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ABSTRACT 

Detrended fluctuation analysis (DFA) has been proposed by Peng et al. [1] to be used on biomedical data. It 
originates from fractal analysis and reveals correlations within data series across different time scales. Jennings et al. 
[2] used a DFA-derived feature, the detrended variance fluctuation exponent, for musical genre classification 
introducing the method to the music analysis field. In this paper we further exploit the relation of this low-level 
feature to semantic music descriptions. It was computed on 7750 tracks with manually annotated semantic labels 
like “Energetic” or “Melancholic”. We found statistically strong associations between some of these labels and this 
feature supporting the hypothesis that it can be linked to a musical attribute which might be described as 
“danceability”. 

 

1. INTRODUCTION 

In current research on Music Information Retrieval 
many attempts are made to automatically extract a 
semantic description of the content from the raw audio 
signal itself. Relating semantic labels with digital music 
archives becomes a richer and more convenient form of 
interaction with a music database than what is currently 
the case using low-level descriptors. This relationship 
can be achieved in several different ways: through pure 
signal processing, through machine learning techniques, 
or through manual annotation. The latter option 
however requires a huge effort of human intervention, 
which might not be feasible or desirable for large 
collections. Hence, a fully automatic approach bears a 
clear attractiveness.  

In this paper we focus mainly on one very specific low-
level feature of a musical audio signal: the detrended 
variance fluctuation exponent. The method of detrended 
fluctuation analysis (DFA) was first proposed by Peng 
et al. in 1994 [1]. Since then it has been used rather 
extensively in the analysis of time series from 
biomedical or financial data (e.g. heart rate time series 
or currency exchange rate time series). It originates 
from fractal analytical techniques and has the ability to 
indicate long-range correlations in non-stationary time 
series. In music analysis so far DFA-derived features 
are not common and, in contrast to many other low-
level features like spectral centroid or zero crossing rate, 
their potential in this domain has not been exploited yet. 
Jennings et al. in 2003 [2] reported about their results in 
musical genre classification by using exclusively the 
detrended variance fluctuation exponent, a low-level 
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feature derived from DFA of the audio signal. We will 
consecutively use the term “DFA exponent” in this 
paper when referring to this feature. Jennings et al. 
stated in their publication that the DFA exponent can be 
seen as an indicator for the “danceability” of a piece of 
music. Hence, we got inspired to examine this particular 
feature a bit further. 

2. THE DFA EXPONENT FOR AUDIO DATA 

First, since the method of DFA is relatively unknown in 
music analysis, we dedicate some space to explain the 
computation process and also focus on some of its 
characteristics in this particular context. In contrast to 
commonly used features in music analysis, the DFA 
exponent can not be computed on a frame-by-frame 
basis, but comprises a longer-scale statistical analysis of 
the data. Naturally, it therefore yields a very compact 
representation. For our experiments we collapsed the 
feature to only one single value per track. It is 
interesting to note that DFA is particularly suited for 
non-stationay data, whereas many methods originating 
from the signal processing domain rely on quasi 
stationary properties.  

2.1. Computation procedure 

Following Jennings et al. [2] the audio signal is 
segmented into non-overlapping blocks of 10ms length. 
For each block the standard deviation )(ns  of the 

amplitude is computed. The values )(ns  resemble a 
bounded, non-stationary time series, which can be 
associated with the averaged physical intensity of the 
audio signal in each block (see figure 2.1). In order to 
obtain the unbounded time series )(my , )(ns  is 
integrated: 

∑
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This integration step is crucial in the process of DFA 
computation, because for bounded time series the DFA 
exponent (our final feature) would always be 0 when 
time scales of greater size are considered. This effect is 
explained in more detail in [3].  

The series )(my  can be thought of as a random walk in 

one dimension. )(my  is now also segmented into 

blocks of τ elements length. This time, we advance 

only by one sample from one block to the next in the 
manner of a sliding window. There are two reasons for 
this extreme overlap. First, we obtain more blocks from 
the signal, which is of interest, since we will obtain 
better statistics from a larger number of blocks. 
Secondly, we avoid possible synchronization with the 
rhythmical structure of the audio signal, which would 
lead to arbitrary results depending on the offset we 
happen to have. However, performing the computation 
in this manner the number of operations is enormously 
increased. We will further comment on this in section 
2.3.  

