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ABSTRACT 

This paper describes recent improvements to our singing voice synthesizer based on concatenation and 
transformation of audio samples using spectral models. Improvements include firstly robust automation of previous 
singer database creation process, a lengthy and tedious task which involved recording scripts generation, studio 
sessions, audio editing, spectral analysis, and phonetic based segmentation; and secondly synthesis technique 
enhancement, improving the quality of sample transformations and concatenations, and discriminating between 
phonetic intonation and musical articulation. 

 

1. INTRODUCTION 

Today there are around half a dozen well-known 
existing singing synthesizers, some of which come from 
academia while others are commercial products. 
Approaches taken to solve the problem of singing 
synthesis and their intended use vary greatly. Some 
synthesizers are for instance based on physical models 
of the human speech production system; others use 
spectral models of singing signals. Some synthesizers 
are specialized for operatic voices; others may be 
intended for pop music. In previous articles [1][2][3] we 
presented our synthesizer, based on real singer 
recording samples transformation and concatenation. 
One of the main features in which we put efforts ever 
since the beginning of the project in order to make our 
synthesizer unique is that synthesis should preserve the 
personality of the recorder singer.  

This paper addresses mainly recent improvements on 
artificial singer’s naturalness improvement and 
character preservation within our synthesizer. 

2. OUR SINGING SYNTHESIZER 

Our synthesizer generates an artificial singing 
performance out of the musical score and the phonetic 
transcription of a song. The system stands on frame-
based frequency techniques and aims to mimic human 
singing, for which the synthesis engine is supplied with 
data from a singer that has been previously recorded, 
analyzed and stored in a database, which stores voice 
characteristics (phonetics) and low-level expressivity 
(attacks, releases, note transitions and vibratos).  

The synthesis is created by the concatenation of a set of 
elemental database samples (phonetic articulations and 
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stationeries) that have been transposed and time-scaled. 
The concatenation of these transformed samples is 
performed by spreading out the spectral shape and phase 
discontinuities of the boundaries along a set of transition 
frames that surround the joint frames.  

 
Figure 1 Block diagram of the singing synthesizer 

The system can be characterized with two modules: the 
expressiveness module and the synthesis module. The 
expressiveness module gets lyrics and melody score and 
generates a detailed musical score that characterizes the 
expressivity of the virtual singer performance through 
an ordered list of temporal events, each of which 
describes the local expression of the performance 
through control parameters. We call this score 
Microscore. The Synthesis module is in charge of the 
synthesis process itself. The module reads the 
Microscore information and synthesizes the virtual 
performance by taking the corresponding samples from 
the database, transforming them according to the 
inputted score and concatenating them. 

3. SYNTHESIS IMPROVEMENTS 

Regarding the synthesis engine, three main 
improvements are presented here: new Microscore 
creation, new sample transformation technique, 
phonetic intonation preservation. 

3.1. Improved Microscore creation 

The Microscore is the internal score built from the given 
user input such as notes, lyrics and control curves. The 
score consists of a sequence of samples and 
corresponding sample transformations that are required 
to achieve the target synthesis output. The goal when 
creating the score is to minimize the required sample 
transformations, which can result in artifacts in the 

synthesis output. Ideally the total of all required 
transformations of the entire score are minimized, but in 
real-life implementations the time-interval over which 
this optimization is performed must be limited. In our 
current implementation it is fixed to the duration of two 
succeeding notes. While bigger optimization intervals 
get closer to the ideal solution, they also result in greater 
computational costs while only offering diminishing 
improvements. Furthermore in real-time settings, the 
interval is limited by the available time between user 
input and synthesis output (system's latency). 

The improved internal score generation is based on 
minimizing a sample-target mismatch error function 
rather than the discrete decision tree of previous 
approaches. This avoids the decision order 
dependencies of the old system and is much more 
flexible and extensible.  

