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Abstract

The reacTIVision system is software for tracking specially designed fiducials (markers) in a real-time video

stream. ReacTIVision was designed to enable expressive gestural control of musical sound, and can track many

markers at a high frame rate. The development of reacTIVision involved not only computer vision algorithms,

but also the design of a new marker system. We co-designed the computer vision system and markers, applying

evolutionary computation to minimise marker size while meeting geometric constraints required to efficiently

compute the location and 2D orientation of the markers. The computer vision techniques adopted would not

have been practical had the genetic algorithms not been able to solve these constraints. This paper focuses

on the design and evolution of the markers, the computer vision aspects of reacTIVision are documented else-

where.

1. Introduction

The reacTable* (shown in figure 1) is a tangible user interface where physical objects represent the components

of a software sound synthesizer [1, 2]. Fiducials are attached to the underside of objects placed on a translucent

table. A camera beneath the table captures images which are processed to determine the location, orientation

and identity of the fiducials. This information is sent to other components of the reacTable* software via a

network socket using the TUIO protocol [3], a protocol layered on top of Open Sound Control [4].

ReacTIVision is the system we developed for tracking the location and orientation of fiducials (markers) in

a real-time video stream. The system was developed for the reacTable* after initial prototyping with Costanza

and Robinson’s d-touch system [5]. The technical motivations and evaluation of the reacTIVision system are

discussed elsewhere [6], this paper is intended to present the techniques which were applied to design the

fiducial markers. Although it is necessary to understand our methods in order to reproduce, improve or build

upon our results, it should be noted that the reacTIVision markers which we have produced are available in

PDF format with the complete reacTIVision system, and as such it is not necessary to produce new markers in

order to use the system.

The reacTIVision fiducials began their life as variations of the d-touch fiducials, where identification is

performed using topological pattern matching on a region adjacency graph of a binarised input image. Once

fiducials have been identified, d-touch uses geometric techniques including line detection and relative position

of regions to determine the location, orientation and identity of each marker (marker geometry decodes to

a unique id number). Our design evolved toward using only the region adjacency graph and the bounding

rectangles of each region to determine all necessary information about each marker. This allowed us to remove a

number of steps from the computer vision algorithm, however it also introduced increased complexity in laying

out the fiducials. To solve the layout constraints while minimizing the size of the fiducials we successfully

employed a genetic algorithm.



The remainder of this paper is structured as follows: First we describe how the fiducials are identified, and

how orientation and location information is encoded in their visual structure. Next, we describe the steps which

were taken to generate the marker images: the generation of the binary trees which represent their topological

structure, the method used to encode the layout of the fiducials, and the multi-pass rendering scheme used to

create the final marker images. Next we describe the genetic algorithm we used to optimise the layout of the

fiducials to minimise size while meeting the requirements of the tracking method, after which our distributed

computation environment is described. Then an evaluation of the output of the genetic algorithm is presented.

Finally, we discuss some applications of our system.

Figure 1: Musicians playing the reacTable* at Ars Electronica 2005. Objects on the table’s surface are tagged with fidu-
cials which are tracked by a camera beneath the table. Some projected graphics represent the telepresence of collaborating
performers in Barcelona.

2. ReacTIVision Topological Fiducial Tracking

This section introduces the method used by reacTIVision to track fiducials in binary images. The method com-

bines pattern matching on binary topological graphs for recognition and identification, with simple geometric

techniques for computing the location and orientation of fiducials. The information is presented here to provide

the reader with sufficient background to motivate the application of evolutionary computation to the generation

of the fiducials. The relation of this method to other marker tracking work is discussed elsewhere. First the

topological region adjacency graph is introduced. We then describe our approach for determining the location

and orientation of fiducials.