From each block we now remove the linear trend kŷ  

and compute ),( τkD , the mean of the squared 
residual: 
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We then obtain the detrended fluctuation )(τF  of the 
time series by computing the square root of the mean of 

),( τkD  for all K blocks: 
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As indicated, the fluctuation F  is a function of τ  (i.e. 
of the time scale in focus). The goal of DFA is to reveal 
correlation properties on different time scales. We 
therefore repeat the process above for different values of 
τ  that are within the range of our interest. Jennings et 
al. [2] use a range from 310ms ( 31=τ ) to 10s not 
specifying the step size in their paper. Relating these 
time scales to the musical signal they are reaching from 
the beat level through the bar level up to a level of 
simple rhythm patterns.  

The DFA exponent α  is defined as the slope on a 
double log graph of F  over τ  (eq. 4). It therefore 
makes sense to increase τ  by a constant multiplication 
factor rather than a fixed step size. Apart from giving 
equally spaced supporting points on the logarithmic axis 
it also reduces the computational operations without 
affecting the accuracy too much. We chose a factor of 
1.1 giving us 36 different values for τ  covering time 
scales from 310ms to 8.8s.  
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Figure 2.1: Excerpts from the time series )(ns  for three 
example pieces from different musical genres. 

For small values of τ  an adjustment is needed in the 
denominator when computing α  (cp. [4]) giving us the 
following formula for the DFA exponent: 
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As τ  grows, the influence of the correction becomes 
negligible. In case that the time series has stable fractal 
scaling properties within the examined range, the double 
log graph of F  over τ  is a straight line making )(iα  
a constant function. We find a constant value of 0.5 for 
a completely random series (white noise), a value of 1 
for a series with 1/f-type noise, and 1.5 for a Brown 
noise series (integrated white noise) [3].  

2.2. Interpreting the function )(iα  

For music signals normally we don’t have stable scaling 
properties (see figure 2.2). Opposed to heart rate time 
series for example, there is much more variance in 

)(iα  for music. Still, we can find that music with 
sudden jumps in intensity will generally yield a lower 
level of α  than music with a smoother varying series 
of intensity values. That means music with pronounced 
percussion events and emphasized note onsets shows 
lower α  values than music with a more floating, steady 
nature. Apart from that, we will see in the following 
section that interesting information about the music can 
be obtained also from the way the stable scaling 
properties are violated. 

 

Figure 2.2: DFA exponent functions for the three 
example tracks.  

2.2.1.  An exemplary comparison 

Figure 2.2 shows the evolution of α  over the different 
time scales for three musical pieces. As can be seen, the 
DFA exponent varies significantly within each single 
piece. The most stable scaling behavior is found for the 
classical piece at short time scales, where in contrast the 
pop piece shows an intermediate and the techno piece a 
high instability. This is due to the presence of a strong 
and regular beat pattern in the two latter cases (cp. 
figure 2.1).  

In the techno piece the periodic beat dominates the 
intensity fluctuation completely since intensity 
variations on larger time scales are negligible in 
comparison. This strong periodic trend deteriorates the 
scaling properties of the series and causes α  to drop 
significantly. Towards larger time scales however, the 
influence of the periodic intensity variation fades off 
and α  raises back towards its normal level. 

In the pop music piece there is also a regular beat, but it 
is less dominant than in the techno piece. As can be seen 
in figure 2.1, there are also some noticeable changes in 
intensity on a larger time scale. Still, α  is clearly 
decreased by the periodic trend. Towards larger time 
scales, we can observe the same effect as in the techno 
piece. 

For the classical piece no dominant, regular beat pattern 
can be identified in the time series. Thus, the scaling 
properties are not affected in the corresponding range. 
But in contrast to the other two examples the series 
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reveals a larger scale pattern in some parts, which can 
also be seen in figure 2.1. This causes α  to drop in the 
upper range. 

