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ABSTRACT 
 
We present a large-scale study on the automatic classification of sounds from percussion instruments. Different 
subsets of temporal and spectral descriptors (up to 208) are used as features that several learning systems exploit to 
learn class partitions. More than thirty different classes of acoustic and synthetic instruments and near two-
thousand different isolated sounds (i.e. not mixed with other ones) have been tested with  ten-fold or holdout cross-
validation. The best performance can be achieved with Kernel Density estimation (15% of errors), although boosted 
rule systems yielded similar figures. Multidimensional scaling of the classes provides a graphical and conceptual 
representation of the relationships between sound classes, and facilitates the explanation of some types of errors. 
We also explore several options to expand the sound descriptors beyond the class label, as for example the 
manufacturer-model label and confirm the feasibility of doing that. We finally discuss methodological issues 
regarding the generalization capabilities of usual experiments that have been done in this area. 
 
1. INTRODUCTION 

Classification is one of the processes involved in 
audio content description. Audio signals can be 
classified according to miscellaneous criteria. A broad 
partition into speech, music, sound effects (or 
noises), and their binary and ternary combinations is 
used for video soundtrack descriptions. Sound 
category classification schemes for this type of 
materials have been recently developed [1] and 
facilities for describing sound effects have even been 

provided in the MPEG-7 standard [2]. Usually, music 
streams are broadly classified according to genre, 
player, mood, or instrumentation, and some research 
has been devoted in order to automatically assign 
some of these labels to sound files [3], [4]. Automatic 
labeling of instrument sounds has some obvious 
applications for enhancing the operating systems of 
sampling and synthesis  devices, in order to help 
sound designers to categorize (or suggesting names 
for) new patches and samples. Automatic annotation 
of the instrumentation played in a given musical 
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recording is one of the long-term goals for music 
content description systems. One shorter-term goal is 
that of describing drum loops at the rhythmic level 
because, in them, we find a combination of almost 
isolated sounds with simpler 2- or 3-sounds mixtures. 
This paper can be considered as a follow-up of [5] 
and [6], and also as an attempt to further explore our 
previous approach in order to handle more classes 
(and more difficult class boundaries too ). It can be 
also considered as groundwork for dealing with 
automatic labeling of drum loops, which will be 
presented in a forthcoming report.  
Previous research in automatic classification of 
sounds from music instruments has focused in 
instruments with definite pitch. Classification of string 
and wind instrument sounds has been attempted 
using different techniques and features, yielding to 
varying degrees of success (see [7] for an 
comprehensive review). Classification of percussive 
instruments, on the other hand, has attracted little 
interest from researchers. In one of those above cited 
studies with pitched sounds, Kaminskyj [8] included 
three pitched percussive categories (glockenspiel, 
xylophone and marimba) and obtained good 
classification results (ranging from 75% to 100%) with 
a  K-NN algorithm.  Schloss [9] classified the stroke 
type of congas using relative energy from selected 
portions of the spectrum. He was able to differentiate 
between high-low sounds and open, muffled, slap and 
bass sounds. Using a K-means clustering algorithm, 
Bilmes [10] also was able to differentiate between 
sounds of three different congas. McDonald [11] 
used spectral centroid trajectories as classificatory 
features of sounds from percussive instruments. 
Sillanpää [12] used a representation of spectral shape 
for identification of the basic five categories of a drum 
kit: bass drum, snares, toms, hi-hats, and cymbals. His 
research was oriented towards transcription of rhythm 
tracks and therefore he additionally considered the 
case of identification of several simultaneous sounds. 
A database of 128 sounds was identified with 87% of 
accuracy for the case of isolated sounds. Performance 
dramatically dropped when there were two or three 
simultaneous sounds (respectively 49% and 8% for 
complete identification, though at least one of the 
sounds in the mixture was correctly identified all the 
times). In a subsequent study [13], the classification 
method used energy, Bark-frequency and log-time 
resolution spectrograms, and a fuzzy clustering of the 
original feature vectors into four clusters for each 
sound class. Weighted RMS-error fitting and an 
iterative spectral subtraction of models was used to 
match the test sounds against learnt models. 
Unfortunately, no systematic evaluation was 

