generating a continuous timbre-
space. This data, SMS Spectral Analysis Data, consists of a complete frequency
representation of the sound according to the Sinusoidal plus Residual Model.

SALTO’s work-flow is the following. The MIDI Controller sends data to the
input stage, which converts it to a Input Timbre Vector containing information
about the pitch, loudness and attack. With this information one of the spectral
segments of the database is selected. In the synthesis stage, the stored data
provides frequency, magnitude and phase evolution for each sinusoidal track,
plus the residual information, which generates a Synthesis frame. The next step
consists of spectral transformations such as pitch shift or timbre morph. The
timbre morph is achieved by interpolating the sinusoidal component of two Tim-
bre Templates, and thus, following the performer’s behavior in real-time. For
instance, if the breath pressure increases (in case of using a breath controller),
the synthesized spectrum should sound “brighter”. The database holds about
72 samples in a range of two octaves at a semitone distance with three degrees
of attack.

Additionally, other considerations are taken into account for synthesizing
a single note. This process consists of three regions: attack, stationary and
release. During the attack, the synthesis just takes the original information (Si-
nusoidal plus Residual) from the templates are re-synthesize the sound without
any modification in order to preserve the quality of the note attack. In the sta-
tionary stage, it is possible to morph between two Timbre Templates, and the
frames are continuously looped around two loop points. Finally, in the release
stage, the frames are fade out within three frames in order to avoid clicks.

A key feature of this technique compared to the classical sample-based syn-
thesis, is the modeling of the note transitions. Here, the legato can be achieved
with certain realism by interpolating in a appropriate way the sinusoidal and
residual components. Regarding the input MIDI data, it consists of two groups
of information: initial controls (pitch, attack velocity, note on/off, and external
controller data); and continuous controls (breath speed, and lip pressure). This
information is mapped in a further step to the synthesis control parameters, as
shown in the table 2.1.

In terms of control interface, this implementation does not propose nay new
input device. Instead, it uses commercial MIDI Controllers, the Yamaha WX7
Breath Controller, which inherits the bandwidth limitations of the MIDI proto-
col.

46

Inastial MIDI Controller | Synthesis Parameter
Pitch (fingering) Pitch
Attack Velocity Attack Character
Synthesis Volume
Note On Note On
Continuous Controller | Synthesis Parameter
Lip Pressure Pitch Modulation
Breath Speed Volume
Timbre Interpolation
(Transition Recognition)
Note On Note On

Table 2.1: MIDI Controllers (Breath Controller) from [22]

2.4 Overview of related systems

This section is about various existing systems that are conceptually similar to
this thesis’ work. That is, controlling sound synthesis with the signing voice.

Historically, we can consider that the first attempt in using the voice for
synthesizing new sounds was the Vocoder. The Vocoder consists of a bank of
filters spaced across the frequency band of interest. In real-time , the voice is
analyzed by the filter bank, and the output is applied to a voltage-controlled
filter bank or an oscillator bank to produce a distorted reproduction of the orig-
inal signal. Long time after the analog vocoder, appeared the Phase-Vocoder
[16]. This method based on the STFT? allows many manipulations in the spec-
tral domain, and was first used for Time-Scale and Pitch-Shift applications. A
particular application of the Phase-Vocoder is called cross-synthesis. The result
is a source sound (e.g voice) controlling another sound (e.g. synthesizer sound).
It is based on the fact that we can multiply, point by point, the magnitude
spectrum of two analyzed signals.

In any case, in this section we look at implementations that exploits the
features of the voice to generate and control completely different sounds. We
separated this section further into three parts. Firstly, two different interactive
systems are reviewed. The Singing Tree is a public installation; on the other
hand, Awuracle combines voice interaction with collaborative music generation
over the Internet.

A second type of systems refer to the most popular protocol for electronic
music: MIDI*. Here, the goal is to convert an input audio stream, in our case
voice, into musical events in form of MIDI messages. The main interest of these
system is the capability of sending the extracted MIDI data to any compatible
synthesizer module.

Finally, the third part is about synthesizers that are driven by an audio
stream. Instead of having a physical interface (e.g. a keyboard), these two

3Short-Time Fourier Transform
4Musical Tnstrument Digital Interface

47

approaches analyze the input signal, extract some parameters and map them to
the synthesizer’s engine. As we will see, each system uses a completely different
synthesis technique, and thus has a distinctive mapping strategy.

2.4.1 Voice-driven interactive systems

Human Computer Interaction (HCI) is a very challenging research field that
involves many other disciplines. The evolution of the technology has brought,
at the same time, various devices that capture human gestures. In a broad sense,
caption can be either a mouse-click or a waving hand associated to a computer
vision system. Although we review here audio system, we may find also research
related to voice-interaction in the video field such as a face synthesizer driven
by voice [23].

In the context of musical interactive systems, it is clear that an easy way for
an individual to produce music is singing. Therefore, it seems convenient in an
interactive environment to use the voice as input stream. Moreover, the human
voice contains a lot of information, which can be analyzed and, in a further step,
used for a new musical experience. Here, we describe briefly two systems that
use the voice as interface for generating dynamic auditory scenes.

2.4.1.1 The Singing Tree

Back in 1997, the Hyperinstruments Group at the Massachusetts Institute of
Technology, developed and composed an interactive opera, calling it “The Brain
Opera” [21]. This project was directed by Tod Machover, and included the de-
velopment of six interfaces that combined sound and visuals in real-time. One
of this interfaces is The Singing Tree, which is related, to some extent, to the
principles of this work: using the nuances of the voice for controlling the syn-
thesis. The Singing Tree has only one microphone as input interface, an LCD
screen and stereo headphones (plus speakers) as output device. Primarily, the
quality of the voice is analyzed and a video sequence and a musical sequence are
perturbed accordingly. The participant sings a pitch and, while singing, hears
music and watches a video. In this case, the user’s goal is to maintain a steady
pitch, and the degree in achieving this goal is represented in both the auditory
and visual feedback.

The Singing Tree has an unique video stream, consisting of different scenes.
Each stream starts in an inactive state, for instance a sleeping human face.
When the participant starts singing a steady pitch, the video 'wakes’ and pro-
ceeds to an identifiable goal; for example, an eye opens and one zooms inside
the eye to find a dancer spinning,.

Regarding the auditory stream, this is also reward oriented. When the user
proceeds to the goal, a beautiful and angelical music is generated, accompanied
by vocal chorus in harmony with the singer. Otherwise, deviations produce an
increase of dissonances, percussive sounds, generating a more chaotic auditory
scene.

48

An issue of big interest for us is the mapping strategy. Here, the mapping
is direct, as long as the user maintain a steady pitch, the video and musical
sequences proceed towards the goal; alternatively, if the user stops, the sequences
reverse to an inanimate state. Nevertheless, other changes in the user’s voice
(loudness, pronounced vowel, etc.) alter also the sonic result. As they remark in
an article on the Singing Tree [43], the mapping, from an artistic point of view,
should be intuitive, while being at the same time, subtle and complicated enough
to avoid a deterministic impression. The amplitude of the singer’s is mapped
to instrument’s volume, and to a lesser extent to note density. Deviations of
pitch were mapped primarily to note density, instrument choice, tonal coherence
and rhythm consistency. Changes in the vowel’s formants were analyzed and
mapped to the scale on which the musical response is based.

Focusing on the voice’s analysis, various vocal parameters are extracted by
using Eric Metois’ DSP Toolkit [40]. The pitch is analyzed in time domain.
Additionally, the amplitude spectrum is also found in the frequency domain.
For estimating the vowel’s formants, a cepstrally smoothed spectrum analysis
is achieved. Although the algorithm was not very reliable estimating the first
three formant frequencies, it was very good in detecting change in the formant
structure. Therefore, as they explain in [43], this was adequate for the type
of mapping used. The Singing Tree integrates a music composition software as
well. The mappings connecting the vocal parameters to the composition system
(random generation engine) were based on fuzzy logic. This technique helps the
system of being too deterministic.

The Brain Opera is currently installed at the House of Music in Vienna,
Austria.

2.4.1.2 Akademie Schloss Solitude’s Auracle

A more recent approach for using singing voice in an interactive environment is
the Auracle system [60], developed at the Akademie Schloss in Stuttgart, Ger-
many. In this case, instead of an interactive installation, they built a network-
based instrument, which considers the participations of multiple users simul-
taneously. Indeed, Auracle is a group instrument controlled by the voice that
works over the Internet. It has its origin in the interest of Max Neuhaus in par-
ticipatory musical events. Back in the 60’s and 70’s, he created the radio-based
Broadcast Works, realized over radio and telephone. Since collaboration at a
distance requires a network, Auracle substitutes the prior broadcasting network
by the Internet. We find a precise definition of the Auracle System in [6]:

”... an instrument that creates music by analyzing user’s voices, transmit-
ting the analysis information across the Internet to every participant, merging
together this data from all participants, and using that to drive sound synthesis. “

It is implemented in Java programming language and it runs in a web browser
as a Java Applet. The implementation uses publicly available libraries for the
sound generation and data transmission. These two libraries developed by Phil
Burk are JSyn (for Sound Synthesis) and TransJam (for data transmission).

49

The figure 2.18, shows the architecture of the whole system, composed of five
distinct modules. The input signal is handled by the analysis component, pro-
ducing a gesture. This gesture is further analyzed and combined with other
gestures by the coalescing component. Next, the information of each client is
transmitted over the Internet by the network component. The mapping com-
ponent is responsible for merging the state of all participants in a single model
that is used to drive the synthesis engine.

/TN

‘ Analysis Coalescing ‘ Mapping
Analysis Synthesis
Microphone Loudspeaker

Figure 2.18: Block diagram of Auracle’s architecture. [6].

For controlling the synthesis component with parameters, some character-
istics of the incoming voice must be extracted. In the Input Analysis stage,
the signal is downsampled to 8192H z and split into blocks of 40ms. Then, for
each block some basic features of the signal are computed assuming that the
signal is vocal. The considered features are: voiceness/unvoiceness, fundamen-
tal frequency, root-mean-square (RMS) amplitude and the first two formant
frequencies. Concerning the formant frequencies estimation, they used Linear
Prediction algorithm.

A distinctive feature of Auracle is the way it deals with the input voice in the
Coalescing Analysis component. The voice is broken into gestures, defined as the
data envelope from one block of silences to another. This leads to the extraction
of higher-level descriptors for a given gesture. Furthermore, this reduces the
network traffic, since the client only sends Gesture’s information. Additionally,
the information within a gesture is further compressed. As they suggest in [6], in
practice gestures should have a limited duration due to playability and efficiency
reasons. So, the limit was set to one second.

Another component that deserves our interest is the mapping. It converts
gesture data to sound. In Auracle’s approach there is not any constraint in
the mapping from input data to generated sound, since the purpose of the
system is not to recreate the original sound, but to produce interesting sounds.
For instance, as input get louder, the output gets noisier. But the main issue
here is the merging of the state of all participants into a single model that is
used to drive synthesis. As the Auracle’s team mention, the system should be
transparent, that is, the user should be able to perceive his effect on the overall

50

sound output.

Finally, the synthesis component was totally implemented in form of a JSyn
patch. During the prototyping, they implemented an interface protocol for using
external sound engines with Auracle. The output of the mapping could be sent
then to applications such as Supercollider or Max/MSP.

Regarding the user interface, Auracle differs from the typical interactive
applications, since it is not controlled via mouse or keyboard. Instead, the
Graphical User Interface is used to provide feedback about the state of the sys-
tem to the participant. It displays information about the internal process and
also about the state of other participants. The User Interface shows also a 2D
projection of a Kohonen’s Map, which is used in Auracle to classify input pat-
terns.

From our point of view, Auracle appears as a very interesting approach to
collaborative instruments. It attains a high degree of usability, since it uses the
voice as unique input device.

