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Abstract

This dissertation is about audio content-based search. Specifically, it is on explor-

ing promising paths for bridging the semantic gap that currently prevents wide-

deployment of audio content-based search engines. Music search sound engines rely

on metadata, mostly human generated, to manage collections of audio assets. Even

though time-consuming and error-prone, human labeling is a common practice. Au-

dio content-based methods, algorithms that automatically extract description from

audio files, are generally not mature enough to provide the user friendly representa-

tion that users demand when interacting with audio content. Mostly, content-based

methods provide low-level descriptions, while high-level or semantic descriptions are

beyond current capabilities. This dissertation has two parts. In a first part we explore

the strengths and limitation of a pure low-level audio description technique: audio

fingerprinting. We prove by implementation of different systems that automatically

extracted low-level description of audio are able to successfully solve a series of tasks

such as linking unlabeled audio to corresponding metadata, duplicate detection or

integrity verification. We show that the different audio fingerprinting systems can be

explained with respect to a general fingerprinting framework. We then suggest that

the fingerprinting framework, which shares many functional blocks with content-based

audio search engines, can eventually be extended to allow for content-based similarity

type of search, such as find similar or “query-by-example”. However, low-level au-

dio description cannot provide a semantic interaction with audio contents. It is not

possible to generate a verbose and detailed descriptions in unconstraint domains, for
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instance, for asserting that a sound corresponds to “fast male footsteps on wood” but

rather some signal-level descriptions.

In the second part of the thesis we hypothesize that one of the problems that

hinders the closing the semantic gap is the lack of intelligence that encodes common

sense knowledge and that such a knowledge base is a primary step toward bridging

the semantic gap. For the specific case of sound effects, we propose a general sound

classifier capable of generating verbose descriptions in a representation that comput-

ers and users alike can understand. We conclude the second part with the description

of a sound effects retrieval system which leverages both low-level and semantic tech-

nologies and that allows for intelligent interaction with audio collections.
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Chapter 1

Introduction

1.1 Motivation

The standardization of personal computers, the ubiquity of high-storage devices, the

proliferation of Peer2Peer networks and world-wide low-latency networks have dra-

matically increased digital audio growth and access. Major music labels now provide

their music catalogs in nearly CD audio quality formats through on-line distributors

as Apple iTunes, Amazon or Yahoo! Music. The media industry demands tools to

help organize large and growing amounts of digital audio content more efficiently and

automatically. Users have tens of thousands of audio files in their PCs and portable

devices.

Access and management of audio content has mainly relied on manual annotations.

Manual annotation of content raises a number of difficulties. It is a time-consuming

and error-prone task when performed by humans. Moreover, different individuals

tend to tag with different conventions. Meanwhile, the amount of digital content is

skyrocketing. There are 30,000 CDs being released every year. There are millions of

audio tracks in P2P networks.1

1see http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
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6 CHAPTER 1. INTRODUCTION

At the same time that the amount of audio content explodes, a great deal of cul-

tural heritage content of great interest remains undisclosed because content providers’

lack of confidence in wide content distribution through the web due to fears for unau-

thorized content usage and missed returns on investment in content creation, acqui-

sition, transformation and distribution. These and other problems call for automatic

solutions to analyze, describe and index assets.

In the field of audio content-based retrieval there has been a plethora of interest-

ing research and developments aiming at solving the above issues. Most systems use

low-level features such as spectral centroid or mel-frequency coefficients while users

prefer to interact at a higher semantic level: “I need a sound of a big dog bark-

ing angrily”. Low-level features relate to the acoustic properties of audio and hence

can be extracted automatically using signal processing and machine learning tech-

niques. High-level features are more user-friendly descriptions that can be derived

automatically only on very constraint domains (a few classes such as speech/music,

or percussive instruments) where domain-specific knowledge is leveraged in a top-

down approach. One of the major failings of current media annotation systems is the

semantic gap which refers to the discontinuity between the simplicity of features or

content descriptions that can be currently computed automatically and the richness of

semantics in user queries posed for media search and retrieval (Dorai and Venkatesh,

2001).

In a first part, this dissertation explores the capabilities of a pure low-level audio

description technique for managing media assets: audio fingerprinting. We prove its

usefulness implementating several fingerprinting systems.

In a second part we explore ways of bridging the semantic gap by developing

automatic methods for high-level description and interaction. We validate the differ-

ent proposals on a specific audio type: isolated sound effects. Existing systems for

high-level description mainly rely on automatic classification. These systems require

a classification scheme and examples of each class (e.g.: a taxonomy of musical genres

with some examples of tracks per genre). These approaches achieve good results but
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in constrained domains. They are generally not scalable— they operate on a few

tens of classes at most when a real-world sound effects dataset has tens of thousands

of classes— nor adaptable should new classes be added to the system. To overcome

the scalability and adaptability we propose a memory-based classifier. Moreover, we

hypothesize that another of the issues that hinders bridging the semantic gap is the

lack of general knowledge base that encodes common sense information, such as the

fact that “some doors are made of wood”, “cars have engines and horns” or that “cats

miaow, purr and hiss”. Pursuing this goal we design a general sound classifier with

such a knowledge base whose performance is validated on a huge database of sound

effects. A complete sound effects retrieval system which leverages both low-level and

semantic technologies is also proposed, implemented and validated.

1.2 Application scenarios

In order to evaluate the questions raised in this thesis we have worked in different spe-

cific scenarios for content-based technologies: audio fingerprinting and sound effects

management. In this section, we justify that there is a real need for the technologies

researched.

1.2.1 Audio fingerprinting

In this subsection we justify some of the market needs for fingerprinting technologies.

Music copyright enforcement is not a new issue. The recording industry has been

fighting piracy since its very early times. However, the digital revolution in audio

has brought this fight to a new level, as music in digital format can be copied and

distributed easily and with no degradation. Electronic distribution means, partic-

ularly the Internet, associated with efficient compression algorithms (such as MP3)

and peer-to-peer file-sharing systems create an environment that is prone to music

piracy.
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Watermarking has been proposed as a potential solution to this problem. It con-

sists in embedding a mark, the watermark, into the original audio signal. This mark

should not degrade audio quality, but it should be detectable and indelible. Com-

pliant devices should check for the presence of a watermark before proceeding to

operations that could result in copyright infringement. Research in this field has

been very active over the last years. In particular, the Secure Digital Music Ini-

tiative consortium (SDMI), which brings together the major actors in the recording

and consumer-electronics industries, has recently released technology specifications

intended to protect, by means of a watermark, the playing, storing and distribution

of music in digital format (SDMI, 2001). This technology was submitted to public

evaluation through a “challenge” inviting individuals to defeat SDMI’s protection

system, a goal that was shortly achieved, showing that the technology was not ready

for commercial purposes (Craver et al., 2001; Boeuf and Stern, 2001).

Another approach to the copyright-protection problem, quite different from wa-

termarking or any of the other alternatives (see Figure 1.1) in its conception, con-

sists in analyzing an audio signal and constructing a “fingerprint” that is uniquely

associated with this signal. Automatic music recognition or fingerprinting systems

(see Chapter 2) can identify a song by searching for its fingerprint in a previously

constructed database. Such systems are being used, for example, to monitor music

transfers in Napster-like file-sharing facilities, blocking transfers of copyrighted ma-

terial or collecting the corresponding royalties, and to track audio content played by

broadcasters.

At the same time that we experience an explosion of available content, there is

a great deal of content of major interest that is not distributed. Some factors are

currently preventing a widespread distribution from the contents providers to make

accessible cultural heritage content:

• Content providers’ lack of confidence in wide content distribution through the

web due to fears for unauthorized content usage and missed returns on large

investment in content creation, acquisition / transformation and distribution.
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• Interoperability issues at level of content formats and metadata, through net-

works, organizations, public/private and among market sectors.

There is great interest to develop systems that are capable of tracking and monitor

audio content regardless of the distortion and media format for digital right manage-

ment. However both in the industry as well as consumer level there is a demand for

added-value services that automatically connect audio content to the corresponding

metadata, detect duplicates in huge databases or even check the integrity of certain

audio content.

Figure 1.1: Ecosystem of digital rights management systems (Venkatachalam et al.,
2004)



10 CHAPTER 1. INTRODUCTION

1.2.2 Sound effects management

The audio component is a fundamental aspect in an audiovisual production. Accord-

ing to the staff of the Tape Gallery, a post-production facility in London, around 75%

of the sound effects (SFX) of a movie are added during post-production. Originally

captured sounds are frequently useless due to the noise in the recording session and

some are simply not picked up by the production microphones. Sometimes sounds are

replaced in order to improve the dramatic impact, e.g.: arrow sounds of the “Lord of

the Rings” are replaced by “whooshes”. There are also artistic reasons, for example,

in the movie “All the President’s Men”, in order to strengthen the message that the

pen is mightier that the sword, the typewriter keys sounds were mixed with the sound

of gunfire (Weis, 1995). Many occasions, not only movies but also computer games,

audio-visual presentations, web-sites require sounds. These sounds can be recorded

as well as recreated using Foley techniques—for the sound of the knife entering the

body in Psycho’ shower scene, Hitchcock used a melon (Weis, 1995). Another pos-

sibility is the use of already compiled SFX libraries. Accessing library sounds can

be an interesting alternative to sending a team to record sounds—think of recording

Emperor penguin in their natural habitat). Recreate sounds in a studio using Fo-

ley techniques requires a Foley pit and the rest of the recording equipment (L.Mott,

1990). A number of SFX providers, such as www.sounddogs.com, www.sonomic.com

or www.sound-effects-library.com, offer SFX on-line. The technology behind these

services is standard text-search. Librarians tag sounds with descriptive keywords that

the users may search for. Some companies also keep directories or categories—such

as “automobiles”, “horror” or “crashes”—to ease the interaction with the collections.

The text-based approach presents several limitations. The work of the librarian is

error-prone and a very time-consuming task. Another source of problems is due

to the imprecision and ambiguity of natural languages. Natural languages present

polysemy—“bike” can mean both “bicycle” and “motorcycle”—and synonymy—both
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“elevator” and “lift” refer to the same concept. This, together with the difficulty as-

sociated to describing sounds with words, affects the quality of the search. The user

has to guess how the librarian has labeled the sounds and either too many or too few

results are returned. Solutions have been proposed to manage media assets from an

audio content-based perspective, e.g.: with “query-by-example” or “find similar” type

of techniques, both from the academia and the industry (e.g. www.findsounds.com).

However none seems to have impacted in professional sound effects management sys-

tems. Finally, a major issue when running sound effects systems is the annotation

time by librarians. The staff of the Sound-Effects-Library 2 estimated that it would

take 60 years for a librarian to manually label a collection of 2 million sounds.

1.3 Goals and methodology

The general goals of this dissertation are presented below. The methodology to test

the hypothesis follows an implementation plus evaluation approach.

1. Survey on a low-level description audio content technique: audio fingerprinting

and its applications.

2. Justify the usefulness of low-level description of audio content as well as its lim-

itations with example applications: e.g. they provide identification of distorted

recordings but are not able to bridge the semantic gap.

3. Underline open issues in state-of-the-art automatic sound annotation as a method

to bridge the semantic gap, mainly its limitations to working conditions in lim-

ited domains: a few musical instruments or sound ambiances and restricted to

a few number of classes.

4. We propose a general scalable memory-based method together with a real-world

taxonomy: WordNet for overcoming the semantic gap.

2http://www.sound-effects-library.com
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5. Implement and evaluate content and concept-based search in a production size

sound effects search engine as well as provide an example of an intelligent ap-

plication that uses the framework: Automatic generation of background am-

biances.

1.4 Organization of the thesis

This dissertation is organized as follows (see Figure 1.2). In Chapter 2 we explore

the applicability of a purely low-level description of audio and its limitations: Audio

fingerprinting. We do it thoroughly reviewing existing methods (see Section 2.2) as

well as implementing audio fingerprinting systems and applications. We illustrate its

usefulness with several applications, namely: broadcast audio monitoring (Section 2.3

and integrity verification (Section 2.4). We explore how fingerprinting constraints can

be relaxed to allow for similarity type of search and navigation in music collections

in Section 2.5.

In Chapter 3 we aim at closing the semantic gap when interacting with audio

content. In the previous chapter we demonstrate several uses of low-level audio de-

scription. Humans use high-level descriptions when searching audio content while

automatic methods normally work with low-level descriptions (e.g. overall sound

quality, timbral characteristics, and so on). In section 3.1, we explore the use of

a general-purpose knowledge database: WordNet, as a ontology-backbone for audio

description. The ontology not only provides concept versus keyword search as well

other new ways of intelligently interacting with media assets but also provides the

classification scheme for a general sound classification methodology. In section 3.2,

we present a classifier that is scalable with a huge number of classes. In section 3.3

we describe a SFX search engine that leverages the above mentioned techniques. The

search engine is not only able of semantic navigation of sounds but it constitutes a

foundation to build other applications. Section 3.4 introduces an example applica-

tion, automatic sound ambiance generation, which builds on top of the sound search
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engine.

We conclude this dissertation summarizing the contributions and highlighting

promising lines of research (see Chapter 4).

Figure 1.2: Schema of the thesis

1.5 Contributions

We summarize the contributions of this dissertation to the state-of-the-art in content-

based audio management. We outline the publications where the results of this thesis

and related works have appeared.
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1.5.1 Low-level audio description: Fingerprinting

An audio fingerprint is a unique and compact digest derived from perceptually rele-

vant aspects of a recording. Fingerprinting technologies allow the monitoring of audio

content without the need of metadata or watermark embedding. However, additional

uses exist for audio fingerprinting. In this dissertation we give a vision on Audio

Fingerprinting. The rationale is presented along with the differences with respect to

watermarking. The main requirements of fingerprinting systems are described. The

basic modes of employing audio fingerprints, namely identification, authentication,

content-based secret key generation for watermarking and content-based audio re-

trieval and processing are depicted. Some concrete scenarios and business models

where the technology is used are presented

• Cano, P. Batlle, E. Gómez, E. Gomes, L. Bonnet, M. 2005. ’Audio Finger-

printing: Concepts and Applications.’ Halgamuge, Saman K.; Wang, Lipo Ed.,

Computational Intelligence for Modeling and Prediction, p.233-245 Springer-

Verlag. ;

• Gomes, L. Cano, P. Gómez, E. Bonnet, M. Batlle, E. 2003. ’Audio Water-

marking and Fingerprinting: For Which Applications?’ Journal of New Music

Research; Vol.32 .1

• Cano, P. Gómez, E. Batlle, E. Gomes, L. Bonnet, M. 2002. ’Audio Fingerprint-

ing: Concepts and Applications’ Proceedings of 2002 International Conference

on Fuzzy Systems Knowledge Discovery; Singapore

The different approaches to fingerprinting are usually described with different

rationales and terminology depending on the background: Pattern matching, Mul-

timedia (Music) Information Retrieval or Cryptography (Robust Hashing). In this

thesis, we review different techniques mapping functional parts to blocks of a unified

framework.
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• Cano, P. Batlle, E. Kalker, T. Haitsma, J. 2005. ’A Review of Audio Finger-

printing’. The Journal of VLSI Signal Processing Vol.41 .3 271 - 284

• Cano, P. Batlle, E. Kalker, T. Haitsma, J. 2002. ’A Review of Algorithms for

Audio Fingerprinting’ Proceedings of IEEE International Workshop on Multi-

media Signal Processing; St. Thomas, Virgin Islands

In order to assess the usefulness of signal-level type of audio description we have

implemented or collaborated in different implementations of audio fingerprinting. In

the identification mode of fingerprinting, the author contributed to understand the

distortions that the audio undergoes when broadcast by radio stations and proposed

methods for efficient approximate matching, enhancements over its scalability as well

as hypothesis testing for the detection of false positives.

• Batlle, E. Masip, J. Cano, P. 2004. ’Scalability issues in HMM-based Audio

Fingerprinting’ Proceedings of IEEE International Conference on Multimedia

and Expo; Taipei, Taiwan

• Batlle, E. Masip, J. Cano, P. 2003. ’System analysis and performance tuning

for broadcast audio fingerprinting’ Proceedings of 6th International Conference

on Digital Audio Effects; London, UK

• Cano, P. Batlle, E. Mayer, H. Neuschmied, H. 2002. ’Robust Sound Modeling

for Song Detection in Broadcast Audio’ Proceedings of 112th AES Convention,

2002; Munich, Germany

• Cano, P. Kaltenbrunner, M. Mayor, O. Batlle, E. 2001. ’Statistical Significance

in Song-Spotting in Audio’ Proceedings of International Symposium on Music

Information Retrieval 2001; Bloomington (USA)

We proposed and implemented a method to detect whether an audio asset had

been modified or tampered with. The method exploited both fingerprinting and

watermarking.
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• Gómez, E. Cano, P. Gomes, L. Batlle, E. Bonnet, M. 2002. ’Mixed Watermarking-

Fingerprinting Approach for Integrity Verification of Audio Recordings’ Pro-

ceedings of IEEE International Telecommunications Symposium; Natal, Brazil

Finally, some experiments that hint that the general audio fingerprinting method-

ology can be extended to allow for similarity search in music and audio databases.

• Cano, P. Kaltenbrunner, M. Gouyon, F. Batlle, E. 2002. ’On the use of Fastmap

for audio information retrieval and browsing’ Proceedings of ISMIR 2002 - 3rd

International Conference on Music Information Retrieval; Ircam - Centre Pom-

pidou, Paris, France

1.5.2 Semantic audio description: Sound Effects manage-

ment

As we show in the dissertation with the example of audio fingerprinting, low-level

content audio description have certainly uses and success stories. However, rather

than dealing with low-level descriptions when interacting with media collections, users

prefer high-level descriptions. In this context, we review methods of describing sound,

propose a classification engine capable of automatic annotation and implemented both

content and knowledge-based techniques in a professional sound effects search engine.

The first part when trying to develope computational methods that mimic hu-

mans in labeling includes reviewing how users describe sound and how to code this

information in a way that can be processed by humans and computers alike. Indeed,

sounds are multifaceted, multirepresentional and usually difficult to describe in words.

We review some taxonomic proposals for audio description found in the literature to-

gether with an analysis of the types of descriptions actually found in SFX commercial

systems. In order for computers to process the descriptions, it is necessary to code

the information in certain way. We review how the issue is dealt within a multimedia

standardization process such as MPEG-7 (Manjunath et al., 2002). We have then
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proposed a management scheme that uses and extends a general purpose ontology:

WordNet.

• Cano, P. Koppenberger, M. Herrera, P. Celma, O. Tarasov, V. 2004. ’Sound Ef-

fect Taxonomy Management in Production Environments’ Proceedings of 25th

International AES Conference; London, UK

The next contribution after having understood how people describe sounds is

building computational models that can automatize the work. In the industry, an-

notation of audio content is done manually, which is an arduous task. Automatic

annotation methods, normally fine-tuned to reduced domains such as musical instru-

ments or reduced sound effects taxonomies, are not mature enough for labeling with

great detail any possible sound. A general sound recognition tool requires: first, a

taxonomy that represents common sense knowledge of the world and, second, thou-

sands of classifiers, each specialized in distinguishing little details. We propose and

report experimental results on a general sound annotator. To tackle the taxonomy de-

finition problem we use WordNet, a semantic network described in 3.1 that organizes

real world knowledge. In order to overcome the need of a huge number of classifiers

to distinguish many different sound classes, we use a nearest-neighbor classifier with

a database of isolated sounds unambiguously linked to WordNet concepts. A 30%

concept prediction is achieved on a database of over 50,000 sounds and over 1,600

concepts.

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. Herrera, P. 2005.

’Nearest-Neighbor Automatic Sound Classification with a WordNet Taxonomy’

Journal of Intelligent Information Systems; Vol.24 .2 99-111

• Cano, P. Koppenberger, M. 2004. ’Automatic sound annotation’ Proceedings

of 14th IEEE workshop on Machine Learning for Signal Processing; São Lúıs,

Brazil
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• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Herrera, P. Wack, N. 2004.

’Nearest-neighbor generic sound classification with a WordNet-based taxonomy’

Proceedings of AES 116th Convention; Berlin, Germany

Content-based audio tools such as those described with fingerprinting offer per-

ceptual ways of navigating the audio collections, like “find similar sound”, even if

unlabeled, or query-by-example, possibly restricting the search to a semantic sub-

space, such as “vehicles‘”. The proposed content-based technologies also allow semi-

automatic sound annotation and hence close the semantic gap. We demonstrate

the integration of semantically-enhanced management of metadata using WordNet

together with content-based methods in a commercial sound effect management sys-

tem.

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. 2004. ’Semantic

and Perceptual Management of Sound Effects in Production Systems’ Proceed-

ings of International Broadcasting Conference; Amsterdam, The Netherlands

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. 2004. ’Knowledge

and Perceptual Sound Effects Asset Management’ Proceedings of 1st Interna-

tional Conference on E-business and Telecommunication Networks; Setubal,

Portugal

We finally show how a semantic enabled search engine is capable of semi-automatic

ambiance generation. Ambiances are background recordings used in audiovisual pro-

ductions to make listeners feel they are in places like a pub or a farm. Accessing

to commercially available atmosphere libraries is a convenient alternative to sending

teams to record ambiances yet they limit the creation in different ways. First, they

are already mixed, which reduces the flexibility to add, remove individual sounds or

change its panning. Secondly, the number of ambient libraries is limited. We propose

a semi-automatic system for ambiance generation. The system creates ambiances on
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demand given text queries by fetching relevant sounds from a large sound effect data-

base and importing them into a sequencer multi track project. Ambiances of diverse

nature can be created easily. Several controls are provided to the users to refine the

type of samples and the sound arrangement.

• Cano, P. Fabig, L. Gouyon, F. Koppenberger, M. Loscos, A. Barbosa, A. 2004.

’Semi-Automatic Ambiance Generation’ Proceedings of 7th International Con-

ference on Digital Audio Effects; Naples, Italy
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Chapter 2

Low-level audio retrieval:

Fingerprinting

In this Chapter we explore capabilities and limitations of a well known low-level

content-based technique: Audio Fingerprinting. We introduce in Section 2.1 its de-

finition and its applications. In Section 2.2 we propose a general framework that

outlines the main functional blocks with which we critically review existing state-of-

the-art. Section 2.3 and Section 2.4 we present systems that illustrate the usefulness of

fingerprinting: broadcast monitoring and integrity verification. The final Section, 2.5,

illustrates how a fingerprinting scheme can be used for content-based retrieval and

navigation, not just identification of distorted recordings.

This chapter relates to the dissertation goals 1 and 2 as presented in Section 1.3.

2.1 Audio Fingerprinting

Audio fingerprinting is best known for its ability to link unlabeled audio to corre-

sponding meta-data (e.g. artist and song name), regardless of the audio format.

Audio fingerprinting or content-based audio identification (CBID) systems extract

a perceptual digest of a piece of audio content, i.e. a fingerprint and store it in a

21
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database. When presented with unlabeled audio, its fingerprint is calculated and

matched against those stored in the database. Using fingerprints and matching algo-

rithms, distorted versions of a recording can be identified as the same audio content.

A source of difficulty when automatically identifying audio content derives from

its high dimensionality, the significant variance of the audio data for perceptually

similar content and the necessity to efficiently compare the fingerprint with a huge

collection of registered fingerprints. The simplest approach that one may think of –

the direct comparison of the digitalized waveform – is neither efficient nor effective.

A more efficient implementation of this approach could use a hash method, such as

MD5 (Message Digest 5) or CRC (Cyclic Redundancy Checking), to obtain a compact

representation of the binary file. In this setup, one compares the hash values instead

of the whole files. However, hash values are fragile, a single bit flip is sufficient for

the hash to completely change. Of course this setup is not robust to compression or

minimal distortions of any kind and, in fact, it cannot be considered as content-based

identification since it does not consider the content, understood as information, just

the bits.

An ideal fingerprinting system should fulfill several requirements. It should be

able to accurately identify an item, regardless of the level of compression and dis-

tortion or interference in the transmission channel. Depending on the application,

it should be able to identify the titles from excerpts of only a few seconds. The

fingerprinting system should also be computationally efficient. Efficiency is critical

in a real application both in the calculation of the fingerprint of the unknown audio

and, even more so, in the search for a best match in huge repository of fingerprints.

This computational cost is related to the size of the fingerprints, the complexity of

the search algorithm and the complexity of the fingerprint extraction.

The design principles and needs behind audio fingerprinting are recurrent in sev-

eral research areas. Compact signatures that represent complex multimedia objects

are employed in Information Retrieval for fast indexing and retrieval. In order to

index complex multimedia objects it is necessary to reduce their dimensionality (to
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avoid the “curse of dimensionality”) and perform the indexing and searching in the

reduced space (Baeza-Yates and Ribeiro-Neto, 1999; Subramanya et al., 1999; Kimura

et al., 2001). In analogy to the cryptographic hash value, content-based digital sig-

natures can be seen as evolved versions of hash values that are robust to content-

preserving transformations (Haitsma and Kalker, 2002b; Mihçak and Venkatesan,

2001). Also from a pattern matching point of view, the idea of extracting the essence

of a class of objects retaining its main characteristics is at the heart of any classifica-

tion system (Cano et al., 2002a; Allamanche et al., 2001; Sukittanon and Atlas, 2002;

Theodoris and Koutroumbas, 1999; Picone, 1993).

This section aims to give a vision on Audio Fingerprinting. The rationale along

with the differences with respect to watermarking are presented in 2.1.1. The main

requirements of fingerprinting systems are described in 2.1.1. The basic modes of em-

ploying audio fingerprints, namely identification, authentication, content-based secret

key generation for watermarking and content-based audio retrieval are commented in

Section 2.1.2. We then present in Section 2.1.3 some concrete scenarios and business

models where the technology is used. In the lasts subsections (from Subsection 2.2 to

Subsection 2.2.4), we introduce the main contribution of the dissertation: a general

framework of audio fingerprinting systems. Although the framework focuses on iden-

tification, some of its functional blocks are common to content-based audio retrieval

or integrity verification.

2.1.1 Definition of audio fingerprinting

An audio fingerprint is a compact content-based signature that summarizes an au-

dio recording. Audio fingerprinting has attracted a lot of attention for its audio

identification capabilities. Audio fingerprinting technologies extract acoustic relevant

characteristics of a piece of audio content and store them in a database. When pre-

sented with an unidentified piece of audio content, characteristics of that piece are

calculated and matched against those stored in the database. Using fingerprints and
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matching algorithms, distorted versions of a single recording can be identified as the

same music title (RIAA, 2001).

The approach differs from an alternative existing solution to identify audio con-

tent: Audio Watermarking. In audio watermarking (Boney et al., 1996a), research

on psychoacoustics is conducted so that an arbitrary message, the watermark, can be

embedded in a recording without altering the perception of the sound. The identi-

fication of a song title is possible by extracting the message embedded in the audio.

In audio fingerprinting, the message is automatically derived from the perceptually

most relevant components of sound. Compared to watermarking, it is ideally less

vulnerable to attacks and distortions since trying to modify this message, the finger-

print, means alteration of the quality of the sound. It is also suitable to deal with

legacy content, that is, with audio material released without watermark. In addition,

it requires no modification of the audio content. As a drawback, the computational

complexity of fingerprinting is generally higher than watermarking and there is the

need of a connection to a fingerprint repository. In addition, contrary to watermark-

ing, the message is not independent from the content. It is therefore for example not

possible to distinguish between perceptually identical copies of a recording. Just like

with watermarking technology, there are more uses to fingerprinting than identifica-

tion. Specifically, it can also be used for verification of content-integrity; similarly to

fragile watermarks.

At this point, we should clarify that the term “fingerprinting” has been employed

for many years as a special case of watermarking devised to keep track of an audio

clip’s usage history. Watermark fingerprinting consists in uniquely watermarking each

legal copy of a recording. This allows to trace back to the individual who acquired

it (Craver et al., 2001). However, the same term has been used to name techniques

that associate an audio signal to a much shorter numeric sequence (the “fingerprint”)

and use this sequence to e.g. identify the audio signal. The latter is the meaning

of the term “fingerprinting” in this article. Other terms for audio fingerprinting are
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robust matching, robust or perceptual hashing, passive watermarking, automatic mu-

sic recognition, content-based digital signatures and content-based audio identifica-

tion. The areas relevant to audio fingerprinting include information retrieval, pattern

matching, signal processing, databases, cryptography and music cognition to name a

few (Dannenberg et al., 2001).

The requirements depend heavily on the application but are useful in order to

evaluate and compare different audio fingerprinting technologies. In their Request for

Information on Audio Fingerprinting Technologies (RIAA, 2001), the IFPI (Interna-

tional Federation of the Phonographic Industry) and the RIAA (Recording Industry

Association of America) tried to evaluate several identification systems. Such sys-

tems have to be computationally efficient and robust. A more detailed enumeration

of requirements can help to distinguish among the different approaches (CBID, 2002;

Kalker, 2001):

Accuracy: The number of correct identifications, missed identifications, and wrong

identifications (false positives).

Reliability: Methods for assessing that a query is present or not in the repository

of items to identify is of major importance in play list generation for copyright

enforcement organizations. In such cases, if a song has not been broadcast, it

should not be identified as a match, even at the cost of missing actual matches.

In other applications, like automatic labeling of MP3 files (see Section 2.2),

avoiding false positives is not such a mandatory requirement.