presented that time. Goto and Murakoa  [14] also 
studied drum sound classification in the context of 
source separation and beat tracking [15]. They 
implemented an “energy profile”-based snare-kick 
discriminator, though no effectiveness evaluation was 
provided. More recently, Zils et al. [16], using a 
technique of analysis and incremental refinement of 
synthesis that was originally developed by Gouyon 
[17], reported very good performance rate of 
identifying kicks and snares in songs. As a general 
criticism, in the previous research there is a lack of 
systematic evaluation of the different factors involved 
in automatic classification, and the databases are 
small to draw robust conclusions.  
From another area of studies, those focusing on 
characteristics of beaten objects, it seems that 
information about the way an object is hit is 
conveyed by the attack segment, whereas the decay 
or release segment conveys information about the 
shape and material of the beaten object [18]. Repp [19] 
found that different hand-clapping styles (palm-to-
palm versus fingers-to-palm) correlated with different 
spectral envelope profiles. Freed [20] observed that 
the attack segment conveyed enough information for 
the subjects to evaluate the hardness of a mallet hit.  
Four features were identified as relevant for this 
information: energy, spectral slope, spectral centroid 
and the time-weighted average centroid of the 
spectrum. Kaltzky et al. [21] have got experimental 
results supporting the main importance of the decay 
part (specifically the decay rate) of a contact sound in 
orde r to identify the material of the beaten object. 
Besides all the previous research, in the last two years 
we have witnessed some promising but still quite 
inconclusive works. Orife [22] has presented a tool for 
extracting rhythmic information from loops and songs 
using Independent Subspace Analysis (ISA), a 
technique for source separation [23]. Unfortunately 
no evaluation of the system has been included in the 
available report. Fitzgerald et al [24], also using ISA 
but with some additional some sub-band pre -
processing, reported a success rate of 89.5 % when 
transcribing a database of 15 drum loops containing 
snare, kick and hi-hats. Nevertheless the identification 
is done on the de-mixed tracks by a human listener, 
not by an automatic classification algorithm. Finally, 
Riskedal [25] presented a system that combined a 
drumloop-adapted onset detection procedure (taken 
from Klapuri [26]) with an adaptation of an 
Independent Component Analysis [27], another 
source separation technique. Though the results 
seem promising, only a few examples are presented by 
the author. Jørgensen [28] attempted to use cross-
correlation between sound templates extracted from 
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isolated sound recordings and realistic drum-kit 
recordings. Using this technique only kicks and 
snares seem to be detected with some reliability. A 
very different motivation has been that of Kragtwijk  
et al. [29] who have presented a 3D virtual drummer 
that re-creates with synthetic images the playing 
movements of a real drummer after analyzing the 
audio input coming from a real performance. 
Unfortunately, the audio analysis part of the system 
is still under development.   
In the next sections we will present the method and 
results of different but complementary studies on 
automatic identification of unpitched percussion 
sounds1 that do not have a well-defined fundamental 
frequency. First we will discuss the features we 
initially selected for the task and the wa ys for 
obtaining the smallest set without compromising 
classification effectiveness. Then we will summarize 
the class induction techniques we have been 
experimenting with and finally, in the main section, 
four studies will be presented, covering the automa tic 
labeling of a large amount of percussion instrument 
sounds, the identification of similarities, differences 
and relationships between sound classes, some 
preliminary attempts of describing sounds beyond the 
class label, and validation through holdout databases. 
As a conceptual guide, the following questions will 
be discussed: 

• Which features are the most appropriate for 
the task, and what can be learned about the 
sounds from the information conveyed by 
the features? 

• Is there any classification algorithm that 
excels in the task; which are the tradeoffs of 
selecting one or another?  

• Is it possible to detect some specificities of 
sounds such as if they are electronic, or if 
they come from a given manufacturer of 
acoustic instruments? 

• Is it possible to derive some structural 
representation expressing relationships of 
similarity between classes of sounds? Which 
classes can be considered as “inter-related”? 

 

                                                 
1 We have left out of this study those percussion instruments 
that produce “notes” (i.e. scales of sounds with well defined 
fundamental frequencies) such as marimba, vibraphone, 
xylophone, tubular bells, or celesta.  They will be the matter 
for a forthcoming report. 

2. METHOD 

2.1.  Selection of sounds 

We have setup different databases in order to 
properly tackle with the above mentioned problems. 
Databases were populated using sounds that were 
drawn from different commercial sample CD’s and CD-
ROMs and also downloaded from internet providers 
of sound samples2. We cared for disregarding highly 
processed sounds (i.e. with lots of compression, 
distortion, reverberation, flanging, etc.) in order to 
preserve the acoustic naturalness of the classes to be 
labeled. Different dynamics and different physical 
instruments (i.e. different recording conditions, 
different manufacturers and models) were also looked 
for. Databases  sizes ranged from 500 to almost 2000 
sounds. 
 
2.2.  Descriptors 

We considered descriptors or features belonging to 
different categories: Mel-frequency Cepstral 
coefficients, Bark Energy Ratios (BER), descriptors 
derived from BER, spectral descriptors, temporal 
descriptors, and descriptors derived from log-
transforming some of the previous ones. Up to 207 
descriptors per soundfile have been tested in some of 
the studies that will be presented. The analys es used 
a window size of 512 samples and a Hamming window 
without overlap except for the BER computation 
where it was a Hanning with 50% overlap and for the 
MFCCs where the window was of 256 samples. 
 