2.1. Topological Recognition

ReacTIVision employs the topological fiducial recognition approach introduced by Costanza and Robinson in

the d-touch system [5]. In this approach, a region adjacency graph is derived from a binary image of the scene

through the process ofsegmentation. The graph can be understood as a tree representing the containership

hierarchy of the image, that is, which black regions are contained inside which white regions and vice-versa.
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Figure 2: Some simple topologies and their corresponding region adjacency graphs.
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Figure 3: (a) a reacTIVision fiducial (b) black and white leafs and their average centroid (c) black leafs and their average
centroid, and (d) the vector used to compute the orientation of the fiducial.

Regions of the image containing no other regions (unbroken blobs for example) appear as leaf nodes in the re-

gion adjacency graph. Figure 2 illustrates some simple images and their corresponding region adjacency graphs.

Observe that figures 2b and 2c have identical region adjacency representations even though their geometries are

quite different.

In contrast to the d-touch system which uses geometric properties to encode the identities of fiducials, re-

acTIVision fiducials are identified purely by their topological structure. Each fiducial in a set has a unique

topology which can be efficiently matched against a dictionary of subtrees represented as strings [7, 6].

2.2. Fiducial Location and Orientation

Our method for computing fiducial location and orientation was influenced significantly by the design of our

segmentation algorithm, which only retains axis aligned bounding boxes for each region. The center of a

region’s axis aligned bounding box provides a good approximation for the center of the region if the region is

square, circular, and/or relatively small. We reasoned that as leaf regions will always be the smallest regions in

a rendering of a tree, their centers are likely to be the most accurate spatial information we have about a fiducial.

Consequently we choose to compute a fiducial’s location and orientation as a combination of the bounding box

centers of its leaf nodes.

As illustrated in figure 3, we compute the center point of the fiducial by taking a weighted average of all

leaf centers. The vector from this centroid to a point given by the weighted average of all black (or white)

leaf centers is used to compute the orientation of the fiducial. Each leaf is weighted by a function of its depth

in the tree to account for the area consumed by its containing regions. We selected this method because it

can be applied to any fiducial with at least one black and one white leaf region. Thus allowing us to vary the

topological structure of fiducials without changing the method used to track them.

3. Generation

Generation of reacTIVision fiducials requires the selection of a set of unique topologies and graphical layout

and rendering of these topologies. In the following subsection we discuss the generation of trees describing

the topology of each fiducial; following which we give an overview of how we generate geometries which

conform to the requirements of our location and orientation calculation method while minimising size. Finally

we outline the method used to render the fiducials.



3.1. Fiducial Tree Generation

Before generating the geometry for a set of fiducials we generate a set of unique trees. Given a set size it is

possible to calculate the number of tree nodes required to accommodate the set, however other constraints are

also important such as ensuring a certain number of black and white leaf nodes. The number of nodes in a

tree and its maximum depth also impacts the minimum size of the geometry which can be generated for a tree.

Additionally, smaller trees are less unique, leading to a greater potential for encountering false detections when

trying to recognise them in a scene.

Rather than enumerating all possible trees, we randomly generate trees with the desired number of nodes

and select those which fulfill criteria including maximum depth and number of black and white leaves. The

generation process slows when many of the candidates have been found in the search space. By observing this

slowing we experimentally reduce the number of nodes to the minimum required to generate a set fulfilling our

criteria.

3.2. Fiducial Geometry Generation

Figure 4: Leaf nodes are placed at different angles from a fixed center point, and moved outwards until they abut neigh-
boring nodes.

Given a tree representing a fiducial’s topology we create a compact geometry which conforms to the con-

straints implied by the location and orientation method described above: that the computed centroid of the

fiducial is the same as, or lies very close to the real center of the fiducial and that the centroid of all black

leaves is sufficiently distant from the centroid of all leaves to allow the fiducial’s orientation to be computed

with reasonable accuracy.

Each tree can be drawn in a huge number of ways making an exhaustive search for ‘optimally’ rendered

fiducials impractical. We chose to employ a genetic algorithm (described later) to optimise parameters such as

fiducial area, aspect ratio, symmetry and centroid locations for black and white leaves.