Robustness: Ability to accurately identify an item, regardless of the level of com-

pression and distortion or interference in the transmission channel. Other

sources of degradation are pitching, equalization, background noise, D/A-A/D

conversion, audio coders (such as GSM and MP3), etc.

Granularity: Ability to identify whole titles from excerpts a few seconds long. It
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requires to deal with shifting, that is lack of synchronization between the ex-

tracted fingerprint and those stored in the database and it adds complexity to

the search (it needs to compare audio in all possible alignments).

Security: Vulnerability of the solution to cracking or tampering. In contrast with

the robustness requirement, the manipulations to deal with are designed to fool

the fingerprint identification algorithm.

Versatility: Ability to identify audio regardless of the audio format. Ability to use

the same database for different applications.

Scalability: Performance with very large databases of titles or a large number of

concurrent identifications. This affects the accuracy and the complexity of the

system.

Complexity: It refers to the computational costs of the fingerprint extraction, the

size of the fingerprint, the complexity of the search, the complexity of the fin-

gerprint comparison, the cost of adding new items to the database, etc.

Fragility: Some applications, such as content-integrity verification systems, may re-

quire the detection of changes in the content. This is contrary to the robustness

requirement, as the fingerprint should be robust to content-preserving transfor-

mations but not to other distortions (see subsection 2.1.2.2).

Improving a certain requirement often implies losing performance in some other.

Generally, the fingerprint should be:

• A perceptual digest of the recording. The fingerprint must retain the maximum

of perceptually relevant information. This digest should allow the discrimina-

tion over a large number of fingerprints. This may be conflicting with other

requirements, such as complexity and robustness.
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• Invariant to distortions. This derives from the robustness requirement. Content-

integrity applications, however, relax this constraint for content-preserving dis-

tortions in order to detect deliberate manipulations.

• Compact. A small-sized representation is interesting for complexity, since a

large number (maybe millions) of fingerprints need to be stored and compared.

An excessively short representation, however, might not be sufficient to discrim-

inate among recordings, affecting thus accuracy, reliability and robustness.

• Easily computable. For complexity reasons, the extraction of the fingerprint

should not be excessively time-consuming.

2.1.2 Usage modes

2.1.2.1 Identification

Independently of the specific approach to extract the content-based compact signa-

ture, a common architecture can be devised to describe the functionality of finger-

printing when used for identification (RIAA, 2001).

Recordings’
collection

      	          
   DB   

Recordings’
IDs

Unlabeled
recording Match

Recording
ID

Fingerprint
extraction

Fingerprint
extraction

Figure 2.1: Audio fingerprinting framework
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The overall functionality mimics the way humans perform the task. As seen in

Figure 2.1, a memory of the recordings to be recognized is created off-line (top); in

the identification mode (bottom), unlabeled audio is presented to the system to look

for a match.

Database creation: The collection of recordings to be recognized is presented to

the system for the extraction of their fingerprint. The fingerprints are stored

in a database and can be linked to editorial information such as artist, album,

track name or other meta-data relevant to each recording.

Identification: The unlabeled recording is processed in order to extract a finger-

print. The fingerprint is subsequently compared with the fingerprints in the

database. If a match is found, the meta-data associated with the recording is

obtained from the database. Optionally, a reliability measure of the match can

be provided.

2.1.2.2 Integrity verification

Integrity verification aims at detecting the alteration of data. As described in sec-

tion 2.4 there are cases where it is necessary to assess the integrity of audio recordings,

e.g. check that they have not been tampered for malicious reasons. The overall func-

tionality (see Figure 2.2) is similar to identification. First, a fingerprint is extracted

from the original audio. In the verification phase, the fingerprint extracted from the

test signal is compared with the fingerprint of the original. As a result, a report indi-

cating whether the signal has been manipulated is output. Optionally, the system can

indicate the type of manipulation and where in the audio it occurred. The verification

data, which should be significantly smaller than the audio data, can be sent along

with the original audio data (e.g. as a header) or stored in a database. A technique

known as self-embedding avoids the need of a database or a special dedicated header,

by embedding the content-based signature into the audio data using watermarking

(see Figure 2.3). An example of such a system is described in (Gómez et al., 2002).
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Figure 2.2: Integrity verification framework

2.1.2.3 Watermarking support

Audio fingerprinting can assist watermarking. Audio fingerprints can be used to de-

rive secret keys from the actual content. As described by Mihçak and Venkatesan

(2001), using the same secret key for a number of different audio items may com-

promise security, since each item may leak partial information about the key. Audio

fingerprinting / perceptual hashing can help generate input-dependent keys for each

piece of audio. Haitsma and Kalker (2002b) suggest audio fingerprinting to enhance

the security of watermarks in the context of copy attacks. Copy attacks estimate a

watermark from watermarked content and transplant it to unmarked content. Bind-

ing the watermark to the content can help to defeat this type of attacks. In addition,

fingerprinting can be useful against insertion/deletion attacks that cause desynchro-

nization of the watermark detection: by using the fingerprint, the detector is able

to find anchor points in the audio stream and thus to resynchronize at these loca-

tions (Mihçak and Venkatesan, 2001).
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2.1.2.4 Content-based audio retrieval and processing

Deriving compact signatures from complex multimedia objects is an essential step in

Multimedia Information Retrieval. Fingerprinting can extract information from the

audio signal at different abstraction levels, from low level descriptors to higher level

descriptors. Especially, higher level abstractions for modeling audio hold the possi-

bility to extend the fingerprinting usage modes to content-based navigation, search

by similarity, content-based processing and other applications of Music Information

Retrieval. In a query-by-example scheme, the fingerprint of a song can be used to

retrieve not only the original version but also “similar” ones (Cano et al., 2002b).

2.1.3 Application Scenarios

Most of the applications presented in this section are particular cases of the identifi-

cation usage mode described above. They are therefore based on the ability of audio

fingerprinting to link unlabeled audio to corresponding meta-data, regardless of audio

format.

2.1.3.1 Audio Content Monitoring and Tracking

Monitoring at the distributor end

Content distributors may need to know whether they have the rights to broadcast

certain content to consumers. Fingerprinting helps identify unlabeled audio in TV and

Radio channels repositories. It can also identify unidentified audio content recovered

from CD plants and distributors in anti-piracy investigations (e.g. screening of master

recordings at CD manufacturing plants) (RIAA, 2001).

Monitoring at the transmission channel

In many countries, radio stations must pay royalties for the music they air. Rights

holders are eager to monitor radio transmissions in order to verify whether royalties

are being properly paid. Even in countries where radio stations can freely air music,

rights holders are interested in monitoring radio transmissions for statistical purposes.
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Advertisers are also willing to monitor radio and TV transmissions to verify whether

commercials are being broadcast as agreed. The same is true for web broadcasts.

Other uses include chart compilations for statistical analysis of program material or

enforcement of “cultural laws” (e.g. in France a certain percentage of the aired record-

ings needs to be in French). Fingerprinting-based monitoring systems can be and are

actually being used for this purpose. The system “listens” to the radio and continu-

ously updates a play list of songs or commercials broadcast by each station. Of course,

a database containing fingerprints of all songs and commercials to be identified must

be available to the system, and this database must be updated as new songs come

out. Examples of commercial providers of such services are: Broadcast Data Sys-

tem (www.bdsonline.com), Music Reporter (www.musicreporter.net), Audible Magic

(www.audiblemagic.com), Yacast (www.yacast.fr) or BMAT (www.bmat.com).

Napster and Web-based communities alike, where users share music files, have

proved to be excellent channels for music piracy. After a court battle with the record-

ing industry, Napster was enjoined from facilitating the transfer of copyrighted music.

The first measure taken to conform with the judicial ruling was the introduction of

a filtering system based on file-name analysis, according to lists of copyrighted music

recordings supplied by the recording companies. This simple system did not solve

the problem, as users proved to be extremely creative in choosing file names that de-

ceived the filtering system while still allowing other users to easily recognize specific

recordings. The large number of songs with identical titles was an additional factor

in reducing the efficiency of such filters. Fingerprinting-based monitoring systems

constitute a well-suited solution to this problem. Napster actually adopted a finger-

printing technology (see www.relatable.com) and a new file-filtering system relying

on it. Additionally, audio content can be found in ordinary web pages. Audio finger-

printing combined with a web crawler can identify this content and report it to the

corresponding right owners (e.g. www.baytsp.com).

Monitoring at the consumer end

In usage-policy monitoring applications, the goal is to avoid misuse of audio signals
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by the consumer. We can conceive a system where a piece of music is identified by

means of a fingerprint and a database is contacted to retrieve information about the

rights. This information dictates the behavior of compliant devices (e.g. CD and

DVD players and recorders, MP3 players or even computers) in accordance with the

usage policy. Compliant devices are required to be connected to a network in order

to access the database.

2.1.3.2 Added-value services

Content information is defined as information about an audio excerpt that is relevant

to the user or necessary for the intended application. Depending on the application

and the user profile, several levels of content information can be defined. Here are

some of the situations we can imagine:

• Content information describing an audio excerpt, such as rhythmic, timbrical,

melodic or harmonic descriptions.

• Meta-data describing a musical work, how it was composed and how it was

recorded. For example: composer, year of composition, performer, date of

performance, studio recording/live performance.

• Other information concerning a musical work, such as album cover image, album

price, artist biography, information on the next concerts, etc.

Some systems store content information in a database that is accessible through

the Internet. Fingerprinting can then be used to identify a recording and retrieve the

corresponding content information, regardless of support type, file format or any other

particularity of the audio data. For example, MusicBrainz, Id3man or Moodlogic

(www.musicbrainz.org, www.id3man.com, www.moodlogic.com) automatically label

collections of audio files; the user can download a compatible player that extracts

fingerprints and submits them to a central server from which meta data associated

to the recordings is downloaded. Gracenote (www.gracenote.com), who has been
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providing linking to music meta-data based on the TOC (Table of Contents) of a

CD, recently offered audio fingerprinting technology to extend the linking from CD’s

table of contents to the track level. Their audio identification method is used in

combination with text-based classifiers to enhance the accuracy.

Another example is the identification of an audio excerpt by mobile devices, e.g.

a cell phone; this is one of the most demanding situations in terms of robustness,

as the audio signal goes through radio distortion, D/A-A/D conversion, background

noise and GSM coding, and only a few seconds of audio might be available available

(e.g. www.shazam.com).

2.1.3.3 Integrity verification systems

In some applications, the integrity of audio recordings must be established before

the signal can actually be used, i.e. one must assure that the recording has not been

modified or that it is not too distorted. If the signal undergoes lossy compression,

D/A-A/D conversion or other content-preserving transformations in the transmission

channel, integrity cannot be checked by means of standard hash functions, since a

single bit flip is sufficient for the output of the hash function to change. Methods based

on fragile watermarking can also provide false alarms in such a context. Systems based

on audio fingerprinting, sometimes combined with watermarking, are being researched

to tackle this issue. Among some possible applications (Gómez et al., 2002), we can

name: Check that commercials are broadcast with the required length and quality,

verify that a suspected infringing recording is in fact the same as the recording whose

ownership is known, etc.

2.1.4 Watermarking

Watermarking was proposed as a solution to copyright enforcement before fingerprint-

ing methods were widely developed. Watermarking consists in embedding into the

audio signal an inaudible mark containing copyright information. In this subsection
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Figure 2.3: Self-embedding integrity verification framework: (a)fingerprint embedding
and (b) fingerprint comparison.

we introduce the concept of watermarking as well as describes potential applications

of both methodologies: watermarking and fingerprinting, showing which one is more

suitable for each application.

Definition of Watermarking

As in cryptography, a key is generally used during the construction of the wa-

termark, and another key (which may or may not be identical to the first one) is

required for watermark detection. Despite this similarity, watermarking differs from

cryptography in its essence. While an encrypted audio file is useless without the
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Figure 2.4: General watermarking scheme.

corresponding decryption key, no such information is necessary in order to listen to a

watermarked audio file. The important point is that the watermark is always present

in the signal — even in illegal copies of it — and the protection that is offered by

a watermarking system is therefore of a permanent kind. The same is not true for

a cryptographic system, as audio files must be decrypted (and thus unprotected) in

order to become usable.

Let us clarify the utilization of a watermarking system through an example. Audio

content can be watermarked with a “copy-never” watermark. A compliant CD-writer

device will analyze the input audio signal and check for the presence of the watermark

before recording. If no watermark is found, the content is assumed to be copyright-free

and the CD is recorded; otherwise, the equipment refuses to perform the requested

operation. A more sophisticated system could admit multiple degrees of protection,

ranging from “copy-never” to “copy-freely”. For instance, audio marked as “copy-

twice” could be duplicated, but the resulting copy would have its watermark set to

the “copy-once” state. If a second copy were made from this first copy, it would be

marked as “copy-never” and would not be reproducible. This would limit the number

of generations in the duplication process — if you have an original CD, you can burn

a copy for a friend, but he might not be able to do the same from the copy you gave

him.

A watermarking system is symmetric if the same key is used for both watermark

insertion and detection. When these keys are different from each other, the system is
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asymmetric. Symmetric watermarking systems are suitable for private watermarking,

where the key is kept secret; in contrast, asymmetric watermarking is appropriate for

public watermarking, where a private (secret) key is used for watermark insertion and

a public key for watermark detection. As in public encryption systems, in particular

the RSA system (Boneh, 1999), the idea of a non-invertible function is present: the

public key is derived from the private key, but the private key cannot be deduced

from the public key.

The requirements that an audio watermarking system must satisfy are application-

dependent and often conflicting. As general requirements, we can mention:

• Inaudibility: watermarking should not degrade sound quality.

• Robustness: the watermark should resist any transformations applied to the

audio signal, as long as sound quality is not unacceptably degraded.

• Capacity: the watermark bit rate should be high enough for the intended

application, which can be conflicting with inaudibility and robustness; a trade-

off must be found.

• Reliability: data contained in the watermark should be extracted with accept-

able error rates.

• Low complexity: for real-time applications, watermarking algorithms should

not be excessively time-consuming.

All these requirements are to be respected to a certain extent, according to the appli-

cation. Some applications (such as low bit-rate audio over the Internet) might admit

the watermark to introduce a small level of sound quality degradation, while others

(such as high bit-rate audio) would be extremely rigorous on that matter. Resistance

to signal-processing operations such as filtering, resampling or coding is usually nec-

essary. For copyright protection, resistance to malicious attacks aimed at preventing

watermark detection is also required; for example, if a piece of the signal is deleted,
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the watermark should still be detectable. However, for integrity-verification applica-

tions (e.g. of testimonies recorded before a court), the watermark must no longer be

recognized when the audio content is modified in any way. In that case, robustness

is no longer required; on the contrary, the watermark must be fragile.

How It Works

Watermarking can be viewed as a communication system: the watermark is the

information-bearing signal and the audio signal plays the role of channel noise. In

conventional communication systems, the useful signal is usually stronger than the

noise, and the latter is often assumed to be Gaussian and white. This is not the case

in watermarking. To avoid audible distortion, the watermark signal must be much

weaker (some tens of decibels) than the audio signal. Furthermore, the audio signal

is generally non-stationary and strongly colored.

Several approaches for audio watermarking have been proposed in the litera-

ture (Miller et al., 1999). For example, we can mention:

• Spread-spectrum watermarking: As in spread-spectrum communication

systems (Dixon, 1976; Haykin, 1988), the idea consists in spreading the wa-

termark in frequency to maximize its power while keeping it inaudible and

increasing its resistance to attacks (Boney et al., 1996b).

• Echo-hiding watermarking: Temporal masking properties are exploited in

order to render the watermark inaudible. The watermark is an “echo” of the

original signal (Bender et al., 1996).

• Bit stream watermarking: The watermark is inserted directly in the bit

stream generated by an audio coder. For example, in Lacy et al. (1998), the

watermark consists in the modification of scale factors in the MPEG AAC bit

stream.

Many variations of these basic schemes have been proposed. For example, rather

than adding the watermark to the audio signal in the time domain, some systems
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perform this operation in the frequency domain by directly replacing spectral com-

ponents (Garćıa, 1999).

Psychoacoustic Models

Psychoacoustics is the study of the perception of sound. Through experimentation,

psychoacousticians have established that the human ear presents several limitations.

In particular, when two tones, close to each other in frequency, are played simultane-

ously, frequency masking may occur: if one of the tones is sufficiently loud, it masks

the other one (Zwicker and Fastl 1990).

Psychoacoustic models generalize the frequency-masking effect to non-tonal sig-

nals. From an audio signal u(t), these models calculate a curve Mu(f) called masking

threshold that is homogeneous to a power spectral density (PSD) (Perreau Guimarães

1998). If the PSD V (f) of a signal v(t) is below Mu(f) for all frequencies, then v(t)

is masked by u(t). This means that the listener is unable to perceive any difference

between u(t) and u(t) + v(t) (Fig. 2).

These models are widely used in lossy compression methods, such as MP3 or

MPEG-AAC (ISO 1997, Bosi et al. 1997), to render quantization noise inaudible,

thus providing high quality audio at low bit rates.

In audio watermarking, psychoacoustic models are often used to ensure inaudi-

bility of the watermark. The watermark is constructed by shaping in frequency a

nearly-white signal according to the masking threshold. After this operation, the

PSD of the watermark is always below the masking threshold and the watermark

should not be heard in the presence of the original audio signal. Thanks to psy-

choacoustic models, inaudibility can be reached at signal-to-watermark power ratios

of approximately 20 dB. In contrast, a white watermark would require much higher

ratios to ensure inaudibility, thus rendering detection more difficult.

Masking can also occur in the time domain with pre or post-masking. If two

sounds are close to each other in time and one of them is sufficiently loud, it will

mask the other one. This effect is exploited in lossy compression methods to further

increase the compression rate (ISO 1997). Post-masking is also used in “echo-hiding”
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Figure 2.5: PSDs of the masking and masked signals (U(f), continuous line, and V (f),
dotted line, respectively), as well as the masking threshold Mu(f). In the upper part
of the spectrum, the masking threshold (and the masked signal) often surpasses the
masking signal due to the low sensibility of the human ear to high frequencies.

watermarking systems: the watermark is a delayed and attenuated version of the

audio signal, and the delay between the audio signal and this “echo” is used as a

means of coding information.

Psychoacoustic models are useful in many other applications. To name a few:

echo cancellation, automatic audio quality evaluation and hearing aids for the deaf.

2.1.4.1 Audio watermarking versus audio fingerprinting

In this section, we summarize the major differences and similarities between audio

watermarking and audio fingerprinting.

Modification of the Audio Signal

Audio watermarking modifies the original audio signal by embedding a mark into
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it, whereas fingerprinting does not change the signal at all but rather analyzes it and

constructs a hash (the fingerprint) uniquely associated with this signal. In water-

marking, there is a trade-off between watermark power (and audibility), data rate

and detection performance. In fingerprinting, there is no such trade-off: the system

“listens” to the music, constructs a description of it and searches for a matching

description in its database.

Requirement of a Fingerprint Repository

A human listener can only identify a piece of music if he has heard it before, unless

he has access to more information than just the audio signal. Similarly, fingerprinting

systems require previous knowledge of the audio signals in order to identify them,

since no information other than the audio signal itself is available to the system in

the identification phase. Therefore, a musical knowledge database must be built. This

database contains the fingerprints of all the songs the system is supposed to identify.

During detection, the fingerprint of the input signal is calculated and a matching

algorithm compares it to all fingerprints in the database. The knowledge database

must be updated as new songs come out. As the number of songs in the database

grows, memory requirements and computational costs also grow; thus, the complexity

of the detection process increases with the size of the database.

In contrast, no database is required for detection in a watermarking system, as

all the information associated with a signal is contained in the watermark itself. The

detector checks for the presence of a watermark and, if one is found, it extracts the

data contained therein. Hence, watermarking requires no update as new songs come

out, and the complexity of the detection process is not changed when new audio

signals are watermarked.

Requirement of Previous Processing

For several applications, the need of previously processing audio signals, i.e. wa-

termark embedding, is a severe disadvantage of watermarking systems. For example,

watermarking-based distribution-monitoring systems would only be able to detect

copyright infringements if the copyrighted signals had been previously watermarked,
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which means that old non-watermarked material would not be protected at all. Ad-

ditionally, new material would have to be watermarked in all its distribution formats,

as even the availability of a small number of non-watermarked copies might compro-

mise system security. This is not an issue for audio fingerprinting systems, since no

previous processing is required.

Robustness

In watermark detection, the signal that contains useful information corresponds

to a small fraction of the input power, as the watermark is much weaker than the

original audio signal due to the inaudibility constraint. In addition, noise that might

be added to the watermarked signal (by MP3 compression or analog transmission,

for example) can be as strong, or even stronger, as the watermark. In case of severe

channel perturbation or piracy attack, the watermark may no longer be detectable.

In contrast, detection in fingerprinting systems is based on the audio signal itself,

which is strong enough to resist most channel perturbations and is less susceptible to

piracy attacks. Such systems are thus inherently more robust. As long as the origi-

nal audio in the knowledge database sounds approximately the same as the piece of

music that the system is “listening” to, their fingerprints will also be approximately

the same. The definition of “approximately” depends on the fingerprint extraction

procedure; therefore, the robustness of the system will also depend on it. Most finger-

printing systems use a psychoacoustic front-end approach to derive the fingerprint.

By doing so, the audio to analyze (and identify) can be strongly distorted with no

decrease in system performance.

Independence Between Signal and Information

The information contained in the watermark may have no direct relationship with

the carrier audio signal. For example, a radio station could embed the latest news

into the songs it airs through a watermark; at reception, the news would appear on

a small screen while the songs are played. In contrast, a fingerprint is correlated

with the audio signal from which it was extracted; any change in the audio signal

that is perceivable to a human listener should cause a change in the fingerprint. This
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fact is behind most differences in applications between the two approaches: while

watermarks can carry any kind of information, fingerprints always represent the audio

signal.

This independence between signal and information is derived from the fact that

watermarking systems only deal with information that has been previously added,

given that no connection to a database is provided. This information can be either

related or not with the audio signal in which it has been embedded. Fingerprinting can

extract information from the audio signal at different abstraction levels, depending

on the application and the usage scenario. The higher level abstractions for modeling

the audio and thus the fingerprinting hold the possibility to extend the applications

to content-based navigation, search by similarity and other applications of Music

Information Retrieval.

2.1.4.2 Summary

Audio watermarking allows one to embed information into an audio signal. Although

initially intended for copyright protection, watermarking is useful for a multitude of

purposes, particularly for the transport of general-purpose information. Audio finger-

printing does not add any information to the signal, since it uses significant acoustic

features to extract a unique fingerprint from it. In conjunction with a database,

this fingerprint can be used to identify the audio signal, which is useful in many

applications (copyright-related or not).

While information retrieved from a database by means of a fingerprint is always

related to a specific piece of music, information embedded into the signal by means of

a watermark may be of any kind. Watermarking can even be used as a replacement

(or a complement) for cryptography in secure communications. Watermarking has

therefore a broader range of applications than fingerprinting.

On the other hand, fingerprinting is inherently more robust than watermark-

ing: while the fingerprint extraction procedure makes use of the full audio signal

power, watermark detection is based on a fraction of the watermarked signal power
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(the watermark, which is several times weaker than the original audio signal due to

the inaudibility constraint). This means that fingerprinting will resist distortion at

higher levels than watermarking, which is a particularly attractive characteristic in

copyright-related applications. When both techniques apply, robustness may be a

strong argument in favor of fingerprinting. In addition, fingerprinting does not add

any information to the audio signal; one may track and identify a piece of audio al-

ready released (watermarked or not), in any recognizable format, by presenting one

example of the audio excerpt to the system. Assuming the cost of higher computa-

tional requirements and the need of a repository of the fingerprints, this approach

represents a flexible solution for copyright- and content-related applications.

An important lesson has been (re)learned from recent research on audio water-

marking: absolute protection against piracy is nothing more than an illusion. Sooner

or later (probably sooner), pirates will find their way into breaking new protection

schemes. The actual goal is to render piracy a less attractive (i.e. more expensive)

activity, and to “keep honest people honest”. Neither fingerprinting-based protection

systems may claim absolute invulnerability.

Copyright-related applications are still central to the research on both watermark-

ing and fingerprinting. However, recently-proposed added-value applications tend to

become more and more prominent in the years to come.

In the next Section we will review existing approaches for audio fingerprinting and

propose a general framework for the critical comparison of systems.

2.2 General Fingerprinting Framework

In this section we will review audio fingerprinting algorithms. In the literature, the

different approaches to fingerprinting are usually described with different rationales

and terminology depending on the background: Pattern matching, Multimedia (Mu-

sic) Information Retrieval or Cryptography (Robust Hashing). In this section, we
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review different techniques mapping functional parts to blocks of a unified frame-

work. In spite of the different rationales behind the identification task, methods

share certain aspects. As depicted in figure 2.2, there are two fundamental processes:

the fingerprint extraction and the matching algorithm. The fingerprint extraction

derives a set of relevant perceptual characteristics of a recording in a concise and

robust form. The fingerprint requirements include:

• Discrimination power over huge numbers of other fingerprints,

• Invariance to distortions,

• Compactness,

• Computational simplicity.

The solutions proposed to fulfill the above requirements imply a trade-off between

dimensionality reduction and information loss. The fingerprint extraction consists

of a front-end and a fingerprint modeling block (see Figure 2.2.1.2). The front-end

computes a set of measurements from the signal (see Section 2.2.1). The fingerprint

model block defines the final fingerprint representation, e.g: a vector, a trace of

vectors, a codebook, a sequence of indexes to HMM sound classes, a sequence of error

correcting words or musically meaningful high-level attributes (see Section 2.2.2).

Given a fingerprint derived from a recording, the matching algorithm searches a

database of fingerprints to find the best match. A way of comparing fingerprints, that

is a similarity measure, is therefore needed (see Section 2.2.3.1). Since the number of

fingerprint comparisons is high in a large database and the similarity can be expen-

sive to compute, we require methods that speed up the search. Some fingerprinting

systems use a simpler similarity measure to quickly discard candidates and the more

precise but expensive similarity measure for the reduced set of candidates. There

are also methods that pre-compute some distances off-line and build a data structure

that allows reducing the number of computations to do on-line (see Section 2.2.3.2).
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According to (Baeza-Yates and Ribeiro-Neto, 1999), good searching methods should

be:

• Fast: Sequential scanning and similarity calculation can be too slow for huge

databases.

• Correct: Should return the qualifying objects, without missing any — i.e: low

False Rejection Rate (FRR).

• Memory efficient: The memory overhead of the search method should be rela-

tively small.

• Easily up-datable: Insertion, deletion and updating of objects should be easy.

The last block of the system – the hypothesis testing (see Figure 2.2) – computes a

reliability measure indicating how confident the system is about an identification (see

Section 2.2.4).

Front-end Fingerprint 
modeling

Fingerprint extraction

Audio signal

Hypothesis
testing

Matching

Audio metadata

Fingerprints
+

Metadata
    DB   

Database
look-up

Similarity

Search 

Figure 2.6: Content-based Audio Identification Framework.
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2.2.1 Front-End

The front-end converts an audio signal into a sequence of relevant features to feed

the fingerprint model block (see Figure 2.2.1.2). Several driving forces co-exist in the

design of the front-end:

• Dimensionality reduction

• Perceptually meaningful parameters (similar to those used by the human audi-

tory system)

• Invariance / robustness (to channel distortions, background noise, etc.)

• Temporal correlation (systems that capture spectral dynamics).

In some applications, where the audio to identify is coded, for instance in mp3, it

is possible to by-pass some of the following blocks and extract the features from the

audio coded representation.

2.2.1.1 Preprocessing

In a first step, the audio is digitalized (if necessary) and converted to a general for-

mat, e.g: mono PCM (16 bits) with a fixed sampling rate (ranging from 5 to 44.1

KHz). Sometimes the audio is preprocessed to simulate the channel, e.g: band-pass

filtered in a telephone identification task. Other types of processing are a GSM

coder/decoder in a mobile phone identification system, pre-emphasis, amplitude nor-

malization (bounding the dynamic range to (-1,1)).

2.2.1.2 Framing and Overlap

A key assumption in the measurement of characteristics of an audio signal is that the

signal can be regarded as stationary over an interval of a few milliseconds. Therefore,

the signal is divided into frames of a size comparable to the variation velocity of the

underlying acoustic events. The number of frames computed per second is called
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frame rate. A tapered window function is applied to each block to minimize the dis-

continuities at the beginning and end. Overlap must be applied to assure robustness

to shifting (i.e. when the input data is not perfectly aligned to the recording that was

used for generating the fingerprint). There is a trade-off between the robustness to

shifting and the computational complexity of the system: the higher the frame rate,

the more robust to shifting the system is but at a cost of a higher computational load.

Preprocessing

Framing&Overlap

Transform

Feature extract.