2.2.1. Mel-Frequency Cepstrum Coefficients 
MFCC’s have been usually used for speech 
processing applications, though they have shown 
usefulness in music applications too [30]. As they can 
be used as a compact and robust representation of 
the spectral envelope, their variance was also 
recorded in order to keep some time-varying 
information. 13 MFCC’s were computed over the 
whole signal, and their means and variances were 
used as descriptors.  
 

2.2.2. Bark Energy Ratios 
Bark bands are approximations to the first 24 critical 
bands of human hearing. We have included an 
alteration of the original definition of them consisting 
in using two more bands in order to extend low-
frequency resolution, as the original bandwidth of the 
first two Barks was not enough for good 

                                                 
2 http://www.sonomic.com, http://www.primesounds.com 
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discrimination between some instruments. We have 
then computed the proportion of energy in each of 
these 26 bands, being the lowest four a result of half-
splitting the bandwidth of original Barks 1 and 2. In 
addition to the energy proportions and the variances, 
another set of descriptors have been derived from 
them. Some of these descriptors, as far as we know, 
have not been previously used for instrument sound 
classification. 
 

2.2.3. Bark-derived descriptors 
Information in Bark Energy Ratios is a bit redundant 
as usually there are contiguous bands that have 
correlated values. Using the information that is 
present in the BERs raw data, we can compute some 
relational and summarizing descriptors. It is believed 
that they can reveal specificities that are not evident 
from direct inspection of raw BERs. We have 
computed the following: band with the maximum of 
energy, band with the minimum of energy, band with 
the maximum energy variance, band with the minimum 
energy variance, proportion of energy in the band 
with the maximum energy, proportion of energy in the 
band with the minimum energy, a ratio between high- 
and low-frequency bands, a ratio between mid- and 
low-frequency bands, a ratio between mid- and high-
frequency bands, energy difference between the first 
and the 26th band, the overall standard deviation of 
the energy proportions and of the energy variances. 
Additionally, the energy profile and the variance 
profile across all the bands can be roughly adjusted 
to a linear function and therefore we have used their 
slopes as descriptors. 
 

2.2.4.  Spectral descriptors 
We have included some descriptors that are 
computed after an FFT and which describe the 
spectral envelope in different ways than the MFCCs 
do. They are:  
• Spectral flatness: the ratio between the 

geometrical mean and the arithmetical mean of the 
spectrum (this gives an idea of the shape of the 
spectrum, if it’s flat, the sound is more “white-
noise”-like; if flatness is low, it will be more 
“musical”); 

• Spectral centroid: the centre of gravity of the 
spectrum;  

• Spectral skewness: the 3rd order central moment 
(it gives indication about the shape of the 
spectrum in the sense that asymmetrical spectra 
tend to have large skewness values). 

• Spectral kurtosis: the 4th order central moment (it 
gives clues about the shape of the spectrum: 

“peaky” spectra have larger kurtosis than 
scattered or outlier-prone spectra); 

• Strong peak: it is  an indicator of the presence of a 
very pronounced peak. The thinner and the 
higher the maximum of the spectrum is, the higher 
value; 

• Spectral crossings: an approximation of the 
number of prominent spectral peaks.  
 

2.2.5. Temporal descriptors 

• Zero crossing rate (ZCR): the times that the 
waveform changes from positive to negative 
values. 

• Strong decay: a feature built from the non-linear 
combination of the energy and temporal centroid 
of a frame (a frame containing a temporal centroid 
near its left boundary and strong energy is said 
to have a “strong decay”);  

• Variances of the ZCR and of the spectral 
centroid. 

• We should also consider as temporal descriptors 
the variances of the MFCCs and the variances of 
the BERs. 
 

2.2.6. Transformed descriptors  

We additionally are interested in studying the effects 
of nonlinear transformations to the original data, as 
we observed that most of our descriptors were 
distributed in non-Gaussian ways. For certain 
classification techniques this could not be important, 
but there are some of them that assume this 
distribution for the data (for example, discriminant 
analysis), and conclusions can be inappropriate when 
this requirement is not held. Usually a log 
transformation converts a peaky distribution into 
another that is more Gaussian -like.  Other 
transformations such as xxx have been recommended 
but are not explored in this paper. To summarize, we 
have taken the natural logarithm of the BERs, of the 
spectral descriptors, and of the temporal descriptors 
except the MFCCs variances. 
 
2.3.  Selection of relevant descriptors 

Using very large sets of features for building a 
classification model is usually to be discouraged. 
First, some of them can be redundant or irrelevant, 
and the computational cost for keeping them might be 
high. Second, some of them can be misleading or 
inconsistent regarding the task. In this case, the cost 
is not only in terms of computation time but also in 
terms of task performance (as the error rate will be 
higher). Besides all that, interpreting a model 
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containing a large set of features can be very difficult 
or even impossible. 
There are three different strategies in order to use an 
optimal or near-optimal number of features for a 
classification task:  
• Embedding  has the feature selection stage 

intertwined with the classification algorithm, as it 
is the case with decision trees, or with 
discriminant analysis  

• Filtering decouples the feature selection process 
from the model learning process; there are lots of 
feature selection techniques that can be applied 
before trying to build a model for the sound 
classes. After some literature review and 
unsystematic testing, we have selected CFS as 
our main filter. 