Moreover, it shares some concepts with our proposed system. Discarding
the collaborative architecture, we observe that the primary concept is to use
the voice to control some synthesis engine. On the other hand, their approach
defines the Gesture as the quantum of information, which consists of the voice
between two silences. This leads obviously to a significant decrease of time
resolution.

The main idea behind Auracle is to generate music in a collaborative way
over the Internet. Thus, although it has some concepts in common, its final sonic
results differs from our implementation (see chapter 4). As we will see later,
our goal is to use the voice features to control the nuances of a synthesized
instrument.

2.4.2 Voice to MIDI converters

Converting an audio signal to MIDI has been traditionally a challenging feature
for many commercial audio software systems. We can differentiate two types
of audio-to-midi conversion. Firstly, we find Transcription systems that try to
extract the musical information from an audio stream and put it in form of a
musical score. Actually, this is a research field with own entity, and goes beyond
the scope of this work. Second, there are systems that use the extracted MIDI
information to exploit the new possibilities for sound generation. This is in
fact our case of interest, using the voice’s features for synthesizing sounds. The
advantages of converting an audio stream to MIDI are multiple. Basically, once
we have MIDI messages, transformation on the MIDI score are cheap and will
not affect the posterior audio quality. On the other hand, currently there are
thousands of synthesizers available (for both hardware and software) that are
driven by MIDI signals.

Although currently, there are audio-to-midi software working in real-time,
the first programs ran off-line, converting basically an audio file to a MIDI file.

51

Many resources on the evolution of these systems can be found online at the
Electronic Musician homepage [36].

Historically, the first Pitch-to-Midi hardware device that acquired notable
popularity was the IVL’s PitchRider 4000, which was introduced in May 1986.
In 1995, the American company Opcode released Studio Vision Pro 3.0, its pro-
fessional MIDI sequencing and digital audio recording software, which included
a novel Audio-to-MIDI converter. Other applications, like Melodyne®, use the
same concept of identifying notes from an audio stream, but in this case, the
purpose is to transform the original audio using the extracted information. Com-
monly, after the analysis the user modifies the time-scale or the pitch of one or
several notes. One feature of Melodyne is also to export the analyzed audio as
a MIDI file.

However, note that, as we discuss in detail in the section 3.3.1, the MIDI
protocol has known limitations; primarily due to the reduced bandwidth the
MIDI messages.

In the next part, we review one existing software application that performs
Voice-to-MIDI conversion in real-time, and therefore allowing to use the singer’s
voice as a musical controller. There are indeed many applications dedicated to
audio-to-midi conversion. Here, we chose to review Epinoisis’ Digital Ear, since
it appears in many publications as a good reference of the current state-of-
the-art in similar commercial systems. However, we may find similar software
systems converting audio to MIDI in real-time, such as e-Xpressor’s MIDI Voicer
2.0 (http://www.e-xpressor.com).

2.4.2.1 An example: Epinoisis’ Digital Ear

Digital Ear can analyze a live or recorded solo performance (e.g. a singing voice,
a saxophone solo, or any other musical instrument) and convert it into a stan-
dard MIDI file. The generated MIDI file can be imported in a general sequencer
such as Cubase or Logic Audio. The input of the system can be standard audio
files or a live microphone input.

The system tries to capture the nuances and expressive power of the vocalist,
so that any vibrato, tremolo, pitch-bend, or portamento effects, are translated
into MIDI events. It seems particularly interesting the capturing of detailed
volume envelope and timbre dynamics events. These features can really boost
the synthesizer’s voice realism and enhancing at the same time the musical
expression.

Shttp://www.celemony.com
SElectronic Musician magazine, Sept. 2001, Future Music magazine, Feb. 2000

52

& Digital Ear®

Fig Edit View Comverson Customizs Tools Heip
[Wave: asiad] [Sstrge: <default=] [MIUI: asiad] [Digital Eari -]

e e

5

Lbbssns b
-ngrvnaae

Ilm > m 4 {

Figure 2.19: Graphical User Interface of Epinoisis’ Digital Ear.

2.4.3 Audio controlled synthesizers

In this category, we find two systems that fairly correspond to our goals: to use
singing voice to control meaningfully a synthesizer in real-time. Although, the
synthesis techniques differ, these two systems share the same concept.

2.4.3.1 Audio-Driven Perceptual Timbre Synthesizer

Here we review again a system developed by the Hyperinstruments Group at
the Massachusetts Institute of Technology, under the direction of Tod Ma-
chover. Probably, among all reviewed systems, this approach is the one that
best matches the final goals of our work. The system was developed by Tristan
Jehan, employing previous work done by Bernd Schoner [55] and Eric Metois
[40]. Finally, the system’s description was compiled as Master’s Thesis [29].

Basically, the goal of this system is to use perceptual information of an ar-
bitrary input audio stream for controlling a synthesis engine. The project was
motivated by the need of providing a new synthesis technique for the hypervio-
lin. The musical gestures generated by bowing a violin should be consistently
mapped to the new synthesized sound, and thus transmitting the violinist’s
expression.

The synthesizer models and predicts in real-time the timbre of an instru-
ment. It is based on the spectral analysis of natural sound recordings using the
probabilistic inference framework Cluster-Weighted Modelling [55]. The timbre
and sound synthesizer is controlled by the perceptual features pitch, loudness
and brightness, which are extracted from the input audio. A crucial step in
this system is the mapping. The predictor model outputs the most likely set of
spectral parameters that are used in an additive synthesis approach the generate
the new sound.

53

Bich, Loudness, arid B ey

Foa M
H Ly
e A WA

e AV VAV 2

Tl AT T

& o
AN o
i

% il m‘ */%de‘"n'mvuﬁlralﬂfh""wﬁ J\ i\u'\ N MJ J]H‘ v l 'Mm 2l

g O

[
T (54 0nds)

The specific model consists of three input parameters (pitch, loudness and
brightness), and 2L (= 20 to 80) output spectral parameters, being L the number
of modelled sinusoidals. The input vector is used with the predictor function
on a frame by frame basis. The output vector is used then with the additive
synthesis engine that generates the resulting signal in the time domain. In
order to improve the sound quality, a noise component is added, following the
SMS method [57]. For the noise component a second predictor is implemented,
where the input vector consists of the perceptual parameters and, a nosiness
estimator. In the synthesis stage, the model predictor generates polynomial
coefficients, which are used to reconstruct the residual (noise) component for
every frame. An Inverse-FFT transforms finally the noise spectrum to the time
domain.

Although the mapping process is probably the most novel part of the sys-
tem, it is not the purpose of this work to describe in detail the Cluster-Weighted
Modeling (CWM). Shortly, CWM was first introduced by Neil Gershenfeld in
1999, and fully developed by Bernd Schoner in 2000. It is a probabilistic mod-
eling algorithm based on density estimation around Gaussian kernels. More
information about this technique can be found in [55].

Our impression is that this system is very powerful and contains some ideas
that can be further developed in our framework. Basically, the non-linear map-
ping function using the Cluster-Weighted Modeling needs to be studied in detail
in order to see if it is appropriate for our system. However, the presented system
here lacks of generality, since it only deals with instruments with a non-quantized
pitch such as singing voice, a violin, a trombone, etc.

2.4.3.2 Antares kantos 1.0

In 2002, the American company Antares presented Kantos, the first Audio-
Controlled Synthesizer. It a commercial plug-in that can be integrated in most
Digital Audio Workstations and work as a virtual instrument. Basically, Kantos
uses relatively familiar synthesizer modules (oscillators, filters, LFQ’s, etc.),
but instead of being controlled via keyboard or via MIDI, it is driven by an
audio signal. Principally, this audio signal needs to be monophonic for getting

54

Analysis Synthesis
Input Dynamics | Freq. Filterl
Input Timbre Q Filterl
Input Pitch Pitch Oscl

Table 2.2: Example of Kantos mapping between analysis and synthesis parame-
ters.

acceptable results, but other sound sources such as drum-loops can produce
surprisingly interesting results, though.

The system consists of three functional blocks: an analysis stage, a modula-
tion matrix, and a final synthesis stage. Each of these blocks provides the user
with a set of controllable parameters. Regarding the Source Signal, the system
should work correctly with any monophonic material, with a reasonable uniform
loudness for accurate pitch-tracking. The presence of background noise can be
misleading for the analysis algorithms, as well. As we find in the product’s
documentation, it is suggested to feed kantos with voice or guitar sounds.

Looking at the block diagram, we find first the analysis module. It contains
a function for controlling the triggering, the so-called Gate Generator. This
function resembles a sophisticated noise gate with four parameters: Note on,
Note Off, Floor and Hold.These parameters can be tuned by the user in order
to adapt the Gate Generator to the input signal. However, finding adequate
values for these parameters can be a bit tricky, nevertheless they depend on
the characteristics of the input material. The generated signal is further used
to trigger envelopes, to reset wavetables or for other tasks. In addition to the
amplitude envelope, the system extracts the fundamental frequency and formant
information, which characterizes the source’s timbre. Note that, since we are
here reviewing a commercial product, there is a lack of thorough descriptions
about the employed techniques.

The next step is to map the extracted parameters to the synthesis engine.
This process is executed by the Modulation Matriz, which is fully controllable
by the user. As we have mentioned, the kanto’s synthesis engine is quite simple.
It consists actually of two wavetable oscillators, a noise generator, two filters,
two LFO’s and effects. The Modulation Matrix gains great interest because it
allows to map the different input data to any of the synthesizers parameters. In
the table 2.2, we see a list of the analysis parameters and some of the parame-
ters to which they can be assigned. More detailed information about all possible
combination in the Modulation Matriz can be found in Antares Inc. homepage 2.

In the synthesis block, we find the aforementioned elements (oscillators, fil-
ters, etc) plus a special sound processor called Articulator. This processor uses
the harmonic and formant information detected in the analysis section, and ap-
plies that to the output of the wavetable oscillators and the noise generator. In

8http://www.anatrestech.com

55

other words, this process modifies the spectral envelope of the incoming signals.
By means of one slider, the user controls the amount of applied effect.

Antare’s Kantos is focused on generating traditional synthesizer sounds con-
trolled by an audio input. We find that it is designed to be particularly effective
with voice input, but with some adjustments the input section can be adapted
to other sources such as guitar or drum loops.

In this work, we are specially interested in the mapping strategies employed
by similar systems as Kantos. In this case, we have observed that the mapping
is completely loose, since through the Modulation Matrix, the user can assign
an input parameters to any of the provided synthesis parameters.

56

Chapter 3

Contributions

In the previous chapters, we have first presented the problem and then, provided
research related to the addressed topic. The next two chapters intend to serve
as a “proof of concept” for dedicate a PhD thesis to the proposed topic.

3.1 Initial Objectives

In the computer music community, most of the research related to voice had
its goal in the singing voice synthesis. Alternatively, we aim at consider the
voice as a musical controller, thus we focus on a particular set parameters that
can be meaningfully mapped onto a synthesizer’s engine. This is an ambitious
project, which aims at providing ways for controlling any virtual musical instru-
ment by the human voice. We consider that with the current state-of-the-art,
there are sufficiently advanced techniques on both Singing Voice Analysis and
Virtual Instruments Synthesis. So, the goal of this work is to settle a bridge
between these two fields in order to generate sounds intuitively with the nuances
of the human voice. From our point of view, this work covers many different
areas in the field of computer music. Therefore, it seems necessary to limit the
research topics, and to precise our final research goals. Consideration on the
design of synthesis algorithms are beyond the scope of this work. We chose two
techniques that with the current technology are capable of recreate sound with
enough flexibility and realism.