Post-Processing

Audio

Audio
Fingerprint

Frame size = 10-500 ms
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Figure 2.7: Fingerprint Extraction Framework: Front-end (top) and Fingerprint mod-
eling (bottom).
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2.2.1.3 Linear Transforms: Spectral Estimates

The idea behind linear transforms is the projection of the set of measurements to

a new set of features. If the transform is suitably chosen, the redundancy is signif-

icantly reduced. There are optimal transforms in the sense of information packing

and decorrelation properties, like Karhunen-Loève (KL) or Singular Value Decompo-

sition (SVD) (Theodoris and Koutroumbas, 1999). These transforms, however, are

problem dependent and computationally complex. For that reason, lower complexity

transforms using fixed basis vectors are common. Most CBID methods therefore use

standard transforms from time to frequency domain to facilitate efficient compres-

sion, noise removal and subsequent processing. Lourens (1990), (for computational

simplicity), and Kurth et al. (2002), (to model highly distorted sequences, where the

time-frequency analysis exhibits distortions), use power measures. The power can

still be seen as a simplified time-frequency distribution, with only one frequency bin.

The most common transformation is the Discrete Fourier Transform (DFT). Some

other transforms have been proposed: the Discrete Cosine Transform (DCT), the Haar

Transform or the Walsh-Hadamard Transform (Subramanya et al., 1999). Richly et

al. did a comparison of the DFT and the Walsh-Hadamard Transform that revealed

that the DFT is generally less sensitive to shifting (Richly et al., 2000). The Modu-

lated Complex Transform (MCLT) used by Mihçak and Venkatesan (2001) and also

by Burges et al. (2003) exhibits approximate shift invariance properties (Mihçak and

Venkatesan, 2001).

2.2.1.4 Feature Extraction

Once on a time-frequency representation, additional transformations are applied in

order to generate the final acoustic vectors. In this step, we find a great diversity of

algorithms. The objective is again to reduce the dimensionality and, at the same time,

to increase the invariance to distortions. It is very common to include knowledge of

the transduction stages of the human auditory system to extract more perceptually
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meaningful parameters. Therefore, many systems extract several features perform-

ing a critical-band analysis of the spectrum (see Fig.3). In (Cano et al., 2002a; Blum

et al., 1999), Mel-Frequency Cepstrum Coefficients (MFCC) are used. In (Allamanche

et al., 2001), the choice is the Spectral Flatness Measure (SFM), which is an estima-

tion of the tone-like or noise-like quality for a band in the spectrum.Papaodysseus

et al. (2001) presented the “band representative vectors”, which are an ordered list of

indexes of bands with prominent tones (i.e. with peaks with significant amplitude).

Energy of each band is used by Kimura et al. (2001). Normalized spectral subband

centroids are proposed by Seo et al. (2005). Haitsma et al. use the energies of 33

bark-scaled bands to obtain their “hash string”, which is the sign of the energy band

differences (both in the time and the frequency axis) (Haitsma et al., 2001; Haitsma

and Kalker, 2002b).

Sukittanon and Atlas claim that spectral estimates and related features only are

inadequate when audio channel distortion occurs (Sukittanon and Atlas, 2002; Sukit-

tanon et al., 2004). They propose modulation frequency analysis to characterize the

time-varying behavior of audio signals. In this case, features correspond to the geo-

metric mean of the modulation frequency estimation of the energy of 19 bark-spaced

band-filters.

Approaches from music information retrieval include features that have proved

valid for comparing sounds: harmonicity, bandwidth, loudness (Blum et al., 1999).

Burges et al. point out that the features commonly used are heuristic, and as

such, may not be optimal (Burges et al., 2002). For that reason, they use a modified

Karhunen-Loève transform, the Oriented Principal Component Analysis (OPCA),

to find the optimal features in an “unsupervised” way. If PCA (KL) finds a set

of orthogonal directions which maximize the signal variance, OPCA obtains a set

of possible non-orthogonal directions which take some predefined distortions into

account.
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Figure 2.8: Feature Extraction Examples

2.2.1.5 Post-processing

Most of the features described so far are absolute measurements. In order to bet-

ter characterize temporal variations in the signal, higher order time derivatives are

added to the signal model. In (Cano et al., 2002a) and (Batlle et al., 2002), the

feature vector is the concatenation of MFCCs, their derivative (delta) and the accel-

eration (delta-delta), as well as the delta and delta-delta of the energy. Some systems

only use the derivative of the features, not the absolute features (Allamanche et al.,

2001; Kurth et al., 2002). Using the derivative of the signal measurements tends to

amplify noise (Picone, 1993) but, at the same time, filters the distortions produced

in linear time invariant, or slowly varying channels (like an equalization). Cepstrum

Mean Normalization (CMN) is used to reduce linear slowly varying channel distortions
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in (Batlle et al., 2002). If Euclidean distance is used (see Section 2.2.3.1), mean sub-

traction and component wise variance normalization are advisable.Park et al. (2006)

propose a frequency-temporal filtering for a robust audio fingerprinting schemes in

real-noise environments. Some systems compact the feature vector representation

using transforms (e.g: PCA (Cano et al., 2002a; Batlle et al., 2002)).

It is quite common to apply a very low resolution quantization to the features:

ternary (Richly et al., 2000) or binary (Haitsma and Kalker, 2002b; Kurth et al.,

2002). The purpose of quantization is to gain robustness against distortions (Haitsma

and Kalker, 2002b; Kurth et al., 2002), normalize (Richly et al., 2000), ease hard-

ware implementations, reduce the memory requirements and for convenience in sub-

sequent parts of the system. Binary sequences are required to extract error correcting

words utilized in (Mihçak and Venkatesan, 2001; Kurth et al., 2002). In (Mihçak and

Venkatesan, 2001), the discretization is designed to increase randomness in order to

minimize fingerprint collision probability.

2.2.2 Fingerprint Models

The fingerprint modeling block usually receives a sequence of feature vectors calcu-

lated on a frame by frame basis. Exploiting redundancies in the frame time vicinity,

inside a recording and across the whole database, is useful to further reduce the fin-

gerprint size. The type of model chosen conditions the similarity measure and also

the design of indexing algorithms for fast retrieval (see Section 2.2.3).

A very concise form of fingerprint is achieved by summarizing the multidimen-

sional vector sequences of a whole song (or a fragment of it) in a single vector.

Etantrum (Etantrum, 2002) calculates the vector out of the means and variances

of the 16 bank-filtered energies corresponding to 30 sec of audio ending up with a

signature of 512 bits. The signature along with information on the original audio

format is sent to a server for identification. Relatable’s TRM signature (TRM, 2002)

includes in a vector: the average zero crossing rate, the estimated beats per minute
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(BPM), an average spectrum and some more features to represent a piece of audio

(corresponding to 26 sec). The two examples above are computationally efficient and

produce a very compact fingerprint. They have been designed for applications like

linking mp3 files to editorial meta-data (title, artist and so on) and are more tuned for

low complexity (both on the client and the server side) than for robustness (cropping

or broadcast streaming audio).

Fingerprints can also be sequences (traces, trajectories) of features. This finger-

print representation is found in (Blum et al., 1999), and also in (Haitsma and Kalker,

2002b) as binary vector sequences. The fingerprint in (Papaodysseus et al., 2001),

which consists on a sequence of “band representative vectors”, is binary encoded for

memory efficiency.

Some systems, include high-level musically meaningful attributes, like rhythm

( (Kirovski and Attias, 2002)) or prominent pitch (see (TRM, 2002) and (Blum et al.,

1999)).

Following the reasoning on the possible sub-optimality of heuristic features, Burges

et al. (2002) employ several layers of OPCA to decrease the local statistical redun-

dancy of feature vectors with respect to time. Besides reducing dimensionality, extra

robustness requisites to shifting1 and pitching2 are accounted in the transformation.

“Global redundancies” within a song are exploited in (Allamanche et al., 2001). If

we assume that the features of a given audio item are similar among them (e.g: a cho-

rus that repeats in a song probably hold similar features), a compact representation

can be generated by clustering the feature vectors. The sequence of vectors is thus

approximated by a much lower number of representative code vectors, a codebook.

The temporal evolution of audio is lost with this approximation. Also in (Allamanche

et al., 2001), short-time statistics are collected over regions of time. This results in

both higher recognition, since some temporal dependencies are taken into account,

and a faster matching, since the length of each sequence is also reduced.

1Shifting refers to a displacement of the audio signal in time with respect to the original signal
2Pitching is playing an audio file faster. It produces frequency distortions
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Cano et al. (2002a) and Batlle et al. (2002, 2004) use a fingerprint model that

further exploits global redundancy. The rationale is very much inspired on speech

research. In speech, an alphabet of sound classes, i.e. phonemes can be used to seg-

ment a collection of raw speech data into text achieving a great redundancy reduction

without “much” information loss. Similarly, we can view a corpus of music, as sen-

tences constructed concatenating sound classes of a finite alphabet. “Perceptually

equivalent” drum sounds, say for instance a hi-hat, occurs in a great number of pop

songs. This approximation yields a fingerprint which consists in sequences of indexes

to a set of sound classes representative of a collection of recordings. The sound classes

are estimated via unsupervised clustering and modeled with Hidden Markov Models

(HMMs) (Batlle and Cano, 2000). Statistical modeling of the signal’s time course

allows local redundancy reduction. The fingerprint representation as sequences of in-

dexes to the sound classes retains the information on the evolution of audio through

time.

In (Mihçak and Venkatesan, 2001), discrete sequences are mapped to a dictionary

of error correcting words. In (Kurth et al., 2002), the error correcting codes are at

the basis of their indexing method.

2.2.3 Similarity measures and Searching Methods

2.2.3.1 Similarity measures

Similarity measures are very much related to the type of model chosen. When com-

paring vector sequences, a correlation metric is common. The Euclidean distance, or

slightly modified versions that deal with sequences of different lengths, are used for

instance in (Blum et al., 1999). In (Sukittanon and Atlas, 2002), the classification

is Nearest Neighbor using a cross entropy estimation. In the systems where the vec-

tor feature sequences are quantized, a Manhattan distance (or Hamming when the

quantization is binary) is common (Haitsma and Kalker, 2002b; Richly et al., 2000).

Mihçak and Venkatesan (2001) suggest that another error metric, which they call
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“Exponential Pseudo Norm” (EPN), could be more appropriate to better distinguish

between close and distant values with an emphasis stronger than linear.

So far we have presented an identification framework that follows a template

matching paradigm (Theodoris and Koutroumbas, 1999): both the reference patterns

– the fingerprints stored in the database – and the test pattern – the fingerprint ex-

tracted from the unknown audio – are in the same format and are compared according

to some similarity measure, e.g: hamming distance, a correlation and so on. In some

systems, only the reference items are actually “fingerprints” – compactly modeled as

a codebook or a sequence of indexes to HMMs (Allamanche et al., 2001),(Batlle et al.,

2002, 2003). In these cases, the similarities are computed directly between the fea-

ture sequence extracted from the unknown audio and the reference audio fingerprints

stored in the repository. In (Allamanche et al., 2001), the feature vector sequence is

matched to the different codebooks using a distance metric. For each codebook, the

errors are accumulated. The unknown item is assigned to the class which yields the

lowest accumulated error. In (Batlle et al., 2002), the feature sequence is run against

the fingerprints (a concatenation of indexes pointing at HMM sound classes) using

the Viterbi algorithm. The most likely passage in the database is selected.

2.2.3.2 Searching methods

A fundamental issue for the usability of a fingerprinting system is how to efficiently do

the comparison of the unknown audio against the possibly millions of fingerprints. A

brute-force approach that computes the similarities between the unknown recording’s

fingerprint and those stored in the database can be prohibitory. The time for finding

a best match in this linear or sequential approach is proportional to Nc (d ()) + E,

where N is the number of fingerprints in the repository and c (d ()) the time needed

for a single similarity calculation and E accounts for some extra CPU time.

Pre-computing distances off-line One cannot pre-calculate off-line similarities

with query fingerprint because the fingerprint has not been previously presented to
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the system. However one can pre-compute distances among the fingerprints regis-

tered in the repository and build a data structure to reduce the number of similarity

evaluations once the query is presented. It is possible to build sets of equivalence

classes off-line, calculate some similarities on-line to discard some classes and search

exhaustively the rest(see for example (Kimura et al., 2001)). If the similarity mea-

sure is a metric, i.e: the similarity measure is a function that satisfies the following

properties: positiveness, symmetry, reflexivity and the triangular inequality, there

are methods that reduce the number of similarity evaluations and guarantee no false

dismissals (see (Chávez et al., 2001)). Vector spaces allow the use of efficient exist-

ing spatial access methods (Faloutsos et al., 1994). An example of such an indexing

scheme is (Miller et al., 2005).

Filtering unlikely candidates with a cheap similarity measure Another

possibility is to use a simpler similarity measure to quickly eliminate many candidates

and the more precise but complex on the rest, e.g: in (Kenyon, 1993; Kastner et al.,

2002). As demonstrated in (Faloutsos et al., 1994), in order to guarantee no false

dismissals, the simple ( coarse) similarity used for discarding unpromising hypothesis

must lower bound the more expensive (fine) similarity.

Inverted file indexing A very efficient searching method use of inverted files

indexing. Haitsma et al. proposed an index of possible pieces of a fingerprint that

points to the positions in the songs. Provided that a piece of a query’s fingerprint is

free of errors (exact match), a list of candidate songs and positions can be efficiently

retrieved to exhaustively search through (Haitsma and Kalker, 2002b,a). In (Cano

et al., 2002a), indexing and heuristics similar to those used in computational biology

for the comparison of DNA are used to speed up a search in a system where the

fingerprints are sequences of symbols. Kurth et al. (2002) present an index that use

code words extracted from binary sequences representing the audio. Sometimes these

approaches, although very fast, make assumptions on the errors permitted in the

words used to build the index which could result in false dismissals.

Candidate pruning A simple optimization to speed up the search is to keep the
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best score encountered thus far. We can abandon a similarity measure calculation

if at one point we know we are not going to improve the best-so-far score (see for

instance (Kimura et al., 2001; Kashino et al., 2003)).

Other approaches Some similarity measures can profit from structures like suf-

fix trees to avoid duplicate calculations (Baeza-Yates and Ribeiro-Neto, 1999). In

one of the setups of (Wang and SmithII, 2002), the repository of fingerprints is split

into two databases. The first and smaller repository holds fingerprints with higher

probability of appearance, e.g: the most popular songs of the moment, and the other

repository with the rest. The queries are confronted first with the small and more

likely repository and only when no match is found does the system examine the sec-

ond database. Production systems actually use several of the above depicted speed-up

methods. (Wang and SmithII, 2002) for instance, besides searching first in the most

popular songs repository, uses an inverted file indexing for fast accessing the finger-

prints along with a heuristic to filter out unpromising candidates before it exhaustively

searches with the more precise similarity measure.

2.2.4 Hypothesis Testing

This last step aims to answer what is the confidence for a positive match as well as

whether the query is present or not in the repository of items to identify. During

the comparison of the extracted fingerprint to the database of fingerprints, scores

(resulting from similarity measures) are obtained. In order to decide that there is a

correct identification, the score needs to be beyond a certain threshold. It is not easy

to choose a threshold since it depends on: the used fingerprint model, the discrim-

inative information of the query, the similarity of the fingerprints in the database,

and the database size. The larger the database, the higher the probability of wrongly

indicating a match by chance, that is a false positive3 Approaches to deal with false

3The false positive rate is also named false acceptance rate (FAR) or false alarm rate. The false
negative rate appears also under the name of false rejected rate (FRR). The nomenclature is related
to the Information Retrieval performance evaluation measures: Precision and Recall (Baeza-Yates
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positives have been explicitly treated for instance in (Haitsma and Kalker, 2002b;

Cano et al., 2001; Lourens, 1990).

2.2.5 Summary

We have presented a review of the research carried out in the area of audio fin-

gerprinting. An audio fingerprinting system generally consists of two components:

an algorithm to generate fingerprints from recordings and algorithm to search for a

matching fingerprint in a fingerprint database. We have shown that although differ-

ent researchers have taken different approaches, the proposals more or less fit in a

general framework.

In the following Section we present in detail a fingerprinting implementation orig-

inally conceived for broadcast audio monitoring.

2.3 Identification of Broadcast Music

This section describes the development of an audio fingerprint called AudioDNA de-

signed to be robust against several distortions including those related to radio broad-

casting. A complete system, covering also a fast and efficient method for comparing

observed fingerprints against a huge database with reference fingerprints is described.

The promising results achieved with the first prototype system observing music titles

as well as commercials are presented. The system was developed in the context of

the European project RAA (http://raa.joanneum.at).

2.3.1 Introduction

A monitoring system able to automatically generate play lists of registered songs

can be a valuable tool for copyright enforcement organizations and for companies

reporting statistics on the music broadcast.

and Ribeiro-Neto, 1999).
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The difficulty inherent in the task of identifying broadcast audio material is mainly

due to the difference of quality of the original titles, usually stored on Audio CD and

the quality of the broadcast ones. The song is transmitted partially, the presenter

talks on top of different fragments, the piece is maybe played faster and several manip-

ulation effects are applied to increase the listeners’ psychoacoustic impact (compres-

sors, enhancers, equalization, bass booster). Moreover, in broadcast audio streams

there are no markers indicating the begin and the end of the songs.

Such a system also has to be fast because it must do comparisons with several

thousand songs. This affects the memory and computation requisites since the system

should observe several radio stations, give results on-line and should not be very

expensive in terms of hardware.

The section describes an approach to the problem. It proposes a modeling of

audio aimed at being robust to different distortions in an adverse environment: radio

broadcasting. Along with an explanation of the fingerprint matching algorithms, we

present some results and conclusions.

The overall functionality of this system—as well as any fingerprinting system—

mimics the way humans perform the task. Off-line a memory of the songs to be

recognized is created; in the identification mode, unlabeled audio is presented to the

system to look for a match. It is possible to distinguish two operating modes:

Building the database: The collection of songs to be recognized is presented to

the system. The system processes the audio signals extracting unique representations

based on their acoustic characteristics. This compact and unique representation is

stored in a database and each fingerprint is linked with a tag or other metadata

relevant to each recording.

Actual Audio Identification: The unlabeled audio is processed in order to extract

the fingerprint. The fingerprint is then compared to the fingerprints of the database.

If a match is found, the tag associated with the work is obtained from the database.

A confidence of the match is also provided.

Again, there is a trade-off between robustness and computational costs. Some
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methods are designed to be very scalable but less flexible with respect to the distor-

tions on the audio, or the need for the whole song for a correct identification. The

proposed system falls into the category of robust fingerprinting technologies. It is

designed to be identifying audio titles even if a fragment that has undergone distor-

tions is used as query. The distortions robust systems aim to answer are enumerated

for instance in Mihçak and Venkatesan (2001); Haitsma et al. (2001); Allamanche

et al. (2001); Papaodysseus et al. (2001). What we present in the next section is a

description of the manipulations radio stations perform (Plaschzug et al., 2000).

2.3.2 Broadcast audio processing distortions

Radio stations use complex sound processing to get more loudness and a more impres-

sive sound. The major intention of these stations is to attract listeners by sending at

higher average energy than other stations in a certain area. How this is achieved in

detail is different at each radio station. Most radio stations use bass compressions and

enhancements, equalizing, frequency selective compressions and exciting, full-range

compressions and exciting.

Typically radio stations can get out 10dB more over-all average level and more

with these sound effects. Moreover, they enlarge the stereo base which enhances

the impression of stereo listening, even if the two loudspeakers are separated by a

small distance only. Some stations use “pitching”, i.e. they play the songs faster.

In order to save memory, digital audio data are coded using compression algorithms.

In Europe, the most commonly used sound processors are the“Optimod” and the

“Omnia” system. Unfortunately, all radio stations consider their way of using these

devices (sequence of effects, parameter settings) as their intellectual property, and

there is no way of getting any details. A number of effect devices are used in order

to prepare a signal for broadcasting.

CompressorLimiter

These effects are used in order to ensure the headroom of digital systems while
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avoiding clippings. If one reduces the dynamic range of a signal and defines a lower

maximum level it is possible to push the whole range to a higher average level. This

attracts attention to particular radio stations while “zapping” through the offer.

Every recording has its specific dynamic range – even in one stylistic area you

have different song characters and different ways of producing the mix. In order to

unify the average levels of different pieces dynamic compressors are used, mostly in

combination with limiters in order to achieve a fixed maximum level.

Stereo Base-width

All stations enlarge the stereo base-width. This is done to achieve the feeling of

sitting in a living room even while listening music in a car. The effect devices delay

each channel and mix the result crosswise with the opposite channel. This causes

changes of the signals-to-phase relations of both stereo channels. In extreme cases

the mono compatibility decreases. That means that parts of the full frequency range

disappear in a mono mix. Sometimes whole instruments vanish.

Exciter Enhancer

Exciters, also named enhancers, add psycho acoustic effects on audio material by

changing the hull curve without changing levels. The principle of work is to add

generated harmonics to the original. The signal is cut off at a frequency threshold

between 2 and 6 kHz. The remaining spectrum above is the base for the harmonic

generator. This produces an addition of distortion. How sharp or mellow this is

perceived depends on the mix between even and odd numbered harmonics. After

that the effect is mixed with the original. Modern exciters do not add the distortions

over the whole hull curve. They just select strong signal transients. The effects are

a more brilliant sound without adding more high frequency level, a better speech

understanding, direct attacks of percussive sounds and a wider angle for tweeters

without adding undesired sharpness.

Pitching

“Pitching” is an effect with which the songs in a radio broadcast are played faster.

Sometimes stations use pitching up to 2,5% to achieve two goals: playing more songs
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Figure 2.9: Pitching Effect in Energy per Semitone

per hour and getting more “kick/attraction” for listeners.

In Figure 2.9 the results of applying pitching are shown. The song corresponds

to Believe by Cher and it has been broadcast 1.7% faster than the original CD from

a German radio station. The figure the energy content per each semitone, the x-axis

corresponds to time and the y-axis corresponds to semitones. A leaking of energy into

the upper semitones is appreciated in the broadcast version. Although this effect is

less used nowadays, the distortion can affect the performance of some fingerprinting

systems depending on the features and modeling used.

Sound Processors

Professional radio stations use complex sound processors which comprise all of

the effects devices discussed above (e.g. Omnia or Optimod). Sometimes, the re-

sults are better if the signal is compressed a little bit (2:1) before going through

the sound processor, so other compressors are used before sending the signal into

the sound processor. Also the stereo base-width is often enlarged by other systems.

Figure 2.10 visualizes a sample setup of sound processing effects. However, high-end

sound processors allow for changing both the parameters of each of the effects devices
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Figure 2.10: Sample setup in a radio station

as well as their sequence.

In figure 2.10, we see a selective bass compression with optimized parameters, fol-

lowed by a parametric equalizer for the low mid spectrum (often called “presence”).

The next block includes a crossover frequency splitting (5 bands) for selective com-

pressions. Sometimes, in the upper bands, one can find additional exciters. After

summing up the different edited frequency bands we have a full range exciter. After

a final compressor/limiter the signal goes out to the FM-modulation.

2.3.3 System Overview

In this scenario, a particular abstraction of audio to be used as robust fingerprint

is presented: audio as sequence of acoustic events (Batlle and Cano, 2000). Such a

sequence identifies a music title. In analogy to the biological terminology the acoustic

events are named AudioGenes (Neuschmied et al., 2001). A piece of music is composed

of a sequence of audio genes which is called the AudioDNA. As an analogy we can take

the speech case, where speech events are described in terms of phonemes. However,

in music modeling it is not so straightforward. For example the use of musical notes

would have disadvantages: Most often notes are played simultaneously and music

samples contain additional voices or other sounds. The approach is to learn the

relevant acoustic events, AudioGenes, through unsupervised training that is, without

any previous knowledge of music events. The training is performed through a modified

Baum- Welch algorithm on a corpus of representative music (Batlle and Cano, 2000).
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Shortly the whole system works as follows, off-line and out of a collection of

music representative of the type of songs to be identified, an alphabet of sounds that

best describes the music is derived. These audio units are modeled with Hidden

Markov Models (HMM) (Rabiner, 1990). The unlabeled audio and the set of songs

are decomposed in these audio units ending up with a sequence of symbols for the

unlabeled audio and a database of sequences representing the original songs. By

approximate string matching the song sequences that best resembles the sequence of

the unlabeled audio is obtained.

2.3.3.1 Fingerprint Extraction: AudioDNA

The audio data is Prue-processed by a front-end in a frame-by-frame analysis. In the

first block a set of relevant feature(s) vectors are extracted from the sound. Within

the front end, a normalization of feature vectors as well as some other processing is

done before the decoding block (Haykin, 1996). In the decoding block, the feature

vectors are run against the statistical models of the AudioGenes using the Viterbi al-

gorithm (Viterbi, 1970). As a result, the most likely AudioDNA sequence is produced

(see Figure 2.11).

2.3.3.2 Front-end

The first stage in a classification system is the obtainment of a set of values that

represent the main characteristics of the audio samples. A key assumption made at

this step is that the signal can be regarded as stationary over an interval of a few

milliseconds. Thus, the prime function of the front-end parameterization stage is to

divide the input sound into blocks and from each block derive some features, like a

smoothed spectral estimate.

The spacing between blocks is around 10 ms and blocks are overlapped to give

a longer analysis window, typically 25 ms. As with all processing of this type, a

tapered window function (e.g. Hamming) is applied to each block so as to minimize
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Figure 2.11: Block diagram of the fingerprinting system

the signal discontinuities at the beginning and end of each frame (Oppenheim and

Schafer, 1989).

It is well known that the human ear performs some kind of signal processing before

the audio signal enters the brain. Since this processing has proved to be robust in

front of several kinds of noises and distortions in the area of speech recognition, it

seems reasonable to use a similar signal front-end processing for music in the system.

The required spectral estimates are computed via Fourier analysis and there are a

number of additional transformations that can be applied in order to generate the

final acoustic vectors. To illustrate one typical arrangement, the figure 2.12 shows

the front-end to generate Mel-Frequency Cepstral Coefficients (MFCCs).

To compute MFCC coefficients, the Fourier spectrum is smoothed by integrat-

ing the spectral coefficients within triangular frequency bins arranged on a non-linear

scale called the Mel-scale. The Mel-scale is designed to approximate the frequency res-

olution of the human ear being linear up to 1,000 Hz and logarithmic thereafter (Rug-

gero, 1992). In order to make the statistics of the estimated song power spectrum

approximately Gaussian, logarithmic (compression) conversion is applied to the filter-

bank output.
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The final processing stage is to apply the Discrete Cosine Transform to the log

filter-bank coefficients. This has the effect of compressing the spectral information

into the lower order coefficients and it also de-correlates them (Batlle et al., 1998).

The acoustic modeling based on HMM assumes that each acoustic vector is in-

dependent with its neighbors. This is a rather poor assumption since physical con-

straints of the musical instruments ensure that there is continuity between successive

spectral estimates. However, appending the first and second order differentials to the

basic static coefficients will greatly reduce the problem. Obviously, there are more

acoustic features that can be extracted to feed the models.

Figure 2.12: Front-end feature extraction.
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Figure 2.13: Hidden Markov Model process example

2.3.3.3 Fingerprint modeling: HMM Acoustic-models

The purpose of the acoustic models is to provide a method of calculating the likelihood

of any sequence of AudioDNA given a vector sequence Y. Each individual AudioGenes

is represented by a Hidden Markov model (HMM) (Rabiner, 1990). An HMM is most

easily understood as a generator of vector sequences. It is a finite state machine

which changes state once every time unit and each time t that a state j is entered,

an n acoustic vector yt is generated with probability density bj(yt). Furthermore, the

transition from state i to state j is also probabilistic and governed by the discrete

probability aij. In the figure 2.13 we show an example of this process where the model

moves through the state sequence X = 1, 1, 2, 2, 2, 2, 2, 3, 3, 3 in order to generate the

10 observation vectors of k-index model.

The joint probability of a vector sequence Y and state sequence X given some

model M is calculated simply as the product of the transition probabilities and the

output probabilities. The joint probability of an acoustic vector sequence Y and some
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state sequence X = x(1), x(2), x(3), . . . , x(T ) is:

P (Y, X|M) = ax(0)x(1)

T∏

t=1

bx(t)(yt)ax(t)x(t+1) (2.1)

In practice only the observation sequence Y is known and the underlying state

sequence X is hidden. This is why it is called Hidden Markov Model.

For the decoding of AudioGenes sequences, the trained models are run against

the feature vectors using the Viterbi algorithm (Viterbi, 1970). As a result, the most

probable path through the models is found, providing a sequence of AudioGenes and

the points in time for every transition from one model to the following.

The Viterbi algorithm is an efficient algorithm to find the state sequence that

most likely produced the observations. Let φj(t) represent the maximum likelihood

of observing acoustic vectors y1 to yt and being in state j at time t. This partial

likelihood can be computed using the following recursion

φj(t) = max
i

{φj(t − 1) · aij}bj(yt) (2.2)

where

φ1(1) = 1 (2.3)

φj(1) = a1jbj(y1) (2.4)

for 1 < j < N . The maximum likelihood P ′(Y |M) is then given by

φN(T ) = max
i

{φj(T )aiN} (2.5)

By keeping track of the state j giving the maximum value in the above recursion

formula, it is possible, at the end of the input sequence, to retrieve the states visited

by the best path, thus obtaining the most probable AudioDNA sequence for the given

input frames.

As it has been shown, the algorithm performs the backtracking at the end of the
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audio data. When dealing with streaming audio data, like when observing a radio

broadcast, it is necessary to provide the AudioDNA sequence in real time (plus a

little latency time). Fortunately, it is possible to modify the algorithm to work on-

line (Loscos et al., 1999). To do so, the backtracking is adapted to determine the

best path at each frame iteration instead of waiting until the end of the utterance.