•  Wrapping makes an evaluation of features that is 
in intimate connection with the induction 
process; theoretically this strategy should be the 
best [31], but the price to pay is the computation 
time needed. 

In addition to the way of connecting the feature 
selection and the induction process, we must care 
about the evaluation criterion. There are different 
criteria, each one leading to a bunch of different 
selection techniques. In our previous study we 
compared CFS, ReliefF and an F statistic and 
concluded that CFS was consistently better. 
Here we have compared the selection made by CFS 
alone against a combination of CFS plus a wrapper. 
As the wrapping was attempted after an important but 
reasonable reduction of the number of features 
(almost an order of three), the time that was needed 
by the wrapper was acceptable (less than 24 hours on 
a Pentium-III 800MHz. CPU).  
 
2.4.  Classification techniques 

Deciding the way to train a system to learn the 
automatic assignment of labels to classes of sounds 
depends on several factors: the available techniques, 
their performance in terms of error or success rates, 
the understandability of the class representations, 
and the computational complexity (in terms of memory 
and processing requirements) that can be assumed. 
There are some situations where it seems reasonable 
to sacrifice some performance efficiency in order to 
achieve clear interpretations of the class decisions 
(for example, when doing basic research); on the other 
hand, if the system is intended to be implemented 
inside a commercial application, a tradeoff between 
computational complexity and performance should be 
achieved (without any consideration of model 
understandability). In the following studies we have 

worked with quite different techniques, from lazy 
learning ones (k-Nearest Neighbors) to neural 
networks, with non-parametric ones (kernel density 
estimation) to parametric ones (canonical discriminant 
analysis). We have decided to skip some of them in 
order to keep the discussion better focused, but let’s 
say some generalities on the ones that will appear in 
the results section. 
The K-Nearest Neighbors (K-NN) technique is one of 
the most popular instance-based learning techniques, 
and there are several papers on musical instrument 
sound classification using K-NN [32], [33], [34], [8]. 
These techniques are sometimes called lazy because, 
instead of computing some abstract model for 
partitioning the observation space they store all the 
observations in memory, and decide the class of a 
new instance by looking around its neighbors.  
Another technique that does not generate a truly 
abstract model of the data is that of Kernel Density 
estima tion. It constructs an approximation to the 
distribution function of data by placing a “bump” 
function (sometimes it is a Gaussian, but can have 
other shapes) at each data point and then summing 
them up. The “bump” function, i.e. the Kernel has a 
bandwidth that affects the smoothness of the 
approximation. In the implementation that we have 
used it has been  automatically selected. 
Canonical discriminant analysis is a statistical 
modeling technique that classifies new examples after 
deriving a set of orthogonal linear functions that 
partition the observation space into regions with the 
class centroids separated as far as possible, but 
keeping the variance of the classes as low as 
possible. It can be considered like an ANOVA (or 
MANOVA) that instead of continuous to-be-
predicted variables uses discrete (categorical) 
variables. After a successful discriminant function 
analysis, "important" variables can be detected 
because it embeds some relevance testing (F 
statistic). Discriminant analysis has been successfully 
used by [35] for classification of wind and string 
instruments. 
C4.5  [36] is a decision tree technique that tries to 
focus on relevant features and ignores irrelevant ones 
in order to partition the original set of instances into 
subsets with a strong majority of one of the classes. 
Decision trees, in general, have been pervasively 
used for different machine learning and classification 
tasks. Jensen and Arnspang [37] or Wieczorkowska 
[38] have used decision trees for musical instrument 
classification. An interesting variant of C4.5, that we 
have also tested, is PART (acronym for partial 
decision trees) [39]. It yields association rules 
between descriptors and classes by recursively 
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selecting a class and finding a rule that "covers" as 
many instances as possible of it. The models derived 
by PART usually contain fewer rules than those 
generated by C4.5, and are easier to interpret. 
 
2.5.  Cross-validation 

For the forthcoming experiments the usual ten-fold 
procedure was followed: 10 subsets containing a 90% 
of the sounds were randomly selected for learning or 
building the models, and the remaining 10% was kept 
for testing them. Hit-rates presented below have been 
computed as the average value for the ten runs. 
 
