An Internet Browser Plug-in for Real-time Sound Synthesis using Pure Data

Marcos Alonso, Glinter Geiger, Sergi Jorda
Music Technology Group
Universitat Pompeu Fabra

Ocata, 1
Barcelona, Spain
malonso,ggeiger,sjorda@iua.upf.es

Abstract

In this paper we present an Internet browser plug-in for
real-time sound synthesis. The plug-in uses the Pure Data
(Pd) sound synthesis engine, and allows flexible and trans-
parent sound generation and control embedded into web-
pages. Pd is a general sound synthesis language that is
based on the MAX graphical programming paradigm. It can
be used to construct and implement a broad range of sound
synthesis algorithms and paradigms, ranging from standard
sample playback to interactive sound generation and ma-
nipulation. The plug-in is cross-platform and runs on Win-
dows, OSX and Linux platforms. Versions for Windows In-
ternet Explorer as well as for Netscape/Mozilla have been
developed. The plug-in opens a wide range of new possi-
bilities for the presentation of dynamic multimedia content,
where sound plays an important role and the playback of
static sound files is not sufficient.

The data format used by the plug-in (the pd patch), has
to be transmitted over the net, is very small in size and thus
perfectly suitable for low bandwidth connections. Examples
of potential applications are games, adaptive sound back-
grounds, interactive sound installations, web sites, collab-
orative music on the web, education and e-learning. The
first implementation of the Pd plug-in has been written for
a project in collaboration with the Catalan theater group
’La Fura dels Baus™.

1. Introduction

Internet browser plug-ins are commonly used to en-
hance the display possibilities of internet browsers. Most
of these plug-ins mainly concentrate on graphics, sound is
only playing a secondary role. Designers of multimedia
web pages are mostly limited to the playback static sound
samples (wave files) or to use a common set of precooked
sounds via a sample-based synthesizer. This affects the

amount of data that has to be transmitted as well as the flexi-
bility and quality of the sound generation. By implementing
a software based synthesis engine in a plug-in we can get rid
of these limitations.

The idea of having finer grained control over the auditive
content of multimedia and interactive web pages is not new.
As early as 1995, Ossenbruggen and Eliens propose the
use of client-side sound synthesis techniques in order to re-
duce the amount of resources needed for high quality music
on the WWW [van Ossenbruggen and Eliéns, 1995]. Jsyn
[Burk, n a], developed by Phil Burk in 1998 [Burk, 1998],
also provides a real-time unit generator based synthesis for
Java applets in a web page, in which sound synthesis is per-
formed by "C’ code hidden in a Netscape plug-in or DLL
beneath Java native methods. A similar approach is also
taken by the JASS system [van den Doel and Pai, 2001].
All these systems match our approach and goals pretty
closely; the main difference is that while these applications
are written using a new API, we have chosen to bring to the
web one of the most widespread interactive computer music
and sound synthesis environments: Pure Data.

1.1. The Pure Data System

Pure Data [Puckette, 1996] is a computer music system
that was written by Miller Puckette and implements the
"MAX” paradigm of graphical programming languages for
sound processing [Puckette, 1988]. The Pd system is freely
available on the Internet with open source code. Because
of its openness and extensibility, it enjoys an ever growing
users and developers community.

Its broad user base and widespread use, together with
cross platform compatibility (Linux, Windows and Mac
OS) and a relatively small code base and memory finger-
print, make it the ideal system to be used as a general sound
synthesis extension for client based sound rendering. What
we are bringing with this plug-in is the possibility of run-
ning patches created with Pd in a web browser.

2. Design and I mplementation

One big advantage of Pd is its graphical and interactive
programming style. Algorithms and sound synthesis can be
implemented and tested at the same time. Pd is a complete
computer music system that comes with a graphical editor,
which is the essential tool for working and performing with
Pd. Once the synthesizer has been built with Pd, the perfor-
mance part can be replaced by alternative GUI’s, like Para-
diddle [Lindsay and Parkes, 2004] or GriPD [Sarlo, 2004].
The Pd plug-in is in that sense, another way of controlling
Pd.