The contributions presented in this work aim at filling the gap between
Voice Analysis and Virtual Instrument Synthesis, as mentioned. Of course, this
requires indeed a deep knowledge of both sides. From the input voice, we need to
identify which characteristics are meaningful; likewise, on the synthesis engine’s
side, we need to set properly the algorithm’s parameters. Finally, two topics
appear to be meaningful to address:

1. Voice Features Extraction

57

2. Mapping Strategy

In the next sections, we find a thorough description of techniques that were
developed within the framework of this project. Additionally, the next chapter
(Chapter 4) explains the implemented system, which integrates the aforemen-
tioned techniques.

3.2 Voice Features Extraction

Our framework works in frequency domain, computing first the Short-Time
Fourier Transform of the input voice. This process is inherently a block oriented
process. We work in a frame-by-Frame basis, so we process the input signal at
a particular frame rate, usually 172 frames/s. The next task is then to analyze
input’s spectrum and extract valuable features of the voice for each frame. In
this section we describe a proposed set of voice descriptors, separated in different
categories: excitation, vocal tract, vocal quality (disorders), and note.

Our research consisted in two parts. First, identify relevant features to
be extracted and to choose the appropriate techniques, and second and more
challenging, to develop novel algorithms for those unavailable.

3.2.1 Excitation Descriptors

When we listen carefully to a musical instrument playing some notes, we ac-
quire intuitively some information. Apart from identifying the instrument, we
perceive a note with a particular pitch, loudness and brightness. On the other
hand, we agree that a musician controls the pitch, loudness and brightness of
his or her instrument. Therefore, we can consider these descriptors to be of high
relevance.

Although, we present the Ezcitation Descriptors in this chapter, it is neces-
sary to mention that none of the extraction algorithms are new. Despite this
fact, from our point of view, the contribution rests here on the selection of useful
features and techniques.

3.2.1.1 Pitch information

Estimating the pitch from the voice might be a difficult task, since the pitch
may present rapid and constant changes. On top of that, during the note attack
(note onset), the signal may have a instantaneous pitch far away from the final
stabilized pitch. Despite this, several methods attempted to extract the pitch
from the voice. The first techniques were developed for speech processing [48],
but we employ here a method primarily focused on the singing voice.

In our implementation, we used the Spectral Analysis framework developed
at the IUA during the last years. It includes a Pitch Estimation method based on
the Two-Way-Mismatch technique [8], as we have reviewed in the section 2.1.4.
The pitch descriptor serves at the same time as voiced/unvoiced gate. When

58

the pitch takes the value 0, it means that the analyzed frame was unvoiced.

In addition, the pitch deviations might have also importance for controlling
certain parameters of the synthesis engine. Hence, we include the Pitch Gradient
as a complementary descriptor of the pitch. We calculate it as the variation from
the last frame’s estimated fundamental frequency, and the current one.

Apitch = | folk] — folk — 1] (3.1)

3.2.1.2 Loudness information

A good estimator of the loudness is the RM S (root-mean-square), which has
been widely used in the audio industry. An approximation of the RMS in the
frequency domain can be also calculated. Loudness is estimated by weighting
the frequency bin k of the power spectrum by the coefficients Wy, obtained from
the interpolation of the Fletcher-Munson curves [29].

N/2+1
loudness = Z W - |ag |2 (3.2)
k=2
In our case, the energy information is also included in the global Energy
Envelope descriptors, explained in the page 67.

3.2.2 Vocal Tract Descriptors

By listening to a musical note, we usually identify which instrument is actually
playing. The explanation is two-fold: firstly, we perceive a particular tim-
bre; and second, we associate this particular timbre to a known instrument by
means of our cultural background. Furthermore, a player modifies continuously
the timbre of the instrument, adding expression to the performance. These
variations are important on order to avoid a sensation of “steadiness”.

It seems interesting for our work to extract timbre information from the input
voice. Later we can use this attributes for modifying the timbre characteristics
of the synthesized sound. In the human voice, the timbre is related to the
pronounced vowel, which is determined by the formants. Hence, it will be very
intuitive for the user to execute a musical gesture by changing from one vowel
to another.

We provide here a method for estimating the formant frequencies that are
necessary for identifying a vowel. In addition, a more detailed timbre’s infor-
mation is extracted with the spectral shape.

3.2.2.1 Formant Estimation. Vowel Vector

In the section 2.1.3, we reviewed different techniques used in Speech Processing
for extracting the spectral envelope of voiced sounds. In the context of Speech
Processing, LPC and Cepstral Analysis are applied to a variety of systems such

59

as speech recognizers or speech synthesizers. In our particular case, we intended
to use these methods (LPC and Cepstral Analysis) for recognizing vowels. Since
vowels can be approximately represented by the first two formants, our vowel
recognizer is reduced to a formant estimator system. We observed, though, that
the mentioned algorithms lacked of robustness when applied to the singing voice.
This implies that a new approach needed to be developed in order to build a
playable and stable system.

After analyzing our particular needs, we realized that the system could also
retain its functionality with a less accurate algorithm for estimating the formant
frequencies. Next, we present a new algorithm that separates the spectrum into
two regions, one for the first formant and one for the second formant. This
novel technique is called DCFE Dual Centroid Formant Estimation, and it is
based on the spectral centroid calculation. The motivation for developing an
alternative method, is the lack of robustness of the ”peak-picking” algorithm in
the two previous cases. As we have already observed in figure 2.7 and 2.10, the
values of the formant frequencies are not very stable over time, even in a vowel
steady-state. Notice that our goal is to use the values {F'1, F2} for controlling
an external process. Therefore, these values should remain very stable within a
vowel sound, even if the formant frequencies are not very accurate. Obviously,
we are faced with a trade-off between stability and accuracy, but for our appli-
cation keeping {F'1, F'2} stable and controllable by the user is primordial.

Basically, the idea behind the algorithm is to define two regions in the spec-
trum corresponding to the first two formants. By observing the figure 2.5 from
[45], which depicts the position of the vowels as function of the formants F first
and F'second, we can make some assumptions. Typical values for F'1 are be-
tween 200 and 800H z, and F'2 goes from 800 to 2500H z. We define our Vowel
Vector as the pair of formants frequencies F'1 and F2. Next, we calculate the
spectral centroid within each region, which will be directly our estimated values
for F'1 and F2. The Spectral Centroid is defined as:

N
_ iy AlFISTE]
= N
2 k1 AlK]

where k is the spectral component, A[k] is the amplitude and f[k] the fre-
quency. However, we use a slightly modified equation for calculating F'1 and
F2. Firstly, we consider only spectral peaks for A[k] and f[k]; and secondly,
the magnitude A[k] is weighted by a“crossover-like” function w;[k] for splitting

smoothly the two regions. Finally, we come up with two equations for calculat-
ing the values F'1 and F2,

pi = iy ARk H
2 k=1 Alk]w1 K]

o Liet AlkJwa[K]f[K] 35)

iy Alk]ws k]

fe (3-3)

(3.4)

60

Spectrum vowel /a/, pitch = 80Hz
30

251
F1 F2

201

151

10r
dB

| L I L L
500 1000 1500 2000 2500

freq

Figure 3.1: Spectrum of the vowel /a/ with pitch = 80Hz. Superimposed the
weighting functions for finding F'1 and F2.

The figure 3.1 shows the spectrum of the vowel /a/ with a pitch of 80Hz,
and superimposed, the weighting functions w; and ws.

In fact, this method works pretty good for most vowel sounds, when the
formants frequencies are separated and fall in the right region. However, we
find also sounds in which the two formants are very close, and both in the first
region. Particularly, this is the case of the vowel /u/ and sometimes a close
/o/. The solution appears to be quite simple. For sounds, in which the two
first formants fall into the first region [200 — 800H z], the energy ratio ERj, in
equation 3.6 between the two regions will be high. Thus, we can detect those
cases and proceed with a recursive region splitting, that is, to find the formant
frequencies F'1 and F2 using two new weighting functions wy1 [k] wiz2[k].

Ry, = 2tz A 36)
St AlJwa[k]

Finally, the Vowel Vector is defined as V_'} = {F¥irst, Fsecond }, which takes its
values from {F1, F2} or {F11, F12} depending on the coefficient ER;2, which
interpolates between the two. In addition, an averaging filter is placed at the
output in order to smooth the transitions.

3.2.2.2 Brightness information

Another perceptual feature that characterizes a sound is the “richness of har-
monics”, namely the brightness. A good indicator of the instantaneous richness

61

ant Estimation facioul DCFE @ 44,1kHz, pich=170 Hz

200 M‘w«w/ M\ 1600

M&WM o

VWW} \Mww

500
o TN

(3 200 200 500 800 1000 1200 1200 o 200 400 600 800 1000 1200
frame frame

Figure 3.2: Centroid Analysis. Formant frequencies F'1 and F2 of a vowel
sequence /a/-/e/-/i/-/o/-/u/ with a) pitch = 80Hz b) pitch = 170H z

of sound can be measured by the center of gravity of its spectrum. For a con-
stant pitch, a sound with strong harmonics, will have a higher center of gravity.
This value is also referred as the spectral centroid [63], or first moment of the
spectrum. The final value for brightness is the result of the centroid expression
(equation 3.7).

kNZ/ZH ar, - fr

N/2+1
k=2 Ok

centroid = (3.7

Clearly, this result is correlated with the pitch. A way to evaluate the
“harmonic richness”, is to calculate the ratio of the centroid divided by the
pitch.

3.2.2.3 Spectral Shape

In addition to the first two formant frequencies, as we have seen previously, the
Spectral Analysis (see section 2.1.4.2) generates a more accurate description of
the timbre. Using the harmonic peak detection algorithms, a 3rd-order spline-
interpolation is calculated, providing a continuous envelope of the spectrum. It
interpolates between data pairs of logarithmic magnitude and frequency of the
selected harmonic peaks.

The generated curve can be used a posteriori for changing the timbre of the
processed sound according to the input voice characteristics.

3.2.3 Voice Quality Descriptors

Before extracting features from the singing voice, it is necessary to discuss which
parameters are meaningful to evaluate. We are particularly interested in pa-
rameters that are controllable by the singer (user). Obviously intentional vocal
disorder is not the only possible expression in singing voice. Among many others
there are vibrato, intonation and loudness. However, we focus here only these
singing effects that can be considered as disorders.

62

A singers voice may have characteristics which on the one hand are described
scientifically as vocal disorders, like a growl, creak, rough or hoarse voice. On the
other hand, from the musical point of view, one can consider these characteristics
as highly relevant expressiveness features, which creates its singers voice unique
timbre. In this sense, we named this section “Voice Quality Descriptors”. There
are singers whose voices always have a timbre with vocal disorders, like Louis
Armstrong, Janis Joplin and Tom Waits, but others control the amount of vocal
disorders intentionally like Joe Cocker, Sting and Brian Adams.

Although in other disciplines such as medicine Voice Disorders are thor-
oughly classified, we distinguish as Voice Quality Descriptors only two classes
of disorders. Firstly, in the larynx we find disorders due to a dysfunction of the
vocal folds, which we will define as roughness. The second disorder considered
here, relates to the air-flow that passes through the vocal folds without excit-
ing them sufficiently. The acoustical effect of this disorder is an added noise
component, known as breathiness. Precisely speaking, since in our case, these
disorders are intentionally done by the performer, we should better use the term
effect for referring the extracted attributes.

Here we present two novel methods for extracting these attribute in the
spectral domain. Both are computed at a frame rate(usually 172 fps), that is,
a new value for roughness and breathiness is provided each frame.