3. RESULTS 

3.1.  Study 1: Classification of unpitched 

percussion sounds 

A database containing 1976 sounds from 33 different 
classes was used in this study. Categories included 
acoustic and synthetic (or “electronic”) sounds. Some 
of this synthetic sounds were drum-machine specific 
(e.g. Roland TR-808 cymbal and kick, or Roland TR-
909 kick). Table 1 details the distribution of sounds 
across classes. 
 
 acoustic synthetic Total 
Bongo 100 43 143 
Clap 21 50 71 
Clave 85 0 85 
Conga 100 75 175 
Cowbell 100 0 100 
Crash 50 35 85 
Cymbal 0 19 19 
HiHat 100 100 200 
Kick 50 100 150 
Ride 50 20 70 
Shaker 100 50 150 
SideStick 85 0 85 
Snare 50 50 100 
Tabla 115 0 115 
Tambourine 75 40 115 
Timbale 100 0 100 
TomHi 45 0 45 
TomLo 48 0 48 
TomMe 80 0 80 
Triangle 40 0 40 
Total 1394 582 1976 

Table 1. Composition of the database of unpitched 
percussive sounds 

 
Table 2 summarizes the main results. We have first 
tested a set of 89 descriptors that were also used in 
our previous studies. Regarding selection of 
descriptors, using CFS as a filter yielded a best set of 
38 descriptors, instead of the initial 89. The original 
best performance was that of the Kernel Density 
estimator at 83.4. The performance of any algorithm 
has not been significantly affected after applying this 
important filtering. We can even improve it by using a 
combination of CFS-filtering followed by a wrapping 
refinement, as the feature set is further reduced to 31 
descriptors but the hit rate remains at 83.2 for the best 
case, which is again the Kernel Density estimation.  
 
 

 
Orig.  

set 
(89) 

CFS 
(38) 

CFS 
Wrap 
(31) 

Log 
(89) 

CFS 
log 
(40) 

Kernel 
Density 

83.4 83.1 83.2 83.5 85.7 

IB1 80.4 81.5 82 84.5 85.3 
C4.5 70 70.7 67.7 68.1 68.7 
PART 68.2 67.7 67.3 69.2 70.7 
PART-
ADABoost 

82.1 82.8 n.a.    

Table 2. Hit rates for different learning algorithms 
(rows) and different feature selection strategies 

(columns) 

An interesting result is the degraded performance that 
we have obtained using decision-tree related 
techniques such as C4.5 or PART compared to 
instance-based ones. As those techniques provide 
the clearest conceptual models (and in our previous 
work on drum sounds we had not observed such 
dramatic differences), we insisted a bit more before 
abandoning them. Boosting [40] is a technique that 
has proved very useful for improving the performance 
of weak learners, as it can be the case of our PART 
algorithm. It has even been used for audio 
classification by Guo et al. [41]. The key point of 
boosting is that of giving more weight to difficult 
cases and less weight to instances that are easy to be 
classified. A boosted system can be considered as an 
“ensemble of classifiers” wh ich concentrates on the 
most difficult examples, trying to reduce their 
classification errors. As can be seen, in this case the 
ADABoostM1 algorithm [42] combined with the 
PART one achieved a performance that is comparable 
to the Kernel Density or 1-NN methods. Boosting 
nevertheless has some costs: the first one is an 
important increase in the time needed for building and 
validating a set of rules; the second one is the 
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increasing complexity of the models, as several sets of 
rules, each one with a given weight, have to be stored 
for classification of new instances. After some 
experimentation, the optimum number of sets was 
found to be 30 (then amounting around 3000 simple 
rules, instead of the 140 found by the original PART 
model). 
In this report we have introduced “new” descriptors 
(the BER related set –see section 2.2.3- and the log 
transformed set –see section 2.2.6-). As we have set 
up several conceptually different subsets of 
descriptors, it could be interesting to compare them, 
which is presented in table 3. First of all, we can see 
that a generic spectral descriptors subset (including 
those from section 2.2.4 plus BER and MFCCs, but 
not their variances) is  more effective (7%) than the 
temporal subset. Secondly, MFCCs (including 
variances) perform at similar rates than the whole 
spectral subset (which includes the MFCCs but not 
their variances) and both achieve the best overall 
performance.  A third interesting remark is that log-
transformed BERs yield 10% better results than raw 
BERs (or even 15% better results if CFS feature 
selection is used). It is also worth to note that CFS 
filtering degrades around 2% the performance of all 
subsets but the MFCCs and the logBERs .  
Given the available data, we have finally set up an 
“alternative” set of descriptors that swaps all of them 
but the MFCCs and MFCCs variances by the log-
transformed ones. Performance for this new set is 
shown in the last two columns of table 2, where a 
slight improvement over the original raw data set 
performance is evident (using or not using CFS 
filtering). Adding the BER derived set did not 
improved the performance and therefore they were 
discarded for any other analysis. 