In order to be able to minimize the error function, the 
error for all of the possible sample sequences has to be 
computed. Fortunately by eliminating certain cases, the 
complexity of this computation can be reduced to an 
acceptable number. The error function itself is 
determined by the transformations required to match 
pitch, dynamics and duration of the sequence of 
database samples to synthesis target. Additionally the 
continuity of sample sequence with respect to pitch and 
dynamics also affects the total error to avoid samples 
from very different contexts getting concatenated. 

continuitydynamicscontinuitypitch

fittingdynamicspitchtotal

ErrErr

ErrErrErrErr
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Another major improvement to the internal score 
creation, besides the overall adaptation toward a multi-
lingual system, is the use of additional markers in the 
articulation samples which determine which parts of the 
sample is stable and which parts are transitional. For 
instance an articulation sample may include a sustained 
vowel part or a small silence before a plosive. Using 
this information the system can determine which parts 
of the sample are essential and which can be cut without 
loss of intelligibility. In many cases this allows to avoid 
time-compressing samples when synthesizing fast 
singing without having dedicated rapidly sung samples 
in the database. 
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3.2. Sample Transformations 

In our previous work voice transformation was 
accomplished by means of different spectral processing 
techniques based on sinusoidal modeling [1] and phase-
locked vocoder [2], with the addition of a voice model 
we call EpR [1], which is a parameterized source-filter 
spectral model of the singing voice consisting of 
resonances, excitation curve and a residual spectral 
envelope. Higher quality results can be obtained by 
combining EpR with a technique based on non-linearly 
scaling the spectrum.  

 

The scaling procedure is actually performed in a way 
that the local polar spectrum shape of each harmonic is 
approximately shifted to new amplitude, frequency and 
phase coordinate. The voice signal during voiced 
utterances is mainly composed of harmonics and noise, 
and both components should be transformed in a natural 

way. Hence, since harmonics and surrounding noise are 
shifted together in frequency, spectral regions should be 
preferably shifted only within a small frequency range. 
This can be achieved by defining a set of frequency 
bands and a mapping between input and output 
spectrums which minimizes the frequency shifting of 
each band. In the simplest case each band would 
correspond to a single harmonic, and the source for each 
target harmonic would be the closest harmonic in the 
original signal. In figure 2 we can see an example of 
transposition upwards and frequency bands with a width 
equal to three harmonics. 

 

In all previous modeling approaches phasiness artifacts 
(a lack of presence, a slight reverberant quality) appear 
often producing unnatural results. The reason resides in 
the loose of the phase synchronization (or phase-
coherence) between the various harmonics inherent to 
the voice utterances. Several algorithms have been 
proposed regarding this issue [4][5], most based on the 
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Figure 3 Hand drawn representation of  the 
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idea of defining pitch-synchronous input and output 
onset times and reproducing at the output onset times 
the phase relationship existing in the original signal at 
the input onset times. However, the results are not good 
enough because the onset times are not synchronized to 
the voice pulse onsets, but assigned to an arbitrary 
position within the pulse period.  

We proposed in [6] a method to estimate the voice pulse 
onsets out of the harmonic phases based on the property 
that when the analysis window is properly centered, the 
unwrapped phase envelope is nearly flat with shifts 
under each formant, thus being close to a Maximally 
Flat Phase Alignment (MFPA) condition. Since we 
process at a constant frame rate, for each analysis frame 
we can estimate the time distance between the center of 
the analysis window and the closest MFPA position (i.e. 
voice pulse onset) and rotate the harmonic phases to that 
time. Next we unwrap the harmonic phase envelope and 
compute the synthesis harmonic phases at the pulse 
onset using interpolation. Finally, we apply a linear 
phase shift which rotates the harmonic phases at the 
actual synthesis position. The whole procedure is shown 
in figure 3. By means of this technique, phasiness can 
be greatly reduced to be almost inaudible and 
transformations sound more natural.  