3.2.3.1 Hoarseness descriptor

Here, we focus on the particular case of voice disorder that provokes “hoarse-
ness”. This pathology is often referred in the medical literature as Muscle
Tension Dysphonia. In a normal situation, the vocal folds vibrate at a certain
vibrating frequency. It means that a constant cycle of opening and closing is pe-
riodically repeated. However, if thiscycle does not remain constant, either in its
amplitude or shape, new frequency components appear in the signal. These new
components are in fact sub-harmonics of the fundamental vibrating frequency.
The figure 3.3 shows clearly this effect.

| sl Harmonln Feg ko n

fin Hz

Figure 3.3: Example of vocal disorder. The spectrum (0-3500 Hz) shows clearly
the presence of sub-harmonics, in addition to the harmonic partials (marked
with dark circles).

Our first task is to define a method for identifying a voice with vocal dis-
orders. In a growl or hoarse voice besides the harmonic partials additional

63

sub-harmonics are found. In the field of Perceptual Audio Coding appears of-
ten the idea of identifying the noisiness of an audio signal. Common methods
are the Spectral Flatness Measure (SFM) and Tonality [30]. Here we use a
similar concept for identifying the sub-harmonic components.

For evaluate the Hoarseness descriptor, we have defined the Sub-Harmonic
Factor SHF [17]. As input data, we take values from the Spectral Analysis
block: Spectral Peaks, Harmonic Peaks, Pitch and Excitation Slope. The Sub-
Harmonic Factor is computed using a formula that derives from Harmonic Peaks
and Spectral Peaks values, which are stored in arrays. Both arrays contain peak
information of magnitude, frequency and phase. The first step is to divide the
spectrum in regions around each Harmonic Peak [4]. We assume that peaks of
frequency above 3.5kHz are not relevant for our estimation, thus we consider
only the lower frequency range. In the figure 3.3, we observe the Harmonic
Peaks, the Harmonic Region (centered on each harmonic partial), and all sub-
harmonics with lower energy.

In a first trial, we attempted to compute the Sub-Harmonic Factor (SHF)
using the Spectral Flatness Measure of each Harmonic Region. It is defined
by Johnston [30] as the ratio between arithmetic and geometric means of the
spectral power density function, and computed directly from the analyzed frame
contained harmonics of high bandwidth, for instance in case of vibrato. There-
fore, we developed a new approach considering for each region r, only the mag-
nitude of the spectral peaks as valid data. In the equation 3.8, the Spectral
Peaks are represented by the vector SPeak[p], and the regions Harmonic Peak
is represented by H Peak,.. We call it Region Sub-Harmonicity (RSH,.), which
considers only the Spectral Peaks with index ranging from [M,. to N,].

H Peak,
S, SPeaklp)

Then we calculate the Sub-Harmonic Factor (SHF) as the average of all
Region Sub-Harmonicity (RSH,) values. We only consider up to a frequency
of 3.5kHz (Equation 3.9). Note that for frames with a high number of sub-
harmonics, RSH, tends to 0. Thus, in the final formula (Equation 3.9), SHF'
tends to 1.0 for a high sub-harmonicity, and is 0 in case of a signal with solely
pure harmonics.

RSH, =

(3.8)

1 R—-1
SHF = & > (1-RSH,) (3.9)

=0
Finally, our Hoarseness Descriptor is directly the computed SHF, filtered
through a moving-average filter for smoothing the results.
3.2.3.2 Breathiness descriptor

Another commonly used singing effect is the breathy voice. The breathy voice
is caused by a particular mode of phonation. The physiological explanation of

64

breathiness can be found in [61]. According to Sundberg, there is a phonatory
dimension ranging from pressed to breathy phonation. When a high sub-glottal
pressure is combined with a high degree of adduction, a pressed phonation
occurs. If the sub-glottal pressure decreases, jointly with a lower adduction, it
is called aflow phonation. Then, if the adduction force is still reduced, the vocal
folds fail to make contact, producing the known breathy phonation.

Perceptually, a breathy phonation results into an harmonic spectrum mixed
with high-frequency noise, due to the air turbulence. Hence, our goal is to exam-
ine the harmonic content at high frequencies, and to extract a valid breathiness
descriptors. This effect is only noticeable in the stationary part of a note, thus,
in the calculation we do not take into account the transitions.

When we faced the calculation of a breathiness factor, several methodologies
in the spectral domain seemed to be promising. Here, we compare three different
techniques (listed below), justifying at the same time, the final implemented
method.

e Harmonic-Peak Stability
e Band Spectral Flatness

e Peak-Envelope Differential Area

It is necessary to mention that all these methods take the output from the
Spectral Peak Processing, reviewed in more detail in the section 2.1.4.2 of this
work. It provides the signal’s spectrum plus a list of the detected harmonic
peaks, with corresponding amplitude, frequency and phase.

This method observes the trajectories of the detected harmonic peaks within
a frequency range from 3 to 6kHz. As we can see in the figure 3.4, due to the
presence of noise, the harmonic peaks’ frequencies suffer of great deviations in
the mentioned range. For a frame k, we calculate a frequency stability factor
(S¢), and phase stability factor (S4), which are the difference between the mea-
sured frequency (f,[k]) and phase (¢,[k]), and the predicted ones (f.[k] and

qST [k]). In the equation 3.12, we wrap the resulting predicted phase.

~

fr[k] = n - pitch (3.10)

Ste[k] = |f2[k] = fr[]] (3.11)

bo[k] = plk — 1] + ZWMM (3.12)
Sorlk] = |6,[k] — 6. [K] (3.13)

65

Finally, we add the two stability factors of all harmonic peaks, and correct
the summation with the delta-pitch factor dpiscp[k], being k the frame index
(equation 3.16). The factor dpicn[k] will ensure that the final value is not
affected by normal pitch variations such as in a vibrato.

1
Speak,,‘[k] = S¢»,- [k] + Esfr [k] (3.14)
pitch[k] — pitch[k — 1]
. —1_ 1

dyiecnlk] = 1 =100 pitchlk] + pitch[k — 1] (3.15)
1 R

Breathysan[k] = dyiren[k] > Speak.r[k] (3.16)
r=0

Low-breathiness sequence High-breathiness sequence

0.2 T T T T

Breathinesss Factor

0.8 T

0.6 T

04r T

0.2 T

0 1 1 1 1
0 500 1000 1500 2000 2500 3000

Figure 3.4: Breathiness Factor using the Harmonic-Peak Stability technique.
The sound example is a musical scale with, first a regular, and then a breathy
phonation.

The second method proposed is based on the Spectral Flatness Measure (SFM).
It is defined by Johnston [30] as the ratio between arithmetic and geometric
means of the spectral power density function, and computed directly from the
FFT. After observing the spectral analysis of a breathy phonation, we realized
that the spectrum had more presence of noise in the range from 2.5kHz to
9kH z. Thus, in order to calculate the Breathy Factor, we compute the Spectral
Flatness in the mentioned frequency band.

M 1 N = 2500F FTSize
(Hk—N spec[k-])m SampleRate
Breathyfia: = =¥ (3.17)
W Doneo SPeclk] pf — 9000FFTSize
- SampleRate

66

Finally, the last technique (Envelope Differential Area) proposed takes also
advantage of the Spectral Peak Processing. It computes the area between the
harmonic peaks envelope and the actual spectrum, as depicted in the figure 3.5.

ST~

freq

o
-

Figure 3.5: Envelope Differential Area. Linear interpolation between two har-
monic peaks.

The equation 3.18 gives us the final formula for the Breathy Factor. In
this case, experimental results showed that the best frequency boundaries were
4000H z and 9000H z.

M l [k] [k] — 45000F§"1;:{Sitze

envelope|k| — spec ampleRate
Breath =1- 3.18
Yenv Z nbins M — 9000FFTSize ()

N — SampleRate

We tested these three methods, and some conclusions could be extracted.
The first method is computationally the cheapest, since it just makes one cal-
culation for each harmonic, and not bin by bin. Although, the three results
appeared to be quite similar we found that the third method was rather influ-
enced by the pitch. In the figures 3.6 and 3.4, a musical scale is sung twice, first
in a regular way, and then with a high breathy phonation. For a real implemen-
tation, we argue that the first method (Harmonic-Peak Stability) attains good
results while keeping a low computational cost.

3.2.4 Note Descriptors

Usually known in electronic synthesizers as ADSR(Attack, Decay, Sustain and
Release), the note’s energy envelope brings a lot of information about the instru-
ment being played. It refers to the amplitude variation in time of a produced
note. We can grasp better the meaning of the ADSR by observing graphically
th waveform on a musical note in a sound editor. For instance, the differences
between the amplitude waveform of a drum hit and a flute note seem quite
straightforward. The former will have a fast impulsive attack and an exponen-
tial decay; the latter presents usually a softer attack and a long sustain.

67

BREATHINESS MEASURE

0.

0 500 1000 1500 2000 2500 3000

P (11

Il
500 1000 1500 2000 2500 3000
2- Spectral Flatness. Range [2.5kHz - 9 kHz]
T T T

Tl 0

0 500 1000 1500 2000 2500 3000
3- Spectral Peak Envelope Differential. Range [4kHz - 9 kHz]

(=)
o

Figure 3.6: Comparative test. Top) Harmonic-Peak Stability; middle) Spectral
Flatness; bottom) Envelope Differential Area.

As we have mentioned in the beginning of this section, in our framework,
we process the input signal on a frame by frame basis. Therefore, we generate
descriptors that are related to a particular spectral frame. In this category, we
provide two attributes: Energy Factor and Attack Factor, which can be mapped
onto the synthesizer’s engine in order to determine the characteristics output
sound. In addition, our timing description of the note envelope differs slightly
from the classical ADSR approach, as we describe next.

3.2.4.1 Energy Factor

Intuitively, we expect any physical system (and musical instruments in particu-
lar) to be pseudo-linear in terms of input/output energy. If we hit a membrane
with high energy, the sound energy produced will be proportionally high. Bear-
ing it in mind, it seems convenient to track the energy parameter from the input
voice.

The Energy Factor is calculated directly from input signal, as the sum of the
sample’s module, divided by the number of samples.

Yonco abs(z[n))

5 (3.19)

EnergyFactor =

68

3.2.4.2 Attack Factor

The second attribute proposed is the Attack Factor. Here we seek to capture
the characteristics of the note’s attack. In our context, we assume that a note
consists of a voiced sound, usually a vowel, with a rather constant pitch. How-
ever, by extending the note with a consonant (unpitched) impulse preceding the
sustained voiced sound, we can make use of additional information, and map it
in a further step to the timbre of the synthesized sound. Hence, our model of
note, will have two parts: an unpitched attack plus the actual pitched note. A
practical example of the usability of this attribute is in the synthesis of string
instruments; a harsh attack generates a plucked guitar with a pick, while if the
attack is missing a soft finger-plucked guitar is synthesized.

Basically, the Attack Factor aims at extracting the harshness of the un-
pitched part in the note attack. It takes a block of samples, and computes
the Energy Factor (described previously), and the Zero-Crossing Rate. The fi-
nal formula is presented in the equation 3.20. Note that only unvoiced frames
frame are considered (see section 3.2.1.1).

(3.20)

|0 , pitched
AttackFactor = { v EnergyFactor - ZeroCrossing , unpitched

3.2.4.3 Timing description

Since our input signal is the singing voice, the decay part is hardly present.
Hence, we propose a model consisting of just three regions: Attack, Sustain
and Release. The figure 3.7 depicts the waveform of a note and the graphical
representation of our model. We foresee that note’s variations (vibrato, tremolo)
can occur within the sustain region.

As we will see, the timing information is essential for the Morphing Synthesis’
mapping (see section 3.3.4).

3.3 Mapping of the Extracted Features

Mapping is the other main research topic a dressed in this work. It has deserved
also many studies in the computer music research community [62],[40]. In this
section, we describe how the analyzed parameters are mapped to the two syn-
thesis techniques here studied: Physical Models and Spectral Morphing. The
achieved results refer to the synthesis of bass sounds, assuming, thus, that the
input voice tries to emulate the target sound. This issue is of great relevance,
since it will help to establish a consistent mapping, and on the other hand, it
should be more intuitive for the user. For instance, in the synthesis of a plucked
bass, we assume that the input is, to some extent, made of impulses, emulating
the plucking process.

