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Abstract. Modeling expressive music performance is one of the most
challenging aspects of computer music. In this paper we investigate the
use of rule induction methods for mining monophonic Jazz standards
recordings by a skilled saxophone player. In particular, we propose a
rule induction algorithm which produces good prediction accuracy while
allowing a straightforward interpretation of the prediction model. We
implement a tool for automatic expressive performance transformations
of Jazz melodies using the induced model.

1 Introduction

Expressive performance is an important issue in music which has been studied
from different perspectives (e.g. [15,8, 3]). The main approaches to empirically
study expressive performance have been based on statistical analysis (e.g. [14]),
mathematical modelling (e.g. [19]), and analysis-by-synthesis (e.g. [7]). In all
these approaches, it is a person who is responsible for devising a theory or
mathematical model which captures different aspects of musical expressive per-
formance. The theory or model is later tested on real performance data in order
to determine its accuracy.

In this paper we describe an approach to investigate musical expressive per-
formance based on inductive rule learning. Instead of manually modelling ex-
pressive performance and testing the model on real musical data, we let a com-
puter use rule learning techniques to automatically discover regularities and
performance principles from real performance data (i.e. standard Jazz example
performances).

Methods for rule induction generate rules that can either be treated as or-
dered or unordered. In the later case, some mechanism has to be adopted for
resolving conflicts among intersecting rules. Previous approaches to resolve in-
tersecting rule conflicts include calculating class probabilities based on the union
[4] or the intersection [11] of examples covered by the overlapping rules, or using
naive Bayes probability. Furthermore, it is possible that there is no applicable
rule when trying to classify and example. In this case, a common strategy is
to classify an example as belonging to the majority class [10]. Another strat-
egy reported in [6] is to minimally generalize the rules to include the uncovered
examples.



In this paper, we focus on the problem of how to handle both overlapping
rules and the absence of applicable rules when trying to classify examples in the
domain of expressive music performance. We combine a greedy set cover algo-
rithm with well-established rule learning methods, namely simple classification
trees, classification trees with bagging/boosting and voting using some of these.
We also explore k-nearest neighbor and SVM.

The rest of the paper is organized as follows: Section 2 describes the learning
scheme we use in this paper. Section 3 describes our approach to model expressive
music performance. In Section 4 related work is reported, and finally Section 5
presents some conclusions and indicates some areas of future research.

2 Learning algorithm

We are interested in finding descriptive models of categories such as for example
when a performer lengthens or shortens the duration of a note. The model should
characterize classes of situations which are treated similarly and the descriptions
should preferably be simple (in order to be understood by a human). We do not
expect the model to cover and describe all of (or even a large number of) the
instances of a given class. We are interested in rule models that capture only a
part of the observations but describe these in meaningful terms and differentiate
them from observations belonging to other classes reasonably well.

In this context, we propose a learning scheme that is geared towards inducing
sets of rules which capture general regularities in the observations corresponding
to general expressive performance principles, leaving out all observations which
represent exceptions to these general principles (exceptions in the sense that
either no rule applies to the observation, or the observation generates a conflict
among intersecting rules). We aim at finding simple and robust classification
rules in a complex and noisy data set. The learning scheme we propose can be
applied to arbitrary domains. However it has been applied only in the context
of our musical research. It works as follows:

1. Apply a greedy set cover algorithm to the data set in order to induce first-
order rules.

2. Collect all instances which are not covered by any of the induced rules.

3. Collect also the instances with multiple classification, i.e. instances covered
by more than one overlapping rule.

4. Apply standard classification techniques to the union of 2 and 3. Among the
techniques we have explored are simple classification trees, classification trees
with bagging/boosting, k-nearest neighbor, SVM and voting using some of
these.

5. Add the resulting model from 4 to the original first-order rules model.

6. When classifying an example, apply the extended model as follows: initially
apply the first-order rule model and only apply the model resulting from 4
to handle rule overlapping or absence of applicable rules.