3.3. Phonetic Intonation versus musical 
articulation 

In our recording scripts we set tempo, pitch and 
loudness to be constant along each sentence. The main 
reason is that we want to capture loudness and pitch 
variations inherent to phonetic articulations (see figure 
4), and make them independent of the ones related to 
musical performance. This is especially important to get 
intelligible and natural sounding outputs.  

 
Figure 4 Example of typical amplitude and pitch 

envelopes in phonetic transitions  

We have modified the synthesis engine in such a way 
that pitch and loudness envelopes from database 
samples are added on top of the ones computed out of 
the input notes and expression. With this, pitch and 

dynamic variations due to phonetics intonation is well 
preserved and the naturalness of the synthesis is 
significantly improved. 

4. DATABASE CREATION IMPROVEMENTS 

The singer database holds two different types of 
information: the phonetic information and the 
expression information. The phonetic database stores 
the singer’s timbres in all possible contexts and the 
expression database stores the singer’s expression in 
different musical contexts.  

4.1. Recording Sentences 

As already suggested in section 3.2, improved recording 
scripts are compound of sentences instead of words. 
Recoding scripts based on sentences ease the 
comprehension of the required performance, reduce the 
required recording time, and enhance the consistency of 
the pronunciation.  

A script with phonetic transcription capabilities is in 
charge of choosing from a collection of digital books, 
the minimum set of these sentences required to cover all 
articulations to be recorded. As an example, for the 
Spanish recordings, we consider 29 possible allophones 
from [7], which makes a list of 841 theoretically 
possible allophone combinations. From this list 
impossible combinations are removed, impossible 
meaning they have never appeared in the automatic 
phonetic transcription of our book collection. Current 
scripts contain 521 allophone to allophone articulations 
in 115 sentences, covering around 94% of all possible 
appearing combinations, and summing around 99% of 
occurrence. 

4.2. Diphoneme Level Segmentation 

Segmenting recorded utterances into diphoneme 
samples was previously done using an available 
Automatic Speech Recognition (ASR) toolkit which 
uses HMM-based models trained with mel-frequency 
cepstral data [3]. While overall this approach gives 
fairly good results, the main problem is that 
segmentation still fails in a significant number of cases. 
In general, segmentation either fails completely, 
probably due to fundamental differences between the 
singing voice input and speech corpus the ASR toolkit 
is trailed with, or, more commonly, the overall 
segmentation is correct but the boundaries are mis-
estimated locally. This latter is worsened by the correct 
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segmentation being defined slightly differently between 
the ASR toolkit and the synthesizer. 

To improve the results of the ASR toolkit a second, 
post-processing step was later introduced. First a 
number of low-level descriptors such as amplitude 
envelope, delta mel-cepstrum coefficients, zero-crossing 
rate, etc. are computed from the recording. Then, 
assuming the initial ASR segmentation is at least 
globally correct, the algorithm uses the low-level 
descriptors to improve the initial segmentation results 
using rules based on a priori knowledge the given 
phoneme types for an articulation. This post processing 
step significantly improves the results of the ASR 
segmentation, but has the disadvantage that finding a set 
of rules that work well in all cases is very difficult and 
still requires manual verification that the initial 
segmentation is at least globally correct. 

4.3. EpR estimation from templates 

In order to improve the automatic EpR estimation 
performed as part of the singer database creation 
process we have built up a table in which the expected 
frequency positions of the first to forth resonances is 
specified. Values in this template table have been 
computed from the observation of manually supervised 
complete singer databases. 

 

PhU F1  F2  F3  F4  

@  700  1350  2750  3700  

V  750  1250  2750  3750  

e  750  1800  2600  3850  

I  550  1875  2525  3700  

i: 400  2225  2725  3600  

{  775  1675  2675  3725  

O: 700  1250  2650  3650  

Q  800  1200  2675  3775  

U  425  1350  2750  3650  

u: 375  1550  2500  3450  

@r 400  1450  2275  3450  

Table 1 Expected center frequencies (in Hz) of EpR first 
four resonances for English voiced vowels. 