The method used to lay out a single fiducial involves aggregating circular leafs at angles relative to a fixed

starting point while maintaining a fixed spacing between regions (see figure 4). A list of these angles forms the

genotype for the genetic algorithm. Although earlier implementations used squares aligned to a grid, circles

were chosen because they are easy to pack together at arbitrary angles, which we consider important to optimise

the location of the centroids used to compute location and orientation. Circles also have the advantage that their

bounding boxes are rotationally invariant, which simplified our machine vision implementation.



3.3. Rendering

The rendering process consists of drawing concentric circles of alternating colour for each leaf node, the number

of concentric circles corresponds to the depth of each leaf node in the tree. All of the circles of the same depth

are drawn at the same time, and built up in layers, with the leafs being drawn last. This method is not in itself

sufficient to render fiducials with the correct topology because certain layouts can lead to miscoloured voids

appearing within the fiducials. To avoid this problem we apply a median filter (erosion operator) to the rendered

image after each depth layer is rendered. This also leads to a pleasing “rounded corners” aesthetic result.

4. Evolution

Following from the previous section, a reacTIVision marker is completely described by an angle-annotated tree

and the colour of its root node. Since the structure of the trees are selected according to recognition criteria, the

angles are the only parameters which are available for optimisation. We aimed to optimise the size and shape of

the fiducials by using a genetic algorithm to evolve vectors of node angles meeting our constraints. The visual

recognition mechanism used to determine the location and orientation of fiducials described in section 2.2

imposed additional constraints on our genetic algorithm, in that the leaf nodes needed to be placed so that the

centroid of all leaf node locations was aligned with the center of the fiducial as a whole, and the centroid of all

black leaf nodes was located some distance from the overall marker center. In the next subsection we describe

the overall implementation of the genetic algorithm, which was a simple C++ program. Following that we

describe the fitness functions used for two different classes of fiducials: square markers, and markers with a

5×9 aspect ratio. These functions were arrived at by trial and error using an interactive tool we developed.

4.1. Genetic algorithm

The genetic algorithm operates on pools of fixed length genotypes. Each genotype is a vector of signed 32

bit integers, each of which corresponds to a node angle used to generate the fiducial geometry. The full range

of each integer is mapped to the angular range -π to π. Integers were used because modulo arithmetic comes

for free (which is important for our angular computations), and integer random number generators are more

common. For ease of implementation, a gene is allocated for each tree node, and non-leaf angles are ignored

during rendering (i.e. “junk DNA”). Genomes are seeded with randomly distributed values. For each iteration

the following steps are performed:

1. Remove duplicates from the pool.

2. Reduce the population to 40% of the original pool size retaining the best individuals, calling these ”re-
tained individuals”.

3. Repeatedly apply genetic operators until the pool size returns to the original size.

4. Evaluate the fitness of each individual and sort by fitness.

The genetic operators and their associated probabilities of occurrence are: crossover (70%), major mutation

(20%) and minor mutation (10%). Crossover is performed between any randomly selected individual and an

individual randomly selected from the set of retained individuals. The crossover operation works by selecting

a random gene index, splitting two genotypes at this index and splicing the first half of one genotype onto the

second half of the other. Mutation is performed only on randomly selected new (non-retained) individuals.

Major mutation selects a random number of genes (from one gene to 50% of the total genes in a genotype) and

resets these genes to a random value. Minor mutation selects a random number of genes (from 2 to 50%) and

increments or decrements their values by random numbers up to 50% of the total range, coresponding to the

phenotype operation of rotating the angle of a node by a random amount up to 90o in either direction.



In our computations we used pools of 500 individuals. We evaluated 20 pools for each fiducial and chose the

best one. We ran approximately 3000 iterations of each pool, which from our observations appeared to produce

convergence.

