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Abstract

Research on audio content description deals with limited types of sounds. Most
of the work done in this area is applied to automatic transcription of traditional
western music, i.e. the conversion of audio into the traditional musical notation
pitch/duration/loudness/source or the recognition of the origin of specific sounds
(speech, music,  applause...)  for indexing or  retrieval purpose.  In that  context,
electronic sounds, noises or sounds that have no identifiable origin, which are
used a lot in contemporary music and sound post production for video or cinema,
can  hardly  be  handled.  In  this  document,  we  propose  an  alternative
representation, inspired by Pierre Schaeffer's work on sound objects, based on a
limited number of perceptual criteria that can be applied to any type of sound.
More  specifically,  we describe our  first  attempt  to  automatically characterize
some of these criteria, called morphological criteria, as well as an evaluation of
the usability of  the resulting representation in  the context  of  sound retrieval.
Conclusions drawn from these experiments to improve and complete the system,
as well as a the description of potential applications, are presented as future work
to be done  in the final thesis.
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I am sure that the time will come when the composer,
after he has graphically realized his score, will see this
score automatically put on a machine which will faithfully
transmit the musical content to the listener. As
frequencies and new rhythms will have to be indicated on
the score, our actual notation will be inadequate. The new
notation will probably be seismographic. And here it is
curious to note that at the beginning of two eras, the
Mediaeval primitive and our own primitive era (for we
are at a new primitive stage in music today) we are faced
with an identical problem: the problem of finding graphic
symbols for the transposition of the composer's thought
into sound. At a distance of more than a thousand years
we have this analogy: our still primitive electrical
instruments find it necessary to abandon staff notation
and to use a kind of seismographic writing much like the
early ideographic writing originally used for the voice
before the development of staff notation. Formerly the
curves of the musical line indicated the melodic
fluctuations of the voice, today the machine-instrument
requires precise design indications.

The Liberation of Sound, Edgar Varese (1936)
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1 Introduction

In this chapter we introduce the general context in which this work has been carried
out and present our objectives as well as the outline of this document.

1.1 Context

Since the beginning of the 20th century and the first experiments on sound synthesis
and  transformation,  electronic  sounds  have  been  an  increasing  part  of  our  sound
environment. At this time, sound processing machines were very large, expensive and
allowed only a limited number of sound parameters to be controlled, often in a non-
intuitive way, so that they were owned only by some laboratories or a few musicians1.
Digital  processing has  made this  technology accessible to  a  much larger range of
people and has opened new perspectives in the composition of music, soundtracks or
any other audio material. Electronic music is now accepted as a fully-fledged musical
genre and has met a great commercial success, and synthesised or processed sounds
are widely used in video or cinema soundtracks to create specific sound effects.

In addition to easing the generation of new sounds, digital technology allows storing a
larger and larger amount of audio information in personal computers, audio libraries
or archives, or on the web. Many tools have been developed in order to manage this
data, mostly based on the transformation, analysis or retrieval of some representations
manually set or automatically extracted from raw digital data. Most of the attention in
this area is paid to music, and more particularly to the design of automatic music
transcription systems (e.g.  [Martin96] or  [Klap04]) aiming at  converting an audio
signal into a symbolic representation, typically a score, and at extracting high level
musical features from it. In the case of traditional western music, the representation
consists of well-defined elements, the notes, described by a starting time, a pitch, a
duration, a loudness and the instrument by which it is played. High-level analysis,
such  as  rhythmic  (see  a  review  in  [Gouyon03]),  melodic  (see  a  review  in
[Gomez03a]) or musical structure (e.g.  [Dan02] or [Ong04]) description are derived
from this  representation or directly from the audio signal.  Potential  application of
automatic description systems are numerous. Melody or rhythm, for instance, can be
used as search criteria for retrieving a song which one has forgotten the name of or as
parameters  to  be  transformed  to  transpose  or  modify  the  tempo  of  a  song.  An
important  effort  in  the area of audio content  description is  also devoted to sound
source identification,  especially in  the context  of sound retrieval  (see a  review of

1 See http://www.obsolete.com/120_years/ for an history of electronic musical instruments.
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musical instrument classification in [Herrera03] and of sound effect classification in
[Zhang99]). In audio libraries, sounds are manually labelled according to their origin
(e.g. 'dog bark') or to the musical notation when appropriate (e.g. 'C4, ff, piano') in
order to provide keywords for the search. In large libraries, this task is very time-
consuming,  and performing it  automatically would be of  great interest.  Electronic
sounds,  which  exhibit  a  range  of  properties  much  wider  than  traditional  musical
sounds (typically harmonic sounds with constant pitch), and that have no identifiable
source (except when they aim at reproducing natural sounds) are somewhat left apart
by the audio content description community.