The flexibility of Pd allows steering the Pd engine
from almost every networked application, either through
the Open Sound Control [Wright and Free, 1997] proto-
col, or through the simple Pd built in netsend/netreceive
protocol. Pd has already been used together with In-
ternet browsers, either as a server side streaming engine
[Barbosa et al., 2003] and [Ritsch and Frauenberger, 2003]
or on the client side as a stand-alone application that is com-
municating over a local loop-back network with a browser
side java or JavaScript applet.

Implementing Pd as a browser plug-in makes this tech-
nology accessible to all users, by just installing the plug-in
and by communicating via the browsers Document Object
Model (DOM)[Le Hégaret et al., na] as depicted in Figure
1.

For this to be possible, the Pd engine had to be separated
from the GUI and implemented as a loadable library that
offers a script-able browser plug-in interface. Through this
interface, the engine that runs within the browser in a sep-
arate thread, can be controlled and any of the synthesizer
parameters can be changed at any moment.

Besides the common required interface, the Pd plug-in
has three additional methods.

start()

stop()
send(nane, val ue)

Thest art and st op methods are used to start and stop
the Pd engine. The send command is used to communicate
with any of the Pd methods and symbols that are defined in
the Pd patch.

3. Usage
3.1 Loadingapatch

This section shows how the plugin can be embedded in
web-pages. The first thing that has to be done is to load a
Pd patch into the plugin when the web-page is shown in the
browser. This is done with the <ermbed> tag as follows.

HTML Document

JavaScript
send(symbol,value)

Document Object Model
DOM

Pd Plugin

Internal Socket (Shared Memory)

Pd Engine

Figure 1. Pd plug-in structure

<enbed type="audi o/ pd"
src="nmnypat ch. pd"
hi dden="true" >

This code starts the plug-in using the Pd patch named
mypatch.pd. If the Pd patch is self generating, this can al-
ready be used to supply a web-page with self generating
background sound. Most applications probably want the
sound to be interactive. This is done with a scripting lan-
guage like JavaScript or Flash Actionscript.

3.2 Controalling the patch

If we want to control what is going on in the patch we
have to communicate with the Pd engine. On the Pd side
we use a receive object, which controls one or more aspects
of the synthesis. Here is a simple example how to control a
sine oscillator.

File Edit Put Find Wndows Media Helpl

A
o]
=
e
o
4
=l |~

Figure 2. Pd receive symbol example

On the JavaScript side we first have to assign the loaded

Pd instance to a variable in order to be able to access it and
being able to call its methods.

<script | anguage="JavaScript">
var pd;

i f(docunent.all) pd=wi ndow. docurent . pdx;

el se pd=docunent. enbeds[0] ;
</script>

Once we have the handler we can start sending mes-
sages using JavaScript via the Document Object Model
(DOM)[Le Hégaret et al., na]. Here is an example of a link
that will send a freq message to Pd when clicked.

Sending a message to the plug-in using JavaScript:

Set frequency to 440hz

The first argument of the send method is the name of the
receive object in the Pd patch (freq), the rest is the message
that should be sent to the Pd receiver.

The same using Flash Actionscript:

get URL("j avascript: pd.send(’ freq' , 440)")
4. Applications

The generality of the Pd language and the ease of use of
the plug-in technology give way to a wide range of applica-
tions. In this section we will describe some of them.

e Interactive Music: From the musician’s point of
view the most obvious application is interactive mu-
sic. This includes applications like synthesizers, se-
quencers, sound installations or multimedia installa-
tions in general.

The decoupling of the GUI from the sound engine ex-
pands the control possibilities that are natively offered
by Pd, and allows the GUI interface to be designed ac-
cording to the application, instead of having to stick to
predefined GUI elements. The simultaneous use of the
Pd plug-in and the Flash plug-in becomes for exam-
ple an extremely simple and natural issue, which def-
initely blows all the sound restrictions and limitations
of Flash-based web pages and opens a new standard for
web applications in the style of SoundToys [Stanza,].

e Low bandwidth delivery of music: Generative mu-
sic, encoded as Pd patches can be transmitted over the
net using only a few bytes (the size of the Pd patch).
The idea is that instead of generating music, encoding
it as sound-file and transmitting the sound-file, only
the instructions on how the music is generated get send

over the net, and the music itself is generated in real-
time on the user’s machine. This generative approach
has already been implemented in some commercially
available web browser plug-ins such as the ”Koan Vec-
tor Audio” system by Sseyo [SSEYO, na]. The main
difference between Koan’s plug-in and ours is that we
are using an open format, which can be generated with
freely available software (Pd) and which already prof-
its from a big and widespread community of users and
developers.