Table 3. Hit rates for different “conceptual” subsets of 
features. Their cardinality is indicated inside  

parentheses. See text for explanation 

Automatic labeling of 33 different sound classes of 
unpitched percussion instruments seems to be a 
difficult task, but fortunately it is not intractable. 
Previous studies using similar amount of classes of 
string and wind instruments’ sounds, and similar 
database size have reported performance figures that 
range from the surprisingly low 35% reported in [43] 
to the 82% and 92% respectively reported in [8] and 
[35]. In our case, any strategy based on a “bulk” 
labeling has not achieved better performance than 
83% of correctly classified instances. As confusion 
matrices reveal, there are different types of errors: 
confusion between acoustic and electronic sources 
for the same “class” (e.g. bongo and electronic 
bongo), which can be sometimes tolerated, and 
confusion between different classes, being the most 
prominent those occurring between bongo, conga, 
tabla and timbale (which, on the other hand could be 
also expected given the sonic similarities that they 
show). Electronic bongo and electronic crash seem to 
be the most difficult classes, whereas bongo (acoustic 
and electronic), conga, acoustic shaker, and timbale 
have been  the least reliable classes (i.e. other sounds 
are incorrectly assigned to them).  
Hierarchical approaches have been proposed for the 
classification of string and wind sounds by [44] or, 
[8], for example, and it has been shown that in some 
cases they can improve the performance of 
classification systems (for example by first labeling a 
sound as “containing or not containing vibrato” or as 
“pizzicato or continuous sound”, and then assigning 
the proper class  specific label). In our case, it is clear 
that if we could sort out the electronic  sounds from 
the acoustic ones, the first type of confusions, which 
represent a 22% of the errors, could be reduced 
(hence improving a 2% the hit rate). Regarding the 
other source of errors, we do not have yet a clear  
strategy to alleviate them apart from including better 
descriptors that are capable of differentiating the 
nuances of one or of another class. 
Another interesting finding is that drum-machine 
specific sounds are labeled with high precision (even 
without confusions even between two similar mo dels, 
the TR-808 and the TR-909 kicks), as they usually are 
quite idiosyncratic. This type of discrimination, if 
possible, paves the way for detailed descriptions that 
go beyond taxonomic labels. We will return on that  in 
the Study 3.  
 
3.2.  Study 2: similarities and differences 

between instrument classes 

We have approached the relationships between the 
different classes of instruments using a strategy that 

Feature subsets 
All initial 
descriptors CFS filtered 

All 83.4 (89)   83.1(38) 
All Spectral 80.1(46) 78.7(32) 
Temporal 73.4(43) 71.3 (21) 
MFCC's 78.9(26) 79.4 (14) 
Spectral  
(see section 2.2.4) 59.7(7) 59.7(7) 
BERs 66.6(52) 62.19(31) 
BERDerived 65.2(29) 63.3(15) 
LogBER 76.4(26) 77.1(31) 
LogSpectral 62.4(7) 62.4(7) 
Log AllSpectral 84(46) 83.1 (32) 
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could be termed “synthetic”, as it will provide an 
overall summary about them. we have worked with a 
technique that has been frequently used for 
representing the “mental” relationships that listeners 
have regarding different timbres: Multidimensional 
Scaling (MDS) [45],[46],[47],[48]. The purpose of 
MDS is to identify and model the structure and 
dimensions of a set of objects from the dissimilarity 
data observed among them. This is accomplished by 
assigning observations to specific locations in an 
abstract space (usually two- or three-dimensional) 
such that the distances between points in the space 
match the given dissimilarities as closely as possible. 
A three dimensional perceptual space for percussive 
instruments (not including bells) has been 
hypothesized by Lakatos [49]. This percussive 

perceptual space spans three related physical 
dimensions: log-attack time, spectral centroid and 
temporal centroid. Additional evidence supporting 
them has been gathered during the multimedia 
content description format standardization process 
(MPEG-7) and, consequently, they have been 
included in MPEG-7 as descriptors for timbres [50]. 

Here we are not concerned with cognitive 
representations but only with abstract “taxonomic” or 
“normative” representations that can be derived from 
the low-level signal descriptors that we have 
computed. Instead of computing dis -similarities or 
distances between sounds directly from those data, 
as it would be computationally very expensive, we 
have considered as index of similarity between 
classes the ratio computed between the deviation of 
each pair of class means from the grand total mean 
(these deviations are squared, multiplied by the 
number of sounds in each class and summed). This is 
also known as the between-groups F-matrix in the 
field of multidimensional data analysis. 
Figure 1 shows the 2-dimensional map we have 
obtained after processing the matrix with an ALSCAL 

algorithm of MDS. Along Dimension 1 (horizontal 
axis) we may track the “plates” on the left side and the 
“skins” on the right side. Dimension 2 (vertical axis) 
could  be considered as a representation of the 
“acoustic-synthetic” origin of sounds, as in the upper 
region most of the classes (but not all) correspond to 
synthetic sounds whereas the lower region is mainly 