2.2.2.  A measure of “danceability” 

In the previous section we saw how the presence of a 
strong and regular beat influences the DFA exponent. 
We can make the simplified assumption, that the 
presence of a strong and regular beat is also the main 
characteristic of danceable music. It can further be 
argued that the easy identification of note onsets or 
percussion events facilitates a synchronized body 
movement. In that case it is straightforward to use the 
DFA exponent as an indicator for the danceability of a 
musical track (i.e. the easiness with which one can 
dance to it). The simplest way to do this is to compute 
the average α  of the track, a low value indicating high 
danceability and vice versa. In figure 2.3 we plotted the 
average α  for 120 tracks, half of them being electronic 
techno music (in general very danceable), the other half 
being film score tracks performed with classical 
orchestra instruments (in general not danceable). 

Jennings et al. [2] already found in their experiments 
that the average values of α  for tracks from typical 
dance music genres were significantly lower than those 
for tracks from “high art” genres, which are not very 
danceable in the majority of cases. Since the mean 
values of the average α  for different genres were 
compared in their study, single exceptions (like e.g. 
classical polkas or waltzes) didn’t influence the general 
result so much. As it was our first experiment with this 
descriptor, we followed the simple way of collapsing 

)(iα  into a single value per track by taking the 
average. In section 5 we will briefly point to some ideas 
for alternative and advanced exploitation. 

Additionally we would like to mention that we consider 
“danceability” as a special form of a rhythmic 
complexity description. In [5] we introduced a 
multifaceted concept of musical complexity and its 
possible applications in music information retrieval 
scenarios, like collection browsing, playlist generation, 
or music recommendation. The DFA exponent appears 
to form a useful descriptor in this context. It might be 
further enhanced and combined with other features to 
model rhythmic complexity in all its facets.  

 

Figure 2.3: α -levels for 60 techno (o) and 60 film 
score tracks (x), unordered. 

2.3. Practical issues for the computation 

As the computation of the DFA exponent involves 
statistical methods it is of importance that the time 
series under examination is sufficiently long. Jennings 
et al. [2] used 4 minute long excerpts in their study. For 
our experiment we always used the complete track for 
the computation. Tracks with less than 30s length were 
disregarded. 

In this context memory consumption can become an 
issue when very long tracks are being processed. We 
used a MATLAB implementation and experienced 
problems with insufficient memory. We therefore 
processed the tracks in portions of 60s length. 

As mentioned in section 2.1. the massive overlap of the 
blocks for detrending enormously increases the number 
of operations. Particularly for the larger values of  τ  
the detrending is computationally expensive. For 
reasons of efficiency it might therefore be useful to 
increase the hop size with increasing τ . In any case it 
should be kept small relative to τ  in order to avoid 
unintentional synchronization effects. 

Willson and Francis claim the equivalence of the DFA 
method with a special form of spectral analysis [6]. This 
alternative would mean a clear efficiency advantage, 
since the costly detrending operation is not needed 
there. In a short test we only obtained partly similar 
results to the DFA method and therefore kept using the 
latter. 
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3. EXPLOITING THE DFA EXPONENT IN A 
LARGE COLLECTION 

3.1. Properties of the collection 

We computed the average DFA exponent on a dataset of 
7750 tracks from MTG-DB [7], where each track refers 
to a full piece of music. The dataset also contains 
manually annotated semantic labels for each item. In 
our experiments we used the artist names and also 
“tone” labels consisting in abstract attributes that are 
associated with the music, such as “Rousing”, 
“Sentimental”, or “Theatrical”. The list of “tone” labels 
is composed of a total of 172 different entries. In the 
statistical analysis only a subset of 136 labels were 
considered, because the remaining ones appeared less 
than 100 times each. It must be noted that these labels 
are originally assigned to the artists and not to the 
individual tracks. Therefore a certain degree of 
fuzziness has to be accepted with these descriptions 
when working on the track level. The data set contains 
very different, mostly popular styles of music from a 
total of 289 different artists. A maximum of 34 labels 
are assigned to a single artist, while the average is 11 
labels per artists. Figure 3.1 shows a bar plot of the 
eight labels that are assigned to the highest number of 
artists. The average number of artists sharing a label is 
18. 
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Figure 3.1: Top-eight labels with the highest number of 
assigned artists. 

3.2. Experimental procedure 

Once the descriptor was computed for the whole set, we 
started the evaluation by manually checking its 
consistency. This was done by randomly picking tracks 
at different levels of α  and judging the danceability in 

direct comparison by listening. A formal user study was 
not carried out. 