The goal of this procedure is to obtain a set of intelligible rules characterizing
the general principles of expressive music performance, and at the same time still
be able to classify reasonably accurately the exception examples which cannot be
covered by the general rules. Our approach contrasts with previous approaches to
resolve intersecting rule conflicts (e.g. [4,11]) and the absence of applicable rules
(e.g. [10,6]) in that we are not interested in extending or reusing the induced
rules in order to handle the problematic examples. In the context of expressive
music performance, we consider these problematic examples as exceptions which
require to be treated independently from rules representing general principles.
This is achieved via the process of learning first-order logic rules which capture
general principles (step 1 above), identifying the examples (exceptions) which do
not represent general principles (steps 2 and 3), apply a classification algorithm
targeting this smaller set of examples, i.e. exceptions (step 4), and enriching the
initial set of rules by adding the classification criteria for the exceptions (step
5). In step 1 we use Aleph’s induce_max set covering algorithm [17] for inducing
first-order rules. For the classification algorithms in step 4 we use the Waikato
Environment for Knowledge Analysis [23].

3 Modeling expressive music performance

The research reported in this paper is concerned with learning expressive per-
formance rules from Jazz standards performances by a skilled saxophone player.
Our aim is to find note-level rules which predict, for a significant number of
cases, how a particular note in a particular context should be played (e.g. longer
than its nominal duration). We are aware of the fact that not all the expressive
transformations regarding tempo (or any other aspect) performed by a musi-
cian can be predicted at a local note level. Musicians perform music considering
a number of abstract structures (e.g. musical phrases) which makes expressive
performance a multi-level phenomenon. In this context, our ultimate aim is to
obtain an integrated model of expressive performance which combines note-level
rules with structure-level rules. Thus, the work presented in this paper may be
seen as a starting point towards this ultimate aim.

The training data used in our experimental investigations are monophonic
recordings (i.e. recordings composed of one note at a time) of four Jazz standards
(Body and Soul, Once I loved, Like Someone in Love and Up Jumped Spring)
performed by a professional musician at 11 different tempos. In order to discover
expressive performance regularities at different tempos we divided the recordings
into three groups: nominal, slow and fast. The recordings in the nominal group
are performed at the piece nominal tempo (+/- 15%) while the recordings in the
slow and fast groups are respectively performed slower or faster than the ones in
the nominal group. Sound analysis and synthesis techniques based on spectral
models are used for extracting high-level symbolic features from the recordings,
transforming them and synthesizing a modified recording. The sound spectral
model analysis techniques are based on decomposing the original signal into
sinusoids plus spectral residual. From the sinusoids of a monophonic signal it



is possible to extract information on note pitch, onset, duration, attack and
energy, among other high-level information. This information can be modified
and the result added back to the spectral representation without loss of quality.
We use the software SMSTools [1] which is an ideal tool for preprocessing the
signal and providing a high-level description of the audio recordings, as well as
for generating an expressive audio according to the transformations obtained by
machine learning methods.

After the extraction of high-level symbolic features from the recordings, each
note in the training data is annotated with its corresponding class, i.e. lengthen,
shorten or same (see next paragraph for details), and a number of attributes
representing both properties of the note itself and some aspects of the local
context in which the note appears. Information about intrinsic properties of the
note include the note duration and the note metrical position, while information
about its context include the note Narmour group(s) [13], duration of previous
and following notes, and extension and direction of the intervals between the
note and the previous and following notes. This information is provided to the
rule learning algorithm as background knowledge.

In this paper, we are concerned with note-level expressive transformations,
in particular transformations of note duration, onset and energy (in this paper
we only report on results on note duration). For classification, the performance
classes we are interested in are lengthen, shorten and same. A note is considered
to belong to class same if it is performed within 20% of its nominal duration,
i.e. its duration according to the score. A note is considered to belong to class
lengthen if its performed duration is 20% or more longer that its nominal du-
ration. Class shorten is defined analogously. We decided to set the duration
boundary to 20% after experimenting with smaller ratios. The idea was to guar-
antee that a note classified, for instance, as lengthen was purposely lengthened
by the performer and not the result of an performance inexactitude.