4.2. Fitness Functions

Although there were plans to produce fiducials in a number of different shapes, including circles and triangles,

our efforts to date have only been successful in designing fitness functions for square and rectangular fiducials.

The function used for square fiducials is:

(black_symmetry + white_symmetry + (signed_black_centroid_distance_from_vertical_center /height))

* MAX(width,height) * width * height

+ (black_centroid_distance_x + 1)

+ (black_distances_below_y + 1)

And for rectangular fiducials:

(black_symmetry + white_symmetry + (signed_black_centroid_distance_from_vertical_center/height) * .5)

* MAX((width * (9. / 5.)),height) * (width * (9. / 5.)) * height

+ (black_centroid_distance_x + 1)

+ (black_distances_below_y + 1)

• In both cases lower fitness values denote “fitter” individuals.

• Width andheight are the dimensions of the fiducial’s bounding box.

• The symmetry valuesblack_symmetry andwhite_symmetry (computed separately for for black

and white nodes respectively) are computed by calculating two centroids consisting of all leaf nodes on

each side of a vertical center line, reflecting one centroid around this line and computing the distance

between the two centroids. Nodes lying within a small margin around the line of symmetry are ignored.

• Black_centroid_distance_x is the absolute difference between the centroid of all leafs and the

centroid of black leafs.Black_distances_below_y is the sum of the y coordinates of all black leaf

nodes below the vertical center.

4.3. Computation environment

We implemented a simple but effective distributed computing system which allowed us to compute a number of

different versions of each fiducial set within a reasonable period of time. The distribution system consisted of

a pair of Python scripts. A client script bootstrapped itself from the server script by downloading an executable

containing the genetic algorithm. The client then used this executable to run sets of iterations on pool files

received from the server. This mechanism allowed us to distribute the workload across processors on our

cluster and to desktop machines running both Linux and Windows.

When producing a set of 128 square fiducials with 19 tree nodes with a maximum depth of 3, we obtained

usable results after 12 hours of computation time on a cluster of 12 dual processor 1Ghz Pentium 3 machines.

In this time we computed 20 pools of 500 fiducials for each of 128 trees and selected the best result for each

tree according to size and orientation vector length.

4.4. Final Selection

As noted above, multiple gene pools were evaluated for each fiducial. The selection of the final fiducial from

among these pools was relatively ad-hoc. We found that the fitness functions which were necessary to drive

the GA toward acceptable results were not necessarily the same as the evaluation criteria we used to select the



final fiducials. The final selection criteria were much simpler and were based solely on thresholding size and

direction vector lengths.

From 128 square fiducials bred for the reacTable only 89 met our requirements for size and direction vector

length. Anecdotal evidence suggests that this is due to inherent size limits for some fiducial topologies. For

example, trees with many only-child leafs occupy more space in the rendering.

5. Fiducial Graphics

Although reacTIVision fiducials may have broader application, they have been designed for a specific musical

instrument. The following subsections review the implications of our approach to the usability and aesthetics

of the reacTable.

5.1. Usability Considerations

ReacTIVision fiducials have been designed to support fast and robust machine tracking. Although an expert may

be able decode the tree sequences of reacTIVision fiducials just by looking at them, this process would consume

too much time for recognizing objects in a concert situation. The ARtoolkit [8] offers a simple solution in that

markers are equally readable for the machine and the human user, since it supports the use of any graphical

symbol as a fiducial. In an earlier design phase of the reacTable* we developed a tactile coding scheme [9] to

support rapid identification of the various synthesizer objects. This included the use of shapes, materials and

surface structures allowing various physical artifacts to be recognised even in bad lighting conditions. In the

current implementation we employ a simplified colour and shape code with plain plexi-glass artifacts, mostly

for aesthetic reasons.