As a more objective evaluation we applied also general 
statistical methods and machine learning methods in 
order to explore relations between the semantic labels, 
or certain artists and the DFA exponent. The rationale 
behind this is to prove a systematic variation of the DFA 
exponent subject to certain semantic attributes assigned 
to the music.   

3.2.1.  Statistical evaluation  

For the statistical evaluation we followed two opposed 
approaches. In one analysis we looked at the 
distributions of the DFA exponent for all tracks with a 
certain label. We checked first whether each of the 
distributions differed significantly from a normal 
distribution at a 5% level with the Lilliefors test [8]. The 
Lilliefors test is similar to the Kolmogorov-Smirnoff 
test for normality, but doesn’t require the mean and 
variance to be known. We applied this test as a pre-
selection, because the following t-test is designed for 
data with normal distributions. So only for those labels 
that didn’t show a significant deviation from a normal 
distribution of α , we applied the generalized t-test (eq. 
5) as a second step. The Null-hypothesis here was that 
the true mean values of the label’s α -distribution and 
the global α -distribution of the entire collection were 
identical giving us the following inequation:  

58.258.2
22

<

+

−
<−

label

label
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global

labelglobal

nn

mm

σσ
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with m  referring to the sample mean, 2σ  referring to 
the variance, and n  referring to the number of tracks. A 
deviation is significant on the 1% level when the 
inequation doesn’t hold. Significant deviations from the 
global mean indicate a correlation between music with a 
certain semantic label and the typical level of  α  for 
this music. 

Secondly, we looked at the distribution of labels in 
different partitions, where each partition contained all 
tracks within a certain range of α  values.  The 
collection was partitioned into deciles with 775 tracks  

each. We then tested with the 2χ -test whether the 
percentages of the individual labels in each decile 
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differed significantly from an equal distribution, which 
was assumed as the Null-hypothesis. Here, we used a 
significance level of 1%. Deviations from the equal 
distribution indicate a correlation between levels of α  
and the frequency of appearance of a certain semantic 
label assigned to the music. 

3.2.2.  Machine learning methods 

Since the labels are originally assigned to artists rather 
than to individual tracks, we also estimated the 
recognition rate for simplified artist identification tasks 
with machine learning algorithms. A major conceptual 
difference to the statistical approach lies in the fact that 
an artist usually shares a combination of labels which 
are not necessarily synonymic. It is therefore not useful 
to try arbitrary artist recognition using α  as the single 
feature. Instead, we selected artists where a tendency to 
a certain level of α  could be expected. A recognition 
rate clearly above chance level indicates a correlation 
between a certain artist’s typical music style (or at least 
some aspect of it) and the DFA exponent. 

For our experiments the feature by itself consists of only 
one single value per track. Hence, the possibilities of 
applying machine learning methods are limited. We 
therefore tested only a rule-based learner and the “lazy 
learner” method k-nearest-neighbor with different 
values for k. A 10-fold cross validation was used in all 
experiments.  

Two-class decision 

 In a two class decision experiment we used 238 Frank 
Sinatra tracks and 238 tracks from nine other artists who 
either had the labels “Brittle” or “Outrageous” assigned 
to them. For the artist “Sinatra” a total of 18 labels are 
listed in our data set, among them “Romantic”, 
“Calm/Peaceful”, and “Sentimental”. From the results 
of the statistical analysis (cp. 3.3.1.) we would expect 
the Sinatra songs to be distributed around a greater 
value of the DFA exponent than the other ones. The 
classes should therefore be separable up to a certain 
degree. It must be noted, that among the nine selected 
artists we find also assigned labels like “Whistful” and 
“Reflective”, which are linked to higher α  values (cp. 
table 3.1).  

Three-class decision 

In another experiment we used three different classes: 
108 tracks composed by Henry Mancini, 65 tracks 
composed by Bernard Herrmann, and 52 tracks of dance 
music with a strong beat. We purposely didn’t use the 
labels for selecting the artists in this case. Mancini and 
Herrmann were both film music composers, but while 
Herrmann mainly uses “classical” orchestration, 
Mancini often arranges his music in a jazz-like style. 
We had to select dance music from different artists, 
because there was no single one with a sufficient 
number of tracks in the collection. In terms of the DFA 
exponent we would expect to find the highest values 
associated with Herrmann’s music, because it is the 
least danceable in general terms. Intermediate values 
can be expected for Mancini’s tracks, since there are 
many which at least possess a pronounced beat. The 
lowest values should be found for the dance music, 
which has strong and regular beat patterns. 