Figure 1. Multidimensional Scaling of the unpitched percussion sound classes 
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occupied by the acoustic sounds. Another interesting 
finding is the presence of “clusters” of instrument 
classes that show similar relatedness that was found 
after analyzing the errors in the classification models. 
For example, bongo, conga, timbale and tabla form 
one of such clusters, hi-hats are all quite close of each 
other, ride and crash, cymbal808 and electronic ride 
might form the main plates cluster, and both synthetic 
kicks  cluster in the upper-right corner of the map. 
Idiophones that are not plates or skins appear in what 
could be considered as “logical” places: shaker and 
triangle occupy regions that are close to those of hi-
hats and tambourines, claps appear close to snares, 
and finally, clave, sidestick and cowbell occupy an 
“outside” region that is between ride and crash –
being the cowbell the closes t one to them-, but also to 
snares and even to the conga-tabla -timbale cluster –
being the sidestick and clave the closest to them-. 
Another interesting approach that we regrettably  
have left out of this paper is what could be termed the 
“analytic” strategy, as it would provide specific 
information about where and how the different 
instrument classes differ (i.e. which descriptors define 
a given class). For this kind of analysis, the sets of 
rules yielded by PART are ideal, though they are not 
the best strategy for achieving optimal classification .  
 
3.3.  Study 3: Identification of manufacturers 

or models 

We have also inquired about the possibility of being 
able to automatically describe sounds beyond the 
usual taxonomical labels. One of those possibilities is 
that of telling if, for example, a given cymbal sound 
has been produced by a Yamaha or by a Paiste 
instrument. In the previous studies 1 it has been 
shown that it is possible to tell if a sound belongs to 
some peculiar drum machines as the Roland model 808 
or model 909. Here we will approach for our first time  
the automatic labeling of the manufacturer and model 
of instruments belonging to pop-rock acoustic drum 
kits. 
A database built from the so -called Absolute 
collection3 was used for this study. As a given 
instrument (we will use the word “instrument” to 
denote a combination of  manufacturer and model, not 
a taxonomic class) was recorded using different 
microphones and miking techniques4, we can be sure 
that what our systems learn are some “specific 
instrument or manufacturer-model signature” and not 
                                                 
3 http://www.drums.sk 
4 Personal communication from the comercial collection 
producer 

the “microphone signature”. A couple of 
methodological drawbacks can be mentioned here, 
though. The first one is the low variability of the 
available examples, compared to that found in other 
databases we have used in this report. The second 
one is that a much more rigorous testing would imply 
matching, for example, the diameters of the skins or 
plates for a given class.  Anyway, what this study 
shows is that we can describe instrumental sounds 
beyond the class label to some more detailed and 
idiosyncratic level (as could the manufacturer-model 
or at least, telling if two hits correspond to the same 
instrument). 
In order to model the manufacturer name decision, we 
have performed separated  Canonical Discriminant 
Analyses for each subset of data corresponding to 
each instrument class (cymbals were not included 
because in the used database there was a 
manufacturer not well enough represented). Six 
manufacturers (i.e. Ludwig, Pearl, Rogers, Sonor, 
Tama , Yamaha) were used for snares, kicks and toms, 
whereas only two were used for hihats (i.e Paiste and 
Zildjian). Selection of features was done using the F 
criteria and a forward search, as it is usual with this 
technique. Retained features differed significantly 
depending on the instrument class to be considered. 
Labeling of snare manufacturers required more than 
two thirds of the available descriptors whereas for the 
rest of instruments a half of them was enough. Most 
relevant features usually belonged to the spectral and 
MFCC’s categories, but some instrument -related 
specific Bark bands were always included (e.g. lowest 
bands for kick, highest ones for hihat). It is interesting 
to notice that temporal descriptors (i.e. variances or 
ZCR) were absent or got very low relevance ratings 
except for the case of snares manufacturers. Table 4 
summarizes the results and shows that yielding this 
prediction seems to be an easy task for a linear 
system. 
 
Kick Snare Tom HiHat 

96.1 86.3 94.1 99 
Tabl e 4. Overall performance of manufacturer labeling 

for the indicated classes (the learning criteria is the 
manufacturer name, not the instrument class) 