Our contribution in the area of mapping is to create a valid model for the
voice in a two-layer mapping process. We aim at establish a set of valid voice

69

08

0B |

04f 4

02F q

0.05 01 015 02 025
secords

attack sustain release

Figure 3.7: Waveform of a singing voice’s note, and its note envelope model.

descriptors that are meaningful for the performer. The selection of the descrip-
tors is a two-fold problem. On one side, they must be intuitive, and second they
should transmit the expressivity of the singing voice to the synthesized sound.

We present a model for the first mapping layer, providing a set of relevant
features. Additionally, a very preliminary first approach for the second mapping
layer is introduced.

3.3.1 Justification for discarding MIDI

The MIDI Standard was first introduced in 1983. Since then, it has revolu-
tionized, in many ways, the digital music synthesis. An evidence of MIDI’s
success, still nowadays, can be grasped by going into a musical instrument’s
store. Almost the totality of electronic instruments incorporate MIDI,

However, the MIDI protocol presents several limitations for controlling sound
synthesis. Few years after its inception, Moore pointed out already some of these
limitations [41].It is worth to note that with the evolution of the technology (
digital synthesis algorithms to network topologies) in the past twenty years,
this limitation have become more evident.

Maybe the most important drawback of MIDI is that it cannot preserve mu-
sic’s continuous, dynamic nature. This is due to basically data resolution and
event frequency. Moreover, the number of assignable channels is 16 (a four bits
field), making the protocol inextensible. We can identify also a lack of consis-
tency in the system. Some functions such as pitch-bend, apply to a complete
channel, making it impossible to pitch-bend a single note without affecting the
rest. In contrast, in polyphony, playing several notes simultaneously results in
multiple “Note On” messages, which provokes a audible delay between the first

70

and the last notes. Another fundamental problem is that MIDI is keyboard-
centric. Non-keyboard instruments are penalized by coupling pitch, loudness
and timing information. Brass or bowed instruments are not well described
this way, which can lead to a saturation of MIDI messages if want to track
the variations of the instrument. Although it is not of our concern, since our
system consists of a software implementation, the network topology of MIDI is
significantly outmoded. It uses a serial lines to daisy-chain several instruments,
making the communication uni-directional, when Bi-directionality is needed.

Evidently, when we designed a system for using the singing voice as musical
controller, the option of using MIDI was considered. However, apart from the
inherent limitations presented above, MIDI does not adapt to our system for
various reasons:

e The Singing Voice can hardly be modeled as a keyboard-oriented instru-
ment.

e The low bandwidth restricts the amount of information sent per second
that is required for our system.

e MIDI limits the data type to 7-bit integers, thus not providing ways to
send arrays of floats (e.g audio samples, spectral envelopes, etc.)

In our implementation, we decided not to use any defined mapping protocol,
and to postpone this issue for future studies.

3.3.2 Mapping Model for the Singing Voice

Several studies on mapping in a real-time synthesis situation, showed the con-
venience of a multi-layered mapping’s approach [24]. In our context, we aim
at presenting the voice as a generic musical controller. In other words, using
the voice with a broad range of synthesis algorithms. Therefore, it is clear that
by adopting a multi-layered mapping, we can separate the voice input from the
synthesis engine.

In order to maintain the model as general as possible, we propose to use a
Two-Layer Mapping, whereby the first is dedicated to voice analysis and features
extraction; and the second is responsible for mapping the parameters accord-
ingly to the synthesis engine. Our objective here is to define a general model for
the first Mapping’s layer, which can be reused in future research works. This
model outputs a set of abstract parameters (musical oriented voice features such
as brightness, attack harshness, pitch, loudness, etc.), which can be intuitively
mapped to a generic synthesis algorithm. The figure 3.8 depicts the mapping
layer.

The goal is to define a general model for the first mapping layer. Within
this layer, low-level descriptors are converted to some other musically mean-
ingful parameters. By looking at the figure 3.8, we see that the voice signal

71

Voice signal

1
‘ Spectral Analysis ‘
I

—» FFT, SPP Frame

‘ Mappiné Layerl ‘
: —

— Voice Features

‘ Mapping Layer2 ‘
[
1 —» Synthesis parameters

‘ Synthesis ‘

Figure 3.8: Two-layer Mapping. The first layer provides a set of abstract voice
descriptors.

captured by a microphone goes into the Spectral Analysis stage. Here, two pro-
cesses are pipelined, first, the Fast Fourier Transform (FFT) is executed, and
second, the computed spectrum is then analyzed using the Spectral Peak Pro-
cessing framework (SPP), see section 2.1.4.2. The result is a frame containing
the spectrum plus the detected spectral peaks and other low-level descriptors
(estimated pitch, frame energy, zero-crossing rate, and excitation slope). In a
further step, we map this low-level data onto abstract descriptors, which give
us voice information from a musical point of view. Although many parame-
ters could be defined and extracted, we propose a fixed set of Voice Features
that defines our model. In the table 3.1, we enumerate the input and output
descriptors of the first mapping layer.

| Input - Low level Feat. | Output - Voice Features |

Pitch

FFT Spectrum Pitch Gradient

. . Loudness
Estimated Pitch .
) Brightness

HarmonicPeaks array .2 .
Timing Descriptors

Frame Energy .

) Breathiness

Zero-Crossing rate

Excitation Slope Hoarseness
Vowel Vector
Attack Harshness

Table 3.1: Model of the first mapping layer for singing voice

By gathering the results of the Feature Extraction algorithms presented in
the the previous section, we provide a list of meaningful descriptors for the
singing voice. While some of these features suggest a direct mapping (e.g. pitch
to synthesis pitch, loudness tosynthesis loudness), other features offer a broader
and more experimental mapping. We may imagine for instance, a mapping of
the sung vowel (Vowel vector) to the amount of overdrive effect.

Up to this point, we have defined the First Mapping Layer of the archi-

72

tecture showed in the figure 3.8. The next step is to map these features onto
synthesizer’s parameters. This task is achieved in the Second Mapping Layer.
It is necessary to mention that be focused our work in the first layer, thus only
little experimentation has been done in the second mapping layer. The following
sections describe a first approximation for the second layer in order to have a
first functional application. As we discuss in the chapter 5, most of the research
still to be done towards the completion of the PhD dissertation is in the sec-
ond mapping layer. We strive to identify musical gestures from the extracted
features and map them meaningfully to different categories of synthesis engine.

3.3.3 Mapping to a Physical Model Algorithm

This part is concerned with the second mapping layer, particularly for the case of
a Physical Modeling algorithm, the Karplus-Strong. We have already mentioned
that this is a very preliminary approach. Therefore, we are aware of the lack of
generality of these results.

Basically, two parameters are important in the Karlplus-Strong algorithm.
First, the delay line length, which will provide the synthesized pitch. Second,
the initial content of the delay line for each plucked note. In the original algo-
rithm [32], the delay line is initialized with noise samples that excites the model.
In addition the output level and the frequency of a comb filter for simulating
the plucked position on the string can be assigned.

In our approach, we map pitch and loudness directly to the corresponding
counterpart. As excitation signal (initial values of the delay line), we use the
block of input voice’s samples corresponding to the attack. It is accomplished
by buffering the input signal until a steady pitched note is detected. Then, the
length of the delay line is set, and the attack samples are fed to the delay line,
thus producing a new note. In order to modify the timbre of the sound, we use
the Vowel Vector feature to control the Comb Filter Frequency. This makes the
timbre dependant of the sung vowel.

|| Input Parameter | Synthesis Parameter ||
Pitch Length of the delay line
Loudness Gain
Attack(audio samples) | Delay line samples
Vowel Vector Comb Filter Freq.

Table 3.2: Mapping of the input voice’s parameters to the synthesis parameters
of the Karplus-Strong algorithm.

Regarding the mapping of the pitch, since we are synthesizing a bass sound,
depending on the note’s pitch, the synthesized pitch is transposed down one
octave in order to get a more realistic sound. Another alternative, not studied
though, would be to quantize the pitch in order to simulate a bass guitar with
frets.

73

3.3.4 Mapping to Spectral Model Algorithm (Morph)

The mapping strategy in our Spectral Model algorithm differs completely from
the Physical Model presented above. Actually, this is a particular case of spec-
tral modeling that can be handled as a sample-based synthesis in the spectral
domain. On the other hand, this algorithm can also be seen as a kind of Morph.
Here, we are not trying to go from one sound to another, what is commonly
accepted as Audio Morph. Rather, we consider to control the characteristics of
a target sound by another. More details about the actual implementation are
explained in the chapter 4.

Our framework for spectral morph consists of three parts: first, taking frame
by frame the spectrum of a stored sound template; second, transforming the
spectrum of the template; and third, reconstructing the signal with the inverse
FFT. A small-scale database containing pre-analyzed sound samples is available.
The sound samples (instrument notes) are hand-labeled specifying their: pitch,
dynamics and attack type.

The mapping problem is here two-fold. First, by using some extracted Voice
Features from the First Mapping Layer, we need to select a sound template
from the database. Second, map other features to the spectral transformation
algorithms. The Input Vector contains three elements: Pitch, Loudness and
Attack Harshness. Then, we use a retrieval method for selecting the sound
template. By now, only FEuclidean distance is used, which computes the square
of the difference element-by-element. The figure 3.9 shows a representation of
the database, with the sound templates spread over a 3D space whose axes are
dynamics, attack type andpitch.

pitch
"l e ¢
1%
B ¥
L ¥ €
¢
co| » @ v
attack soft dynamics
harsh

Figure 3.9: Spectral Morph Mapping. the spheres represent template sounds
from the database distributed in a 3D space.

When a new note is triggered, we calculate which template sound in the
database best matches our input vector. In a further step the spectrum of the
selected template is transformed by different algorithms such as transposition
or spectral shape modification. This ensures that the output sound follows the

74

performer’s actions. In the table 3.3, we summarize the feature correspondence
between the first and second mapping layer.

| Input Parameter | Synthesis Parameter |

Pitch
Attack Harshness Sound Template Retrieval
Loudness

Pitch Transposition

Vowel Vector Spectral Shape Modifier

Breathiness FX1

Hoarseness FX2

Table 3.3: Model of First Mapping Layer for singing voice

In this section we have introduced a very basic mapping from Voice Features
to a spectral model synthesis. In this approach an input parameters vector
specifies the sound template by means of a retrieval method based on Euclidean
distance. Other features are mapped to the transformation algorithms in order
to control dynamically the output sound.

75

Chapter 4

Implemented System

In this chapter we present a system that integrates the result described pre-
viously. We developed a prototype consisting of a stand-alone software ap-
plication. It must be assumed that this application is just a first experimen-
tal prototype with the goal of demonstrating the viability of such a system.
The application consists of the audio in/out ports, processing algorithms and a
graphical user interface.

4.1 Framework

The application was programmed in C++. For its development, we used the
Integrated Development Environment (IDE) MS Visual Studio 7.1 1. Currently,
it only runs on Windows operating system, but it can be complied for Linux
and MacOSX.

The software was achieved within the CLAM framework, which is being
developed and maintained at the IUA-MTG. Citing the CLAM’s web page in-
formation [27]:

CLAM is a full-fledged software framework for research and
application development in the Audio and Music Domain.
It offers a conceptual model as well as tools for the analysis,
synthesis and transformation of audio signals. The original
goal of the CLAM development framework was defined as:
To offer a complete, flexible and platform independent Sound
Analysis/Synthesis C++ platform to meet current and fu-
ture needs of all MTG projects.