Using this data we applied the learning scheme described in Section 2. Despite
the relatively small amount of training data some of the rules generated by the
learning algorithm turn out to be of musical interest and correspond to intuitive
musical knowledge. In order to illustrate the types of rules found let us consider
some examples of learned note-duration rules (the complete set of clauses is
composed of 30 clauses for lengthen, 175 clauses for same and 40 clauses for
shorten):

RULE1L: duration(X,lengthen) :-
succ(Y,X),
melo(Y,4,-1,0,1,2,1,nominal).

“Playing at a nominal tempo, lengthen the duration of a note if the previous
note has the same duration (a quarter) and both notes are in a weak (off-beat)
metrical position.”



RULE2: duration(X,lengthen) :-
succ(Y,X),
melo(Y,6,2,0,-1,-1,3,slow).

“Playing at a slow tempo, lengthen the duration of a note if the previous note is
in a strong metrical position and has the same duration (quarter triplet).”

RULE3: duration(X,shorten) :-
melo(X,4,0,0,2,-1,2,slow),
succ(Y, X),
melo(Y,4,-1,0,-1,-1,3,slow).

“Playing at a slow tempo, shorten the duration of a note in a medium strength
metrical position (2nd or fth beat of the bar) if the previous note has the same
duration (a quarter)”

RULE4: duration(X,same) :-
melo(X,4,0,0,1,-1,2,nominal).

“Playing at a nominal tempo, do not alter the duration of a note appearing in
a medium strength metrical position (2nd or Jth beat of the bar) if the previous
and next note have the same duration (a quarter)”.

RULE5: duration(X, same) :-
melo(X,8,_,0,_,1,1,slow).

“Playing at a slow tempo, do not alter the duration of a note in a weak (off-beat)
metrical position if both the current note and the following note are eights”.

RULEG: duration(X, lengthen) :-
succ(X, D), succ(D, E),
narmour (E, [F|G]), narmour(X, [FIG]).

“lengthen a note N if N and N+2 have the same narmour context”.

The complete set of rules has an accuracy of 85%. We consider a data set of
1936 positive examples and 3872 negative examples. Among the positive exam-
ples, there are 208 examples which we consider as ezceptions, i.e. they are covered
by none or more than one of the induced first-order rules. These examples are
collected and classified by different algorithms. For each of the algorithms consid-
ered, we have performed a 10-fold cross validation. Table 1 presents some results
obtained from this process. All the tests were performed using the Waikato En-
vironment for Knowledge Analysis [23] (C.C.I refers to the correctly classified
instances rate, M.A.E to the mean absolute error, R.M.S.E to the Root Mean
Squared Error).



[Algorithm |C.C.I(%)|M.A.E[R.M.S.E]|

KNN 63.70 0.27 0.44
KNN with boosting 62.22 0.27 0.44
KNN with bagging 60.74 0.28 0.42
SMO (1) 59.25 0.34 0.43
SMO (2) 60.37 0.34 0.43
SMO (3) 62.96 0.33 0.42

SMO (3) with Boosting| 60.74 0.28 0.43
SMO (3) with Bagging | 62.96 | 034 | 0.41

C4.5 64.07 0.32 0.41
C4.5 with Boosting 62.59 0.32 0.40
C4.5 with Bagging 65.55 0.32 0.40
Voting 64.44 0.31 0.40

Table 1. Cross validation results of auxiliary classification models for onset
duration. Support Vector Machine algorithms are annotated depending of the
kernel function they use: (1) Linear kernel, (2) Exponent 2 polynomial kernel, (3)
Exponent 3 polynomial kernel. The voting meta algorithm combines the results
of the following models: KNN, C4.5, and Support Vector Machine (3).