The expected frequency allocation is defined by means 
of a center frequency and a frequency deviation (mean 
and variance). Variances take different values 
depending on the phonetic group and the context of the 
frame to be estimated in case of articulations. More 
precisely, resonances variances range from 50 Hz for 
voiced consonants, to 75 for vowels and diphthongs and 
150 for voiced-unvoiced boundary frames. 

4.4. On the fly database creation 

As mentioned, the improved diphoneme segmentation 
algorithm works quite well in general, but has its own 
problems and is somewhat of an ad hoc solution. A 
possible way around these problems may be to utilize 
the existing correctly segmented databases to segment 
new databases. This would avoid the dependency on a 
speech trained model from the ASR used. 

The problem of time-aligning two utterances of the 
same sentence by different speakers can be solved using 
the Dynamic Time Warping (DTW) algorithm. It takes 
one or a combination of descriptors of the signals and 
then finds the optimal path through a similarity matrix 
of the descriptors of both utterances. Allowing to use 
additional descriptors besides the mel-frequency 
cepstrum can achieve some of the benefits of the 
previous approach's post-processing step in a simpler 
manner because none of the phoneme-dependent rules 
are present. In particular, a combination of mel-
frequency cepstrum coefficients and envelope derivative 
turned out to be an effective combination. The mel-
frequency cepstrum gives a good overall match and the 
envelope derivative can help avoid discontinuous jumps 
in the optimal DTW path in cases where vowels and 
sustained or shortened compared to the model utterance. 
Another important issue with the DTW technique is to 
accurately trim silence at the beginning and, less 
importantly, the end of the utterance to remove leading 
and trailing silence as begin and end points of the DTW 
path are always fixed. 

Initial listening tests to evaluate the algorithm were 
positive. Quantitative evaluation proved somewhat 
difficult because the second, reference database was 
only partially corrected manually. Furthermore defining 
a meaningful rule to measure if segmentation was 
successful is problematic because this is dependent on 
phoneme types to a degree. The inherent disadvantage 
of this system is of course that it requires at least one 
correctly segmented database for each supported 
language. As a consequence, the recording scripts can 
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not be easily changed. However, creating the initial 
segmentation model for a specific language can still be 
partially automated using the previous ASR-based 
technique. 

Another problem that arose from the way databases 
were created was that issues with the recordings such as 
mispronounced phonemes, level mis-matches, pitch 
problems, etc., usually weren't found until creating or 
using the database, when it is usually too late to fix 
them.  

To reduce these kind of problems, the DTW-based 
database creation tool was implemented as a real-time 
VST plug-in. This allows it to be easily integrated with 
many recording environments. Besides improving the 
database creation work-flow overall, this on-the-fly 
system can also help flag problems as they happen and 
will hopefully increase database consistency which 
ultimately determines the synthesizer output's quality. 
Firstly recordings are segmented in utterances 
automatically, then checked if their duration is 
approximately equal to those of the models and finally 
the DTW is applied. The total error of the DTW path 
finding algorithm can indicate problems with the match 
such as severe mis-pronunciations. This system also 
allows levels of stationaries and vowels in articulations 
to be matched more closely. 

5. CONCLUSIONS 

Significant improvements have been achieved in the 
quality of the synthesis with the synthesizer 
modifications we have presented in this article. New 
strategies on Microscore creation, phonetic intonation 
preservation, and MPFA are key issues when it comes 
to preserve the identity and expression of the recorded 
singer. 

While the improvements of the database creation and 
the automation thereof does not result in a better  
synthesis quality itself, it does allow elaborate databases 
to be created more easily. Sampling a singer at more 
different contexts such as different pitches, dynamics, 
and types of expression does help greatly capturing the 
singers characteristics and ultimately improving the 
quality and naturalness of the synthesis output. 
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