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ABSTRACT 
In this work we present a violin timbre model that takes into account performance gestures. It is 
built by analysis of performance data using machine learning methods and it is able to predict 
the timbre given a set of performance actions. Gestural data and sound are synchronously 
captured by means of 3D motion trackers attached to the instrument and a bridge pickup. The 
model is used for sample transformation within a spectral concatenative synthesizer informed 
by gestures. 
 
 
INTRODUCTION 
Spectral concatenative synthesis models [1], [2] generate sound by concatenation of spectrally 
transformed samples. Sample concatenation is crucial for the quality of sound produced, and 
sometimes transitions between two samples do not sound natural, especially in the case of 
sustained excitation instruments such as the violin, because they have a wider timbre space 
and need a continuous control. One manner in which to improve these models in order to 
provide better controllability and expressive capabilities is to take into consideration 
performance gestures, that is, informing the model with "how is the instrument played". 
 
Performance actions are sound producing gestures articulated by the musician that control/drive 
the production of sound (see in [8] for a categorization of musical gestures). When performing 
with a violin, one can produce a wide range of different timbre variations, by applying a complex 
combination of actions controlled by bow and fingers. Bowing actions are the most relevant 
concerning timbre and therefore we will focus on them. 
 
We have developed a sensing system [14] by making use of two Polhemus 3D-motion trackers. 
Using data provided by this system we obtain bowing performance actions with great accuracy. 
Sound is acquired by means of a 4-channel bridge pickup that is then spectrally analyzed.  
 
With this setup, we are able to synchronously collect large amounts of performance data 
(gestures and sound), that is used to train a set of neural networks. The trained networks are 
finally used in the transformation stage of a spectral concatenative synthesizer. 
 
The paper is structured as follows: First we describe which data is acquired and how. In the 
case of sound recording, we discuss why are we using a bridge pickup instead of another 
device. Then we present the neural network that models the timbre, detailing its structure, 
inputs, output, the dataset for training and its performance. Finally we outline its use in the 
transformation procedure by the synthesizer and conclude by commenting some evaluation 
results and presenting further developments of the model. 
 
DATA AQUISITON 
With our measuring system consisting of the bridge pickup and the motion trackers we can 
capture an enormous amount of performance data. The main advantages over other systems 
like bowing machines [4] are that the range of the bowing actions is not constrained by the 
machine and that we can capture real performance data. 
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Measuring performance actions 
Gestural data is captured with two 3d-motion trackers, one mounted on the violin and the other 
on the bow. We are able to estimate with great precision and accuracy the position of the 
strings, the bridge and the bow. With the data collected can calculate the following bowing 
performance parameters: 

 Bow-bridge distance (BBD from now on), is the distance from the bow to the bridge. 
The normal range of values is from close to the bridge (less than 10 mm) to close to the 
fingerboard (around 50 mm). 

 Bow position, bow transversal position that ranges from the tip (around 65 cm) to the 
frog (0cm). 

 Bow speed or bow velocity is the derivative of bow position. 
 Bow pressure or bow force is a measure proportional to the deformation of the bow and 

is dependant on bow position. 
 String being played 

According to the literature [11], [12] the bowing parameters that affect timbre the most seem to 
be BBD, bow speed and bow force. Notice that we consider additionally the string being played 
and bow position. 
 
 
Recording the Sound 
As stated by Cremer [3], in a simplified model of violin sound production, we can consider all the 
elements of sound transmission from the bridge to the listener as lineal. We could then assume 
that the sound pressure that arrives to our ears is proportional to the transversal force exerted 
by the string on its anchorage on the bridge as result of the Helmholtz motion when bowing. 
This means that we can separate the violin sound signal into two parts: bowed string vibration 
and a linear filter composed mainly by resonances of the bridge and the sounding box. The 
former can be measured with piezoelectric transducers [6] or deconvolved from a microphone 
recording [9], and the latter can be measured as an impulse response [9], [10]. 
 
The main advantages of measuring directly the string vibration are (1) we avoid problems with 
violin body resonances and sound radiation, and (2) we can obtain one signal per string. After 
trying several transducers we decided to use a 4-channel Barbera piezoelectric bridge 
transducer [7] (BTS from now on), because it captures a signal close to ideal string velocity 
signal. Given that transversal force on the bridge is proportional to string displacement [3], we 
can translate from string velocity to said force by integration.  
 
In fig.1 we show the signal paths from the vibration of the bowed string to the radiated sound. 
The BTS picks the velocity of the string that is then integrated and finally convolved with the 
impulse response of a violin body. The resulting sound should be perceptually the same as the 
direct radiation. 
 

 
Figure 1: Signal Paths 

 
 
 
MODELING THE TIMBRE 
In this section we describe how the training dataset is built from collected performance data, 
then we show some results of the analysis of the data and finally we describe the set of neural 
networks that is proposed and used by the synthesizer. 
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Building the training dataset 
The input to the model are the bowing actions described previously. The output is the 
corresponding spectrum. After dealing with different spectrum representations we arrived at the 
following: spectrum is divided into frequency bands and for each band we calculate the average 
harmonic energy. Bands have been fixed inspired in perceptual scales of the auditory system. 
The limits of the bands are [1000, 2000, 4000, 7000, 10000, 16000, 22000] Hz.  
 