Auditory User Interfaces: The Pd engine can be
used to give auditory, dynamic feedback to the user.
This not only includes the playback of triggered event
sounds, but also the possibility of rendering user inter-
face information in real time, such as auditory progress
bars, mouse positioning and vicinity cues. The graph-
ical user interface can be augmented or replaced by an
auditory user interfaces [Kaltenbrunner, 2002].

Sonification Another application of the Pd plug-in
technology is sonification of data. The problem with
standard web technologies is that they only allow for
static sonification, this means that the sound-files have
to be calculated on the server, and the data can only
be viewed from one angle. With the dynamic possibil-
ities of the plug-in it is possible to offer an unlimited
amount of viewpoints and angles over the data and the
adjustment of sonification parameters.

Collaborative music on the web Collective creation
and the production of open and continuously evolv-
ing works are indeed two of the most appealing artis-
tic breakthroughs the Internet can offer to music com-
posers and creators in general, and this is an area
in which this research team has been largely work-
ing in the last years, specially within the scope of
FMOL [Jorda, 1999][Wiust and Jorda, 2001] and the
Public Sound Objects projects [Barbosa et al., 2003].
The idea of musical computer networks is by no means
original, since earlier implementations (although on a
local area scale) date back to the late 1970s with per-
formances by the League of Automatic Music Com-
posers [Bischoff et al., 1978], to later become the Hub
[Gresham-Lancaster, 1998]. The late nineties saw
the breakthrough of several collaborative projects and
sites such as ResRocketSurfer, MIT’s Brain Opera,
William Duckworth’s Cathedral [Duckworth, 1999] or
the same FMOL, but the truth is that more than twenty
five years after the League’s first experiments, collec-
tive and real time music creation and improvisation on
the net are still at a burgeoning state [Barbosa, 2003];
a situation that could start changing with this plug-in,
which finally manages to bring to the web one of the
interactive computer music de facto standards.

5. Future Work

By the time of writing this document the first beta ver-
sions of the plug-ins for Mozilla/Netscape (for Windows
and Linux) and Internet Explorer for Windows are available
on the plug-in website [Alonso,]. The primary milestones
for the first public versions are improving the stability and
latency since all the basic functionalities have been already
implemented. Beyond providing a stable version and a se-
ries of examples with which others can experiment, there
are numerous other features that have been envisioned:

e Low latency versions using DirectX or ASIO. The cur-
rent versions work with the MME standard windows
audio output. Even though the latency is not too high
some applications may need a faster time response.

e Data flow is presently only one-way, from browser to
plug-in. A way to obtain data from the Pd plug-in in
the web-application still has to be added.

e The current versions of the plug-in can only load a sin-
gle ”.pd” file at a time. A new compressed format for
a whole Pd project should be developed to overcome
this limitation.

As Pd can be a very powerful language, there are system
security issues that arise. These issues have not yet been
closely investigated, but we hope to overcome them by re-
stricting some of Pd’s built-in features such as sound file
writing.

6. Conclusions

We have presented the Pd web browser plug-in, a piece
of software that brings to the Internet the power and the un-
limited possibilities of Pd, one of the most versatile, pow-
erful and widespread programming environments for real
time interactive music and sound synthesis. Although the
project is far from being finished it is already completely
useful, and we believe its use can boost the creation of in-
teractive and collective music sites and projects, and bring
new sonic standards to Flash-based interactive web pages.

This research has been partially funded by the EU-FP6-IST-
507913 project SemanticHIFI.

References

[Alonso,] Alonso, M. Pd
www.iua.upf.es/"malonso/pdplugin.

[Barbosa, 2003] Barbosa, A. (2003). Displaced sound-
scapes: A survey of network systems for music and sonic
art creation. Leonardo Music Journal, 13:53-59.

plug-in.