Lhttp://msdn.microsoft.com/vstudio/

76

The three main axes of these goals were defined as:

e Complete: should include all utilities needed in a
Sound Processing Project (input/output, processing,
storage, display...)

e Flexible: Easy to use and adapt to any kind of need.

e Platform Independent: Compile under UNIX, Win-
dows and Mac platforms.

These initial objectives have slightly changed since then

mainly to accommodate to the fact that the library is no

longer seen as an internal tool for the MTG but as a library

that is published under the GNU-GPL in the frame of the

Agnula IST European Project.

For our application, we took existing code for the Spectral Peak Process-
ing Analysis (see section 2.1.4.2). All the code for control, user interface and
synthesis algorithms was newly implemented.

4.1.1 Libraries utilized

Apart from using CLAM as software development framework, we utilized other
libraries for specific tasks. Among the different alternatives available, we chose
those that better adapt to our environment. In the next table 4.1, we enumerate
the libraries and their functionality.

Library Functionality

Trolltech’s QT Graphical User Interface

Synthesis Toolkit (STK) | Physical Modeling Basic Algorithms
RTAudio Audio Real-time in/out Interface

Table 4.1: External Libraries and their functionality.

Specially, the RTAudio library presented severe difficulties for working in
real-time for its long latency. Running under Windows, the latency of the system
can reach 500ms., making it impossible to use it as a performance instrument.
We studied already other alternatives, though. One is implementing the whole
system as a VST plug-in. Another is compiling the application on Linux, since
the RTAudio drivers offer a much shorter latency on this operative system.

4.1.2 Prototype

As we have mentioned, the mission of this first prototype is to proof the usability
of the application, and help us during the development. The snapshot of the
figure 4.1 is still a work-in-progress, but some parts are already fully functional.
At the bottom, we find the Voice Features monitoring section. A set of level
meters are updated at the frame rate, usually 172 frames/sec. They bring visual
feedback to the performer, who can adapt his or her voice in order th get the
desired values. On the right, by means of two combo boxes, the user select the

7

instrument and the synthesis technique employed. Currently, only an electric
bass guitar is available, but a double bass sound will be also integrated for the
spectral morph technique.

I YoctroApp

SYNTHESIS

Elect. Bass ¥

Instrument

Physical Madel

Spect. Morphing

Feature Display

FEATURES EXTRACTION

Formantl Formant2 Energy Excitat. Breath. Hoarse.
000 = 1000 9= 19 e

a00|

1000-||

| g
ool e
200 B 2
000
0 0

Figure 4.1: Prototype’s User Interface. A set of level meters monitors the
current state of the different features in real-time.

4.2 Synthesis of a Bass sound

From a musical point of view, the bass is not the most attractive instrument
to emulate. The palette of sounds is reduced when compared to other solo
instruments such as a trumpet or a violin. Moreover, since the input of our
system is singing voice, we will experience that at the output the expressivity
will be reduced. However, two reasons moved us towards this option. First, we
plan to integrate the final application into a larger audio system targeted to DJs.
This system aims at increasing the musical expressivity of the DJ performance.
In a real situation, the DJ would trigger a rhythm loop and “sing” the bass line
on top. Thus, the DJ can improvise with his or her voice, while keeping the
hands on the turntables and mixing desk.

The second advantage is that using a “poor” sound (in terms of timbre
space) such as the bass, permits us to focus on basic aspects of the system,
pitch, loudness and note envelope.

In the following section we present the implementation of two different synthesis

78

algorithms for synthesizing a bass guitar, one based on physical models and the
other based on spectral models. Again, the quality of the synthesis algorithms
was not the goal of the system. Rather, our effort was put into the voice features
extraction and the subsequent mapping.

4.2.1 Adapting the Karplus-Strong String Algorithm

This algorithm was invented by Kevin Karplus and Alex Strong , and was
published in the Computer Music Journal in 1983 [32]. Actually, this can be
considered as the first attempt to the Physical Modeling synthesis, although
this term did not exist yet in the computer music community. The success of
such algorithm lies in its low-computational cost, which allowed at that time to
synthesize in real-time a plucked-guitar with a substantial quality with cheap
processors. It is worth to mention that in 1983 the first Personal Computers
were introduced; and the digital music synthesis in real-time required large and
expensive computers only found in big research centers.

Although we have mentioned her Physical Models, originally this algorithm
was based on the Wavetable Synthesis technique, which repeats number of sam-
ples generating a periodic signal. Instead, the Karplus-Strong algorithm in-
troduces a variation by averaging two successive samples (equation 4.1), and
writing the resulting sample in the wavetable. This can be seen, thus, as a
delay line with length N.

Y, = Y~ +2Yt—N—1 (4.1)
Lo fs
pitch = N+1/2 (4.2)

It simulates a rigidly terminated string with losses, generating a periodic
sound with decay. The delay line is initialized with random values (+A/-A) for
simulating the plucking action. The pitch is determined by the length of the
delay line (equation 4.2). This leads to a bad resolution for low values of N,
quantizing the frequency for high pitches.

The physical interpretation, referring to the Digital Waveguide Theory [59],
there are two waves travelling in opposite direction along the string. The initial
pluck position is the sum of these two waves.

At CCRMA, researchers experimented simultaneously with the Karplus-
Strong algorithm, proposing some extensions, and analyzing it in terms of a
digital filter (equation 4.3).

1

HE) = e
2

(4.3)

The extensions developed by D. Jaffe and J.O. Smith [28] overcame several
limitations of the original algorithm:

e Frequency Tuning to avoid quantization with an all-pass filter

79

Decay Alteration: shortening low pitches and stretching for high pitches
e Dynamics control with a LPF

Pick-Position with a comb filter

Sympathetic String Simulation with a bank of strings

Detailed examples of these algorithms can be found in [14], and extended re-
sources on Digital Waveguides are available online at J.O. Smith’s web page?.

Let us present here our practical implementation of a bass synthesizer using
the Karplus-Strong algorithm. We designed two different approaches that sat-
isfy the constraint of altering the timbre of the synthesized sound by the input
voice’s timbre. The figure 4.2 depicts a proposed algorithm that uses the tran-
sient of a sung note as the excitation signal. This excitation signal is fed into
the Karplus-Strong delay line. In contrast, the figure 4.3 shows an alternative
algorithms, where the excitation signal consists in a wavetable containing the
recorded impulse response of the “plucking” action plus the body resonances of
a real bass.

excitation
— KPS e
voice Strong ass

triggering T
Analysis pitch

(delay line length)

Figure 4.2: Bass synthesis with Physical Modeling. The input voice is used as
excitation signal for the Karplus-Strong algorithm.

Wavetable

(IR + body resonances) excitation

signal synthesized
— Trigger |EEED- Karplus Spectral bass
Strong Shape

triggering A
. pitch
mput .
voice - Analysis (delay line length) voice's

spectral shape

Figure 4.3: Bass synthesis with Physical Modeling. A wavetable with the im-
pulse response and body resonances serves as excitation signal for the Karplus-
Strong algorithm.

2http://ccrma.stanford.edu/ jos/wg.html

80

We chose to implement the first model presented (figure 4.2), where in prac-
tice, the attack of the note is used as excitation. Good results were achieved by
attacking a note with a short consonant, that is, in fact considering a note as
a diphone. In our bass synthesizer system, the implementation of the Karplus-
Strong Algorithm is taken from the STK Library [15]. This Sound Synthesis
Package provides a C++ class called PluckedString.cpp, that incorporates all
mentioned extensions in the algorithm. From analysis stage, we get the estima-
tion of the pitch, and the trigger control signal, which is related to the energy
envelope of the user’s voice. when the trigger is active, N samples of the input
voice passes through and fill the delay line. The actual size of the delay line
(N) is determined by the estimated pitch, as it is shown in the equation 4.2

During the design process, we noticed that continuation problems appeared
in form of “clicks” in the output waveform, when changing from one note to
another. This is caused while a note is fading out, and a new excitation sig-
nal is fed into the delay line. In order to minimize this effect, we introduce
a second string in our model. The triggering stage send the excitation signal
alternatively to one of the two strings. As we confirmed, the final synthesized
sound was more natural, even though if a remaining note fading out was present.

Voice input

I I I I I I
0 0.5 1 15 2 25 3 35

(sec.)
Synthesized Bass (Karplus-Strong)

I I I I I I I
0 05 1 15 2 25 3 35
(sec.)

Figure 4.4: Input voice (top) and Karplus-Strong synthesized bass sound (bot-
tom).

Finally, in the figure 4.4 shows the input voice’s waveform and the syn-
thesized bass sound. The current implementation uses a very simple Mapping
Layer, taking only pitch information, formant frequencies and loudness from the
input voice.

81

4.2.2 Spectral Morphing Model

In contrast to the Physical Model algorithm described above, our Spectral Model
approach combines a sample-based synthesis (see section 2.3.3) with transforma-
tion, based in the Spectral Peak Processing (see section 2.1.4.2). A particularity
of our sample-based algorithm is that it works in the frequency domain. Ba-
sically, depending on the input voice’s parameters, a sound template track is
selected from the database. Each template track contains all spectral frames
from a single note. Then, we read periodically the spectral frames and transform
some characteristics using the SPP framework. Finally, the processed spectral
frames are converted to time domain through the inverse Fourier transform.

Mapping
Layer2

voice [Spectral Mapping | Voice

Analysis | | Layerl |Features

y

out SPP
— FFT | Tonformation

Figure 4.5: The voice features select a track from the database. The stored
track’s spectral frames are transformed and finally converted to the time domain.

For our bass synthesizer implementation, we set up a very small database
consisting of 12 template tracks (a note’s sample), six of electric bass, and six
of double bass. The tracks are analyzed off-line in the spectral domain using
the SPP model (see 2.1.4.2), and stored in the database in form of binary files
containing spectral data. In a further step, all tracks have been labeled by hand
according to its characteristics. Currently, only three features were annotated:
Pitch, Dynamics andAttack Type. Tt results in a three dimensional space as
it can be observed in the figure 3.9 of the previous chapter. The pitch values
are specified in Hz, Dynamics and Attack Type range is [0..1]. In the case of
Dynamics, 0 corresponds to a pp sound, and 1 to a ff. The attack type is a
novel concept that we defined, and it is instrument dependant. Concerning bass
sounds, we decided to classify two types of sounds: plucked and fingered, whose
sounds are primarily related to the attack.

In the section 3.9, we have already presented the foundations of the map-
ping for the spectral model algorithm. A retrieval methods calculates the mini-
mum Euclidean distance between the Input Vector (Pitch, Loudness and Attack
Harshness) and the database elements. This outputs an ID corresponding to
the selected track. Now, in a further step, we start reading the spectral frame
of the track. Since we are dealing with a very small database, few combination
of loudness and pitches are available. Therefore, some transformation has to
be applied to the spectral frames. Basically, these transformation are of three
types: transposition, gain and spectral shape modification. By now, only trans-

82

position and gain have been implemented. The transposition factor can easily
calculated (equation 4.4).

pitChinput (44)

transposition = —
pltChtemplate

Another factor that must be taken into account is the timing. The pre-
analyzed template tracks have a certain duration, depending on the instrument
and the playing properties. For each track, this is traduced into a certain number
of spectral frames. In our system, though, the performer’s voice controls the
synthesized sound. Hence, is the input voice which decides the output duration.
Our implementation uses a very “rudimentary” mechanism that deserves further
research. Currently, we analyze the track by hand and set two loop points
(loopA and loopB) within a steady region of the original sound. When a note is
triggered, we start reading the template track frame by frame. When the point
loopB is reached, we jump to the point loopA playing these frames in a loop.
When the performer releases the current sung note, the last frames are played
until the note’s end.

frame energy

Figure 4.6: If the performer’s note is longer than the stored template track, we
loop the frames between the points A and B (specified by hand). The points on
the x-axes represent the frames.