Doing so it is possible to detect that the sequence of AudioGenes up to a point has

converged, that is to say, it has become stationary and included in the best path from

a certain time on, they can be extracted. The time of convergence is variable and

depends on the probabilistic modeling of the sound with the current HMMs.

The AudioDNA representation results then in a sequence of letters, the Gens, and

temporal information, start time and duration (see Figure 2.14). The actual number

of different Gens as well as the output rate can be adjusted. The setup used in the

Experimental Results section corresponds to AudioDNA of 32 different Gens and an

average output rate of 800 Gens per minute.

2.3.3.4 Similarity search: Approximate Matching

After the extraction of the fingerprint, the next important part of the proposed sys-

tem is the matching component, i.e. the module which compares fingerprints from

observed audio signals against reference fingerprints in a database. As the main re-

quirement on the proposed fingerprint system is robustness against several kinds of

signal distortions, the actual fingerprint from an observed signal will not be fully iden-

tical to the reference database (see Figure 2.14). And as the system is designed to

monitor audio streams with unknown begin/end time of particular titles, the match-

ing component has to take care about this fact as well. Every database management

system (DBMS) has to be able to perform exact matching, i.e. retrieve data records

according to a given query, usually specified as SQL statement. In addition to these

exact matching possibilities there are usually some enhancements to support typical

text applications, e.g. string search techniques which sometimes contain approximate

matching capabilities, like phonetic search. However, these methods cannot be applied
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Figure 2.14: Possible changes in the broadcast vs. original fingerprint

to our requirements, as those algorithms are optimized to support certain languages

and are based on special dictionaries. Besides the problem of approximate matching,

there is also another important design goal: the algorithm has to be very fast and

efficient, i.e. identifying one title against a database with some 100,000 fingerprints

considerably faster than real-time. Such scalability features allow the observation of

several audio streams in parallel.

AudioDNA Properties AudioGenes have additional time information, which

is a significant difference to standard string applications, but this information can

be exploited in the matching algorithm. Figure 6 shows the most important cases

besides the identical match, which may occur when comparing observed with original

AudioDNA fingerprints:

1. identical genes are detected, but their time borders are different

2. parts having different genes

3. additional genes are present in the same time interval

4. the average length of genes is different (typical case with pitching effects)

String algorithms which are necessary to approach the above issues are a tradi-

tional area of study in computer science. In recent years their importance has grown
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dramatically with the huge increase of electronically stored text and of molecular

sequence data produced by various genome projects. In our applied matching al-

gorithm there are two main processing steps, which use the same principal method

as FASTA (Pearson and Lipman, 1988; Gusfield, 1997), one of the most effective

practical database search methods for biological gene sequences:

1. reduce the search space by exact matching of short subsequences

2. apply approximate matching algorithms starting at the positions of the previ-

ously found positions

Matching Process Short subsequences of AudioDNA from an observed audio

stream are continuously extracted and compared with the fingerprints in the database.

If an identical subsequence is found, the matching result will be stored in a balanced

tree data structure for further processing steps. One node of this tree contains a list

of exact matching results of one title. Only results appearing in the right chrono-

logical order will be appended to a node. In addition the time length information is

used to discard non-promising nodes. If a node contains a certain amount of exact

matching results, an approximate matching method is applied to detect similarities

of longer sequences starting at the position of the exact matches. The calculation of

the similarity of sequences is a standard application of dynamic programming. Again

the embedded time information of audio genes is used to apply a very fast and simple

approximate matching method.

The exact matching process yields a time base for aligning the two AudioDNA

to be compared. This alignment allows determining the time intervals ∆tequal where

equal audio genes occur. The similarity S of the AudioDNA sequences in a specific

time period ∆tobs is given by the equation:

S(∆tobs) =

∑n
t=1 ∆tequal(i)

∆tobs

(2.6)

where ∆tequal(1) is the first and ∆tequal(n) is the last ∆tequal(i) in the time period
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∆tobs. S can be computed in O(N) time where N is the length of the compared

sequence.

The actual result (matching music title or “unknown”) of the approximate match-

ing process is finally derived from an empiric model using these similarity values.

2.3.4 Experiments

The database of reference fingerprints used to perform experiments contains roughly

50,000 music titles. For the following described robustness tests it will be expected

that an audio title can be observed at least for six seconds. Principally the minimal

length of a song which can be detected depends on the quality and significance of the

observed audio signal. If the system fails to detect a title (result ‘unknown’) which

is included in the database, the test result is called a “false negative”. On the other

hand, the detection of wrong titles is called “false positive”, which is more annoying

when deploying the system for copyright enforcement and to share the royalties among

the artists whose music was broadcast.

Radio Broadcast The audio signal captured from radio broadcast is influenced

by different transmission and manipulation effects. In a preliminary experiment 12

hours of continuously broadcast material of different stations were captured to test

the recognition performance of the system The evaluation of this test material yielded

very promising results. All titles included in the reference database (104 titles) were

detected. Especially important, there were no false positive results. At this point,

intensive testing with many more hours of radio is compulsory.

Coding Formats & Compression The system was also tested against different

audio coding formats and compression rates. 200 titles have been chosen and stored

in several formats.

No false positives were detected and it can be said that down to 48 kbps the system

is able to recognize the music title correctly. Having higher compression rates, the

recognition-rate drops significantly.
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Compression Rate False Negatives False Positives

MP3 128 kbps 0 0
96 kbps 0 0
72 kbps 0 0
48 kbps 1 0
32 kbps 15 0

RealAudio 128 kbps 0 0
96 kbps 0 0
72 kbps 0 0
48 kbps 2 0
32 kbps 20 0

Table 2.1: Detection results for different audio coding formats and compression rates

Commercials The detection of commercials is another challenging problem. They

are very short and contain both music and speech. The AudioDNA of 134 commer-

cials has been stored in the database, some of them appear twice with only slight

changes in a short section of one or two seconds inside the spot. Again public radio

stations have been observed for testing. All recorded spots have been detected and

no false detections occurred. The similar spots have been detected twice when one of

them appeared.

Performance Tests Table 2 shows some performance figures of the main process-

ing tasks with the system. All measurements have been performed on a standard Pen-

tium III 933 MHz PC having two GB of main memory. It can be seen that the most

time consuming task is currently the AudioDNA extraction, however this module has

not been optimized for performance yet. The other modules reach processing times

which clearly make them suitable for the operation of a service, where several audio

streams are observed and analyzed in parallel. All numbers have been normalized

to typical duration of a music title, i.e. four minutes, the reference database con-

tained some 50,000 titles for the matching and import measurements. Importing is

the task of putting a new AudioDNA into the reference database, which is important

when setting up a new reference database based on music titles within a digital asset

management system.
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Task duration [s] per title (240 sec) real time factor
AudioDNA extraction 77,0 3,12
AudioDNA matching 4,8 50,00
AudioDNA import 1,2 200,00

Table 2.2: Calculation time of the main processing tasks

2.3.5 Conclusion

The results with the prototype proved that the chosen approach to extract a finger-

print from an audio signal robust against various distortions is valid. The system can

be implemented on inexpensive standard PC hardware (Pentium III, 1 GHz), allowing

the calculation of at least four fingerprints at the same time. The appliance of system

is not limited to radio broadcast, but has also been successfully tested with Internet

radio and Internet download facilities. It could be useful as monitoring tool for In-

ternet service providers (ISP), ensuring the proper usage of their customers Internet

access. The research involved around the AudioDNA opened several future lines of

development. Among these we can find the inclusion of other musical-based para-

meters (like rhythm and melodic trajectories) into the pattern matching algorithm

as well as improvements into the HMM structure in order to better fit the musical

needs.

In the next Section we will show another application of the AudioDNA finger-

printing scheme: Integrity verification.

2.4 Integrity Verification

In this Section we introduce a method for audio-integrity verification based on a

combination of watermarking and audio fingerprinting. As we described in previous

Sections an audio fingerprint is a perceptual digest that holds content information

of a recording and that ideally allows to uniquely identify it from other recordings.
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Integrity verification is performed by embedding the fingerprint into the audio signal

itself by means of a watermark. The original fingerprint is reconstructed from the

watermark and compared with a new fingerprint extracted from the watermarked

signal. If they are identical, the signal has not been modified; if not, the system

is able to determine the approximate locations where the signal has been corrupted.

The watermarked signal could go through content preserving transformations, such as

D/A and A/D conversion, resampling, etc...without triggering the corruption alarm.

2.4.1 Introduction

In many applications, the integrity of an audio recording must be unquestionably

established before the signal can actually be used, i.e. one must be sure that the

recording has not been modified without authorization.

Some application contexts of these integrity verification systems dealing with

speech are the following ones:

• integrity verification of a previously recorded testimony that is to be used as

evidence before a court of law;

• integrity verification of recorded interviews, which could be edited for malicious

purposes.

Regarding music applications, some examples are:

• integrity verification of radio or television commercials;

• integrity verification of music aired by radio stations or distributed on the in-

ternet;

Integrity verification systems have been proposed as an answer to this need. Two

classes of methods are well suited for these applications: watermarking,, which allows

one to embed data into the signal, and fingerprinting, which consists in extracting a

“signature” (the fingerprint) from the audio signal.
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After a conceptual description of integrity verification schemes based solely on

fingerprinting and watermarking, we propose a mixed approach that takes advantage

of both technologies.

2.4.2 Integrity Verification Systems:

A Conceptual Review

2.4.2.1 Watermarking-Based Systems

We define three classes of integrity-verification systems based on watermarking:

1. Methods based on fragile watermarking, which consist in embedding a

fragile watermark into the audio signal (e.g. a low-power watermark). If the water-

marked signal is edited, the watermark must no longer be detectable. By “edited”,

we understand any modification that could corrupt the content of a recording. “Cut-

and-paste” manipulations (deletion or insertion of segments of audio), for example,

must render the watermark undetectable. In contrast, content-preserving manipu-

lations, such as lossy compression with reasonable compression rates or addition of

small amounts of channel noise, should not prevent watermark detection (as long as

the content is actually preserved). In order to do so, the original watermark must be

stored elsewhere.

Extremely fragile watermarks can also be used to verify whether a signal has been

manipulated in any way, even without audible distortion. For example, a recording

company can watermark the content of its CDs with a very fragile watermark. If

songs from this CD are compressed (e.g. in MPEG format), then decompressed and

recorded on a new CD, the watermark would not be detected in the new recording,

even if the latter sounds exactly as the original one to the listener. A CD player can

then check for the presence of this watermark; if no watermark is found, the recording

has necessarily undergone illicit manipulations and the CD is refused. The main flaw
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in this approach is its inflexibility: as the watermark is extremely fragile, there is no

margin for the rights owner to define any allowed signal manipulations (except for

the exact duplication of the audio signal).

2. Methods based on semi-fragile watermarking, which are a variation

of the previous class of methods. The idea consists in circumventing the excessive

fragility of the watermark by increasing its power. This semi-fragile watermark is

able to resist slight modifications in the audio signal but becomes undetectable when

the signal is more significantly modified. The difficulty in this approach is the deter-

mination of an appropriate “robustness threshold” for each application.

3. Methods based on robust watermarking, which consist in embedding

a robust watermark into the audio signal. The watermark is supposed to remain

detectable in spite of any manipulations the signal may suffer. Integrity is verified by

checking whether the information contained in the watermark is corrupted or not.

Watermarking-based integrity-verification systems depend entirely on the relia-

bility of the watermarking method. However, an audio signal often contains short

segments that are difficult to watermark due to localized unfavorable characteris-

tics (e.g. very low power or ill-conditioned spectral characteristics); these segments

will probably lead to detection errors, particularly after lossy transformations such

as resampling or MPEG compression. In integrity-verification applications, this is a

serious drawback, since it may not be possible to decide reliably whether unexpected

data are a consequence of intentional tampering or “normal” detection errors.

2.4.2.2 Fingerprinting-Based Systems

Audio fingerprinting or content-based identification (CBID) methods extract

relevant acoustic characteristics from a piece of audio content. The result is a percep-

tual digest, the fingerprint, that acts as a kind of signature of the audio signal. If the

fingerprints of a set of recordings are stored in a database, each of these recordings

can be identified by extracting its fingerprint and searching for it in the database.

In fingerprinting-based integrity-verification systems, the integrity of an audio
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signal is determined by checking the integrity of its fingerprint. These systems operate

in three steps: (1) a fingerprint is extracted from the original audio recording, (2) this

fingerprint is stored in a trustworthy database, and (3) the integrity of a recording

is verified by extracting its fingerprint and comparing it with the original fingerprint

stored in the database. Whenever the transmission is digital, the fingerprint can be

send within a header (Wu and Kuo, 2001).

Fingerprinting or content-based digital signature methods evolve from the tradi-

tional cryptographic hash methods. The direct application of hashing methods results

in a type of integrity-verification systems:

Methods sensitive to data modification, based on hashing methods such as

MD5. This class of methods is appropriate when the audio recording is not supposed

to be modified at all, since a single bit flip is sufficient for the fingerprint to change.

Some robustness to slight signal modifications can be obtained by not taking into

account the least-significant bits when applying the hash function.

In order to be insensitive to common content preserving operations there has been

an evolution toward content-based digital signatures or fingerprints:

Methods sensitive to content modification, based on fingerprinting meth-

ods that are intended to represent the content of an audio recording (such as Au-

dioDNA (Cano et al., 2002a)). This class of methods is appropriate when the in-

tegrity check is not supposed to be compromised by operations that preserve audio

content (in a perceptual point of view) while modifying binary data, such as lossy

compression, D/A and A/D conversion, resampling...

The main disadvantage of fingerprinting-based methods is the need of additional

metadata (the original fingerprint) in the integrity-check phase. This requires the

access to a database or the insertion of the fingerprint in a dedicated field in a header

(not appropriate for analog streams of audio) (Wu et al., 2001).
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2.4.3 A Combined Watermarking-Fingerprinting System

The branch of integrity-verification that combines watermarking and fingerprinting

is known as self-embedding (Wu et al., 2001). The idea consists in extracting the

fingerprint of an audio signal and storing it in the signal itself through watermarking,

thus avoiding the need of additional metadata during integrity check.

Some methods based on this idea have already been described in the literature,

specially for image and video (Dittmann et al., 1999; Dittmann, 2001). Shaw proposed

a system (Shaw, 2000) that embedded an encrypted hash into digital documents, also

including audio. This approach inherits the limitations of hashing methods with

respect to fingerprinting: hashing methods are sensitive to content preserving trans-

formations (see section II.B).

We propose an integrity verification approach that combines a fingerprinting

method representing the content of an audio recording and a robust watermarking

algorithm. Figure 2.15 presents a general scheme of this mixed approach.

First, the fingerprint of the original recording is extracted; this fingerprint, viewed

as a sequence of bits, is then used as the information to be embedded into the signal

through watermarking. As the watermark signal is weak, the watermarked recording

should have the same fingerprint as the original recording. Thus, the integrity of

this recording can be verified by extracting its fingerprint and comparing it with the

original one (reconstructed from the watermark). This procedure will be detailed in

the following sections.

We mention below some of the requirements that are expected to be satisfied by

the integrity-verification system and its components:

• the fingerprint should not be modified when transformations that preserve audio

content are performed;

• the watermarking scheme must be robust to such transformations;

• the bit rate of the watermarking system must be high enough to code the
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Figure 2.15: Block diagram of the mixed approach for audio integrity verification:
(a) embedding; (b) detection.
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fingerprint information with strong redundancy;

• the method should be suitable for use with streaming audio, as the total length

of the audio file is unknown in applications such as broadcasting Gennaro and

Rohatgi (1997).

As will be shown in the following sections, the first three requirements are fulfilled by

the system. The last one is also satisfied, as both the watermark and the fingerprint

can be processed “on the fly”.

We will also show experiments to detect structural manipulations of audio signals.

This is, for example, the kind of tampering that must be avoided in the case of

recorded testimonies or interviews.

Nevertheless, some promising results are obtained regarding the detection of dis-

tortions that perceptually affect the signal have been handled by the system, as for

instance:

• time stretching modification;

• pitch shifting of an audio segment;

• severe distortion through filtering;

• addition of strong noise.

The system is not only able to detect tampering, but it can also determine the

approximate location where the audio signal was corrupted.

2.4.4 Implementation

Fingerprint Extraction

The key idea of employed fingerprinting scheme consists in considering audio as a

sequence of acoustic events.
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As we described in Section 2.3 in detail, the system works as follows. An alphabet

of representative sounds is derived from the corpus of audio signals (constructed

according to the kind of signals that the system is supposed to identify). These audio

units are modeled by means of Hidden Markov Models (HMM).

The audio signal is processed in a frame-by-frame analysis. A set of relevant-

feature vectors is first extracted from the sound. These vectors are then normalized

and sent to the decoding block, where they are submitted to statistical analysis by

means of the Viterbi algorithm. The output of this chain — the fingerprint — is

the most likely ADU sequence for this audio signal. This process is illustrated in

Figure 2.4.4.

Acoustic

modeling

Fingerprint

Audio signal
Preprocessing

ADU HMM

models

Figure 2.16: Fingerprint extraction.

The resulting fingerprint is therefore a sequence of symbols (the ADUs) and time

information (start time and duration). The number of different ADUs available to the
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system can be adjusted, as well as the output rate. The setup used in our experiments

corresponds to 16 different ADUs (G0, G1, . . . , G15) and an average output rate of

100 ADUs per minute.

Fingerprint Encoding and Watermark Embedding

Each 8-s segment of the audio signal is treated individually in order to allow for

streaming-audio processing. The fingerprint is converted into a binary sequence by

associating a unique four-bit pattern to each of the 16 possible ADUs; thus, the aver-

age fingerprint bit rate is approximately 7 bits/s. In our experiments, the watermark

bit rate is set to 125 bits/s, allowing the fingerprint information to be coded with

huge redundancy (which minimizes the probability of error during its extraction). A

simple repetition code is employed, with a particular 6-bit pattern (011110) serving

as a delimiter between repetitions. To avoid confusion between actual data and de-

limiters, every group of four or more consecutive bits “1” in the data receives an

additional bit “1”, which is suppressed in the detection phase.

Fingerprint data is embedded into the audio signal by means of a watermark. The

watermarking system used in our experiments is represented in Figure 2.17.

The analogy between watermarking and digital communications is emphasized in

the figure: watermark synthesis corresponds to transmission (with the watermark as

the information-bearing signal), watermark embedding corresponds to channel propa-

gation (with the audio signal as channel noise), and watermark detection corresponds

to reception.

The watermark signal is synthesized from the input data by a modulator. In order

to obtain a watermark that is spread in frequency (so as to maximize its power and

increase its robustness), a codebook containing white, orthogonal Gaussian vectors

is used in the modulator. The number of vectors is a function of the desired bit

rate. Each codebook entry is associated with a specific input binary pattern. The

modulator output is produced by concatenating codebook vectors according to the

input data sequence.

To ensure watermark inaudibility, the modulator output is spectrally shaped
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Figure 2.17: Watermarking system.
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through filtering according to a masking threshold (obtained from a psychoacoustic

model). This procedure, repeated for each window of the audio signal (≈ 10 ms),

produces the watermark. The watermarked signal is obtained by adding together the

original audio signal and the watermark.

As transmission and reception must be synchronized, the transmitted data se-

quence also carries synchronization information. This sequence is structured in such

a way that detected data is syntactically correct only when the detection is properly

synchronized. If synchronism is lost, it can be retrieved by systematically looking for

valid data sequences. This resynchronization scheme, based on the Viterbi algorithm,

is detailed in Gómez (2000) and de C. T. Gomes et al. (2001).

Watermark Detection and Fingerprint Decoding

For each window of the received signal, the watermark signal is strengthened

through Wiener-filtering and correlation measures with each codebook entry are cal-

culated. The binary pattern associated with the codebook entry that maximizes the

correlation measure is selected as the received data. The syntactic consistency of the

data is constantly analyzed to ensure synchronization, as described in the previous

section.

The output binary sequence is then converted back into AudioDNAs. For each

8-s audio segment, the corresponding fingerprint data is repeated several times in

the watermark (16 times in average). Possible detection errors (including most er-

rors caused by malicious attacks) can then be corrected by a simple majority rule,

providing a replica of the original fingerprint of the signal.

Matching and Report

Finally, the fingerprint of the watermarked signal is extracted and compared with

the original fingerprint obtained from the watermark. If the two sequences of AudioD-

NAs match perfectly, the system concludes that the signal has not been modified after

watermarking; otherwise, the system determines the instants associated to the non-

matching AudioDNAs, which correspond the approximate locations where the signal

has been corrupted. Identical AudioDNAs slightly shifted in time are considered to
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match, since such shifts may occur when the signal is submitted to content-preserving

transformations.

2.4.5 Simulations

2.4.5.1 Experimental conditions

Results of cut-and-paste tests are presented for four 8-s test signals: two songs

with voice and instruments (signal “cher”, from Cher’s “Believe”, and signal “es-

trella morente”, a piece of flamenco music), one song with voice only (signal “svega”,

Suzanne Vega’s “Tom’s diner”, a cappella version), and one speech signal (signal

“the breakup”, Art Garfunkel’s “The breakup”). The signals were sampled at 32

kHz and were inaudibly watermarked with a signal to watermark power ratio of 23

dB in average.

2.4.5.2 Results

Figure 2.18 shows the simulation results for all test signals. For each signal, the two

horizontal bars represent the original signal (upper bar) and the watermarked and

attacked signal (lower bar). Time is indicated in seconds on top of the graph. The

dark-gray zones correspond to attacks: in the upper bar, they represent segments

that have been inserted into the audio signal, whereas in the lower bar they represent

segments that have been deleted from the audio signal. Fingerprint information (i.e.

the AudioDNAs) is marked over each bar.

For all signals, the original fingerprint was successfully reconstructed from the

watermark. Detection errors introduced by the cut-and-paste attacks were eliminated

by exploiting the redundancy of the information stored in the watermark.

A visual inspection of the graphs in Figure 2.18 shows that the AudioDNAs in the

vicinities of the attacked portions of the signal were always modified. These corrupted

AudioDNAs allow the system to determine the instant of each attack within a margin

of approximately ±1 second.
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For the last signal (“the breakup”), we also observe that the attacks induced two

changes in relatively distant AudioDNAs (approximately 2 s after the first attack and

2 s before the second one). This can be considered a false alarm, since the signal was

not modified in that zone.

2.4.6 Advantages of the Mixed Approach

In this subsection, we summarize the main advantages of the mixed approach in

comparison with other integrity-verification methods:

• No side information is required for the integrity test; all the information needed

is contained in the watermark or obtained from the audio signal itself. This

is not the case for systems based solely on fingerprinting, since the original

fingerprint is necessary during the integrity test. Systems based solely on wa-

termarking may also require side information, as the data embedded into the

signal cannot be deduced from the signal itself and must be stored elsewhere;

• Slight content-preserving distortions do not lead the system to “false alarms”,

since the fingerprint and the watermark are not affected by these transforma-

tions. Hashing methods (such as MD5) and fragile watermarks generally do not

resist such transformations;

• In general, localized modifications in the audio signal also have a localized effect

on the fingerprint, which enables the system to determine the approximate

locations where the signal has been corrupted. This is not the case for simple

hashing methods, since the effects of a localized modification may be propagated

to the entire signal;

• Global signal modifications can also be detected by the system; in this case, the

entire fingerprint will be modified and/or the watermark will not be successfully

detected;
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• This method is well suited for streaming audio, since all the processing can be

done in real time.

2.4.7 Conclusions

In this section, we have presented a system for integrity verification of audio recordings

based on a combination of watermarking and fingerprinting. By exploiting both tech-

niques, our system avoids most drawbacks of traditional integrity-verification systems

based solely on fingerprinting or watermarking. Unlike most traditional approaches,

no side information is required for integrity verification. Additionally, the effect of

localized modifications generally do not spread to the rest of the signal, enabling the

system to determine the approximate location of such modifications. Experimental

results confirm the effectiveness of the system.

As next steps in this research, we will consider possible developments in order to

further increase overall system reliability, particularly in what concerns false alarms

(i.e. signal modifications detected after content-preserving transformations or in zones

where the signal was not modified). More efficient coding schemes will also be con-

sidered for fingerprint encoding prior to embedding.

In the next Section we stretch the boundaries of usual fingerprinting usage. The

identification framework will be further extended to allow for similarity type of search

and navigation. Additionally a dimensionality reduction tool will be evaluated for its

applicability in audio asset visualization.

2.5 Content-based Retrieval

In this section we experiment with another possible application of fingerprinting.

Deriving compact signatures from complex multimedia objects and efficient similarity

metrics are essential steps in a content-based retrieval system. Fingerprinting could
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Figure 2.18: Simulation results: (a) signal “cher”; (b) signal “estrella morente”; (c)
signal “svega”; (d) signal “the breakup”.



2.5. CONTENT-BASED RETRIEVAL 89

be expanded to extract information from the audio signal at different abstraction

levels, from low level descriptors to higher level descriptors. Especially, higher level

abstractions for modeling audio hold the possibility to extend the fingerprinting usage

modes to content-based navigation, search by similarity, content-based processing and

other applications of Music Information Retrieval. In a query-by-example scheme, the

fingerprint of a song can be used to retrieve not only the original version but also

“similar” ones. In this section, the fingerprinting scheme described in section 2.3

is used together with a heuristic version of Multidimensional Scaling (MDS) named

FastMap to explore for its potential uses in audio retrieval and browsing. FastMap,

like MDS, maps objects into an Euclidean space, such that similarities are preserved.

In addition of being more efficient than MDS it allows query-by-example type of

query, which makes it suitable for a content-based retrieval purposes.

2.5.1 Introduction

The origin of this experiment is the research on a system for content-based audio

identification. Details on the system were described in Section 2.3 and (Cano et al.,

2002a). Basically the system decomposes songs into sequences of an alphabet of

sounds, very much like speech can be decomposed into phonemes. Once having

converted the audio into sequences of symbols, the identification problem results

in finding subsequences in a superstring allowing errors, that is, approximate string

matching. If we compare one sequence—corresponding to an original song in the

database—to the whole database of sequences we retrieve a list of sequences sorted

by similarity to the query. In the context of an identification system, this list reflects

which songs the query—a distorted version of an original recording (Cano et al.,

2002a)—can be more easily confused with. Of course, studying this for each song

is a tedious task and it is difficult to extract information on the matching results

for the whole database against itself. Indeed, the resulting distances displayed in

a matrix are not very informative at first sight. One possible way to explore these
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distances between songs by mere visual inspection is Multidimensional Scaling. MDS

makes it possible to view a database of complex objects as points in an Euclidean

space where the distances between points correspond approximately to the distances

between objects. This plot helps to discover some structure in the data in order

to study methods to accelerate the song matching search, like quick discarding of

candidates or spatial indexing methods. It can also be used as a test environment

to compare different audio parameterization as well as their corresponding intrinsic

distances independently of the metrics. Finally, it also provides an interesting tool

for content-based browsing and retrieval of songs.

2.5.2 Related Work

Other projects that offer visual interfaces for browsing are the Sonic Browser (Maidin

and Fernström, 2000), Marsyas3D (Tzanetakis and Cook, 2001) or Islands of Mu-

sic (Pampalk et al., 2002a). The Sonic Browser uses sonic spatialization for nav-

igating music or sound databases. In (Maidin and Fernström, 2000) melodies are

represented as objects in a space. By adding direct sonification, the user can explore

this space visually and aurally with a new kind of cursor function that creates an

aura around the cursor. All melodies within the aura are played concurrently us-

ing spatialized sound. The authors present distances for melodic similarity but they

acknowledge the difficulty to represent the melodic distances in an Euclidean space.

Marsyas3D is a prototype audio browser and editor for large audio collections. It

shares some concepts with the Sonic Browser and integrates them in an extended

audio editor. To solve the problem of reducing dimensionality and mapping objects

into 2D or 3D spaces, Principal Component Analysis (PCA) is proposed. Pampalk

et al. (2002a) proposed the use of Self-Organizing Map (SOM), an artificial neural

network, which models biological brain functions, to perform a non-linear mapping

of the song space into 2D. A drawback of these solutions is that the object must be

a vector of features and thus it does not allow the use of the edit distance or any
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other arbitrary distance metrics. In the next subsection, the use of Multidimensional

Scaling and FastMap are presented.

2.5.3 Mapping complex objects in euclidean spaces

2.5.3.1 Multidimensional Scaling

Multidimensional scaling (MDS)(Shepard, 1962; Kruskal, 1964; Faloutsos and Lin,

1995; Basalaj, 2001) is used to discover the underlying (spatial) structure of a set of

data from the similarity, or dissimilarity, information among them. It has been used

for some years in e.g. social sciences, psychology, market research, physics. Basically

the algorithm projects each object to a point in a k-dimensional space trying to

minimize the stress function:

stress =

√√√√√√√

∑
i,j

(d̂ij − dij)2

∑
i,j

d2
ij

where dij is the dissimilarity measure between the original object Oi and Oj and d̂ij is

the Euclidean distance between the projections Pi and Pj. The stress function gives

the relative error that the distances in k-dimensional space suffer from, on average.