In order to have enough data a performer was asked to play open strings combining different 
values of bow force, bow speed and BBD covering the whole parameter space. After a 
segmentation of the recordings we obtained a dataset of around 122.500 analyzed frames 
corresponding to note sustains. In fig. 2 we show the distribution of each input parameter for the 
A-string. In the case of BBD, we can see how the performer played mainly at three distances: 
close to the bridge, middle and close to the fingerboard. For the other strings the distribution 
was similar. 
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Figure 2: Distribution of input parameters 

 
 
Data Analysis and Visualization 
Before deciding the type of statistical model to use, data was analyzed in order to detect some 
patterns on the data. Here we describe the main characteristics observed.  
 
In fig.3 and fig.4 there are several spectrum envelopes represented by markers indicating the 
average harmonic energy at each frequency band, and 3-rd degree polynomial fitting the 
markers. Notice that input parameters are discretized into categories (range of values). Fig.3 
shows the evolution of the envelope when increasing bow force and in fig.4 when increasing 
bow velocity. 
 
Input parameters, string, bow force, bow speed and BBD are affecting the spectrum in the 
following manner:  

 Lower strings have higher spectral decay. See how spectra in fig.4 corresponding to the 
A-string have higher decay than in fig. 3 corresponding to the E-String. 

 By increasing bow force, spectral energy shows a frequency dependent gain: Gain is 
higher for higher frequencies, whereas for low frequencies is almost inexistent. We can 
see this behaviour in fig. 3 for six different force category values.  

 With increasing bowing speed there is an energy gain almost constant for all 
frequencies. This is depicted in fig. 4: we can see how envelopes are almost parallel. 

 When bowing a string, harmonic nodes of the string under the bow are not excited. This 
is noticed in the ideal string velocity spectrum that has an abs(sinc) shape with nodes at 
those harmonics [12]. Conversely to string velocity spectrum, BTS spectrum does not 
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have those characteristic abs(sinc)-nodes. BBD seems to affect BTS spectrum in a 
similar way as bow speed does. 
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Fixed parameters: 

 BBD 
 bow velocity 
 string 

 
Bow force range [-0.5,1.5] is 
divided into 6 categories. 
 
At low frequencies, spectrum 
remains almost constant. 
 
Higher forces boost high 
frequencies. 
 

Figure 3:Changes in spectrum by increasing bow force  
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Fixed parameters: 

 BBD 
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Bow velocity range [0,110]cm/seg. 
is divided into 5 categories. 
 
There is a constant energy gain at 
all frequencies when increasing 
bow velocity 
 

Figure 4:Changes in spectrum by increasing bow velocity 
 

 

 
 
The Model 
Neural networks are non-linear statistical data modelling tools used to model complex 
relationships between input and output parameters. We need a model to predict numerical 
values (energy of the bands) given some numerical inputs and we choose neural networks 
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because they fit quite well to these requirements. They have been used previously for prediction 
of harmonic energy in [13].  
 
For simplicity we build separate models (model_sibj), each one predicting the harmonic energy 
of a specific band(j) given a specific string(i). Input parameters to each network are string, BBD, 
bow position, bow velocity and bow force. The output parameter is the average energy at a 
predefined band. Each network has a hidden layer with two neurons as represented in fig. 5. 
We used a feed-forward neural network trained by back-propagation. 
 
 

 
Figure 5: Neural Network architecture 

 
The parameters for training the networks are: 

 learning rate=0.3 
 momentum=0.2 
 number of epochs=500 

 
For each network we get a similar regression performance. In the third column of table1 we 
show the results of a ten-fold cross-validation of the training data for the network corresponding 
to the first string and first frequency band (model_s1b1). 
 
As a comparison we also show the performance of a linear regression in the second column of 
table1. We can see how the use of the neural network improves a lot the performance. The 
obtained linear regression is as follows:  
 

energyB1= -2.3475 * bbd + 0.2148 * velocity + 2.6835 * force + 0.0117 * position -27.9791 
 
 
 
 
 

 

 
 
SOUND TRANSFORMATIONS 
Transformations are essential in a synthesizer that concatenates recorded samples because (1) 
they extend the parameter space that is not sampled and (2) they allow smoothed transitions 
when concatenating two samples. Our model is intended to complement other transformations 
within a spectral concatenative synthesizer. The synthesizer makes use of a database of 
samples containing both the sound and the control parameters that produced the sound. With 
this model we are able to modify the sound as if it was produced with other parameters.  
 
In fig.6 we depict the transformation procedure: For each temporal frame, we predict the energy 
in the bands for both source and target actions. The difference envelope between source and 
target spectra is used to define the filter that is applied to the sound, obtaining the transformed 
sound. Target actions come from a performance model or from another stored sound. Notice 
that we do not use source energy values stored in the database, but we predict them with the 
model. This way the applied filter is not so sensible to prediction error, and furthermore, the 
model can be applied to non-sustained parts of the sound (attack, release and transition 
segments). Preliminary results are very promising. 

 Linear Regression Neural Network 
Correlation coefficient 0.8889 0.9708 
Mean absolute error 2.5754 0.8893 
Relative absolute error 41% 14% 
Total Number of Instances 30,625 30,625 

Table 1: Prediction errors for Linear Regression and Neural Network 
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Figure 6:Transformation  procedure of a frame 

 
 
CONCLUSION 
We presented a methodology for transforming the timbre of violin sound samples driven by 
performance actions. It is being tested as a complement to other transformations in a spectral 
concatenative synthesizer and the initial results are successful. 
 
Further developments of the model will include refining the structure of the neural network and 
contrasting it with other machine learning methods, inform the model with other performance 
actions such as fingering and increasing the resolution of the timbre model (number of 
frequency bands). 
 
Additionally, although sound signal captured with the BTS fits well for synthesis purposes, it is 
of interest to measure a signal directly related to string vibration so we could inform our model 
with physical formulae.  
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