3.3. Results 

By the manual random checks we found the 
danceability estimations at the extreme ends being the 
most consistent ones. Comparing the tracks from these 
regions with each other and with the intermediate ones 
the underlying concept of the descriptor immediately 
became apparent (cp. also figure 2.3). The fine grain 
ranking within a local region however didn’t appear 
comprehensible in many cases. This was especially 
noticeable in the very dense area of intermediate values.  

3.3.1.  Statistical results 

The results of the statistical tests sustain the findings 
from manual random evaluation. Strong coherence of 
high statistical significance was found for several labels 
that are semantically close to the concept “danceable” or 
“not danceable” respectively. For example the labels 
“Party/Celebratory” and “Energetic” in the context of 
music have a clear relation with danceability, whereas 
“Plaintive” and “Reflective” appear more appropriate 
descriptions for music that is not well suited for 
dancing. But, even exceeding the aspect of danceability, 
the results reveal a consistency on a high abstraction 
level. In some cases we find labels that are quasi 
antonyms for opposite deviations. We report in more 
detail about the findings in the following subsections.  
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Table 3.1: Most significantly differing labels in each 
direction from the global mean of 0.863 (n=number of 

tracks).  

The generalized t-test 

For 139 labels the hypothesis of a normal distribution 
could not be rejected on a 5% confidence level. Of 
these, 24 showed a significantly higher and 35 a 
significantly lower mean value than the global mean of 
0.863. The ten most significant ones for each direction 
are listed in table 3.1. 

When looking at the two lists of labels a certain affinity 
can be noted in many cases on either side. The group of 
labels for higher α  wakes associations of Softness, 
Warmness, Tranquility, and Melancholy. For the others 
we might form two subgroups, one around terms like 
Exuberance and Vehemence, the other around Tedium 
and Coldness.  Comparing labels from both lists with 
each other, we can identify several almost antonymous 
pairs, for example: Outrageous – Refined/Mannered,  
Boisterous – Calm/Peacefull, Carefree – Melancholic, 
Clinical – Intimate.  

The 2χ -test 

As mentioned above we split the entire collection into 
deciles. The boundaries for α  are the following: 
0.2491, 0.6718, 0.7366, 0.7846, 0.8214, 0.8577, 0.8938, 
0.9339, 0.9799, 1.0343, 1.4270. Evaluating the 
proportions of tracks within these ten partitions for each 
individual label we found a significant deviation from a 
hypothesized equal distribution beyond the 1% level in 
68 cases. In 56 cases even the 0.1% level was exceeded. 

 

Figure 3.2: Distributions on deciles for the twelve labels 
with most significant deviation from equal distribution 

(solid lines). 

Of the 68 labels only 39 coincide with the ones found 
significant in the generalized t-test, 23 for the lower α  
values and 16 for the higher ones. 

Figure 3.2 shows the distributions on the deciles for the 
twelve most significant labels. We can see two different, 
basic types of distributions here. The first row, as well 
as the “Ominous” tracks, show a high concentration in 
the first one or two deciles rapidly decaying to a lower, 
relatively stable level for the following ones. For the 
other labels, the percentage of tracks is almost linearly 
growing (or decaying) over the full range of α . 

3.3.2.  Machine learning results 

Both machine learning experiments were revealing the 
expected range allocation when the rule based method 
was used. The results are far from an optimal class 
separation, but clearly indicate the relevance of the used 
feature. We discuss the outcome of the two experiments 
in the following sections in some more detail. 