 
3.4.  Study 4: Generalization across different 

databases 

Up until now we have been testing the generalization 
capabilities of our results by means of the 10-fold 
cross-validation procedure. Even in the case of 
including sounds corresponding to different 
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recording conditions, as we have done, there exists 
the possibility of over-fitting or extremely biasing the 
learning models. In order to evaluate this possibility, 
we have set up two different databases (S and A), 
then we have set up some models using database S, 
and finally we have tested them using database A, 
and the other way around, in a cross-holdout 
procedure.  
Database S sounds were selected from an internet-
based sample-provider (see note 2). This database 
included 950 acoustic and electronic sounds. 
Database A, on the other hand, contained 589 
acoustic sounds, and was built upon the Absolute 
collection (see section 3.3). Therefore, database A 
contained the most homogeneous (i.e. less intra-class 
variance) data we had available. All classification 
decisions were done using six classes (kick, snare, 
tom, hihat, ride, and crash), discarding any distinction 
between electronic or acoustic origins. Table 5 
summarizes the most important data. In all cases 
values were obtained using a kernel density estimator 
as the learning technique. The diagonal shows the 
best results when using 10-fold cross-validation (i.e. a 
database is validated using data from the same 
database). As it was expected hit rates were very high 
and the highest one is for the most homogeneous 
database. The other two cells quantify somehow the 
generalization power of the tests: using the most 
heterogeneous database (S) for the learning phase we 
only lose an 8% when classifying the other one (A), 
whereas using the least one leads to an 18% loss 
when trying to classify the former (in both cases we 
compare data against the 90% that was achieved with 
10-fold CV). As an additional control test, a third 
database, called D, was used to test the models 
derived from S and from A. D was a database 
intended to be “comparable” to S in terms of the 
variability of sounds and number of classes , though it 
only included 570 examples.  Learning from S and 
testing D yielded similar results than the CV of S on 
its own (87%), whereas learning from A and then 
testing D yielded only 80% of hits. On the other hand, 
learning from D and using S for testing yielded 82% of 
hits. 
The main conclusion to be drawn from this study is 
that a careful selection of the database examples is 
needed if we have strong concerns regarding the 
generalization capabilities of the learnt models. If the 
database is not good (i.e., and including a large 
number of instances per class –let’s say, more than 
100- and therefore incorporating enough variability 
for each one of the classes ), our error rates can be 
even a 23% over-optimistic (95% versus 72%), 
whereas if the learning database has been carefully 

selected, we can expect that our generalization errors 
are not larger than 8% (90% versus 82%). 
Unfortunately, most of the research that has been 
done in the field of classification of instrument 
sounds has used only one sample-supplier (i.e. very 
reduced variability in terms of recording conditions, 
and number of physical instruments recorded), and 
has performed the validation using sounds coming 
from the same sample provider5.  
 
 

Learning -> S A 

Testing   

S 90 72 

A 82 95 

Table 5. Overall best results with using different 
holdout validation conditions. 

 
 
4. CONCLUSIONS AND FURTHER WORK 

Automatic labelling of percussion sounds is a 
problem that deserves attention. We have presented 
here a summary of our current efforts on the subject, 
and have also discussed some methodologic al 
approaches.  We have devised a set of descriptors 
that  allows acceptable error rates and cover relevant 
spectral and temporal information. Anyway, we think 
that the current descriptor set could be sensibly 
improved by incorporating more and better temporal 
information such as the temporal centroid, the attack 
time, MFCC’s deltas, or inter-Bark correlations.  
It has been demonstrated that the task is feasible for 
different types of learning systems though the error 
rates found, ranging from 10% to 20%, leave some 
room for improvement. Apart from that of using 
hierarchical classification systems, as discussed in 
section 3.1, one promising area for overcoming the 
current limitations is that of working with ensembles 
of descriptors and of classifiers. The tra ditional 
approach to these types of tasks has been using only 
one set of features with one specific induction 
algorithm to learn to partition the space defined by 
the examples into the relevant classes. Using different 
classification techniques simultaneously, as if they 
were a “committee of experts” seems to be a hot topic 
in the field of Machine Learning (though it’s an older 
one too!).  It is clear that an ensemble of learners could 
improve the class decisions, but this  is true if and 
only if the confusion matrices (i.e. errors) they 
generate are different. The same reasoning can be 

                                                 
5 This has been usually the McGill collection of samples. 
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made for the case of descriptors: if we combine the 
decisions from two systems which use different 
subsets of descriptors (even doing the same 
induction process) we can expect better results than 
using an only set that subsumes all of them (we need 
again that the distribution of errors are different for 
each feature subset). 
Though one of our forthcoming steps will be that of 
using the amassed knowledge for approaching 
labelling of drum loops, a final stage of our work 
could deal with some type of percussion description 
in the context of commercial songs databases (i.e. 
telling if a song has drums, if they are synthetic or 
acoustic, if there is Latin or rock percussion, etc, if 
there are TR-808 sounds or not, etc.). Heittola and 
Klapuri [51] have approached the problem using 
sinusoidal plus noise decomposition as a 
preprocessing stage of analysis. The file obtained 
after eliminating most of the “harmonic” part is 
supposed to contain most of the drum sounds (plus 
other noises such as respirations, pluck noises, etc.). 
After this pre-processing, two different algorithms 
have been tested, one dealing with periodicities and 
the other dealing with timbral descriptors (Mel 
frequency Cepstral coefficients) and Gaussian mixture 
modelling. Using a database containing more that 28 
hours of audio they have obtained more than 80% of 
correct decisions regarding if the song has drums or 
not. Their best results corresponded to the 
combination of their two classification algorithms. It is 
clear for us that the descriptors and techniques we 
have been using, combined with additional signal 
processing, be they sinusoidal+noise decomposition, 
ISA or others, deserve a thorough exploration in the 
light of what we have learnt regarding isolated 
sounds of unpitched percussion sounds.  
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