Out current coding scheme uses object shapes (square, circle, rounded square, pentagon and dome) to rep-

resent generic object classes (generator, effect, controller, mixer and synchronizer). An additional colour code

allows the identification of individual object instances. The colour is printed into the white areas of the fiducial

symbol and is only visible to the human player - it is actually invisible (white) to the infrared camera. Only one

half of the white area is coloured in order to indicate the orientation of the symbol. This allows an exact angle to

be chosen when an object is first placed on the table. Expert users could also determine a marker’s orientation

from the distribution of black and white leaf nodes, however the coloured marking proved to be much easier to

recognize.

Most objects in the current reacTable* configuration have fiducial symbols affixed to both sides, which

allows multiple uses of a single physical artifact. Flipping the object changes its behaviour. Cube objects for

example provide multiple variations of simple oscillators. Each side is uniquely marked by filling a different

number of white leaf nodes with colour. This coding has not proved to be very effective, especially in the bad

lighting conditions of a concert situation.

5.2. Functional vs. Aesthetic Fiducials

In an earlier phase of reacTIVision’s evolution the original d-touch markers were used. These had a very

simple geometric structure with a somewhat technical aesthetic. Although the markers described in this paper

still follow the same topological approach, they are generally considered more aesthetically appealing due to

their organic appearance. Novice players usually consider the markers as a decorative element rather than a

technically necessary component. Therefore the markers integrate very well into the overall visual design of

the complete instrument. While our system did not initially allow the combination of aesthetics and function as

for example the ARtoolkit approach provides, in the end it has defined an individual aesthetic domain for itself.



6. Applications

In the present reacTable* synthesizer configuration we use a total 74 fiducial symbols. Two players are each

provided with a set of 20 artifacts, most of which are labeled on two or more sides. For the reacTable* instal-

lation at the International Computer Music Conference 2005, which took place in Barcelona, each conference

attendee was provided with a unique fiducial symbol on the back of their conference badge. When placed onto

the table the conference badge could be used to play back a personalised sample which was retrieved from the

FreeSound project database [10]. For this task an additional set of fiducial symbols were created to support

roughly 312 additional unique markers. The conference badge allowed the use of a slightly larger rectangular

area of 5×9cm compared to the 6×6cm square of the core synthesizer set. In order to support the necessary

number of markers at the required size we also used colour-inverted versions of each marker, which doubles

the number of possible unique markers.

As already noted above, the reacTIVision was designed as the custom tailored sensor component for the

reacTable* instrument. However, as a result of the well documented, standards-based TUIO protocol [3] which

reacTIVision uses, it can be used for virtually any table based tangible user interface where objects need to be

tracked on a 2D surface looking either from above or below. One example of such an alternative interface was

developed at the Interface Culture Lab at the Art University of Linz in Austria: The recipe table [11] retrieves

recipes for any ingredients which are placed onto a translucent surface. Conceptually the reacTIVision fiducials

are proxies for bar codes used to identify and track the ingredients more easily.

7. Future Work

As noted above, although we had aimed to produce different shaped fiducials, we have thus far only been

successful in crafting fitness functions for square and rectangular fiducials. Circular, pentagonal and triangular

fiducials continue to be desirable for the reacTable project as we are already using plexi-glass objects of these

shapes.

8 Conclusion

Overall we were pleased with the results achieved by applying evolutionary computation to the problem of

laying out marker geometries. Our fitness functions were good for square and rectangular fiducials but we

found it difficult to successfully craft fitness functions for other shapes. The GA was able to solve both the

size, centroid, and distance-vector constraints simultaneously with reasonable although not perfect results. We

didn’t experiment with a broad range of breeding parameters to categorically state that the values used could

not be improved upon although intuitively we feel that the results obtained were close to optimal. We were

pleased with the aesthetic outcome which we feel is a better fit for the reacTable* musical instrument than more

”engineered” marker design approaches.
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Appendix: Examples of reacTIVision fiducials

Figure 5: Example reacTable* fiducials. Top two rows: six symmetrical and six asymmetrical square fiducials. Bottom
row: 5×9 (business card size) fiducials, positive and inverted versions.