This implementation offers a poor sound quality due to the abrupt changes
between loop points. Some ideas in order to overcome this problem are to set
the looping points where the phase of the fundamental are coincident. Another
variations is to take always the same frame and apply dynamic transformations
a posteriori in order to keep the temporal expression. However, this model is
our preferred implementation, as we discuss in the next chapter.

83

Chapter 5

Discussion and Future
Work

5.1 Summary and conclusions

In this work we have introduced the voice as a musical controller for real-time
synthesis. We strive to see if the singing voice through a microphone is a valid al-
ternative to the current controllers, which includes keyboards, wind controllers
and computer vision systems. A primary aim of any musical controller is to
transmit the performer’s expression to the synthesis engine. Thus, since the
human voice is a highly expressive instrument, it seems adequate to employ it
as a controller.

In the chapter 1, we introduced the problem, and addressed some prelimi-
nary questions on digital music synthesis. Particularly, we discussed our system
from two different perspectives: as voice transformation, and as voice-controlled
synthesis. The voice has been used since ancient times a musical instruments,
and actually, any individual has innate control over his or her voice. However,
this control varies among people, from a non-musician to a very skilled singer.
In the chapter 2, we reviewed the voice as musical instrument, and presented
some analytical models found in the literature. In addition, since our goal is
to control digital music synthesis, we surveyed control issues on electronic in-
struments as well as on different synthesis techniques. Our contributions within
this work are covered in the chapter 3. Basically, we distinguished two topics:
Voice Features Extraction, and Mapping. Most of th results presented belong
to the first topic. Thus, future research will focus on exploring the mapping
layer. In order to test the usability and interest of the proposed system, we
developed a prototype consisting in a software application. It takes an input
audio stream (microphone), and outputs a synthesized instrument. In its first
version, we integrated only guitar bass sound, but we plan to extend it to other
instruments in the future. It is covered in the chapter 4. Different aspects of

84

the implemented algorithms are covered. Finally, the chapter 5 is dedicated to
the conclusions and the intended future work.

The main outcomes of the present research work has been the following ones.
Firstly, to derive a model that parameterizes the singing voice in order to use it
as musical controller. And second, mapping these features to basic prototypes
of two different synthesis engines. In this sense, we established a separation
between two layers of mapping. The first layer analyzes the voice and outputs
a set of high-level descriptors. And the second layer assigns these descriptors to
parameters of the synthesis algorithms.

In our opinion, the results of the research for the first mapping layer are
satisfactory. We proposed a set of meaningful descriptors for the singing voice,
and extracted features by developing some novel algorithms. Nevertheless, there
is a lack of high-level descriptors, which can help in describing the overall user’s
performance. Actually, finding new valid descriptors will be a significant task
within the thesis work. By now, the preliminar list of current high-level descrip-
tors is:

Fundamental Frequency, Fundamental Frequency Gradient,
Loudness, Brightness, Timing descriptors, Breathiness,
Hoarsensess, Vowel Vector and Attack Harshness.

On the other hand, we realized that the mapping to the synthesis engines
appeared as a more complex task than we thought in the beginning. Although
we achieved to synthesize a bass guitar sound from the input voice in real-time,
the control is very limited. Between the two synthesis techniques implemented,
Physical Model and Spectral Model, it is clear that the former is cheaper compu-
tationally, but in the case of the plucked-string, it does not permit many timbre
variations. Another drawback of employing Physical Modeling as synthesis en-
gine, is that it requires for each instrument a completely different model. Thus,
making complex the integration of new instruments. The adaptation of existing
algorithms or the development of novel ones, involves a strong expertise in the
field. In contrast, our Spectral Model approach, which is based on pre-analyzed
real samples, offers a major flexibility for integrating new instruments. Further-
more, the timbre characteristic of the output sound can be transformed using
the Spectral Peak Processing framework.

Our conclusion regarding the two synthesis techniques is that the Spectral
Model appears to be the better choice for further research. It allows to integrate
easily new sounds, and we can make use of those existing spectral transformation
algorithms developed at the IUA-MTG. In the spectral model, both processes
Analysis and Synthesis use the same technique. It reveals a lack of substantial
differences between processing and synthesizing in the spectral domain, as we
have posed in the chapter 1. In our opinion, this hypothesis deserves a more
thorough study that can be accomplished within the PhD thesis. In any case,
the system appears to be rewarding, when a user is confronted with the micro-
phone, but there is a learning time in which the user experiments with the sound

85

control. However, currently, the main negative point is the latency between in-
put and output due to the computer’s drivers, which we plan to overcome in
next prototypes.

We can conclude that the proposed topic has a solid background in the field
of computer music, and at the same time, it offers possibilities for important
research contributions in both technological and musical aspects. This justi-
fies from our point of view a PhD dissertation. Concerning the technological
or scientific contributions, we can provide new signal processing techniques for
analyzing the singing voice using spectral processing. These techniques intend
to go beyond the classical Singing Voice Analysis/Synthesis framework, in par-
ticular by generating in real-time high-level descriptors of two kind. First, a set
of instant descriptors such as breathiness; and second, performance’s gestures
descriptors, including mood, dynamics, intonation, etc. The latter descriptors
look at the performance over time and may require aid from some machine learn-
ing techniques. Another field that can benefit of our work is the New Musical
Interfaces. We will specify a model for mapping the extracted voice features to
synthesis parameters of different virtual acoustic instruments. Our goal is to
define a general model that maps meaningfully the voice to certain instrument
family(string, percussion, wind, etc.). We will try to explore the underlying
rules that allow an expressive and intuitive control of the synthesis algorithms.
In addition, this mapping model can be used by music manufacturers as an add-
on in their new synthesizers, which are likely to come into the market with new
interaction features. In terms of technical viability, referring to the achieved re-
sults of the implemented prototype, the proposed system can work in real-time
on a general purpose computer. That is fact is crucial in order to evaluate the us-
ability of our system, since it must be used in a real-time performance situation.

On the other hand, the proposed thesis contributes also from a musical point
of view. It explores the singing voice from another perspective, considering it as
controller rather than as instrument. Some of the proposed high-level attributes
can be useful as training information for singing students. Concerning real-time
performance, different situations can benefit from such a system. First, let’s
imagine a keyboard player that has a more expressive alternative for controlling
a trumpet sound. Second, we assume that most musicians have, to some ex-
tend, singing skills. Here, we consider that a trained musician can produce also
satisfactory results on other instruments by controlling the synthesis with his or
her voice. Third, although it is not one of our initial objectives, a voice-driven
synthesizer can have in addition multiple applications in the field of experimen-
tal music. Finally, in our opinion, naive users and amateur music enthusiasts
will take surely advantage of the system.

As we have mentioned previously, a PhD dissertation based on the presented
research work satisfies three significant points: it is interesting, challenging and
feasible.

86

5.2 Future work

This document serves as a research proposal for the completion of the PhD
dissertation. We introduced the voice as musical controller, which appears to
be an interesting topic for the PhD Thesis. It combines issues such as singing
voice analysis, spectral processing, digital instruments control, mapping and
synthesis techniques. In our opinion, the presented research has served as a
proof-of-concept, demonstrating the suitability of the topic addressed. Sum-
ming up the different aspects that will be covered by the thesis, we suggest the
following brief description:

Playing instruments with the voice: extraction of voice high-level attributes, and
definition of mapping strategies for the synthesis of virtual musical instruments

A significant step of the thesis will be to address various conceptual issues
regarding voice analysis and musical control. Some facets can be summarized
as work hypothesis, which we will have to demonstrate. These hypothesis are
listed below:

e The Singing Voice, not as musical instrument but as musical interface
e Beyond Pitch-to-MIDI. More than just a bandwidth limitation.

e Boundaries between Transformation and Synthesis using spectral process-
ing techniques

The study of the aforementioned questions will put the foundations for the
subsequent research activities, converging to the implementation of a usable
real-time system. The work should focus on the voice analysis and the map-
ping layers, attaining good results in transmitting the performer’s expression to
the sound generation algorithms. In this section, we aim at specifying clearly
the future research objectives and goals. We define our work in three main axes:

e Extraction of high-level features from the singing voice: Some high-level
attributes of the voice have been already presented in this work. We
plan to extend them by identifying new meaningful attributes. These a
attributes should increase the expression capabilities for the performer. It
includes the development of new signal processing algorithms that extract
features of two different nature:

— Frame descriptors

— Gesture or Contextual descriptors

Under Frame descriptors, we consider those attributes that refer to the
analysis of one spectral frame. We will handle these descriptors as instan-
taneous information. The second group of descriptors intend to extract
information of the temporal evolution of the performance. These features
will describe aspects such as the phrasing, mood, dynamics, etc. The

87

study of these descriptors can derive in complex algorithms combining
signal processing and machine learning techniques.

Definition of a mapping model for different instrument categories: Our goal
in the area of mapping will be to derive a general model for controlling
different virtual acoustic instruments with parameters extracted from the
voice. The mapping layer will take voice features as input and, according
to the instrument nature, assign them meaningfully to the synthesis pa-
rameters. Here, our purpose will be to determine which parameters allow,
for each instrument, a more intuitive and expressive performance. For in-
stance, mapping the input frame energy to the synthesized output energy
can have sense for a trumpet sound, but it is definitely meaningless for the
synthesis of a plucked bass guitar, if we want to maintain some realism.
In order to simplify the the range of musical instruments to control, we
will cover only three categories of instruments:

— Plucked instruments
— Blown instruments

— Struck instruments

We will start by improving and extending the first prototype, which syn-
thesizes a bass guitar(see section 4). In a further step, in the category of
wind instruments, we plan to implement the control of a trumpet. Con-
cerning percussion instruments, we consider the possibility of integrating
timbre classification algorithms, which should discern between bass drum,
snare drum and hi-hat.

Development of a prototype and experiments with target users: In the chap-
ter 4 we have introduced a first experimental prototype. The third part of
our thesis work will be dedicated to the development of a prototype. An
initial restriction of the prototype is that it must work in real-time. Once
our prototype is fully functional, the next step is to evaluate it with users.
We plan to carry out two evaluation sessions, each one with different pur-
pose. First, to use these test as data-acquisition sessions. By analyzing
the performance of distinct target users (non-musicians, skilled singers,
etc.), we can extract useful information. Second, to validate the system as
musical instrument, taking note of the subject’s overall impression. With
our implemented bass synthesizer system, we plan to test the system with
three groups of users:

— Naive users
— Instrumentalists (for plucked, blown and struck instruments)
— Singers
Regarding the first test session, with naive users, we test the robustness of

the system. From these experiments we can identify gestures performed
by a bass player to control his/her instrument with the voice. On the

88

other hand, a professional singer can test the reliability of the proposed
voice descriptors for controlling a synthesis algorithm.

The validation process will be carried out in the final evaluation session.
The subjects will be given a questionnaire covering various aspects of the
system such as usability, learning process, expressiveness, sound quality,
response time, etc. In addition, we plan to perform a listening test com-
paring, in term of expressivity, the output of our system and the output
generated by traditional controllers.