Synthesis tool. We have explored different possible discretization schemes. In
particular we have discretized the duration values space in 9 classes according
to the degree of transformation. This is, we have defined 4 classes for lengthen
and 4 classes for shorten (one for same) for different degrees of lengthening and
shortening. In this way, we have obtained a set of finer-grained rules which, in
addition to explaining expressive performances principles in more detail, may
be also used to generate expressive performances. We have implemented a tool
which transforms an inexpressive melody input into an expressive one following
the induced model. The tool can either generate an expressive MIDI performance
from an inexpressive MIDI description of a melody, or generate an expressive
audio file from an inexpressive audio file.

4 Related work

Previous research in learning sets of rules in a musical context has included
a broad spectrum of music domains. The most related work to the research
presented in this paper is the work by Widmer [20, 21]. Widmer has focused on
the task of discovering general rules of expressive classical piano performance
from real performance data via inductive machine learning. The performance
data used for the study are MIDI recordings of 13 piano sonatas by W.A. Mozart
performed by a skilled pianist. In addition to these data, the music score was also
coded. The resulting substantial data consists of information about the nominal
note onsets, duration, metrical information and annotations. When trained on
the data the inductive rule learning algorithm named PLCG [22] discovered a
small set of 17 quite simple classification rules [20] that predict a large number of
the note-level choices of the pianist. In the recordings the tempo of a performed



piece is not constant (as it is in our case). In fact, of special interest to them are
the tempo transformations throughout a musical piece.

Other inductive machine learning approaches to rule learning in music and
musical analysis include [5], [2], [12] and [9]. In [5], Dovey analyzes piano perfor-
mances of Rachmaniloff pieces using inductive logic programming and extracts
rules underlying them. In [2], Van Baelen extended Dovey’s work and attempted
to discover regularities that could be used to generate MIDI information derived
from the musical analysis of the piece. In [12], Morales reports research on learn-
ing counterpoint rules. The goal of the reported system is to obtain standard
counterpoint rules from examples of counterpoint music pieces and basic musical
knowledge from traditional music. In [9], Igarashi et al. describe the analysis of
respiration during musical performance by inductive logic programming. Using a
respiration sensor, respiration during cello performance was measured and rules
were extracted from the data together with musical/performance knowledge such
as harmonic progression and bowing direction.

Tobudic et al. [18] describe a relational instance-based approach to the prob-
lem of learning to apply expressive tempo and dynamics variations to a piece of
classical music, at different levels of the phrase hierarchy. The different phrases
of a piece and the relations among them are represented in first-order logic. The
description of the musical scores through predicates (e.g. contains(phl,ph2))
provides the background knowledge. The training examples are encoded by an-
other predicate whose arguments encode information about the way the phrase
was played by the musician. Their learning algorithm recognizes similar phrases
from the training set and applies their expressive patterns to a new piece.

5 Conclusion

We have investigated the use of rule induction methods for mining monophonic
Jazz standards recordings by a skilled saxophone player. In particular, we pro-
pose a learning scheme which produces good prediction accuracy while allowing
a straightforward interpretation of the prediction model. Focusing on the prob-
lem of how to handle both overlapping rules and the absence of applicable rules
when trying to classify examples, we have combined a greedy set cover algo-
rithm with well established rule learning methods. Using an induced model, we
have implemented a tool for automatic expressive performance transformations
of Jazz melodies.

Future work: There is future work in different directions. We plan to experi-
mentally compare with other work on conflict resolution and uncovered exam-
ples, as well as explore the use of first-order rule learners for classifying the
problematic examples, i.e. the exceptions. We are currently extending our sys-
tem by considering note onset and note energy expressive transformations. In
the future, we plan to increase the amount of training data as well as experiment
with different information encoded in it (e.g. ornamentations, vibrato). Increas-
ing the training data, extending the information in it and combining it with



background musical knowledge will certainly generate a more complete model.
As mentioned earlier, we intend to incorporate structure-level information to
obtain an integrated model of expressive performance which combines note-level
knowledge with structure-level knowledge.
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