[Barbosa et al., 2003] Barbosa, A., Kaltenbrunner, M., and
Geiger, G. (2003). Interface decoupled applications
for geographically displaced collaboration in music. In
Proceedings, International Computer Music Conference,
pages 199-202, Singapore. International Computer Mu-
sic Association.

[Bischoff et al., 1978] Bischoff, J., Gold, R., and Horton, J.
(1978). Music for an interactive network of computers.
Computer Music Journal, 2(3):24-29.

[Burk, 1998] Burk, P. (1998). Jsyn - a real-time synthe-
sis api for java. In Proceedings, International Computer
Music Conference, Ann Arbor, USA. International Com-
puter Music Association.

[Burk, na] Burk, P. (n-a). Jsyn - java audio synthesis.
http://www.softsynth.com/jsyn.

[Duckworth, 1999] Duckworth, W. (1999). Making music
on the web. Leonardo Music Journal, 9.

[Gresham-Lancaster, 1998] Gresham-Lancaster, S. (1998).
The aesthetics and history of the hub: The effects
of changing technology on network computer music.
Leonardo Music Journal, 8:39-44.

[Jorda, 1999] Jorda, S. (1999). Faust music on line: An
approach to real-time collective composition on the in-
ternet. Leonardo Music Journal, 9:5-12.

[Kaltenbrunner, 2002] Kaltenbrunner, M. (2002). Y-
windows: Proposal for a standard aui environment. In
Proceedings of the 8th International Conference on Au-
ditory Display, Kyoto, Japan.

[Le Hégaret et al., na] Le Hégaret, P., Whitmer, R., and
Wood, L. (n/fa). Document object model (dom).
http://www.w3.0rg/DOM.

[Lindsay and Parkes, 2004] Lindsay, A. T. and Parkes,
A. P. (2004). Paradiddle: a code free meta-gui for mu-
sical performance with pure data. In Proceedings, Inter-
national Computer Music Conference, pages 423-426,
Singapore. International Computer Music Association.

[Puckette, 1988] Puckette, M. (1988). The patcher. In
Proceedings, International Computer Music Conference,
pages 420-429, San Francisco. International Computer
Music Association.

[Puckette, 1996] Puckette, M. (1996). Pure data: an-
other integrated computer music environment. In Sec-
ond Intercollege Computer Music Concerts, pages 37—
41, Tachikawa, Japan.

[Ritsch and Frauenberger, 2003] Ritsch, W. and Frauen-
berger, C. (2003). A real time audio rendering system
for the internet (iars), embedded in an electronic music
library (iaem). In Proceedings of the 6th Int. Conference
on Digital Audio Effects (DAFx-03), London, UK.

[Sarlo, 2004] Sarlo, J. (2004). A graphical interface editing
tool and run-time environment for pure data. In Proceed-
ings, International Computer Music Conference, pages
305-307, Singapore. International Computer Music As-
sociation.

[SSEYO, na] SSEYO (n/a). Koan vector audio.
http://www.sseyo.com/showcase/vectoraudio/index0.html.

[Stanza,] Stanza. Soundtoys. http://www.soundtoys.net.

[van den Doel and Pai, 2001] van den Doel, K. and Pai,
D. K. (2001). Jass: A java audio synthesis system for
programmers. In Proceedings of the 2001 International
Conference on Auditory Display, Espoo, Finland.

[van Ossenbruggen and Eliéns, 1995] van Ossenbruggen,
J.and Eliéns, A. (December 1995). Bringing music to the
web. In Proceedings of the Fourth International World
Wide Web Conference, The Web Revolution, pages 309-
314. O’Reilly and Associates, Inc.

[Wright and Free, 1997] Wright, M. and Free, A. (1997).
Open sound control: A new protocol for communicating
with sound synthesizers. In Proceedings, International
Computer Music Conference, Thessaloniki. International
Computer Music Association.

[Wiist and Jorda, 2001] Wiist, O. and Jorda, S. (2001). Ar-
chitectural overview of a system for collaborative music
composition over the web. In Proceedings of the 2001 In-
ternational Computer Music Conference, San Francisco.
International Computer Music Association.