The algorithm starts assigning each item to a point in the space, by random or using

some heuristics. Then, it examines each point, computes the distances from the

other points and moves the point to minimize the discrepancy between the actual

dissimilarities and the estimated distances in the Euclidean space. As described in

(Faloutsos and Lin, 1995), the MDS suffers from two drawbacks:

• It requires O(N2) time, where N is the number of items. It is therefore imprac-

tical for large datasets.

• If used in a ’query by example’ search, each query item has to be mapped
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to a point in the k-dimensional space. MDS is not well-suited for this oper-

ation: Given that the MDS algorithm is O(N2), an incremental algorithm to

search/add a new item in the database would be O(N) at best.

2.5.3.2 FastMap

To overcome these drawbacks, Faloutsos and Lin propose an alternative implemen-

tation of the MDS: FastMap. Like MDS, FastMap maps objects into points in some

k-dimensional space, such that the (dis)similarities are preserved. The algorithm is

faster than MDS (being linear, as opposed to quadratic, w.r.t. the database size N),

while it additionally allows indexing. They pursue fast searching in multimedia data-

bases: mapping objects into points in k-dimensional spaces, they subsequently use

highly fine-tuned spatial access methods (SAMs) to answer several types of queries,

including the ’Query by Example’ type. They aim at two benefits: efficient retrieval,

in conjunction with a SAM, as discussed above, visualization and data-mining.

2.5.4 Results and Discussion

To evaluate the performance of both least squares MDS and FastMap, we used a test

bed consisting of 2 data collections. One collection consists in 1840 popular songs

and the second collection in 250 isolated instrument sounds (from IRCAM’s Studio

OnLine). Several dissimilarity matrices were calculated with different distance met-

rics. In Figure 2.19 the representation of the song collection as points calculated with

MDS and FastMap is shown. The MDS map takes a considerably longer time to

calculate than the FastMap’s (894 vs 18.4 seconds) although several runs of FastMap

are sometimes needed to achieve good visualizations. We did not objectively evalu-

ate FastMap and MDS (objective evaluations of data representation techniques are

discussed in (Basalaj, 2001)), but on an preliminary check of the results, MDS maps

seem to be of higher quality. MDS, on the other hand, presents a high computa-

tional cost and do not account for the indexing/retrieval capabilities of the FastMap
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approach.

We have presented the use of the existing FastMap method for improving a

content-based audio identification system. The tool proves to be interesting, not

only for audio fingerprinting research, but also as a component of a search-enabled

audio browser. It allows the browsing and retrieval of audio repositories using het-

erogeneous mixes of attributes and arbitrary distances.

Visually exploring the representational space of audio data may reveal the possi-

ble weakness of a specific parameterization. We tested the tool with audio objects

less complex than songs, such as harmonic or percussive isolated sounds, for which

perceptually-derived distances exist. In this case the results are excellent. But songs

have a multidimensional nature, they account for many aspects of interest: melody,

rhythm, timbre, and so on. Such audio data calls for powerful and complex represen-

tations, new paradigms of representation and other interfaces are necessary to allow a

user to browse flexibly. That includes visualization tools that accept any data repre-

sentation or distance definitions, from physical feature vectors (e.g. spectral flatness),

up to subjective distances defined by experts (respecting e.g. the “mood”).

2.6 Conclusions

We have presented a review of the research carried out in the area of audio fin-

gerprinting. Furthermore a number of applications which can benefit from audio

fingerprinting technology were discussed. An audio fingerprinting system generally

consists of two components: an algorithm to generate fingerprints from recordings

and algorithm to search for a matching fingerprint in a fingerprint database. We

have shown that although different researchers have taken different approaches, the

proposals more or less fit in a general framework. In this framework, the fingerprint

extraction includes a front-end where the audio is divided into frames and a number of

discriminative and robust features is extracted from each frame. Subsequently these
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features are transformed to a fingerprint by a fingerprint modeling unit which fur-

ther compacts the fingerprint representation. The searching algorithm finds the best

matching fingerprint in a large repository according to some similarity measure. In

order to speed up the search process and avoid a sequential scanning of the database,

strategies are used to quickly eliminate non-matching fingerprints. A number of the

discussed audio fingerprinting algorithms are currently commercially deployed, which

shows the significant progress that has been made in this research area. There is, of

course, room for improvement in the quest for more compact, robust and discrimina-

tive fingerprints and efficient searching algorithms. It also needs to be seen how the

identification framework can be further extended to browsing and similarity retrieval

of audio collections.

We have described in detail an implementation of a fingerprinting system de-

signed for identification: broadcast monitoring, and for integrity verification. We

have shown one possible extension of fingerprinting for content-based navigation of

music collections.

During the next Chapter we attempt to move from low-level audio description

toward higher-level descriptors.
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Figure 2.19: Representing 1840 songs as points in a 2-D space by MDS (top) and FastMap

(bottom). Asterisks and circle correspond to songs by Rex Gyldo and Three Doors Down
respectively.
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Chapter 3

Semantic Audio Management

Traditional IR offers the ability to search and browse large amounts of text documents

and presenting results in a “ranked-by-relevance” interface. For the case of multimedia

there are two main approaches: The first is to generate textual indices manually, semi

automatically or automatically and then use traditional IR. The other approach is to

use content-based retrieval, where the query is non textual and a similarity measure

is used for searching and retrieval.

In the previous chapter, we have critically reviewed strengths of a low-level audio

description technique. While it is able to identify a distorted recordings in huge

databases, and even extended to perform similarity searches on huge audio databases

and “query by example” type of queries, it is not able to textually describe audio

assets like users generally prefer to search for them, i.e. using textual high-level

semantic descriptions.

This chapter focuses on bridging the semantic gap when interacting with audio

using knowledge management techniques. The semantic gap relates to the difficulty

of moving from low-level features that can be automatically extracted from audio

toward higher-level features that can be understood by humans. We will validate

this approach on the specific problem of sound effects retrieval. During this chapter

we will present, implement algorithms and evaluate its performance on top of one of

97
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the biggest sound effects providers search engine, the sound-effects-library.com.1 As

we outlined in Chapter 1.2, there is interest in making sound effects metadata easily

searchable, less expensive to create and reusable to support possible new users—

including computers—and applications.

The main sections of the chapter will include sound ontology management, au-

tomatic annotation, a sound effects search engine that integrates both low-level and

high-level content-based algorithms and finally an application for intelligent authoring

built on top of the search system.

Section 3.1 deals with sound description and ontology management. If one of the

goals is to build computational models able to label audio like humans do, the first

step is analyzing how users– in this case librarians and audio experts– label sounds.

In the section we review some taxonomic proposals for audio description found in

the literature, which types of descriptions are actually found in SFX commercial

systems and how to encode such descriptions in a format that humans and computers

can understand. We will highlight the connections to a multimedia standardization

process: MPEG-7 (Manjunath et al., 2002).

Section 3.2 introduces the automatic sound annotation. It starts with an overview

current state of the art on sound annotation where we identify some limitations–

mainly scalability in the number of classes described and level of detail in the anno-

tations — and discuss the implementation of a general sound annotator that is able

to generate high-level detail descriptions. These descriptions can be used as is or

presented to a librarian for its validation.

Section 3.3 describes the integration of low and higher level methods to browse and

search audio in a commercial SFX provider on line system (Cano et al., 2004f). Low-

level content-based techniques are used for “query-by-example” and visualization.

High-level and knowledge based are used for semi-automatic labeling the database as

well as better control on the search process.

Finally in Section 3.4 we illustrate an intelligent authoring application: Automatic

1http://www.sound-effects-library.com
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ambiance generation, that builds upon the search engine and leverages the above

described techniques.

This chapter relates to the dissertation goals 3 and 4 as presented in Section 1.3.

3.1 Sound Ontology Management

Sound effect management systems rely on classical text descriptors to interact

with their audio collections. Librarians tag the sounds with textual description and

file them under categories. Users can then search for sounds matching keywords as

well as navigating through category trees. Audio filing and logging is a labor-intensive

error-prone task. Moreover, languages are imprecise, informal and words have several

meanings as well as several words for each meaning. Finally, sounds are multi modal,

multicultural and multifaceted and there is not an agreement in how to describe them.

Despite the difficulties inherent in creating SFX metadata, there is need to catalog

assets so as to reuse afterward. Media assets have value. As Flank and Brinkman

(2002) point out, there are many situations where reusing media content is, not only

not economically appealing—think of the cost of sending a team to record Emperor

penguins in their natural habitat—but sometimes audio cannot be re-recorded—like

natural catastrophes or historical events (Flank and Brinkman, 2002). Complete

digital media management solutions include media archiving and cataloging, digital

right management and collaborative creative environments. This section focuses on

the knowledge management aspects of sound effect descriptions with the purpose of

making metadata easily searchable, less expensive to create and reusable to support

possible new users—including computers—and applications.

MPEG-7 offers a framework for the description of multimedia documents (Man-

junath et al., 2002; Consortium, 2001, 2002). The description tools for describing a

single multimedia document consider semantic, structure and content management
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descriptions. MPEG-7 content semantic description tools describe the actions, ob-

jects and context of a scene. In sound effects, this correlates to the physical pro-

duction of the sound in the real world, “1275 cc Mini Cooper Door Closes” , or the

context, “Australian Office Atmos Chatter Telephones”. MPEG-7 content structure

tools concentrate on the spatial, temporal and media source structure of multimedia

content. Indeed, important descriptors are those that describe the perceptual qual-

ities independently of the source and how they are structured on a mix. Content

management tools are organized in three areas: Media information—which describes

storage format, media quality and so on, e.g: “PCM Wav 44100Hz stereo”—, Creation

information—which describes the sound generation process, e.g: who and how created

the sound—and finally usage information—which describes the copyrights, availabil-

ity of the content and so on (Manjunath et al., 2002). Figure 3.1 shows an example

on how to describe a SFX inspired on MPEG-7 Multimedia Description Schemes

(MDS). The original description is “Golf Swing And Hole” and had been added to

the following categories: “Whooshes, Golf, Sports:Golf:Hits:Swings:Swishes”.

The use of MPEG-7 description schemes provide a framework suitable for Mul-

timedia description. In order to ensure interoperability, overcome the polysemy in

natural languages and allow the description to be machine readable, the terms within

the fields need to be standard. It is important to know whether “bike” refers to “bicy-

cle” or to “motorcycle”. MPEG-7 classification schemes allow to define a restrained

vocabulary that defines a particular domain as categories with semantic relationships,

e.g: Broader term, narrow term, related term and so on. Casey (2002) presents an

example of using the classification scheme to define a hierarchical sound classification

model with 19 leaf nodes. However it is very complicated to devise and maintain

taxonomies that account the level of detail needed in a production-size sound effect

management system—the categories needed in professional environments exceed the

several thousands and they do not follow a hierarchical structure. We have found

that it is faster to start developing taxonomies on top on a semantic network such as
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Figure 3.1: Example of a SFX description inspired on MPEG-7 Multimedia Descrip-
tion Scheme.

WordNet rather than starting from scratch. WordNet2 is an English lexical network

designed following psycholinguistic theories of human lexical memory in a long-term

collaborative effort (Miller, 1995). We have developed a WordNet editor to expand it

with specific concepts from audio domain, such as “close-up”– which refers to record-

ing conditions—and other specific concepts from the real world— e.g.: a Volvo is a

type of a car— as well as with the perceptual ontologies. To do so, besides review-

ing the existing literature for sound events description, we have mined the concepts

associated to sounds by major sound effect library providers and added them to the

WordNet. Such a knowledge system is not only useful for retrieval (see Section 3.3)

but it is also used as ontology backbone for general sounds classification (see Sec-

tion 3.2).

2http://www.cogsci.princeton.edu/∼wn
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3.1.1 On Sound Effects Cataloging

One of the most time-demanding and error-prone task when building a library of

sound effects is the correct labeling and placement of a sound within a category. The

information retrieval model commonly used in commercial search engines is based on

keyword indexing. Librarians add descriptions for the audio. The systems match

the descriptions against the users’ query to retrieve the audio. Sounds are difficult

to describe with words. Moreover, the librarian must add the text thinking on the

different ways a user may eventually look for the sound, e.g: “dinosaur, monster,

growl, roar” and at the same time with the maximum detail. We display in Figure 3.2

some of the fields the librarian could consider when describing a SFX.

The vagueness of the query specification, normally one or two words, together

with the ambiguity and informality of natural languages affects the quality of the

search: Some relevant sounds are not retrieved and some irrelevant ones are pre-

sented to the user. Sound effect management systems also allow browsing for sounds

in manually generated categories. It is difficult to manage large category structures.

Big corpses may be labeled by different librarians that follow somewhat different con-

ventions and may not remember under which category sounds should be placed (e.g:

Camera:clicks or clicks:camera). Several ways of describing a sound include: source

centered description, perceptual, post-production specific and creation description

(See Figure 3.2).

3.1.1.1 Semantic Descriptors

Semantic descriptors usually refer to the source of the sound, that is, what has physi-

cally produced the sound, e.g: “car approaching”. They also refer to the context, e.g:

“Pub atmos”. The importance of source-tagging for sound designers is questioned

by L.Mott (1990). Mott explains that the sound engineer should concentrate on

the sound independently on what actually produced it because in many occasions

the natural sounds do not fulfill the expectations and must be replaced with sounds



3.1. SOUND ONTOLOGY MANAGEMENT 103

of distinct origin, e.g: “arrow swishes” or ”gun bangs”. There are, however, cases

where having the true sound can add quality to a production, e.g: Using the real

atmosphere of a Marrakesh market tea house. Besides, describing the source of a

sound is sometimes easier than describing the sound itself. It is difficult to describe

the “moo of a cow” without mentioning “moo or cow” but just perceptual attributes.

Figure 3.2: Block Diagram of the System.

3.1.1.2 Perceptual Descriptors

Perceptual descriptors describe the perceptual qualities independently of the source

that actually created the sound. Classical research on auditory perception has studied

the world of sounds within a multidimensional space with dimensions such as pitch,

loudness, duration, timbral brightness, and so on (SOB, 2003). Since they refer to

the properties of sound, sometimes there is a mapping between sound descriptions to

perceptual measurable features of the sound.

Another possibility to describe sounds is the use of onomatopoeia, words that im-

itate sounds and are extensively used in comics— e.g: roar, mmm, ring. The futurist
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rumbles,
roars, explo-
sions, crashes,
splashes, booms

Whistles Hisses
Puffing

Snorts, Whis-
pers, Murm-
ers, Mumbles,
Grumbles, Gur-
gles

Screeches,
Creaks, Rustles,
Buzzes, Crack-
les, Scrapes

Noises make by
percussion on:
Metal, Wood,
Skin, Stone,
Pottery, etc.

Voices of An-
imals and
Men: Shouts,
Screams,
Groans, Shrieks,
Howls

Table 3.1: Russolo’ Sound-Noise Categories

painter Russolo (1986) proposed in 1913 a categorization of noises in six separate

groups: Rumbles, whistles, whispers, screeches, noises obtained by percussion and

voices of animals and men (see Table 3.1).

Schaeffer (1966), in the search of a lexicon to describe sounds, introduced the

reduced listening (écoute réduite) which consists in the disposition of the listener to

focus on the sound object itself with no reference to the source causing its produc-

tion. His solfège of sound objects (see Table 3.2) considered attributes such as mass

(perception of ”pitchiness”) or harmonic timbre (bright/dull, round/sharp). The orig-

inal aim of such a classification scheme was to come up with a standarised symbolic

notation (such as western music notation) for electro acoustic music.

Gaver (1993) introduced a taxonomy of environmental sounds on the assertion

that sounds are produced by interaction of materials. The hierarchical description

of basic sonic events include those produced by vibrating objects (impacts, scraping

and others), aerodynamic sounds (explosions, continuous) and liquid sounds (drip-

ping and splashing). The ecological approach to perception distinguishes two types of

invariants (i.e.: High-order acoustical properties) in the sound generation: structural
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MATTER CRITERIA
MASS
Perception
of “noise-
ness”

HARMONIC
TIMBRE
Bright/Dull

GRAIN
Microstructure
of the
sound

SHAPE CRITERIA
DYNAMICS
Intensity evolu-
tion

ALLURE
Amplitude
or Frequency
Modulation

VARIATION CRITERIA
MELODIC
PROFILE: pitch
variation type

MASS PRO-
FILE Mass
variation type

Table 3.2: Schaeffer’ Solfege of sound objects

and transformational. Structural refer to the objects properties meanwhile transfor-

mational refer to the change they undergo (Gibson, 1979).

Schafer (1977) classifies sounds according to their physical characteristics (acoustics),

by the way they are perceived (psychoacoustics), according to their function and

meaning (semiotics and semantics); or according to their emotional or affective quali-

ties (aesthetics). Since he is interested in analyzing the sonic environment—soundscape—

he adds to Schaeffer sound object description information on the recording settings,

e.g: estimated distance from the observer, estimated intensity of the original sound,

whether it stands clear out of the background, environmental factors: short reverb,

echo.

3.1.1.3 Post-production Specific Descriptors

Other important searchable metadata are Post-production specific. According to L.Mott

(1990), the categories of sounds according are: Natural sounds (actual source sound),

characteristic sounds (what a sound should be according to someone), comedy, car-

toon, fantasy.
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3.1.1.4 Creation Information

Creation metadata describes relevant information on the creation or recording condi-

tions of the sound. Creation terms that we have found mining SFX descriptions are

the library that produced the sound and the engineer that recorded it. Most of the

terms we have found refer to the recording conditions of the sound, e.g: to record

a “car door closing” one can place the microphone in the interior or in the exterior.

Some examples of such descriptors are: interior, exterior, close-up, live recording,

programmed sound, studio sound, treated sound. These terms have been added to

the taxonomies.

3.1.2 Ontology Management

The use of taxonomies or classification schemes alleviates some of the ambiguity prob-

lems inherent to natural languages, yet they pose others. It is very complicated to

devise and maintain classification schemes that account for the level of detail needed

in a production-size sound effect management system. The MPEG-7 standard pro-

vides description mechanisms and ontology management tools for multimedia docu-

ments (Manjunath et al., 2002). Celma et al. built a flexible search engine for opera

works using classification schemes of the MPEG-7 framework (Celma and Mieza,

2004). Even though, powerful, the approach would require a huge human effort to

extend it for SFX. SFX many times are described referring to the source that produced

it. It is not trivial to put terms that describe the world in classification schemes. Ac-

cording to the latest version of WordNet (WordNet 2.0), the number of distinct terms

is 152,059 and the number of concepts 115,424. WordNet is well suited as starting

point for ontology-backbone.

Standard dictionaries organize words alphabetically. WordNet organizes concepts

in synonym sets, synsets, with links between the concepts like: broad sense, narrow

sense, part of, made of and so on. It knows for instance that the word piano as

a noun has two senses, the musical attribute that refers to “low loudness” and the
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musical instrument. It also encodes the information that a grand piano is a type

of piano, and that it has parts such us a keyboard, a loud pedal and so on. Such

a knowledge system is useful for retrieval. It can for instance display the results

of a query “car” in types of cars, parts of car, actions of a car (approaching, de-

parting, turning off). The usefulness of using WordNet in Information Retrieval has

been proved useful in the case of image retrieval for example in (Aslandogan et al.,

1997) and in general multimedia asset management (Flank, 2002). Other available

general-purpose ontologies are Cyc 3 which attempts to create an ontology and data-

base of everyday common-sense knowledge, with the goal of enabling AI applications

to perform human-like reasoning and SUMO, created as part of the IEEE Standard

Upper Ontology Working Group 4, to develop a standard upper ontology that pro-

motes data interoperability, information search and retrieval, automated inferencing,

and natural language processing. Even though WordNet already organizes plenty of

terms, it sometimes lacks specific knowledge of the specific domain of sound effects

and audio in general, such as “close-up” when referring to the recording technique

or that a “747” is an airplane (this property is known as lack of “granularity”). We

have developed an editor to expand WordNet with terms and concepts from percep-

tual taxonomies to describe sounds and mining legacy metadata from sound effects

libraries. We have based the editor on the work by Brian (Brian, 2002). The addition

of a new term, for instance Jaguar—referring to the car—would go as follows: We

would first search for the term in WordNet to make sure it does not exist. There is

one concept associated with jaguar:

1. jaguar, panther, Panthera onca, Felis onca --

a large spotted feline of tropical America

similar to the leopard;

Since this synset does not apply, the second step is finding a node in the taxonomy

to which attach the new concept, in our case if ask the synsets for “car”:

1. car, auto, automobile, machine, motorcar --

3http://www.cyc.com
4http://suo.ieee.org/
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4-wheeled motor vehicle; usually propelled

by an internal combustion engine;

2. car, railcar, railway car, railroad car --

a wheeled vehicle adapted to the rails of

railroad; "three cars had jumped the rails"

3. cable car, car -- conveyance for passengers

or freight on a cable railway;

4. car, gondola -- car suspended from an airship

and carrying personnel and cargo and power

plant)

5. car, elevator car --where passengers ride up

and down;

In this case we would choose connecting Jaguar with the first synset: “car, auto,

...”. The type of relationship between Jaguar and car is of hyponim/hypernim (Nar-

rower/Broader). If we ask for the list of hypernims of the “jaguar” we get:

1. jaguar, panther, Panthera onca, Felis onca --

a large spotted feline of tropical America

similar to the leopard;

=> big cat, cat

=> feline, felid

=> carnivore

=> mammal

...

=> animal, animate being, beast

=> organism, being

=> living thing, animate thing

=> object, physical object

=> entity, physical thing

2. Jaguar -- British car ...
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=> car, auto, automobile, machine, motorcar

=> motor vehicle, automotive vehicle

=> wheeled vehicle

=> vehicle

=> conveyance, transport

=> instrumentality, instrumentation

=> artifact, artefact

=> object, physical object

=> entity, physical thing

A hyponim acquires all the features of its hypernim. Therefore if we ask the

meronyms—relation of being part of—of Jaguar in its second new meaning we get:

Sense 2

Jaguar

HAS PART: accelerator, gas pedal, gas, throttle

HAS PART: air bag

HAS PART: automobile engine

HAS PART: car horn, motor horn, horn, hooter

HAS PART: bumper

HAS PART: car door

...

To put another example, the sound “Thrush And Nightingale Various Calls” be-

comes labeled with the following set of concepts:

01234719%n thrush -- (songbirds having

brownish upper plumage with a spotted breast)

01237641%n nightingale, Luscinia megarhynchos

-- (European songbird noted for its melodious

nocturnal song)

05680983%n birdcall, call, birdsong, song --
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(the characteristic sound produced by a bird)

The numbers before the definitions correspond to the unique identifiers, offsets,

of the concepts, or synonym sets, synsets as referred in the WordNet literature Miller

(1995).

# of Sounds Synset Terms and Glossary

5653 03131431%n drum, membranophone, tympan – (a musical percus-
sion instrument; usually consists of a hollow cylinder
with a membrane stretch across each end )

4799 13697183%n atmosphere, ambiance, ambience – (a particular envi-
ronment or surrounding influence; ”there was an at-
mosphere of excitement” )

4009 06651357%n rhythm, beat, musical rhythm – (the basic rhythmic
unit in a piece of music; ”the piece has a fast rhythm”;
”the conductor set the beat” )

3784 07719788%n percussion section, percussion, rhythm section – (the
section of a band or orchestra that plays percussion
instruments )

3619 14421098%n beats per minute, bpm, metronome marking, M.M.
3168 00006026%n person, individual, someone, somebody, mortal, hu-

man, soul

Table 3.3: Appearance number of most popular concepts (synsets).

After the disambiguation of the terms used to label a database of 60,857 sounds

from over 30 libraries of sound effects, music and music samples, we have 3,028

different concepts. The histogram of number of synsets assigned per sound sample is

depicted in Figure 3.3. The higher the number of synsets, the more detailed is the

description of the sound. Table 3.3 shows the most commonly used concepts. The

first column indicates the number of sounds that have been labeled with the synset,

the second column, the offset (WordNet Synset-ID) and the third the glossary. The

distribution of 3,028 synsets with respect its syntactic function is as follows: 2,381

nouns, 380 verbs, 251 adjectives and 16 adverbs (see Figure 3.4). The following are

examples of disambiguation of captions into synsets:
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Dalmatian Dog Bark Interior ->

01778031%n dalmatian, ...

01752990%n dog, domestic dog, ...

00826603%v bark -- make barking sounds

00915868%a interior -- (situated ...

Cello pizzicato ->

02605020%n cello, violoncello

=> bowed stringed instrument, string

=> stringed instrument

=> musical instrument, instrument

00908432%a pizzicato -- ((of instruments in

the violin family) to be plucked with the

finger)

00422634%r pizzicato -- ((music) with a light

plucking staccato sound)

The extended semantic network includes the semantic, perceptual and sound ef-

fects specific terms in an unambiguous way, easing the task for the librarian and

providing higher control on the search and retrieval for the user. Further work needs

to deal with concepts that appear on different parts-of-speech—pizzicato is both an

adjective and an adverb—but are equivalent for retrieval purposes.

3.1.3 Summary

In this section, we have presented some of the problems in describing SFX. Specifi-

cally, how to store searchable and machine readable SFX description metadata. We

have reviewed some of the literature for audio taxonomic classification as well as

mined legacy SFX metadata. We have implemented a knowledge management sys-

tem inspired on the MPEG-7 framework for Multimedia and relying on WordNet
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Figure 3.3: Histogram of the number of concepts assigned to each SFX. The higher
the number of concepts the most detailed the specification of the SFX.
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Figure 3.4: Distribution of nouns, verbs, adjectives and adverbs after disambiguating
the tags associated to a SFX collection.

as taxonomy-backbone. This is convenient for librarians because they do not need

to add many terms since many relations are given by the lexicon. Categories can

be created dynamically allowing user can search and navigate through taxonomies

based on psycholinguistic and cognitive theories. The terms—even though described

externally as plain English—are machine readable, unambiguous and can be used for

concept-based retrieval. Specific SFX terms as well as external taxonomies can be

added to the lexicon. In the next Section, we will present a computational method

for automatic generation of metadata.



3.2. SOUND ANNOTATION 113

3.2 Sound Annotation

Sound effects providers rely on classical text retrieval techniques to give access to

manually labeled audio collections. The manual annotation is a labor-intensive and

error-prone task. There are attempts toward metadata generation by automatic clas-

sification. State of the art of audio classification methods, except for reduced-domain

tasks, is not mature enough for real world applications. Audio classification methods

cannot currently provide the level of detail needed in a sound effects management sys-

tem, e.g: “fast female footsteps on wood”, “violin pizzicato with natural open strings”

or “mid tom with loose skin bend at end”. In audio classification, researchers nor-

mally assume the existence of a well defined hierarchical classification scheme of a few

categories. On-line sound effects and music sample providers have several thousand

categories. This makes the idea of generating a model for each category quite unfea-

sible, as several thousand classifiers would be needed. As a knowledgeable reader will

agree, the usual number of categories appearing in academic research papers is not

greater than a few tenths.

In this context, we present an all-purpose sound recognition system based on

nearest-neighbor classification rule, which labels a given sound sample with the de-

scriptions corresponding to the similar sounding examples of an annotated database.

The terms borrowed from the closest match are unambiguous due to the use of Word-

Net5 (Miller, 1995) as the taxonomy back-end. The tagging is unambiguous because

the system assigns concepts and not just terms to sounds. For instance, the sound of

a “bar” is ambiguous, the system will return “bar” as “rigid piece of metal or wood”

or as “establishment where alcoholic drinks are served”.

The rest of the Section is organized as follows: In Subsection 3.2.1 we briefly

enumerate some approaches to the problem of automatic identification and we discuss

the difficulties inherent in automatically describing any isolated sound with a high

5http://www.cogsci.princeton.edu/∼wn/
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level of detail. In Subsection 3.2.2, we present a taxonomy that represents the real

world extended for sound effects description. From Subsection 3.2.3 to 3.3.3 we

describe the system setup as well as the main results of our evaluation of the system.

We conclude the Section discussing possible continuations of the approach.

3.2.1 Related work

Existing classification methods are normally finely tuned to small domains, such as

musical instrument classification (Kostek and Czyzewski, 2001; Herrera et al., 2003),

simplified sound effects taxonomies (Wold et al., 1996; Zhang and Kuo, 1999; Casey,

2002) or sonic environments, e.g: “street, pub, office, church” (Peltonen et al., 2002).

Different audio classification systems differ mainly on the acoustic features derived

from the sound and the type of classifier. Independently of the feature extraction and

selection method and the type of classifier used, content-based classification systems

need a reduced set of classes (e.g: less than 20) and a large number (e.g: 30 or more)

of audio samples for each class to train the system.

Classification methods cannot currently offer the detail needed in commercial

sound effects management. It would require to develop thousands of classifiers, each

specialized in distinguishing little details and a taxonomy that represents the real

world. Dubnov and Ben-Shalom (2003) point out that one of the main problems

faced by natural sounds and sound effects classifiers is the lack of clear taxonomy.

In musical instrument classification, the taxonomies more or less follow perceptual-

related hierarchical structures (Lakatos, 2000). The assumption is that there is a

parallelism between semantic and perceptual taxonomies in musical instruments. Ac-

cordingly, in such problems one can devise hierarchical classification approaches such

as (Martin, 1999; Peeters and Rodet, 2003) in which the system distinguishes first

between sustained and non-sustained sounds, and then among strings, woodwinds

and so on. In every-day sound classification, there is no such parallelism between

semantic and perceptual categories. On the contrary one can find hissing sounds in
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categories of “cat”, “tea boilers”, “snakes”. Foley artists exploit this ambiguity and

create the illusion of “crackling fire” by recording “twisting cellophane”.