Two-class experiment 

Since the two classes had exactly the same amount of 
tracks in this experiment we had a baseline of 50% for 
the classification. With the decision table classifier an 
optimal threshold for α  of 0.914 was found. As 
expected, the Sinatra tracks were associated with the 
higher α  values and the “Brittle”/“Outrageous” tracks 
with the lower ones. This way, a level of 72.27% of 

Label α  n  Label α  n  
Party/ 

Celebratory 
0.796 706 Romantic 0.911 1399 

Clinical 0.761 489 Wistful 0.909 1308 
Hypnotic 0.804 951 Plaintive 0.922 659 
Energetic 0.820 898 Reflective 0.901 1805 
Visceral 0.808 422 Calm/ 

Peaceful 
0.908 1102 

Trippy 0.824 998 Autumnal 0.916 604 
Outrageous 0.781 102 Intimate 0.897 1709 
Exuberant 0.839 1383 Stately 0.908 730 
Irreverent 0.830 657 Gentle 0.892 1327 
Sparkling 0.790 116 Elegant 0.886 2506 
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correctly classified items was achieved, which is clearly 
better than guessing. 

 
 Predicted class: 
True class: Sinatra B/O 

Sinatra 174 64 
B/O 63 175 

Table 3.2: Confusion matrix for knn classifier with 
k=20. 

The knn-classifier needed to consider a relatively large 
number of neighbors in order to reach the same 
accuracy. For k=20 we achieved 73.32%, while the 
basic k=1 only yielded 64.29% of correct 
classifications. The confusion matrix for k=20 is shown 
in table 3.2. It is almost symmetric. 

Three-class experiment 

For the three class experiment the best guessing strategy 
would have been to always classify as “Mancini”, 
because it was the class with the most instances. The 
baseline is therefore 48.0% in this experiment. 

Again, the decision table classifier found the anticipated 
order of the classes assigning a threshold of 0.7 to 
discriminate the dance music from Mancini’s music and 
another one of 1.0 to discriminate Mancini’s from 
Herrmann’s music. 61.78% of correctly classified 
instances where achieved this way. The figure is less 
impressive than the one from the previous experiment, 
but the task was also more demanding. 

 
 Predicted class: 

True class: Mancini Herrmann dance  
Mancini 84 18 6 

Herrmann 23 41 1 
dance 25 1 26 

Table 3.3: Confusion matrix for knn classifier with 
k=28. 

This time, the knn-classifier needed an even bigger 
neighborhood for optimal results. A basic k=1 
neighborhood only yielded 55.56% of accuracy. But 
with a recognition rate of 67.11% for k=28 the 
classification by fixed thresholds was outperformed in 
this task. Table 3.3 shows the confusion matrix, where 

we see that Herrmann’s music was almost never 
confused with the dance music and vice versa. The 
“Mancini” instances in contrast overlap quite a lot with 
the other two classes. 

4. CONCLUSION 

From our experiments and observations the hypothesis 
put forward by Jennings et al. seems to be held, and the 
DFA exponent can be considered a good indicator for 
the danceability of music. However, this should be seen 
rather in the broad sense, classifying music into a small 
number of categories from “extremely easy” over 
“moderately easy” to “very difficult” to dance to. 
Currently, a fine grain ordering by the DFA exponent 
inside such a category is not beneficial. Due to 
subjectivity effects such an ordering might not prove 
useful anyway. By averaging the DFA exponent 
function we used an extremely compact and simple 
representation in the experiments. It should be possible 
to improve the results by a more sophisticated reduction 
of the function )(iα  or by choosing a less compact 
representation (see also section 5). 

It can further be concluded from our results, that the 
DFA exponent shows to be meaningful also in revealing 
even higher level attributes of music. It thus might form 
a valuable addition for different music classification 
tasks, like artist identification or musical genre 
recognition. 

5. FUTURE WORK 

As pointed out above, we see some more potential of 
the DFA in music retrieval application, not limited to a 
danceability estimation. Our experiments were done 
with a very basic setup leaving many ways for future 
enhancement of the processing. An obvious point to 
improve is the averaging of the function )(iα . Instead 
of computing only the mean it might be beneficial to 
take also the variance into account. Even the 
computation of other features from this function, like 
the identification of peaks and valleys could prove 
useful. Furthermore, the selection of  τ  can be 
optimized considering both, performance and 
computational efficiency. Probably the upper bound can 
be reduced in favor of a finer resolution. Concerning the 
computational cost it is also interesting to explore some 
more the alternative approach proposed by Willson and 
Francis [6]. 
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