In this research work we investigate a representation, based on perceptual criteria, that
could allow handling electronic sounds, as well as all non-traditional musical sounds
and sounds having no identifiable  origin,  in  audio content  analysis,  processing or
retrieval  tasks.  This  representation,  called  typo-morphology (see  2.4),  was  first
defined by Pierre Schaeffer, a French musician, researcher and writer, in the late 60's,
to provide a basis to the composition and the analysis of a musical genre making use
of any king of sounds (noises, environmental sounds, loops...).

This work was initiated in the context of the CUIDADO2 project on audio content
description  and  has  been  carried  on  for  the  AudioClas3 project  on  automatic
classification of sound effects.

A list of publications related to this work is given in Appendix 3.

1.2 Objectives  and document outline

The main objectives of this work are to show that a perceptual representation would
be of great interest to handle non-traditional musical sounds and sounds having no
identifiable origin - which will be referred to in this document as abstract sounds - in
applications  based  on  audio  content,  and  to  investigate  what  could  be  such  a
representation and how it could be automatically extracted.

After a general introduction to auditory perception, we give in the second chapter an
overview of  the research  done  on  perceptual  dimensions  of  sound and show that
Schaeffer's description criteria, called  morphological criteria, provides a good basis
for a general perceptual description scheme.

We review in the third chapter the computational models proposed by the research
community to mimic some features of human auditory perception. We also show that

2 http://www.ircam.fr/produits/technologies/multimedia/cuidado-e.html
3 www.audioclas.org
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the only existing standard for audio description,  the MPEG-7 audio,  lacks general
perceptual description criteria and that it should be completed to handle all kind of
sounds.

In the fourth chapter, we describe a system, based on some models reviewed in the
second  chapter,  that  automatically  extracts  a  simplified  perceptual  representation
which each dimension, inspired by Schaeffer morphological criteria, is characterized
either by a class textual label (e.g. dynamic profile = 'impulsive') or by a numerical
value (e.g. roughness = 0.5).

The goal of the fifth chapter is to evaluate the usability of such a representation in the
context of sound retrieval. More specifically, we present the results of a questionnaire
showing  that  morphological  criteria  would  provide  useful  keywords  to  retrieve
abstract sounds in large sound effects libraries.

In  the  fourth  chapter  we  describe  some  potential  applications  of  computational
morphological description and show that it is of great interest for many applications
based on audio content, in which abstract sounds can currently hardly be handled.

Finally, we summarize and discuss the work described in this document and suggest
guidelines for future research.
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2 Describing sounds

The goal of this chapter is to provide an introduction to auditory perception and to
review the perceptual dimensions of sounds identified by the research community.

2.1 Introduction to auditory perception and cognition

Sound  can  be  heard  or  interpreted  in  different  ways.  When  hearing  speech,  for
instance,  a  listener  generally focuses  on  what  is  being said  in  order  to  grasp the
meaning of a message. Sometimes, one can also try to identify some characteristics of
the  speaker  (e.g.  sex,  age...)  or  the  speaker  itself. A  music  lover  would  rather
appreciate the particular timbre of his favorite singer's voice and the emotions he feels
about  it.  All  these  processes  -understanding,  source  identification  or  sound
characterization-  lead  to  different  mental  representations  of  sound.  From  the
acoustical signal reaching the ear to these mental representations, one can identify two
levels  of  analysis  performed  by  our  auditory  system:  a  perceptual  level  and  a
cognitive level.  Although the boundary between perception and cognition is  quite
debatable4, the distinction proposed by the mainstream view, often referred to as the
psychoacoustical auditory perception theory, is useful for our research.