Moreover, the design and implementation of a taxonomy or classification scheme

that include the concepts of the real world is a daunting task. The MPEG-7 standard

provides mechanisms and taxonomy management tools for describing multimedia doc-

uments. Casey (2002) shows an example on how to build such a classification scheme

using MPEG-7. However, it is very complicated to devise and maintain classification

schemes that account for the level of detail needed in a production-size sound effects

management system. We have found that it is much faster to start developing tax-

onomies on top of a semantic network such as WordNet rather than starting from

scratch (see Section 3.1).

Slaney describes in (Slaney, 2002) a method of connecting words to sounds. He

avoids the needs of taxonomy design when bridging the gap between perceptual and

semantic spaces searching for hierarchies in an unsupervised mode. Barnard et al.

(2003) describe a similar approach for matching words and images.

3.2.2 Taxonomy management

As we have presented in Section 3.1, WordNet is a lexical network designed following

psycholinguistic theories of human lexical memory. Standard dictionaries organize

words alphabetically. WordNet organizes concepts in synonym sets, called synsets,

with links between the concepts. Such a knowledge system is useful for supporting

retrieval functionalities in a a music and sfx search engine (Cano et al., 2004c). It

can for instance display the results of a query “car” in types of cars, parts of car, and

actions of a car (approaching, departing, turning off).

3.2.3 Experimental setup

The dataset used in the following experiments consists of 54,799 sounds from over 30

different libraries of sound effects, music and music samples. These sounds have been
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unambiguously tagged with the concepts of an enhanced WordNet. Thus a violin

sound with the following caption:“violin pizzicato D#” has the following synsets:

• violin, fiddle – (bowed stringed instrument that is the highest member of the vi-

olin family; this instrument has four strings and a hollow body and an unfretted

fingerboard and is played with a bow)

• pizzicato – ((of instruments in the violin family) to be plucked with the finger)

• re, ray – (the syllable naming the second (supertonic) note of any major scale

in solmization)

• sharp – ((music) raised in pitch by one chromatic semitone; ”C sharp”)

In Figure 3.5, we show a histogram with the number of synsets the sounds have

been labeled with after disambiguation. It should be clear that the higher the number

of synsets, the higher the detail with which a sound is described. In average, a sound

is labeled with 3.88 synsets. In Figure 3.6 we plot the rank-frequency analysis of

the synsets. For this analysis we counted the occurrence of different synsets and then

sorted them according to descending frequency. The plot is repeated for various parts

of speech, specifically: noun, verb, adjective and adverb. The distribution of 3,028

synsets with respect its syntactic function is as follows: 2,381 nouns, 380 verbs, 251

adjectives and 16 adverbs. The number of synsets for which there are ten or more

examples sounds is 1,645.

The classifier uses a set of 89 features and a nearest-neighbor classifier (Cover and

Hart, 1967) using a database of sounds with WordNet as a taxonomy backbone. We

refer to Section 3.2.4 for the features to Section 3.2.5 for the classifier.

3.2.4 Low-level Features

Every audio sample to be classified is converted to 22.05 KHz mono and then passed

through a noise gate in order to determine its beginning and its end. After a frame-

by-frame analysis we extract features belonging to three different groups: a first group
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Figure 3.5: Histogram of number of synsets (concepts) per sound

gathering spectral as well as temporal descriptors included in the MPEG-7 standard; a

second one built on the acoustic spectrum division according to Bark bands outputs

the mean and variance of relative energies for each band; and finally a third one,

consisting of Mel-Frequency Cepstral Coefficients and their corresponding variances

(see (Herrera et al., 2002) for details).
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Figure 3.6: Loglog plot of the number of sounds described per synset as a function of
the synset rank. The frequency rank is plotted for the different parts of speech: noun,
verb, adjective and adverbs. The synsets (concepts) on the left have been chosen by
the editors to describe a high number of sounds, (e.g: “ambiance” is used to describe
4,799 sounds of our test database). The concepts on the right describe a smaller
number of sounds of our test database, (e.g: the concept “jaguar” as a “feline” is
used to describe 19 sounds).

3.2.4.1 Spectro-temporal descriptors

Spectral Flatness is the ratio between the geometrical mean and the arithmetical mean

of the spectrum magnitude.

SFM = 10. log
(
∏N/2

k=1 Sp(e
j 2πk

N ))
1

N/2

1
N/2
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where Sp(e
j 2πk

N ) is the spectral power density calculated on the basis of an N-point

Fast Fourier Transform.

Spectral Centroid is a concept adapted from psychoacoustics and music cogni-

tion. It measures the average frequency, weighted by amplitude, of a spectrum. The

standard formula for the (average) spectral centroid of a sound is:

c =

∑
j cj

J

where cj is the centroid for one spectral frame, and J is the number of frames

for the sound. The (individual) centroid of a spectral frame is defined as the average

frequency weighted by amplitudes, divided by the sum of the amplitudes.

cj =

∑
fjaj∑
aj

Strong Peak intends to reveal whether the spectrum presents a very pronounced

peak.

Spectral Kurtosis is the spectrum 4th order central moment and measures whether

the data are peaked or flat relative to a normal (Gaussian) distribution.

kurtosis =

∑N
i=1(Yi − Y )4

(N − 1)s4

where Y is the sample mean, s is the sample standard deviation and N is the number

of observations.

Zero-Crossing Rate (ZCR), is defined as the number of time-domain zero-crossings

within a defined region of signal, divided by the number of samples of that region.

Spectrum Zero-Crossing Rate (SCR) gives an idea of the spectral density of peaks

by computing ZCR at a frame level over the spectrum whose mean has previously

been subtracted.

Skewness is the 3rd order central moment, it gives indication about the shape of

the spectrum in the sense that asymmetrical spectra tend to have large Skewness
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values.

skewness =

∑N
i=1(Yi − Y )3

(N − 1)s3

where Y is the mean, s is the standard deviation, and N is the number of data points.

3.2.4.2 Bark-band energy

Bark-band energy are the energies after dividing the spectrum into the 24 Bark bands,

corresponding to the first 24 critical bands of hearing (Zwicker and Fastl, 1990). The

published Bark band edges are given in Hertz as [0, 100, 200, 300, 400, 510, 630, 770,

920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700,

9500, 12000, 15500]. The published band centers in Hertz are [50, 150, 250, 350, 450,

570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000, 4800, 5800,

7000, 8500, 10500, 13500]. These bands are perception-related and have been chosen

to enable systematic, instead of database-dependent, division of the spectrum. In

order to cope with some low-frequency information, the two lowest bands have been

split into two halves (Herrera et al., 2002).

3.2.4.3 Mel-Frequency Cepstrum Coefficients

Mel-Frequency Cepstrum Coefficients (MFCCs) are widely used in speech recognition

applications. They have been proved useful in music applications as well (Logan,

2000). They are calculated as follows:

1. Divide signal into frames.

2. For each frame, obtain the amplitude spectrum.

3. Take the logarithm.

4. Convert to Mel spectrum.

5. Take the discrete cosine transform (DCT).
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Step 4 calculates the log amplitude spectrum on the so-called Mel scale. The Mel

transformation is based on human perception experiments. Step 5 takes the DCT of

the Mel spectra. For speech, this approximates principal components analysis (PCA)

which decorrelates the components of the feature vectors. Logan (2000) proved that

this decorrelation applies to music signals as well. As they can be used as a compact

representation of the spectral envelope, their variance was also recorded in order to

keep some time-varying information. 13 MFCCs are computed frame by frame, and

their means and variances are used as descriptors.

3.2.5 Nearest-neighbor classifier

We use the k=1 nearest neighbor decision rule (1-NN)(Jain et al., 2000) for classifi-

cation. The choice of a memory-based nearest neighbor classifier avoids the design

and training of every possible class of sounds (in the order of several thousands).

Another advantage of using a NN classifier is that it does not need to be redesigned

nor trained whenever a new class of sounds is subsequently added to the system.

The NN classifier needs a database of labeled instances and a similarity distance to

compare them. An unknown sample will borrow the metadata associated with the

most similar registered sound. The similarity measure of the system is a normalized

Manhattan distance of the above enumerated features:

d (x, y) =
N∑

k=1

|xk − yk|

(maxk − mink)

where x and y are the vectors of features, N the dimensionality of the feature

space, and maxk and mink the maximum and minimum values of the kth feature.

In some of our experiments the standard deviation-normalized Euclidean distance

did not perform well. Specially harmful was the normalization with standard de-

viation. Changing the normalization from the standard deviation to the difference

between maximum and minimum boosted classification accuracy. For example the
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percussive instrument classification (see Section 3.3.3) raised from 64% to 82% cor-

rect identification. Changing the distance from Euclidean to Manhattan provided an

extra 3% of improvement (85% correct identification).

3.2.6 Experimental results

The first experiment that we report consisted in finding a best-match for all the

sounds in the database. Table 3.4 shows some result examples: the left column listers

the original caption of the sound and the right column lists the caption of the nearest

neighbor. The caption on the right would be assigned to the query sound in an

automatic annotation system. As can be inferred from Table 3.4, it is not trivial to

quantitatively evaluate the performance of the system. An intersection of the terms

of the captions would not yield a reasonable evaluation metric. The WordNet based

taxonomy can inform us that both “Trabant” and “Mini Cooper” are narrow terms

for the concept “car, automobile”. Thus, the comparison of number of the common

synsets on both query and nearest-neighbor could be used as a better evaluation.

As was shown in more detail in (Cano et al., 2004d), the intersection of synsets

between query and best-match is 1.5 in average, while 50% of the times the best-match

did not share a single common synset (see Figure 3.7). The intersection of source

descriptions can be zero for very similar sounding sounds. The closest-match for a

“paper bag” turns out to be a “eating toast”. These sounds are semantically different

but perceptually similar. This situation is very common, foley artists take advantage

of the ambiguity and use “coconut half-shells” to create the sound of a “horse’s hoof-

beats” (L.Mott, 1990). This ambiguity is a disadvantage when designing and assessing

perceptual similarity distances. Figure 3.7 plots the number of correctly identified

concepts (Perceptual Distance line) together with the perfect score (Concepts of SFX).

The results of the system using a textual distance, a cosine distance over the caption

terms are also displayed for comparison. The perfect score in the concept prediction

scheme is achieving the same concept probability distribution as the labeled database.
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Query Sound Caption Nearest-neighbor Caption

Mini Cooper Door Closes Interior Persp. Trabant Car Door Close
Waterfall Medium Constant Extremely Heavy Rain Storm Short Loop

M-domestic Cat- Harsh Meow A1v:Solo violin (looped)
Auto Pull Up Shut Off Oldsmobile Ferrari - Hard Take Off Away - Fast
Animal-dog-snarl-growl-bark-vicious Dinosaur Monster Growl Roar

Table 3.4: The classifier assigns the metadata of the sounds of the second column to
the sounds of the first.

The textual distance provides, much better results and approximates reasonably well

the database concept/sound distribution.

The second experiment consisted in the prediction of synsets, that is, how well a

particular concept, say “cat miaow”, will retrieve “miaow” sounds. The methodology

is as follows. For each synset, we retrieved the sounds that had been labeled with

that particular synset. For each sound its nearest-neighbor was calculated. We finally

computed how many best-matching sounds were also labeled with that synset. From

the total of 3,028 synsets we restricted the experiment to the ones that had been used

to label 10 or more sounds. There were 1,645 synsets tagging at least ten sounds.

Figure 3.2.6 displays the results. The top figure displays how often a synset retrieved

sounds whose best-matches were also labeled with that synset. The bottom figure,

on the other hand, shows the probability that at least one of the best 20 retrieved

sounds was labeled with the particular synset. The ordering of synsets on the x-

axis corresponds to their frequency rank as displayed in Figure 3.6. It is interesting

to see that there is not a strong correlation between the synset frequency and the

precision. On a random guess one would expect some synsets predicted much better

only because they are very frequent.

In a third experiment we tested the general approach in reduced domain classifi-

cation regime mode: percussive instruments and harmonic instruments. The perfor-

mance is comparable to that of state-of-the-art classifiers. We refer to (Herrera et al.,

2003) for a review. Table 3.5 depicts the confusion matrix of a 15 class harmonic

instrument classification which corresponds to a 91% (261 audio files). In the 6 class
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Figure 3.7: Probability distribution of correctly identified synsets. For each sound
we count the intersection of concepts correctly predicted. The Concepts of SFX
is the distribution of the number of concepts assigned to every sound effect (SFX).
Concepts of SFX represents the perfect score. The perceptual distance prediction plot
indicates the prediction accuracy using 1-NN and the perceptual similarity distance.
The textual distance line indicates the prediction using the textual captions and a
cosine distance and it is shown for comparison.

percussive instrument classification an 85% accuracy was observed (955 audio files)

using 10 fold validation (see Table 3.6).

In the last experiment we report here we tested the robustness of the NN classi-

fication framework to audio distortions. The sounds of the instruments appearing in

Table 3.5 were transcoded and resampled into WAV PCM format and Ogg Vorbis for-

mat.6 Ogg Vorbis is a lossy audio compression format. It would be advantageous for

6http://www.vorbis.com
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AF AS BF BT BA BC CE DB EC FL HO OB PI SS TT

AF 7 0 3 0 0 0 0 0 0 1 0 0 0 0 0
AS 0 18 0 0 0 1 0 0 0 0 0 0 0 0 0
BF 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0
BT 0 0 0 9 0 0 0 0 0 0 0 0 0 0 1
BA 0 0 0 0 14 0 0 0 0 0 0 0 0 1 0
BC 0 0 0 1 0 10 1 1 0 0 0 1 0 0 0
CE 0 1 0 0 0 1 74 3 0 0 0 0 0 0 0
DB 0 0 0 0 0 0 0 72 0 0 0 0 0 0 0
EC 0 1 1 0 0 2 0 0 5 1 0 1 0 2 1
FL 1 2 0 3 0 1 0 0 0 11 0 4 0 0 0
HO 0 0 0 0 2 0 0 0 0 0 10 0 0 0 0
OB 0 1 0 0 0 0 2 0 0 0 1 7 0 0 1
PI 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0
SS 0 0 0 0 0 1 0 0 0 0 0 0 0 24 0
TT 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7

Table 3.5: Harmonic instruments confusion matrix where AF:AltoFlute,
AS:AltoSax, BF:BassFlute, BT:BassTrombone, BA:Bassoon, BC:BbClarinet,
CE:Cello, DB:DoubleBass, EC:EbClarinet, FL:Flute, HO:Horn, OB:Oboe, PI:Piano,
SS:SopranoSax, TT:TenorTrombone.

SN TO HH CR KI RI

SN 150 1 2 2 1 20
TO 1 148 2 0 19 0
HH 5 7 153 0 1 4
CR 21 0 2 45 0 12
KI 1 17 0 0 182 0
RI 15 0 5 4 0 135

Table 3.6: Percussive instruments confusion matrix where SN:Snare, To:Tom,
HH:Hihat, CR:Crash, KI:Kick, RI:Ride



126 CHAPTER 3. SEMANTIC AUDIO MANAGEMENT

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1
1-

N
N

 P
re

ci
si

on

0 500 1000 1500
Synsets ordered by frequency rank

0

0.2

0.4

0.6

0.8

1

20
-N

N
 P

re
ci

si
on

Figure 3.8: Synset precision using the 1-NN perceptual distance. The X axis corre-
sponds to the synsets ordered by its frequency rank. The graph at the top shows the
precision of the 1-NN. The bottom graph displays how often at least on the 20 best
retrieved sounds was labeled with the synset. The plots have been smoothed with an
average filter. The dotted line of the bottom graph reproduces the precision of the
1-NN of the top graph.

the classifier to be robust to content-preserving distortions introduced by this com-

pression. The classification results of the distorted instrument sounds are depicted in

Table 3.7. The percentages indicate the classification accuracy using different audio

qualities. The columns are the audio qualities used as reference. The rows indicate

the audio qualities used in the queries. The loss of accuracy, of up to 15% on some

cases, suggest that better results can be obtained by designing more robust features

to these “content-preserving” transformations.
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Wav 44kHz Ogg 44kHz Ogg 11kHz

Wav 44kHz 91.5% 92.0% 75.0%
Wav 22kHz 86.4% 85.6% 82.0%
Wav 11kHz 71.8% 73.1% 89.3%
Ogg 44kHz 90.3% 91.5% 76.0%
Ogg 11kHz 74.0% 74.8% 91.5%

Table 3.7: Accuracy robustness to different distortions on the harmonic instruments
classification. The columns indicate the reference audio quality and the rows the
performance with the different distortions. Wav: PCM Microsoft WAV format, Ogg:
Ogg Vorbis encoding, #kHz: Sampling rate

3.2.7 Discussion

A major issue when building sound classification systems is the need of a taxonomy

that organizes concepts and terms unambiguously. When classifying any possible

sound, the taxonomy design is a complicated task. Yet, a taxonomy or classification

scheme that encodes the common sense knowledge of the world is required. Word-

Net can be be used as a starting taxonomy. Classifiers are trained to learn certain

concepts: “cars” , “laughs”, “piano”. Sound samples are gathered and are tagged

with those concepts and finally a classifier is trained to learn those concepts. The

number of concepts and its possible combinations in the real world makes this ap-

proach unfeasible, as one would need to train tens of thousands of classifiers and new

ones would have to be trained for new concepts. We have presented an alternative

approach that uses an unambiguously labeled big audio database. The classifier uses

nearest-neighbor rule and a database of sounds with WordNet as taxonomy back-

bone. Resulting from the NN-based concept attachment, a list of possible sources is

presented to the user: this sound could be a “paper bag” or “toast”+“eating”. Infor-

mation from text or images can additionally be used to disambiguate the possibilities.

We acknowledge that the use a single set of features and a single distance for all

possible sound classes is rather primitive. However, and as Figure 3.2.6 indicates,

there is room for improvement. The NN rule can be combined with other classifiers:
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If the system returns that a particular sound could be a violin pizzicato or a guitar,

we can then retrieve pizzicato violin and guitar sounds of the same pitch and decide

which is more likely. In order to perform this classification on real-time a lazy classifier

could be chosen. Another example is “car approaches”, where we can look for other

“cars” and other “motor vehicle” “approaches” or “departs” to decide which is the

right action. This same rationale applies to adjective type of modifiers, something

can be described as “loud”, “bright” or “fast”. The concept “fast” means something

different if we talk of “footsteps” or “typing”.

3.3 Sound effects search engine

In this Section we present a SFX retrieval system that incorporates content-based

audio techniques and semantic knowledge tools implemented on top of one of the

biggest sound effects providers database. From Subsection 3.3.1 to 3.3.2 we describe

the implemented enhancements of the system.

3.3.1 System overview

Sound FX providers rely on text descriptions to manage internally and sell their

audio collections. Sound engineers search for sounds by matching a query against

the descriptive keywords that a librarian has attached to each sound. There are

several professional providers that offer SFX using keyword-matching as well as

navigating through categories that organize the sounds in classes such as Animal,

Cars, Human and so on (e.g.: www.sound-effects-library.com, www.sounddogs.com,

www.sonomic.com). Web search engines such as www.altavista.com or www.singingfish.com

offer audio search using standard text-based web retrieval indexing the words that

appear near audio content in the HTML page.

Limitations of text-based approach

Discussion on the inadequacy of using text descriptors to describe sound is frequent
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in the literature (L.Mott, 1990). It is pointed out that sounds are too difficult to

describe with words. Perceptual descriptions are too subjective and may vary for

different people. Source descriptions convey sometimes more descriptive power and

are objective. However, sound may have been synthesized and have no clear origin.

Other cons on current text-based approaches include:

• Library construction, that is, tagging of sounds with textual description, is a

labour-consuming, error-prone task and yet the number of sound samples is

constantly increasing.

• It is difficult for a librarian to add keywords that would match the ways users

may eventually query a sound, e.g.: see Figure 3.1 for possible keywords to label

a “golf drive”.

• The sounds without caption are invisible to the users.

• Big corpuses may be labeled by different librarians that follow somewhat dif-

ferent conventions.

• The vagueness of the query specification, normally one or two words, together

with the ambiguity and informality of natural languages affects the quality of

the search: Some relevant sounds are not retrieved and some irrelevant ones are

presented to the user.

• Sound effect management systems allow browsing for sounds in manually gen-

erated categories. The design and maintenance of category trees is complicated.

It is very time consuming for a librarian to place a sound in the corresponding

categories. Finally, It is difficult for users to navigate through somebody else’s

hierarchy.

In order to overcome the above shortcomings, solutions have been proposed to

manage media assets from a content-based audio perspective, both from the academia
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and the industry (FindSounds, 2003; Wold et al., 1996). However, even though text-

search has some shortcomings, content-based functionality should only complement

and not substitute the text search approach for several reasons: first, because the

production systems work, second, because there is a great deal of legacy meta-data

and new sound effects are released by the major vendors with captions, third, because

text-retrieval is generally faster than content-based, and finally because users are

familiar with using words, i.e. high-level descriptions, to search for media assets.

In this Section, we present how to construct a SFX management system that

incorporates content-based audio techniques as well as knowledge based tools built

on top of one of the biggest sound effects providers database. The new sounds added

into the system will be labeled automatically by the automatic annotator described

in 3.2 to be validated by the librarian.

In the implemented system we aim at combining the best of two worlds to offer

tools for the users to refine and explore a huge collection of audio. Similar work

on integrating perceptual and semantic information in a more general multimedia

framework is MediaNet (Benitez et al., 2000). The system we present is specialized

for SFX. The current prototype uses a collection of sounds from a major on-line

sound effects provider: www.sound-effects-library.com. The sounds where described

with captions that mapped to concepts of the WordNet ontology as described in

Section 3.1.

3.3.1.1 Functional blocks

The system has been designed to ease the use of different tools to interact with the

audio collection and with speed as a major design issue. On top of these premises

we have implemented the blocks of Fig. 3.9. The sound analysis, audio retrieval and

metadata generation blocks were described in Section 3.2. The text retrieval, text

processor and knowledge manager blocks are described in Section 3.3.2.
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Figure 3.9: Functional Block Diagram of the System.
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Figure 3.10: System Architecture

3.3.1.2 System architecture

The audio processing engines is implemented in C++. The ontology management

and integration of different parts is done with Perl and a standard relational data-

base management system. The functionality is available via a web interface and

exported via SOAP (http://www.w3.org/TR/soap). The SOAP interface provides
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some functionalities—such as interaction with special applications, e.g.: Sound edi-

tors and annotators—which are not available via the web interface. See Figure 3.10

for a diagram of the architecture.

Content-based audio tools ease the work of the librarian and enhance the search

possibilities for the user. It simplifies the labeling of new sounds because many

keywords are automatically presented to the librarian.

To achieve it, the new sound is compared to the collection with Nearest Neighbor

search and the text associated with the similar matches is presented to the librar-

ian (see Section 3.2). The sound analysis module (see Figure 3.9), besides extract-

ing low-level sound descriptors used for the similarity search (see Subsection 3.2.4

for details), generates mid-level searchable descriptors as those detailed in Subsec-

tion 3.3.1.4 (crescendo, noisy, iterative, percussive, and so on). Content-based tools

offer the user functionalities such as:

Virtual Foley Mode: Find perceptually similar sounds. A user may be interested

in a glass crash sound. If none of the retrieved sounds suits him, he can still

browse the collection for similar sounds even if produced by different sources,

even if unlabeled.

Clustering of sounds: Typically a query like “whoosh” may retrieve several hundred

results. These results are clustered and only one representative of each class is

displayed to the user. The user can then refine the search more easily.

Morphological Descriptors: Another option when the list of results is too large

to listen to is filtering the results using morphological descriptors (see Sec-

tion 3.3.1.4).

Query by example: The user can provide an example sound or utter himself one as

a query to the system, possibly restricting the search to a semantic subspace,

such as “mammals”.
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Figure 3.11: Slider web interface

3.3.1.3 Similarity Distance

The similarity measure is a normalized Manhattan distance of features belonging to

three different groups: a first group gathering spectral as well as temporal descriptors

included in the MPEG-7 standard; a second one built on Bark Bands perceptual

division of the acoustic spectrum and which outputs the mean and variance of relative

energies for each band; and, finally a third one, composed of Mel-Frequency Cepstral

Coefficients and their corresponding variances (see Subsection 3.2.4 for details):

d (x, y) =
N∑

k=1

|xk − yk|

(maxk − mink)

where x and y are the vectors of features, N the dimensionality of the feature

space, and maxk and mink the maximum and minimum values of the kth feature.

The similarity measure is used for metadata generation: a sound sample will be

labeled with the descriptions from the similar sounding examples of the annotated

database. This type of classification is known as one-nearest neighbor decision rule

(1-NN)(Jain et al., 2000). The choice of a memory-based nearest neighbor classifier

avoids the design and training of every possible class of sound which is of the order
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of several thousands. Besides, it does not need redesign or training whenever a

new class of sounds is added to the system. The NN classifier needs a database

of labeled instances and a similarity distance to compare them. An unknown sample

will borrow the metadata associated with the most similar registered sample. We

refer to Section 3.2 for further details on sound annotation.

The similarity measure is also used for the query-by-example and to browse

through “perceptually” generated hyperlinks (see Subsubsection 3.3.3).

3.3.1.4 Morphological Sound Description

The morphological sounds descriptor module extracts a set of descriptors that focused

on intrinsic perceptual qualities of sound based on Schaeffer’s research on sound ob-

jects (Schaeffer, 1966). The rationale behind Schaeffer’s work is that all possible

sounds can be described in terms of its qualities—e.g.: pitchness, iterativeness, dy-

namic profile and so on—regardless of their source of creation. The extractor of

morphological descriptors (Ricard and Herrera, 2004) currently generates the follow-

ing metadata automatically:

Pitchness: (Organization within the spectral dimensions) Pitch, Complex and Noisy.

Dynamic Profile: (Intensity description) Unvarying, Crescendo, Decrescendo, Delta,

Impulsive, Iterative, Other.

Pitchness Profile: (Temporal evolution of the internal spectral components) Varying

and Unvarying

Pitch Profile: (Temporal evolution of the global spectrum) Undefined, Unvarying,

Varying Continuous, Varying Stepped.

These descriptors can be used to retrieve abstract sounds as well as refine other

types of searches. Besides applying to all types of sounds, the use of an automatic

extractor avoids expensive human labeling while it assures consistency. For details
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Figure 3.12: Morphological descriptor filtering. The iterative dynamic profile allows
to discriminate between snare samples and loops

Figure 3.13: Morphological description filtering. The impulsive dynamic profile allows
to discriminate violin pizzicati.

on the construction and usability evaluation of the morphological sound description

we refer to (Ricard and Herrera, 2004).

3.3.1.5 Clustering and Visualization Tools

Usually, systems for content-based retrieval of similar sounds output a list of similar

sounds ordered by increasing similarity distance. The list of retrieved sounds can

rapidly grow and the search of the appropriate sound becomes tedious. There is a

need for a user-friendly type of interface for browsing through similar sounds. One
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Figure 3.14: Morphological description filtering. The delta dynamic profile example.

possibility for avoiding having to go over, say 400 gunshots, is via clustering sounds

into perceptually meaningful subsets, so that the user can choose what perceptual

category of sound he or she wishes to explore. We used a hierarchical tree clustering

with average linkage algorithm and the above mentioned similarity distance (Jain

et al., 2000). Another possibility of interaction with the sounds is using visualiza-

tion techniques, specifically Multidimensional scaling (MDS) (Shepard, 1962; Kruskal,

1964), self-organizing maps (SOM) (Kohonen, 1997; Honkela et al., 1997; Pampalk

et al., 2002b) or FastMap (Faloutsos and Lin, 1995; Cano et al., 2002b), to map the

audio samples into points of an Euclidean space. Figure 3.15 displays a mapping of

the audio samples to a 2D space. In the example it is possible to distinguish different

classes of cat sounds, e.g.: “purring”, “hissing” and “miaow” sounds.

3.3.2 WordNet-based knowledge manager

The use of a WordNet-based taxonomy management together with Natural Language

Processing tools enhances text-search engines used in sound effects retrieval systems

by going from keyword to concept-based search. At the same time it eases the librarian

task when describing sounds and it simplifies the management of the categories. Some

of the benefits of the knowledge management system are listed below:
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Figure 3.15: FastMap visualization screenshot. The points of the 2D map refer
to different audio samples. The distances on the euclidean space try to preserve
distances in the hyper-dimensional perceptual space defined by the similarity distance
of subsection 3.3.1.3

• Higher control on the precision and recall of the results using WordNet concepts.

The query “bike” returns both “bicycle” and “motorcycle” sounds and the user

is given the option to refine the search.