Other potential applications: In addition to the described main research
axes, we should also consider other possible future directions of the achieved
research. Here we name some extensions and application that will deserve
our attention. Our goal is to derive a general module for using the voice as
musical controller. Hence, we should extend our prototype to other instru-
ments. Within the Semantic HiFi Project we are required to provide some
tools for controlling the synthesis of percussion instruments. We plan to
adapt the current system in order to generate percussive sounds. In the
hip-hop community, imitating the sounds of a complex rhythm track with
the voice is a peculiar technique called beat-bozing. The strategy will be
to map the voice’s timbre to a fixed set of percussion sounds, so that a
similarity algorithm decides dynamically which sound must be produced.
In a further step, we propose to study the integration of other synthesis
techniques such as abstract techniques (see section 2.3.2). Moreover, the
voice features extracted could be used in a more general variety of appli-
cations. Particularly, it seems convenient to study the control of audio
effects with the voice, for example, distortion effects, filters, etc. Also,
in a completely other perspective, we plan to evaluate the integration of
these voice features into other HCI applications such as video games. We
can imagine a video character driven by the player’s pitch. Additionally,
disabled people might benefit from such as system. However, it requires
of extended usability studies in the HCI discipline, which goes beyond the
scope of our dissertation. Some new potential directions to take include:

— Generalization to other synthesis techniques
— Generalization for controlling Audio Effects

— Voice Features as novel User Interface in HCI systems

89

Appendix A

In the appendix, we include two papers in which the author has participated.
Since both papers were done with collaboration of other colleagues, We will
point out the tasks in which the author was involved.

e Celma, O. and Gémez, E., Janer, J., Gouyon, F., Herrera, P. and Gar-
cia, D., “Tools for Content-Based Retrieval and Transformation of Audio
Using MPEG-7: The SPOffline and the MD Tools”, Proceedings of 25th
International AES Conference, 2004. London, UK.

Part of my work for the CUIDADO Project was the implementation of the
SoundPalette Offtine. This is a tool for musicians and sound engineers, in
which the sound transformation was based on extracted audio metadata.
In this paper, I described the functionality of the application.

e Fabig, L. and Janer, J., “Transforming Singing Voice Expression - The
Sweetness Effect”, Proceedings of 7th. International Conference on Digi-
tal Audio Effects (DAFX), 2004, Naples, Italy.

This paper presents some high-level transformation for the singing voice.
It resulted from the development of a Vocal Processor. 1 contributed with
an algorithm that detects the sub-harmonicity present in the voice. This
parameter is used for applying “sweetness” only on certain regions, and
thus, keeping as much as possible of the original sound.

90

91

92

93

94

95

96

97

98

99

100

101

102

Bibliography

[1]

[2]

[3]

[6]

[7]

[8]

[9]

[10]

D. Arfib. Digital synthesis of of complex spectra by means of multiplication
of non-linear distorted sine-waves. Journal of the AES, 27(10), 1979.

The International MIDI Association. MIDI 1.0 Detailed Specification.
http://www.midi.org.

J. Bonada, O. Celma, A. Loscos, J. Ortola, and X. Serra. Singing voice
synthesis combining excitation plus resonance and sinusoidal plus residual
models. In Proceedings of International Computer Music Conference 2001,
Havana, Cuba, 2001.

J. Bonada and A. Loscos. Sample-based singing voice synthesizer by spec-
tral concatenation. In Proceedings of Stockholm Music Acoustics Confer-
ence 2003, Stockholm, Sweden, 2003.

Buchla and Associates. http://www.buchla.com.

Ramakrishnan C., J. Freeman, and K. Varnik. The architecture of Auracle:
A real-time, distributed, collaborative instrument. In Proceedings of New
Interfaces for Musical Expression (NIME) 2004, Hamamatsu, Japan, 2004.

A. Camurri, S. Hashimoto, M. Ricchetti, R. Trocca, K. Suzuki, and
G. Volpe. Eyesweb: Toward gesture and affect recognition in interactive
dance and music systems. Computer Music Journal, 24(1):57-69, 2000.

P. Cano. Fundamental frequency estimation in the SMS analysis. In Pro-
ceedings of COST G6 Conference on Digital Audio Effects 1998, Barcelona,
1998.

0. Celma, E. Gémez, J. Janer, F. Gouyon, P. Herrera, and D. Garcia.
Tools for content-based retrieval and transformation of audio using MPEG-
7: The SPOffline and the MDTools. In Proceedings of 25th International
AES Conference, London, UK, 2004.

J. Chowning. The synthesis of complex audio spectra by means of frequency
modulation. Journal Of the Audio Engineering Society, 21:526-534, 1973.

103

[11] P.R. Cook. Identification of Control Parameters in an Articulatory vocal
Tract Model, with applications to the Sunthesis of the Singing. PhD thesis,
Stanford University, Stanford, 1991.

[12] P.R. Cook. Spasm: a real-time vocal tract physical model editor/controller
and singer: the companion software synthesis system. Computer Music
Journal, 17(1):30-44, 1992.

[13] P.R. Cook. Toward the perfect audio morph? singing voice synthesis and
processing. In Proceedings of the 1st. International Conference on Digital
Audio Effects (DAFX), Barcelona, 1998.

[14] P.R. Cook. Real Sound synthesis for Interactive Applications. A.K. Peters
Press, 2002.

[15] P.R. Cook and G. Scavone. The Synthesis Toolkit (STK). http://ccrma-
www.stanford.edu/software/stk.

[16] M. Dolson. The phase vocoder: A tutorial. Computer Music Journal,
10:14-27, 1986.

[17] L. Fabig and J. Janer. Transforming singing voice expression - the sweetness
effect. In Proceedings of the 7th. International Conference on Digital Audio
Effects (DAFX), Naples, Italy, 2004.

[18] G. Fant. Acoustic Theory of Sech Production. Mouton, The Hague, 1960.

[19] J.L. Flanagan and R.M. Golden. Phase vocoder. Bell Systems Technology
Journal, 45:1493-1509, 1966.

[20] B. Gold and N. Morgan. Speech and Audio Signal Processing. John Wiley
and Sons, New York, 1999.

[21] MIT Hyperinstruments Group. The Brain Opera.
http://brainop.media.mit.edu.

[22] J. Haas. Salto - a spectral domain saxophone synthesizer. In Proceedings of
MOSART Workshop on Current Research Directions in Computer Music,
Barcelona, 2001.

[23] Y. Hang. Realtime face synthesis driven by voice. In Proceedings of Inter-
national Conference on Comuputer Aided Design and Computer Graphics
2001, Kunming, China, 2001.

[24] A. Hunt and M. Wanderley. Mapping performer parameters to synthesis
engines. Organized Sound, 7(2):97-108, 2002.

[25] A. Hunt, M. Wanderley, and M. Paradis. The importance of mapping in
electronic instruments design. In Proceedings of the Conference on New
Instruments for Musical Expression NIME, Dublin, Ireland, 2002.

104

[26] Mathworks Inc. Matlab Documentation. http://www.mathworks.com.

[27] Universitat Pompeu Fabra. IUA-MTG. CLAM Documentation.
http://www.iua.upf.es/clam.

[28] D.A. Jaffe and J.O. Smith. Extensions on the Karplus-Strong plucked-
string algorithm. Computer Music Journal, 7(2):56—69, 1983.

[29] T. Jehan. Perceptual Synthesis Engine: An Audio-Driven Timbre Genera-
tor, 2001.

[30] J.D. Johnston. Transform coding of audio signals using perceptual noise
criteria. IEEFE on Selected Areas in Communications, 1988.

[31] S. Jorda. Somigraphical instruments: From FMOL to the reacTable*. In
Proceedings of 2003 International Conference on New Interfaces for Musical
Ezpression, Montreal, Canada, 2003.

[32] K. Karplus and A. Strong. Digital synthesis of plucked-string and drum
timbres. Computer Music Journal, 7(2):43-55, 1983.

[33] J.L. Kelly and C.C. Lochbaum. Speech synthesis. In Proceedings of the
foruth International Congress in Acoustics., 1962.

[34] J. Laroche and M. Dolson. New Phase-vocoder techniques for pitch-shifting,
harmonizing and other exotic effects. In Proceedings of IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, New Paltz, New
York, 1999.

[35] T. Machover. Hyperinstruments - a Composer’s Approach to the evolution
of Intelligent Musical Instruments. MillerFreeman, Inc., 1992.

[36] Electronic Musician Magazine. http://www.emusician.com.

[37] R.C. Mahler and J.W. Beauchamp. Fundamental frequency estimation
of musical signals using a two-way mismatch procedure. Journal of the
Acoustical Society of America, 4:2254-2263, 1994.

[38] T. Marrin. Inside the Conductor’s Jacket: Analysis, Interpretation and
Musical Synthesis of Ezxpressive Gesture. PhD thesis, MIT Media Labora-
tory, Massachusetts, 2000.

[39] R.J. McAuclay and T.F. Quatieri. Speech analysis/synthesis based on sinu-
soidal representation. IEEE Transactions on Acoustics, Speech and Signal
Processing, 34(4):744-754, 1986.

[40] E. Metois. Musical Sound Information: Musical Gestures and Embedding
Synthesis. PhD thesis, MIT Media Laboratory, 1996.

[41] F.R. Moore. The dysfunctions of MIDI. Computer Music Journal, 12(1):19-
28, 1988.

105

[42] New Interfaces for Musical Expression NIME. http://www.nime.org.

[43] W. Oliver, J. Yu, and E. Metois. The Singing Tree: design of an interactive
musical interface. In Proceedings of the conference on Designing interactive
systems: processes, practices, methods, and techniques., Amsterdam, The
Netherlands, 1997.

[44] Conference on Digital Audio Effects. http://www.dafx.de.

[45] D. O’Shaughnessy. Speech Communication, Human and Machine. Addison-
Wesley, New York, 1987.

[46] M.S. Puckette. Phase-locked vocoder. In Proceedings of IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, Mohonk, New
York, 1995.

[47] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice-
Hall, Englewood Cliffs, 1993.

[48] L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals.
Prentice-Hall, 1978.

[49] C. Roads. Computer Music Tutorial. The MIT Press, Cambridge, Mas-
sachusetts, 1996.

[50] D. Rocchesso and F. (editors) Fontana. The Sounding Object. Mondo
Extremo Publishing, 2003.

[51] X. Rodet. Time-domain formant-wave-function synthesis. Computer Music
Journal, 8(3):9-14, 1984.

[52] J. Rothstein. MIDI. A Comprehensive Introduction. Oxford University
Press, Oxford, 1992.

[53] G. Scavone. Modeling and control of performance expression in digital
waveguide models of woodwind instruments. In Proceedings of Interna-
tional Computer Music Conference (ICCM), Hong Kong, 1996.

[54] R. Schafer and L. Rabiner. System for automatic formant analysis of voiced
speech. The Journal of the Acoustical Society of America, 47:634—648, 1970.

[55] B. Schoner. Probabilistic Characterization and Sythnesis of Complex Driven
Systems. PhD thesis, MIT Media Laboratory, 2000.

[56] X. Serra. A System for Sound Analysis/Transformation/Synthesis based
on a Deterministic plus Stochastic Decomposition. PhD thesis, CCRMA,
Stanford University, 1989.

[57] X. Serra and J.O. Smith. Spectral model synthesis: A sound analy-
sis/synthesis system based on a deterministic plus stochastic decomposi-
tion. Computer Music Journal, 14:12-24, 1990.

106

[58] J.O. Smith. Viewpoints on the history of digital synthesis. In Proceedings
of the International Computer Music Conference (ICMC)., pages 1-10,
Montreal, Canada, 1991.

[59] J.O. Smith. Physical modeling using Digital Waveguides. Computer Music
Journal, 16(4):74-91, 1992.

[60] Akademie Schloss Solitude. Auracle. http://www.auracle.org.

[61] J. Sundberg. The Science of the Singing Voice. Northern Illinois University
Press, Illinois, 1987.

[62] M. Wanderley. Performer-Instrument Interaction: Applications to Gestural
Control of Music. PhD thesis, University Pierre et Marie Curie - Paris VI,
Paris, France, 2001.

[63] D.L. Wessel. Timbre space as a musical control structure. Computer Music
Journal, 3(2):45-52, 1979. republished in Foundations of Computer Music,
Curtis Roads (Ed. MIT Press).

[64] U. Zdlzer. DAFX - Digital Audio Effects. John Wiley & Sons Publishers,
New Jersey, 2002.

107