• Common sense “intelligent” navigation: The concept relations encoded in Word-

Net can be used to propose related terms. It is generally accepted that recogni-

tion is stronger than recall and a user may not know how the librarian tagged a

sound. If a user asks for the sound of a “Jaguar”, the system presents results of

Jaguar as an automobile as well as a feline. Moreover, once the right concepts

is specified, say jaguar meaning the feline, it proposes also sounds by other big

cats, such as lions or tigers.
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• Proposal of higher level related term not included in the lexical network. Word-

Net does not have all possible relations. For instance, “footsteps in mud”,

“tractor”, “cow bells” and “hens” may seem related in our minds when we

think of farm sounds but do not have direct links within WordNet. It is pos-

sible to recover this type of relations because there are many sounds that have

been labeled with the concept “farm”. The analysis of co-occurrence of synsets,

“tractor” and “farm” co-occur significantly, allows the system to infer related

terms (Banerjee and Pedersen, 2003).

• Building on WordNet, it is possible to construct a lemmatizer which can convert,

say “bikes” becomes “bike”, an inflecter that allows to expand it to “bike, bikes

and biking”, and a name entity recognition module, that is able to identify

“Grand piano” as a specific type of piano.

• Module for the phonetic matching, e.g: “whoooassh” retrieves “whoosh”. Pho-

netic matching is used in information retrieval to account for the typo errors in

a query and thus aims at reducing the frustration of a user. In sound effects re-

trieval, it is even more important since it is common practice to describe sounds

as they sound if one reads them. WordNet has a very complete onomatopoeia

ontology.

3.3.3 Similarity evaluation

We have used 54,799 sounds from the Sound-Effects-Library (http://www.sound-

effects-library.com) for the experiments. These sounds have been unambiguously

tagged with concepts of an enhanced WordNet. Thus a piano sound with the following

caption:“Concert Grand Piano - piano” may have the following synsets (the numbers

on the left are the unique WordNet synset identifiers):

• 02974665%n concert grand, concert piano – (a grand piano suitable for concert
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performances)

• 04729552%n piano, pianissimo – ((music) low loudness)

3.3.3.1 Experimental setup

The evaluation of similarity distances is a tricky subject. Perceptual listening tests are

expensive. Another possibility is to evaluate the goodness of the similarity measure

examining the performance in a 1-Nearest Neighbor (NN) classification task. As we

will see in Section 3.3.3.3, the overlap between semantic and perceptual taxonomies

complicates the evaluation, e.g. a “cat miaow”, a “a cello” and an “old door opening”

may sound very similar and yet they were originated by very different sources. There

are cases where there is a “decent” relationship between semantic and perceptual

taxonomies. For instance, in musical instruments, the semantic taxonomy more or less

follows an acoustic classification scheme, basically due to the physical construction,

and so instruments are wind (wood and brass), string (plucked or bowed) and so

on (Lakatos, 2000; Herrera et al., 2003). Another example where there is a decent

mapping between semantic description and it perceptual description is the case of

“onomatopoeia”.

We have experimented three ways of assessing the perceptual similarity between

sounds:

• Perceptual listening experiments

• Accuracy on classification or metadata generation using a similarity measure

• Consistency on the ranking and robustness to perceptual preserving distortions

such as resampling, transcoding (converting to MP3 format at different com-

pression rates and back).

We discuss with more detail the first two items.
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3.3.3.2 Perceptual listening tests

In order to test the relevance of our similarity measures, we asked users of our system

to give a personal perceptual evaluation on the retrieval of sounds by similarity. This

experiment was accomplished on 20 users who chose 41 different queries, and produced

568 evaluations on the relevance of the similar sound retrieved. During the evaluation,

the users were presented with a grading scale from 1—not similar at all—to 5—closely

similar. The average grade was 2.6 which slightly above more or less similar. We have

at our disposal the semantic concepts associated with the 54,799 sounds used in the

experiment. It turned out that the semantic class of a sound is crucial in the user’s

sensation of similarity. Although more experiments and thorough analysis should be

undertaken, our informal experiment seems to hint that the users gave better grades

to retrieved sounds that are from the same semantic class as the query sound (40%

of the best graded sounds belonged to the same semantic class). In the prototype, in

addition to the purely content-based retrieval tools, the use of the knowledge-based

tools allows searches for similar sounds inside a specific semantic family.

3.3.3.3 Metadata annotation performance

We have done two experiments in metadata annotation. The first experiment con-

sisted in finding a best-match for all the sounds in the database. This experiments is

described in detail in Section 3.2.

As we discuss in Section 3.2, the number of concepts (synsets) that the sound in

the database and their best match have in common was bigger than one—at least

one synset—half of the time. Yet we must remind the reader that there are many

occasions when this evaluation metric is not appropriate for similarity assessment:

The intersection of source descriptions can be zero for very similar sounding sounds.

The closest-match for a “waterfall medium constant” turns out to be a “extremely

heavy rain”. These sounds are semantically different but perceptually equivalent.

The ambiguity is a disadvantage when designing and assessing perceptual similarity
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distances because it makes it difficult to quantitatively evaluate the performance of

a similarity measure.

In a second experiment we have tested the general approach in reduced domain

classification regime mode: percussive instruments, harmonic instruments and we

achieve state-of-the art results. The assumption when we assess the similarity in

such a reduced domain is that there is a parallelism between semantic and perceptual

taxonomies in musical instruments. The psychoacoustic studies of Lakatos (2000) re-

vealed groupings based on the similarities in the physical structure of instruments. We

have therefore evaluated the similarity with classification on the musical instruments

space, a subspace of the universe of sounds.

As reported in 3.2, in the 6 class percussive instrument classification we achieve

a 85% recognition (955 audio files) using 10 fold validation. The results for a 8 class

classification of harmonic instruments is a 77.3% (261 audio files).

3.3.4 Summary

After introducing some difficulties inherent in interacting with sound effect repositories—

both for the librarian who designs such content repositories and for potential users

who access this content— We presented several technologies that enhance and fit

smoothly into professional sound effects providers working processes. Several low-

level content-based audio tools have been integrated providing possibilities of access-

ing sounds which are unrelated from the text caption but sound the same—even if

they are unlabeled. The automatic annotator of Section 3.2 is used as an aid for the

librarian, e.g. the librarian is presented with the list of relevant concepts generated

by the computer and validates or rejects the hypothesis.

The system can be accessed and evaluated at http://audioclas.iua.upf.es

In the next section, an intelligent authoring system is implemented on top of the

search engine. The authoring system will allow for seamless creation of ambiances

using both knowledge and perceptual tools.
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3.4 Intelligent authoring

This section describes an intelligent authoring system for ambiance generation.

Ambiances are background recordings used in audiovisual productions to make lis-

teners feel they are in places like a pub or a farm. Accessing to commercially available

atmosphere libraries is a convenient alternative to sending teams to record ambiances

yet they limit the creation in different ways. First, they are already mixed, which re-

duces the flexibility to add, remove individual sounds or change its panning. Secondly,

the number of ambient libraries is limited. We propose a semi-automatic system for

ambiance generation. The system creates ambiances on demand given text queries by

fetching relevant sounds from a large sound effect database and importing them into

a sequencer multi track project. Ambiances of diverse nature can be created easily.

Several controls are provided to the users to refine the type of samples and the sound

arrangement.

3.4.1 Introduction

Traditionally, from the film production process point of view, sound is broken into a

series of layers: dialog, music and sound effects L.Mott (1990). SFX can be broken

further into hard SFX (car doors opening and closing, and other foreground sound

material) and Foley (sound made by humans, e.g: footsteps) on the one hand, and

ambiances on the other hand. Ambiances—also known as atmospheres—are the back-

ground recordings which identify scenes aurally. They make the listener really feel like

they are in places like an airport, a church, a subway station, or the jungle. Ambiances

have two components: The ambient loop, which is a long, streaming, stereo recording,

and specifics or stingers, which are separate, short elements (e.g: dog barks,car horns,

etc) that trigger randomly to break up repetition Peck (2001).

Sound engineers need to access sound libraries for their video and film productions,

multimedia and audio-visual presentations, web sites, computer games and music.
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Access to libraries is a convenient alternative to sending a team to record a particular

ambiances (consider for instance “a Rain forest” or “a Vesuvian eruption”. However,

the approach has some drawbacks:

1. Accessing the right ambiances is not easy due to the information retrieval mod-

els, currently based mainly on keyword search Cano et al. (2004e).

2. The number of libraries is large but limited. Everybody has access to the same

content although sound designers can use them as starting point and make them

unrecognizable and unique.

3. Ambiances offered by SFX library providers are already mixed. There may be

a particular SFX in the mix that the sound engineer does not want in that

position or may be does not want at all. Because the ambiances are already

mixed, it is a hassle for the sound engineer to tailor the ambiance.

In this context, we present a system for the automatic generation of ambiances. In

short, the system works as follows: the user specifies his need with a standard textual

query, e.g: “farm ambiance”. The ambiance is created on-the-fly combining SFX

related to the query. For example,the query “farm ambiance” may return “chicken”,

“tractors”, “footsteps on mud” or “cowbells” sounds. A subset of retrieved sounds

is randomly chosen. After listening to the ambiance, the user may decide to refine

the query—e.g: to remove the “cowbells” and add more “chickens”—, ask another

random ambiance—with a “shuffle-type” option—or decide that the ambiance is good

enough to start working with. The system outputs the individual SFX samples in a

multi track project.

The intended goals of the approach can be summarized as follows:

Enhance creativity: Sound engineers have access to a huge ever-changing variety of

ambiances instead of a fix set of ambiances. The combination of individual SFX

provides a substantially larger number of ambiances.
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Enhance productivity: Engineers can have several possible sonifications in a short

time.

Enhance flexibility: Having different SFX of the ambiance separately in a Multi

Track gives more flexibility to the ambiance specification process, some sounds–

a bird singing in a forest ambiance–can be removed or their location in the time

line changed. It also allows for spatialization using 5.1.

Enhance quality: With a very low overhead—basically clicking on a “shuffle” but-

ton and adjusting some sliders, sound engineers can obtain several ambiance

templates. Hence, the production cycle reduces. The producers can give their

feedback faster and their opinions be incorporated earlier in the production

improving the overall quality.

3.4.2 System Description

The system is based on a concept-based SFX search engine developed within the Au-

dioClas project (www.audioclas.org). The objectives of the project were to go beyond

current professional SFX provider information retrieval model, based on keyword-

matching, mainly through two approaches Cano et al. (2004c):

Semantically-enhanced management of SFX using a general ontology, WordNet Miller

(1995).7

Content-based audio technologies which allow automatic generation of perceptual

meta data (such as prominent pitch, dynamics, beat, noisiness).

These two approaches are the building blocks of the semi-automatic ambiance gen-

eration. Current prototype uses 80.000 sounds from a major on-line SFX provider.8

Sounds come with textual descriptions which have been disambiguated with the aug-

mented WordNet ontology Cano et al. (2004e). As we detailed in Section 3.1 WordNet

7http://www.cogsci.princeton.edu/∼wn/
8http://www.sound-effects-library.com
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is a lexical database that, unlike standard dictionaries which index terms alphabeti-

cally, indexes concepts with relations among them.

There are two main functional blocks in the system. The first one retrieves the

relevant sounds of the SFX Database and a second one organizes the sounds in a

multi track according to some heuristic rules (see figure 3.16).

Match User QUERY
with Knowledge Base

Broker

Match Knowledge Base Manager
Results Ambience Sound Data Base

Priority Manager
Agent

Generate User Interface with
Preliminary Ambience proposal

Ambience
Sound

Data Base
Manager

Knowledge
Base

Manager

Satisfactory result?

Match User�s required
modifications with Ambience

Sound Data Base Entries

?

Generated Ambience Multi-Track Sound

Yes

NoShuffle

Figure 3.16: Flow diagram of the ambiance generation system.
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3.4.3 Sound selection and retrieval

The first step has been mining ambiance sounds to learn the type of sources used. We

use a database of SFX that has been labeled with concepts rather than with words

(see Cano et al. (2004e) for details). We are therefore able to study the co-occurrence

of concepts in sounds. For example, the ambiance “Farm Ambiance Of Rooster And

Hen With Wagtail In Background” has been converted to:

01466271%n hen, biddy -- (adult female chicken)

01206115%n wagtail -- (Old World bird having a very

long tail that jerks up and down as it walks)

02893950%n farm -- (workplace consisting of farm

buildings and cultivated land as a unit)

By mining this information we learn that farm is related to the concept hen and

the concept wagtail. Moreover, there are relations encoded in WordNet, which knows

that hen and chicken are related. Whenever a user asks for farm sounds we can

retrieve a set of sounds where farm appears. Besides we can also search for the

sounds of the related concepts, such as chicken. A random subset of the relevant

sounds is forwarded to the subsequent block, the sound sequencing.

3.4.4 Sound sequencing

Besides the definition and selection of the suitable SFX, a significant part of the

work of the sound designer is setting up parameters and time lines in a multi track

project, such as volumes or panoramic envelopes. This section details some of the

rules used to mix all fetched tracks and compose the synthetic atmosphere. The SFX

retrieval module returns mono and dry (no effect has been applied) tracks. Whenever

available, the module differentiates between two types of tracks: long ambient tracks
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and several short isolated effects. One long track is selected to serve as a ambient

loop on which the short sounds, or specifics, are added. With such picture of the

workspace we hint some rules on how to place the tracks in the mix, how to adjust

channel controls (gain, panning and equalization), and which effects (echo, reverb)

can be applied to each track.

The systems automatically distributes the tracks along the mix, placing first the

ambient loop and inserting sequentially the specifics, with a probabilistic criterion.

This probabilistic criterion is based on the inverse of a frame-based energy computa-

tion. This means that the more energetic regions of the mix will have less probability

to receive the following effect track. This process is depicted in figure 3.17.

Figure 3.17: Mix example. a. long ambient sound and the corresponding probability
density function. b and c SFX added and the corresponding recalculated probability
density function

It is a cunning feature to keep a certain degree of randomness. Again, a shuffle
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button can remix the atmosphere as many times as desired. Also, further implemen-

tations of the model may take into account other parameters such as energy variation

(in order to avoid two transients happening at the same time), such as spectrum

centroid (in order to avoid as much as possible the frequency content overlap), or

others.

Another important feature is the automatic adjustment of channel controls: gain,

panning and equalization. Regarding the levels, these are set so that the track max-

imum levels are 3 dB above the long ambient mean level and that no saturation /

clipping problems appear. Regarding the stereo panning the ambient sound is cen-

tered and the isolated tracks are panned one left one right along time in order to

minimize time overlap. The amount of panning depends on how close are two consec-

utive tracks, the closer, the more panned. Equalizing is only applied to those tracks

that overlap significantly in frequency domain with the adjacent tracks or with the

ambient loop sound. In these cases the effect track is 6-band equalized to flatten

down to -12 dB the overlapping frequency region.

Finally, the strategy for the automation of the effects we propose is based on

rules. These rules are mainly related with the context of the ambiance. Say we are

reconstructing an office atmosphere, we will apply a medium room reverb to whatever

effect track we drop to the mix; if we are reconstructing a mountain atmosphere, we

can apply some echo to the tracks.

3.4.4.1 Integration in professional environments

The advent of high quality audio and spatialization surround setups (e.g: 5.1), first

in the film industry, and more recently in home entertainment with DVD, offers

the possibilities to create more engaging and immersive ambient sound. It is now

possible to have ambient loops that take advantage of very low pitch sound (using

subwoofers). It is possible to simulate movement in a tri-dimensional space or specific

sound elements that pan in every direction we wish. On the other hand the complexity

of setting up a multi track project for a surround scenario increases a lot. It would
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be extremely useful for a sound designer to specify at a higher level which surround

characteristics are desirable for the ambiance, so that the system can provide him a

multi track project file, and respective sound files, already configured to be integrated

in his main project.

3.4.5 Results and discussion

Let us now give critical comments on some typical examples on ambiance generation:

Some of the ambiances created had too many events in it. The “jungle” ambiance

had plenty of tropical birds, elephants and monkeys and sounded more like a

zoo than a jungle.

Some of the ambiances need greater detail in the specification. A “war” ambiance

query returned war sounds of different epochs, e.g: bombs, machine guns,

swords and laser guns.

The sex ambiance retrieved sounds produced by too many people to be realistic.

These experiences lead us to the conception of a refinement control to add/remove

specific sound classes or another control for the density of specifics.

As a multi track application, we have used the free editor Audacity.9 In addition

to common sound editing functionalities, Audacity allows to mix several tracks to-

gether and apply effects to tracks. Audacity allows to save multi track sessions yet

it does not read sessions created by external programs. We have therefore tweaked

the application in order to load our automatically generated ambiance multi track

sessions.

We have presented a system for semi-automatic ambiance generation. The am-

biances generated by textual query can be further refined by the user. The user

controls the number of sounds that should be returned and can add and remove

9http://audacity.sourceforge.net/
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types of sounds, e.g: “more penguin sounds”. Furthermore the ambiance is deliv-

ered to the user as a multi track project, providing thus flexibility to fine tune the

results. We plan to extend this work to semi-automatic sonifications of audiovisual

productions given scripts (or briefings) and some information of the timing.



Chapter 4

Discussion and future work

This dissertation addressed several fundamental issues regarding audio content

management. We have surveyed on a low-level description audio content technique:

audio fingerprinting and its applications. We have justified low-level content-based

usefulness as as well as its limitations with audio fingerprinting example applications:

e.g. they provide identification of distorted recordings, they are even able to provide

“query-by-example” type of queries but are not able to bridge the semantic gap in the

sense that they do not produce human readable metadata. In the context of sound

effects, we have underlined open issues in state-of-the-art automatic sound annotation

as a method to bridge the semantic gap, mainly its limitations to working conditions

in limited domains: a few musical instruments or backgrounds, and proposed both a

general scalable memory-based method together with a real-world taxonomy: Word-

Net. Finally we have implemented and evaluated content and concept-based search

in a production size sound effects search engine as well as provide an example of an

intelligent application that uses the framework: Automatic background generation.

In this last chapter, we briefly summarize the contributions we believe this disser-

tation makes to the state-of-the-art in automatic content-based audio retrieval. We

also outline some promising lines of research that we believe are worth exploring yet

151
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are not part of the thesis because of time constraints or because they go beyond the

scope of the dissertation.

4.1 Summary of contributions

4.1.1 Low-level audio description: Audio Fingerprinting

The field of audio fingerprinting was established as a research area at around the

same time that this work begun. As a consequence, at the time there were not sur-

veys on the state-of-the-art nor clear boundaries of what was fingerprinting and was

not. As of today, audio fingerprinting is probably the most successful audio content-

based technology from the industrial point of view in the sense that even though

young—its establishment as research area coincided chronologically with the begin-

ning of this doctoral work at the end of the 90s—over the years it has consolidated

as a solid technology with several implementations in production monitoring radios

and TV channels in several countries and millions of users worldwide. Among the

contributions of this dissertation to audio fingerprinting we highlight:

Audio fingerprinting definition and uses

In Chapter 2 we introduced the concepts and applications of fingerprinting. Fin-

gerprinting technologies allow the monitoring of audio content without the need of

metadata or watermark embedding. However, additional uses exist for audio fin-

gerprinting. The rationale is presented along with the differences with respect to

watermarking. The main requirements of fingerprinting systems are described. The

basic modes of employing audio fingerprints, namely identification, authentication,

content-based secret key generation for watermarking and content-based audio re-

trieval and processing are depicted. Some concrete scenarios and business models

where the technology is used were described.

Audio fingerprinting functional framework and review of algorithms
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At the beginning of fingerprinting research, the different approaches were de-

scribed with different rationales and terminology depending on the background of the

researchers. Accordingly fingerprinting was presented as a Pattern matching, Mul-

timedia (Music) Information Retrieval or Cryptography (Robust Hashing) problem.

In Section 2.2, we presented a unifying functional framework for audio fingerprinting

which we believe permits to explain existing systems as different instances of the same

general model.

Fingerprinting system for broadcast audio

In the context of the AudioDNA fingerprinting system for broadcast audio de-

scribed in Section 2.3, we contributed with a similarity metric and approximate search

methods with a system based on FASTA.

Integrity verification method

In Chapter 2.4 we introduced a novel method for audio-integrity verification based

on a combination of watermarking and fingerprinting. The fingerprint is a sequence

of symbols (“AudioDNA”) that enables one to identify an audio signal. Integrity

verification is performed by embedding the fingerprint into the audio signal itself by

means of a watermark. The original fingerprint is reconstructed from the watermark

and compared with a new fingerprint extracted from the watermarked signal. If they

are identical, the signal has not been modified; if not, the system is able to determine

the approximate locations where the signal has been corrupted.

From fingerprinting toward music similarity search

We experimented how fingerprinting methods can be relaxed for similarity search.

Specifically, we have proposed the use of FastMap method for improving a content-

based audio identification system. The tool proves to be interesting, not only for audio

fingerprinting research, but also as a component of a search-enabled audio browser.
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4.1.2 Semantic Audio Management: Sound Effects

Several contributions for bridging the semantic gap in the context of managing sound

effects were introduced.

Sound description: Ontology Management

We have pointed out some of the problems in cataloging sound. Specifically,

how to generate searchable and machine readable SFX description metadata. We

have reviewed some of the literature for audio classification as well as mined legacy

SFX metadata from professional SFX libraries. We have implemented a knowledge

management system inspired on the MPEG-7 framework for Multimedia and relying

on WordNet as taxonomy-backbone. The proposed framework has several advantages.

The librarian, does not need to add many terms—e.g. this is the sound of “car,

automobile, vehicle”— since many relations are already encoded in the ontology and

hence they do not need to be explicitly entered. For the user, categories can be

created dynamically allowing to search and navigate through taxonomies based on

psycholinguistic and cognitive theories. The terms—even though described externally

as plain English—are machine readable, unambiguous and can be used for concept-

based retrieval as well as serve as a classification scheme for a general sound annotator.

Generic Sound Annotation

We have contributed with a general sound annotator that overcomes some of the

limitation of current annotation methods. Automatic annotation methods, normally

fine-tuned to reduced domains such as musical instruments or reduced sound effects

taxonomies. Usually, in identification a classifier is build to identify certain concepts:

“cars” , “laughs”, “piano”. Sound samples are gathered and are tagged with those

concepts and finally a classifier is trained to learn those concepts. The number of

concepts and its possible combinations in the real world makes this approach unfea-

sible, as one would need to train tens of thousands of classifiers and new ones would

have to be trained for new concepts. We have contributed with an all-purpose sound

recognition system based on nearest-neighbor classification rule (Cano et al., 2005a).



4.1. SUMMARY OF CONTRIBUTIONS 155

A sound sample will be labeled with the descriptions from the similar sounding ex-

amples of a annotated database. The terms borrowed from the closest match are

unambiguous due to the use of WordNet as the taxonomy back-end. With unam-

biguous tagging, we refer to assigning concepts and not just terms to sounds. For

instance, using the term “bar” for describing a sound is ambiguous, it could be “bar”

as “rigid piece of metal or wood” or as “establishment where alcoholic drinks are

served” where each concept has a unique identifier. This solution enables the sound

annotator to use and export cues from/to video recognition systems or the inclusion

of context knowledge, e.g: “Recognize this sound, the sound is from a mammal”.

In the evaluation, the automatic annotator yielded a 30% concept prediction on a

database of over 50,000 sounds and over 1,600 classes.

Sound effects Search Engine

We have presented several technologies that enhance and fit smoothly into profes-

sional sound effects providers working processes. Main sound effects search engines

use standard text-retrieval technologies. The vagueness of the query specification,

normally one or two words, together with the ambiguity and informality of natural

languages affects the quality of the search: Some relevant sounds are not retrieved

and some irrelevant ones are presented to the user. Moreover, sounds without caption

are invisible to the users. Content-based audio tools offer perceptual ways of navigat-

ing the audio collections, like “find similar sounds”, even if unlabeled, or query-by-

example. We have described the integration of semantically-enhanced management

of metadata using WordNet together with content-based methods in a commercial

sound effect management system. The audio annotation engine can propose descrip-

tions for new unlabeled audio. The descriptions can be used as generated or, given

the limited recognition accuracy, be presented as options to an editor for validation.

Intelligent Authoring: Ambiance generation

We have proposed a semi-automatic system for ambiance generation. The system

creates ambiances on demand given text queries by fetching relevant sounds from a

large sound effect database and importing them into a sequencer multi track project.
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Ambiances of diverse nature can be created easily. Several controls are provided to

the users to refine the type of samples and the sound arrangement.

4.2 Future perspectives

This section outlines promising future research lines in the different topiscs which are

covered by this dissertation, namely: audio fingerprinting, semantic sound retrieval

as well as some miscellaneous areas such as evaluation or complex networks.

4.2.1 Audio fingerprinting

Compact and robust fingerprints Even though successful implementations of

audio fingerprinting systems exist in the market, there is room for improvement.

Specifically more discriminative, compact and robust features would allow for smaller

fingerprints. Together with distance and scalable search methods, this would allow

for more accurate and computationally efficient systems.

Extensions to content-based similarity search The presented framework

shares many components with other content-based search engines— e.g.: compact yet

informative representations of media assets together with efficient similarity methods.

It remains to be seen how the efficient fingerprinting systems can be extended from

signal-based pure identification tasks toward higher-level navigation of audio assets.

One example into that direction is the MusicSurfer (Cano et al., 2005b), a system for

the interaction with massive collections of music. MusicSurfer automatically extracts

descriptions related to instrumentation, rhythm and harmony from music audio sig-

nals. Together with efficient similarity metrics, the descriptions allow navigation of

multi million track music collections in a flexible and efficient way without the need

of external metadata or human ratings.
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4.2.2 Semantic sound retrieval

Sound similarity measure The similarity metrics are at the core of many informa-

tion retrieval applications, such as clustering, query by example or visualization. For

the sound effects prototype, we have presented a very simple similarity measure, the

Manhattan distance (L1 distance). Further research should be devoted toward un-

derstanding and evaluating different metrics (Santini and Jain, 1999), possibly more

related to psychological findings Tversky (1977).

Flexible distances depending of query point The use of a single distance

for the whole sound space seems to counter intuition. We would like to explore

adaptive functions that weight dimensions depending on the query sound (Hastie and

Tibshirani, 1996).

Reasoning and ontology The results returned by the general annotator can be

further refined. The NN rule can be combined with other classifiers: If the system

returns that a particular sound could be a violin pizzicato or a guitar, we can then

retrieve pizzicato violin and guitar sounds of the same pitch and decide which is more

likely. In order to perform this classification on real-time a lazy classifier could be

chosen. Another example is “car approaches”, where we can look for other examples

of “cars” and other “motor vehicle” “approaches” or “departs” to decide which is the

right action. This same rationale applies to adjective type of modifiers, something

can be described as “loud”, “bright” or “fast”. The concept “fast” means something

different if we talk of “footsteps” or “typing”.

Fusion with other sources information: Video, images, context A promis-

ing direction is researching new methods for generating media annotations by com-

bining audiovisual content analysis, as well as textual information. The output of

the different annotators focusing on different aspects of a multimedia object can be

aggregated to provide a better accuracy. It might be so that a unimodal algorithm

are unable to clearly annotate multimedia content, e.g. a “cat meow” can be confused

with an “old door opening” when we concentrate on the audio only. Hints coming
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from the visual analysis can possibly break this ambiguity. Conversely, in event de-

tection for use in sports, such as finding the significant events in a football game, it

has been found difficult to achieve good results with visual (video) analysis alone, but

much simpler by detecting increases in the crowd cheering and clapping in the audio

domain. This includes developing joint analysis methods, ontology and data fusion

techniques for connecting automatically extracted metadata with semantic labels and

social networks information. The sound annotator considered the sounds in isolation

when many times they occur in a stream. The different hypothesis on the source of a

sequence of sounds can help prune the possibilities and improve the overall accuracy.

4.2.3 Miscellaneous

On evaluation

Among the vast number of disciplines and approaches to MIR (an overview of

which can be found in Downie (2003b)), automatic description of audio signals in

terms of musically-meaningful concepts plays an important role. As in other sci-

entific endeavor, long-term improvements are bounded to systematic evaluation of

models. For instance, text retrieval techniques significantly improved over the year

thanks to the TREC initiative (see trec.nist.org) and the standardization of databases

and evaluation metrics greatly facilitated progress in the fields of Speech Recogni-

tion (Przybocki and Martin, 1989), Machine Learning (Guyon et al., 2005) or Video

Retrieval (see http://www-nlpir.nist.gov/projects/trecvid/). Systematic eval-

uations permit to measure but also to guide progresses in a specific field. Since a few

years, the MIR community has recognized the necessity to conduct rigorous and

comprehensive evaluations (Downie, 2003b; Berenzweig et al., 2004). An Audio De-

scription Contest took place during the 5th edition of the ISMIR in Barcelona, Spain,

in October 2004. The goal of this Contest was to compare state-of-the-art audio algo-

rithms and systems relevant for MIR. It represents the first world-wide competition on

algorithms for audio description for MIR. The original idea to organize such an event
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emerged from the research infrastructure in place at the Music Technology Group of

the Pompeu Fabra University (who hosted ISMIR 2004) where around 50 researchers

work on tasks related to musical audio analysis and synthesis (audio fingerprinting,

singing voice synthesis, music content processing, etc., see www.iua.upf.es/mtg). A

massive storage and computer cluster facility hosts a common repository of audio

data and provides computing functionalities, thus permitting evaluation of developed

algorithms (Cano et al., 2004b). Several audio description tasks were proposed to the

MIR community in advance and the contest organizers gave full support for other

potential tasks that would emerge from the community. Participation was open and

all aspects of the several contests (data, evaluation methods, etc.) were publicly dis-

cussed and agreed. Finally, a total of 20 participants (from 12 research laboratories)

took part in one or several of the following tasks: Melody extraction, Tempo in-

duction, Genre Identification, Artist Identification and Rhythm classification (Cano

et al., 2006b; Gouyon et al., 2006). The contest has successfully continued as an

annual evaluation under the name of MIREX (Downie et al., 2005). This kind of

events already greatly improve the quality of the research as well as big advances in

a certain field. A promising, although resource consuming, future line would be to

establish a certification entity. Such an organization would be in charge of certifying

music and audio content-based techniques. We believe that such a certification would

greatly enhance wide-spread adoption of audio and music description algorithms by

the industry.

Complex networks and music evaluation

Complex network analysis is used to describe a wide variety of systems with in-

teracting parts: networks of collaborating movie actors, the WWW, neural networks,

metabolic pathways of numerous living organisms, to name a few. New insights can

be unveiled by considering musical works and musical artists as parts of a huge struc-

ture of interconnecting parts that influence each other (Newman, 2003). A network is

a collection of items, named vertices or nodes, with connections between them. The
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study of the networks underlying complex systems is easier than studying the full dy-

namics of the systems. Yet, this analysis can provide insights on the design principles,

the functions and the evolution of complex systems (Newman, 2003; Dorogovtsev and

Mendes, 2003). Significant amount of multidisciplinary research on social, biological,

information and technological networks has uncovered that complex systems of differ-

ent nature do share certain topological characteristics. Indeed, the spread of certain

ideas and religions, the success of companies, the spreading of sexually transmitted

diseases such as the AIDS epidemic or computer viruses can be better understood by

studying the topologies of the systems where they interact (Newman, 2003).

In preliminary work (Cano et al., 2006a; Cano and Koppenberger, 2004), complex

network measurements (Barabási, 2002; Newman, 2003) were used to analyze the

topology of networks underlying main music recommendation systems. The properties

that emerge raise a discussion on the underlying forces driving the creation of such

information systems. We can also obtain some hints about how much of the network

structure is due to content similarity and how much to the self-organization of the

network. Therefore, it can shed new light on the design and validation of music

similarity measures and its evaluation (Logan et al., 2003; Berenzweig et al., 2004).

Furthermore, it uncovers possible optimizations when designing music information

systems, such as the optimal number of links between artists or the shortest path

from artist to artist. In this sense, recommendation networks can be optimized by

adding (or removing) links to facilitate navigating from artist to artist in a short

number of clicks. Finally, we can obtain information about which artist has more

links or which genres are more extended. This kind of information may help to

understand the dynamics of certain aspects of music evolution, e.g: how did an artist

get popular or how the music genres emerged.

Needless to say that there are more open venues than answers in the dissertation

but we hope that some of the leads can be taken over by other researchers when

designing music information systems that combine the strengths of humans and ma-

chines.
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Masip, J., Celma, O., Garcia, D., Gómez, E., Gouyon, F., Guaus, E., Herrera, P.,

Massaguer, J., Ong, B., Ramı́rez, M., Streich, S., and Serra, X. (2005b). Content-

based music audio recommendation. In Proceedings of ACM Multimedia, Singapore,

Singapore.

Casey, M. (2002). Generalized sound classification and similarity in MPEG-7. Orga-

nized Sound, 6(2).

Casey M. A. and Westner A. (2000). Separation of Mixed Audio Sources By In-

dependent Subspace Analysis. International Computer Music Conference, pages

154–161.

CBID (2002). Audio identification technology overview.

Celma, O. and Mieza, E. (2004). An opera information system based on MPEG-7.

In Proc. AES 25th Int. Conf., London, UK.



166 BIBLIOGRAPHY
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Relevant Publications by the

Author

In this annex we provide a list of publications related to the dissertation. The updated

list of publications can be consulted at http://mtg.upf.edu.

A.1 Journal Articles

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. Herrera, P. 2005.

’Nearest-Neighbor Automatic Sound Classification with a WordNet Taxonomy’

Journal of Intelligent Information Systems; Vol.24 .2 99-111

Relevant to: Chapter 3

Sound engineers need to access vast collections of sound effects for their film and

video productions. Sound effects providers rely on text-retrieval techniques to

offer their collections. Currently, annotation of audio content is done manually,

which is an arduous task. Automatic annotation methods, normally fine-tuned

to reduced domains such as musical instruments or reduced sound effects tax-

onomies, are not mature enough for labeling with great detail any possible

sound. A general sound recognition tool would require: first, a taxonomy that
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represents the world and, second, thousands of classifiers, each specialized in

distinguishing little details. We report experimental results on a general sound

annotator. To tackle the taxonomy definition problem we use WordNet, a se-

mantic network that organizes real world knowledge. In order to overcome the

need of a huge number of classifiers to distinguish many different sound classes,

we use a nearest-neighbor classifier with a database of isolated sounds unam-

biguously linked to WordNet concepts. A 30% concept prediction is achieved

on a database of over 50,000 sounds and over 1,600 concepts.

• Gouyon, F. Klapuri, A. Dixon, S. Alonso, M. Tzanetakis, G. Uhle, C. Cano,

P. 2005. ’An experimental comparison of audio tempo induction algorithms’

IEEE Transactions on Speech and Audio Processing; Vol.14 .5 .

Relevant to: Chapter 4

We report on the tempo induction contest organized during the International

Conference on Music Information Retrieval (ISMIR 2004) held at the University

Pompeu Fabra in Barcelona in October 2004. The goal of this contest was

to evaluate some state-of-the-art algorithms in the task of inducing the basic

tempo (as a scalar, in beats per minute) from musical audio signals. To our

knowledge, this is the first published large scale cross-validation of audio tempo

induction algorithms. In order to stimulate further research, the contest results,

annotations, evaluation software and part of the data are available at http:

//ismir2004.ismir.net/ISMIR Contest.html.

• Gomes, L. Cano, P. Gómez, E. Bonnet, M. Batlle, E. 2003. ’Audio Water-

marking and Fingerprinting: For Which Applications?’ Journal of New Music

Research; Vol.32 .1

Relevant to: Chapter 2

Although not a new issue, music piracy has acquired a new status in the digital

era, as recordings can be easily copied and distributed. Watermarking has



A.2. BOOK CHAPTERS 183

been proposed as a solution to this problem. It consists in embedding into the

audio signal an inaudible mark containing copyright information. A different

approach, called fingerprinting, consists in extracting a fingerprint from the

audio signal. In association with a database, this fingerprint can be used to

identify a recording, which is useful, for example, to monitor audio excerpts

played by broadcasters and webcasters. There are far more applications to

watermarking and fingerprinting. After a brief technical review, this article

describes potential applications of both methodologies, showing which one is

more suitable for each application.

• Cano, P. Celma, O. Koppenberger, M. Martin-Buldú, J. 2006. ’Topology

of music recommendation networks’. Chaos: An Interdisciplinary Journal of

Nonlinear Science Vol.16 .013107

Relevant to: Chapter 4

We study the topology of several music recommendation networks, which arise

from relationships between artist, co-occurrence of songs in play lists or experts’

recommendation. The analysis uncovers the emergence of complex network

phenomena in these kinds of recommendation networks, built considering artists

as nodes and their resemblance as links. We observe structural properties that

provide some hints on navigation and possible optimizations on the design of

music recommendation systems. Finally, the analysis derived from existing

music knowledge sources provides a deeper understanding of the human music

similarity perception.

A.2 Book Chapters

• Cano, P. Batlle, E. Gómez, E. Gomes, L. Bonnet, M. 2005. ’Audio Finger-

printing: Concepts and Applications.’ Halgamuge, Saman K.; Wang, Lipo Ed.,
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Computational Intelligence for Modelling and Prediction, p.233-245 Springer-

Verlag. ;

Relevant to: Chapter 2

An audio fingerprint is a unique and compact digest derived from perceptually

relevant aspects of a recording. Fingerprinting technologies allow the monitor-

ing of audio content without the need of metadata or watermark embedding.

However, additional uses exist for audio fingerprinting. This paper aims to give

a vision on Audio Fingerprinting. The rationale is presented along with the dif-

ferences with respect to watermarking. The main requirements of fingerprint-

ing systems are described. The basic modes of employing audio fingerprints,

namely identification, authentication, content-based secret key generation for

watermarking and content-based audio retrieval and processing are depicted.

Some concrete scenarios and business models where the technology is used are

presented, as well as an example of an audio fingerprinting extraction algorithm

which has been proposed for both identification and verification.

A.3 Peer-reviewed International Conferences

• Cano, P. Koppenberger, M. Wack, N. G. Mahedero, J. Masip, J. Celma, O.

Garcia, D. Gómez, E. Gouyon, F. Guaus, E. Herrera, P. Massaguer, J. Ong,

B. Ramı́rez, M. Streich, S. Serra, X. 2005. ’An Industrial-Strength Content-

based Music Recommendation System’ Proceedings of 28th Annual Interna-

tional ACM SIGIR Conference; Salvador, Brazil

Relevant to: Chapter 4

We present a metadata free system for the interaction with massive collections of

music, the MusicSurfer. MusicSurfer automatically extracts descriptions related

to instrumentation, rhythm and harmony from music audio signals. Together
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with efficient similarity metrics, the descriptions allow navigation of multimil-

lion track music collections in a flexible and efficient way without the need of

metadata or human ratings.

• Herrera, P. Celma, O. Massaguer, J. Cano, P. Gómez, E. Gouyon, F. Kop-

penberger, M. Garcia, D. G. Mahedero, J. Wack, N. 2005. ’Mucosa: a music

content semantic annotator’ Proceedings of 6th International Conference on

Music Information Retrieval; London, UK

Relevant to: Chapter 4

MUCOSA (Music Content Semantic Annotator) is an environment for the an-

notation and generation of music metadata at different levels of abstraction.

It is composed of three tiers: an annotation client that deals with micro-

annotations (i.e. within-file annotations), a collection tagger, which deals with

macro-annotations (i.e. across-files annotations), and a collaborative annota-

tion subsystem, which manages large-scale annotation tasks that can be shared

among different research centers. The annotation client is an enhanced version

of WaveSurfer, a speech annotation tool. The collection tagger includes tools

for automatic generation of unary descriptors, invention of new descriptors, and

propagation of descriptors across sub-collections or playlists. Finally, the col-

laborative annotation subsystem, based on Plone, makes possible to share the

annotation chores and results between several research institutions. A collec-

tion of annotated songs is available, as a starter pack to all the individuals or

institutions that are eager to join this initiative.

• G. Mahedero, J. Cano, P. Martinez, A. Gouyon, F. Koppenberger, M. 2005.

’Natural language processing of lyrics’ Proceedings of ACM Multimedia 2005;

Singapore, Singapore

Relevant to: Chapter 4

We report experiments on the use of standard natural language processing
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(NLP) tools for the analysis of music lyrics. A significant amount of music

audio has lyrics. Lyrics encode an important part of the semantics of a song,

therefore their analysis complements that of acoustic and cultural metadata

and is fundamental for the development of complete music information retrieval

systems. Moreover, a textual analysis of a song can generate ground truth data

that can be used to validate results from purely acoustic methods. Preliminary

results on language identification, structure extraction, categorization and sim-

ilarity searches suggests that a lot of profit can be gained from the analysis of

lyrics.

• Cano, P. Koppenberger, M. Wack, N. G. Mahedero, J. Aussenac, T. Marxer,

R. Masip, J. Celma, O. Garcia, D. Gómez, E. Gouyon, F. Guaus, E. Herrera,

P. Massaguer, J. Ong, B. Ramı́rez, M. Streich, S. Serra, X. 2005. ’Content-

based Music Audio Recommendation’ Proceedings of ACM Multimedia 2005;

Singapore, Singapore

Relevant to: Chapter 4

We present the MusicSurfer, a metadata free system for the interaction with

massive collections of music. MusicSurfer automatically extracts descriptions

related to instrumentation, rhythm and harmony from music audio signals.

Together with efficient similarity metrics, the descriptions allow navigation of

multimillion track music collections in a flexible and efficient way without the

need for metadata nor human ratings.

• Cano, P. Koppenberger, M. Herrera, P. Celma, O. Tarasov, V. 2004. ’Sound

Effect Taxonomy Management in Production Environments’ Proceedings of

25th International AES Conference; London, UK

Relevant to: Chapter 3

Categories or classification schemes offer ways of navigating and having higher

control over the search and retrieval of audio content. The MPEG7 standard
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provides description mechanisms and ontology management tools for multime-

dia documents. We have implemented a classification scheme for sound effects

management inspired by the MPEG7 standard on top of an existing lexical net-

work, WordNet. WordNet is a semantic network that organizes over 100,000

concepts of the real world with links between them. We show how to extend

WordNet with the concepts of the specific domain of sound effects. We review

some of the taxonomies to acoustically describe sounds. Mining legacy meta-

data from sound effects libraries further supplies us with terms. The extended

semantic network includes the semantic, perceptual, and sound effects specific

terms in an unambiguous way. We show the usefulness of the approach eas-

ing the task for the librarian and providing higher control on the search and

retrieval for the user.

• Cano, P. Koppenberger, M. Ferradans, S. Martinez, A. Gouyon, F. Sandvold,

V. Tarasov, V. Wack, N. 2004. ’MTG-DB: A Repository for Music Audio

Processing’ Proceedings of 4th International Conference on Web Delivering of

Music; Barcelona, Spain

Relevant to: Chapter 4

Content-based audio processing researchers need audio and its related meta-

data to develop and test algorithms. The MTGDB is common repository of

audio, metadata, ontologies and algorithms. The project includes hardware

implementation, in the form of massive storage and computation cluster, the

software and databases design and the ontology management. The repository,

as far as copyright licenses allow, is open to researchers outside out lab to test

and evaluate their algorithms.

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. 2004. ’Knowl-

edge and Perceptual Sound Effects Asset Management’ Proceedings of 1st Inter-

national Conference on E-business and Telecommunication Networks; Setubal,

Portugal
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Relevant to: Chapter 3

Sound producers create the sound that goes along the image in cinema and video

productions, as well as spots and documentaries. Some sounds are recorded for

the occasion. Many occasions, however, require the engineer to have access to

massive libraries of music and sound effects. Of the three major facets of audio

in post-production: music, speech and sound effects, this document focuses on

sound effects (Sound FX or SFX). Main professional on-line sound-fx providers

offer their collections using standard text-retrieval technologies. Library con-

struction is an error-prone and labor consuming task. Moreover, the ambiguity

and informality of natural languages affects the quality of the search. The

use of ontologies alleviates some of the ambiguity problems inherent to natural

languages, yet it is very complicated to devise and maintain an ontology that

account for the level of detail needed in a production-size sound effect man-

agement system. To address this problem we use WordNet, an ontology that

organizes over 100.000 concepts of real world knowledge: e.g: it relates doors

to locks, to wood and to the actions of opening, closing or knocking. However

a fundamental issue remains: sounds without caption are invisible to the users.

Content-based audio tools offer perceptual ways of navigating the audio collec-

tions, like ”find similar sound”, even if unlabeled, or query-by-example, possibly

restricting the search to a semantic subspace, such as ”vehicles”. The proposed

content-based technologies also allow semi-automatic sound annotation. We de-

scribe the integration of semantically-enhanced management of metadata using

WordNet together with content-based methods in a commercial sound effect

management system.

• Cano, P. Fabig, L. Gouyon, F. Koppenberger, M. Loscos, A. Barbosa, A.

2004. ’Semi-Automatic Ambiance Generation’ Proceedings of 7th International

Conference on Digital Audio Effects; Naples, Italy

Relevant to: Chapter 3
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Ambiances are background recordings used in audiovisual productions to make

listeners feel they are in places like a pub or a farm. Accessing to commercially

available atmosphere libraries is a convenient alternative to sending teams to

record ambiances yet they limit the creation in different ways. First, they are

already mixed, which reduces the flexibility to add, remove individual sounds

or change its panning. Secondly, the number of ambient libraries is limited. We

propose a semi-automatic system for ambiance generation. The system creates

ambiances on demand given text queries by fetching relevant sounds from a

large sound effect database and importing them into a sequencer multi track

project. Ambiances of diverse nature can be created easily. Several controls are

provided to the users to refine the type of samples and the sound arrangement.

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Herrera, P. Wack, N. 2004.

’Nearest-neighbor generic sound classification with a WordNet-based taxonomy’

Proceedings of AES 116th Convention; Berlin, Germany

Relevant to: Chapter 3

Audio classification methods work well when fine-tuned to reduced domains,

such as musical instrument classification or simplified sound effects taxonomies.

Classification methods cannot currently offer the detail needed in general sound

recognition. A real-world-sound recognition tool would require a taxonomy

that represents the real world and thousands of classifiers, each specialized in

distinguishing little details. To tackle the taxonomy definition problem we use

WordNet, a semantic network that organizes real world knowledge. In order to

overcome the second problem, that is the need of a huge number of classifiers to

distinguish a huge number of sound classes, we use a nearest-neighbor classifier

with a database of isolated sounds unambiguously linked to WordNet concepts.

• Cano, P. Koppenberger, M. Le Groux, S. Ricard, J. Wack, N. 2004. ’Semantic

and Perceptual Management of Sound Effects in Production Systems’ Proceed-

ings of International Broadcasting Conference; Amsterdam, The Netherlands
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Relevant to: Chapter 3

Main professional sound effects (SFX) providers offer their collections using

standard text-retrieval technologies. SFX cataloging is an error-prone and labor

consuming task. The vagueness of the query specification, normally one or two

words, together with the ambiguity and informality of natural languages affects

the quality of the search: Some relevant sounds are not retrieved and some

irrelevant ones are presented to the user. The use of ontologies alleviates some

of the ambiguity problems inherent to natural languages, yet they pose others.

It is very complicated to devise and maintain an ontology that account for the

level of detail needed in a production-size sound effect management system. To

address this problem we use WordNet, an ontology that organizes real world

knowledge: e.g.: it relates doors to locks, to wood and to the actions of knocking.

However a fundamental issue remains: sounds without caption are invisible to

the users. Content-based audio tools offer perceptual ways of navigating the

audio collections, like “find similar sounds”, even if unlabeled, or query-by-

example. We describe the integration of semantically-enhanced management of

metadata using WordNet together with content-based methods in a commercial

sound effect management system.

• Cano, P. Koppenberger, M. 2004. ’Automatic sound annotation’ Proceedings

of 14th IEEE workshop on Machine Learning for Signal Processing; São Lúıs,

Brazil

Relevant to: Chapter 3

Sound engineers need to access vast collections of sound effects for their film

and video productions. Sound effects providers rely on text-retrieval techniques

to offer their collections. Currently, annotation of audio content is done manu-

ally, which is an arduous task. Automatic annotation methods, normally fine-

tuned to reduced domains such as musical instruments or reduced sound effects
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taxonomies, are not mature enough for labeling with great detail any possi-

ble sound. A general sound recognition tool would require: first, a taxonomy

that represents the world and, second, thousands of classifiers, each specialized

in distinguishing little de- tails. We report experimental results on a general

sound annotator. To tackle the taxonomy definition problem we use WordNet,

a semantic network that organizes real world knowledge. In order to overcome

the need of a huge number of classifiers to distinguish many different sound

classes, we use a nearest-neighbor classifier with a database of isolated sounds

unambiguously linked to Word- Net concepts. A 30prediction is achieved on a

database of over 50.000 sounds and over 1600 concepts.

• Cano, P. Koppenberger, M. 2004. ’The emergence of complex network pat-

terns in music networks’ Proceedings of Fifth International Conference on Music

Information Retrieval; Barcelona

Relevant to: Chapter 4

Viewing biological, social or technological systems as networks formed by nodes

and connections between them can help better understand them. We study

the topology of several music networks, namely citation in allmusic.com and

co-occurrence of artists in playlists. The analysis uncovers the emergence of

complex network phenomena in music information networks built considering

artists as nodes and its relations as links. The properties provide some hints on

searchability and possible optimizations in the design of music recommendation

systems. It may also provide a deeper understanding on the similarity measures

that can be derived from existing music knowledge sources.

• Batlle, E. Masip, J. Cano, P. 2004. ’Scalability issues in HMM-based Audio

Fingerprinting’ Proceedings of IEEE International Conference on Multimedia

and Expo; Taipei, Taiwan Relevant to: Chapter 2

• Batlle, E. Masip, J. Cano, P. 2003. ’System analysis and performance tuning
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for broadcast audio fingerprinting’ Proceedings of 6th International Conference

on Digital Audio Effects; London, UK Relevant to: Chapter 2 An audio finger-

print is a content-based compact signature that summarizes an audio recording.

Audio Fingerprinting technologies have recently attracted attention since they

allow the monitoring of audio independently of its format and without the need

of meta-data or watermark embedding. These technologies need to face channel

robustness as well as system accuracy and scalability to succeed on real audio

broadcasting environments. This paper presents a complete audio fingerprint-

ing system for audio broadcasting monitoring that satisfies the above system

requirements. The system performance is enhanced with four proposals that

required detailed analysis of the system blocks as well as extense system tuning

experiments.

• Cano, P. Batlle, E. Kalker, T. Haitsma, J. 2002. ’A Review of Algorithms

for Audio Fingerprinting’ Proceedings of 2002 IEEE International Workshop

on Multimedia Signal Processing; St. Thomas, Virgin Islands

Relevant to: Chapter 2

An audio fingerprint is a content-based compact signature that summarizes an

audio recording. Audio Fingerprinting technologies have recently attracted at-

tention since they allow the monitoring of audio independently of its format

and without the need of meta-data or watermark embedding. The different

approaches to fingerprinting are usually described with different rationales and

terminology depending on the background: Pattern matching, Multimedia (Mu-

sic) Information Retrieval or Cryptography (Robust Hashing). In this paper,

we review different techniques mapping functional parts to blocks of a unified

framework.

• Gómez, E. Cano, P. Gomes, L. Batlle, E. Bonnet, M. 2002. ’Mixed Watermarking-

Fingerprinting Approach for Integrity Verification of Audio Recordings’ Pro-

ceedings of IEEE International Telecommunications Symposium; Natal, Brazil
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Relevant to: Chapter 3

We introduce a method for audio-integrity verification based on a combination

of watermarking and fingerprinting. The fingerprint is a sequence of symbols

(“audio descriptor units”) that enables one to identify an audio signal. Integrity

verification is performed by embedding the fingerprint into the audio signal it-

self by means of a watermark. The original fingerprint is reconstructed from

the watermark and compared with a new fingerprint extracted from the water-

marked signal. If they are identical, the signal has not been modified; if not,

the system is able to determine the approximate locations where the signal has

been corrupted.

• Cano, P. Kaltenbrunner, M. Gouyon, F. Batlle, E. 2002. ’On the use of

Fastmap for audio information retrieval and browsing’ Proceedings of ISMIR

2002 - 3rd International Conference on Music Information Retrieval; Ircam -

Centre Pompidou, Paris, France

Relevant to: Chapter 2,3

In this article, a heuristic version of Multidimensional Scaling (MDS) named

FastMap is used for audio retrieval and browsing. FastMap, like MDS, maps

objects into an Euclidean space, such that similarities are preserved. In addition

of being more efficient than MDS it allows query-by-example type of query,

which makes it suitable for a content-based retrieval purposes.

• Cano, P. Batlle, E. Mayer, H. Neuschmied, H. 2002. ’Robust Sound Modeling

for Song Detection in Broadcast Audio’ Proceedings of 112th AES Convention,

2002; Munich, Germany

Relevant to: Chapter 3

This paper describes the development of an audio fingerprint called AudioDNA

designed to be robust against several distortions including those related to ra-

dio broadcasting. A complete system, covering also a fast and efficient method
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for comparing observed fingerprints against a huge database with reference fin-

gerprints is described. The promising results achieved with the first prototype

system observing music titles as well as commercials are presented.

• Gouyon, F. Herrera, P. Cano, P. 2002. ’Pulse-dependent analysis of percussive

music’ Proceedings of AES22 International Conference on Virtual, Synthetic

and Entertainment Audio; Espoo, Finland

Relevant to: Chapter 1,4

With the increase of digital audio dissemination, generated by the populariza-

tion of personal computers and worldwide low-latency networks, many enter-

taining applications can easily be imagined to rhythmic analysis of audio. We

herein report on a method of automatic extraction of a rhythmic attribute from

percussive music audio signals: the smallest rhythmic pulse, called the tick.

Evaluations of the proposed scheme yielded quite good results. We then discuss

the relevance of use of the tick as the basic feature of rhythmic analysis.

• Cano, P. Gómez, E. Batlle, E. Gomes, L. Bonnet, M. 2002. ’Audio Fingerprint-

ing: Concepts and Applications’ Proceedings of 2002 International Conference

on Fuzzy Systems Knowledge Discovery; Singapore

Relevant to: Chapter 2

An audio fingerprint is a compact digest derived from perceptually relevant

aspects of a recording. Fingerprinting technologies allow monitoring of audio

content without the need of meta-data or watermark embedding. However,

additional uses exist for audio fingerprinting and some are reviewed in this

article.

• Bonada, J. Loscos, A. Cano, P. Serra, X. 2001. ’Spectral Approach to the

Modeling of the Singing Voice’ Proceedings of 111th AES Convention; New

York, USA
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Relevant to: Chapter 1,4

In this paper we will present an adaptation of the SMS (Spectral Modeling

Synthesis) model for the case of the singing voice. SMS is a synthesis by analysis

technique based on the decomposition of the sound into sinusoidal and residual

components from which high-level spectral features can be extracted. We will

detail how the original SMS model has been expanded due to the requirements

of an impersonating applications and a voice synthesizer. The impersonating

application can be described as a real-time system for morphing two voices in

the context of a karaoke application. The singing synthesis application we have

developed generates a performance of an artificial singer out of the musical

score and the phonetic transcription of a song. These two applications have

been implemented as software to run on the PC platform and can be used to

illustrate the results of all the modifications done to the initial SMS spectral

model for the singing voice case.

• Batlle, E. Cano, P. 2000. ’Automatic Segmentation for Music Classification

using Competitive Hidden Markov Models’, Proceedings of International Sym-

posium on Music Information Retrieval; Plymouth, MA (USA)

Relevant to: Chapter 2,3

Music information retrieval has become a major topic in the last few years and

we can find a wide range of applications that use it. For this reason, audio

databases start growing in size as more and more digital audio resources have

become available. However, the usefulness of an audio database relies not only

on its size but also on its organization and structure. Therefore, much effort

must be spent in the labeling process whose complexity grows with database

size and diversity.

In this paper we introduce a new audio classification tool and we use its prop-

erties to develop an automatic system to segment audio material in a fully
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unsupervised way. The audio segments obtained with this process are automat-

ically labeled in a way that two segments with similar psychoacoustics properties

get the same label. By doing so, the audio signal is automatically segmented

into a sequence of abstract acoustic events. This is specially useful to classify

huge multimedia databases where a human driven segmentation is not practi-

cable. This automatic classification allow a fast indexing and retrieval of audio

fragments. This audio segmentation is done using competitive hidden Markov

models as the main classification engine and, thus, no previous classified or

hand-labeled data is needed. This powerful classification tool also has a great

flexibility and offers the possibility to customize the matching criterion as well

as the average segment length according to the application needs.

• Loscos, A. Cano, P. Bonada, J. 1999. ’Low-Delay Singing Voice Alignment to

Text’ Proceedings of International Computer Music Conference 1999; Beijing,

China

Relevant to: Chapter 1,2

In this paper we present some ideas and preliminary results on how to move

phoneme recognition techniques from speech to the singing voice to solve the

low-delay alignment problem. The work focus mainly on searching the most

appropriate Hidden Markov Model (HMM) architecture and suitable input fea-

tures for the singing voice, and reducing the delay of the phonetic aligner with-

out reducing its accuracy.

• Cano, P. Loscos, A. Bonada, J. 1999. ’Score-Performance Matching using

HMMs’ Proceedings of International Computer Music Conference 1999; Beijing,

China

In this paper we will describe an implementation of a score-performance match-

ing, capable of score following, based on a stochastic approach using Hidden

Markov Models.
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Relevant to: Chapter 1,4

• Cano, P. 1998. ’Fundamental Frequency Estimation in the SMS analysis’

Proceedings of COST G6 Conference on Digital Audio Effects 1998; Barcelona

Relevant to: Chapter 1,2,3

This paper deals with the fundamental frequency estimation for monophonic

sounds in the SMS analysis environment. The importance of the fundamental

frequency as well as some uses in SMS is commented. The particular method

of F0 estimation based on a two-way mismatched measure is described as well

as some modifications. Finally we explain how pitch-unpitched decision is per-

formed.

A.4 Technical Reports

• Cano, P. Gómez, E. Gouyon, F. Herrera, P. Koppenberger, M. Ong, B. Serra,

X. Streich, S. Wack, N. 2006. ’ISMIR 2004 Audio Description Contest’ MTG

Technical Report: MTG-TR-2006-02

Relevant to: Chapter 4

In this paper we report on the ISMIR 2004 Audio Description Contest. We first

detail the contest organization, evaluation metrics, data and infrastructure. We

then provide the details and results of each contest in turn. Published papers

and algorithm source codes are given when originally available. We finally

discuss some aspects of these contests and propose ways to organize future,

improved, audio description contests.