Perception consists in the extraction of 'useful information' from our environment. It
is the result of an evolution process that “designed” an auditory system specific to our
needs. These needs are different for each species so that all animals do not perceive
the  world  the  same  way.  This  'useful  information'  is  extracted  by  the  human
peripheral  auditory system, shown in figure 2.1,  and coded as an electrical  signal
transmitted  by  the  auditory  nerve  to  higher  auditory  structures.  According  to
psychoacousticians, this  signal leads to intermediate representations of sound, also
referred to as 'mid-level representations', which are further organized and interpreted
by cognitive processes. Cognition, from the Latin co-gnoscere,  literally “to come to
know”, is defined by the encyclopaedia Britannica5 as “the act or process of knowing
including both awareness and judgment”. While perception is sensory-specific and
does not involve memory, cognition is amodal and involves memory, or knowledge,
to interpret the information extracted at the perceptual level. According to that view,
sound  qualities  such  as  pitch  or  timbre,  which  does  not,  a  priori,  require  some
knowledge,  are  perceptual  criteria.  On  the  other  hand,  speech  understanding  and
speaker identification, which require, respectively, to know the spoken language and

4 A discussion on the difference between perception and cognition, started in April 2004, can be
found in the archives of the Auditory mailing list (http://www.auditory.org ).

5 http://www.britannica.com
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to have in memory some representation of the speaker, involve cognitive processes 6.

Our  aim  here  is  not  to  debate  about  the  definitions  or  the  difference   between
perception and cognition,  but rather to clarify what we mean in this document by
'perceptual' criteria.

Introductions on auditory perception and cognition are given in [Handel89], [Yost00]
and [McAd93] (auditory cognition only).

6 The processes described here, involving intermediate mental representations and their interpretation
by cognitive  processes,  are  the  basis  of  the  psychoacoustical  perception theory.  An alternative
theory, based on Gibson's direct perception [Gibson66], and referred to as ecological perception, is
also paid a lot of attention by the research community. This theory claims that no intermediate
representations or memory are needed and that the brain directly recognize in the stimulus some
features that  specifies  the  sound.  More  specifically,  some neural  structures  would 'resonate'  to
patterns  specific  to  the  environmental  object  itself  (structural  invariant,  for  instance  a  piece  of
wood) and to the action which makes it generating sound (transformational invariant, for instance
the action of breaking). Although claiming that no representation or memory are involved (but aren't
invariants some kind of representation, and isn't the resonance of neural structures some kind of
memory process?) is quite a radical  point of view, ecological perception have been a source of
inspiration  for  many  researchers  looking  for  some  computational  way  to  extract  invariants
[Casey98] [Rocch03].
A review of auditory perception theories with a specific focus on ecological perception is given in
[Macph95].

5

Figure  2.1:  Human  peripheral  auditory  system.  After  M.
Karjalainen's lecture material.  Reprinted with the permission
of the author.



2.2 So what do we hear in a sound?

We  saw  that  sound  can  be  described  according  to  two  levels  of  analysis,
corresponding to different levels of abstraction of the sound. In the following section
we further review the different mental representations that constitute our conscious
experience of the sound.

2.2.1 Schaeffer's four listening modes

In his 'Traité des objets musicaux' (Treatise on musical objects), [Schaef66] identifies
four listening modes, each associated to a specific listening intention and a specific
representation :

• Ecouter refers  to  the  identification  of  the  sound-producing  event  through  the
sound. In that case the sound is seen as an index of this event.

• Comprendre (to understand) refers to the identification of a message transmitted by
the sound. This listening mode is  well illustrated by speech, in which the sound is
only the 'vehicle' of words, which themselves carry a meaning.

• Entendre refers to listening to intrinsic properties of the sound. When choosing an
instrument,  for instance, a musician will select the one that sounds the best for
him, according to his own appreciation of its timbre. 

• Ouir is the lowest level in our auditory perception. It refers to to the perception of
the raw-sound data with no intention of interpreting or qualifying it. It is a kind of
'passive listening'.

Ouir and ecouter, according to Schaeffer, are spontaneous and universal ways to listen
to sound and are referred to as natural listening. Comprendre and ecouter both require
some references  to  codes,   language  in  the  case  of  speech  and some description
criteria in the case of the musician choosing an instrument. Since these codes must be
learned  and  are  not  universal,  Schaeffer  qualified  both  these  listening  modes  as
cultural listening.

A slightly different dichotomy in the listening attitudes is described in [Gaver93], in
the context of ecological perception. He defined the spontaneous focus on attributes
related  to  the  identification  of  the  sound-producing  event  as  'everyday listening'
(Schaeffer's 'écouter'), as opposed to 'musical listening', which defines, according to
him, a focus on traditional perceptual attributes such as pitch or timbre.
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2.2.2 How do we talk about sounds?

Schaeffer's identification of different listening modes was base in his own experience.
A more systematic way to investigate how people experience sounds is to study how
they talk about them. A major work on the subject, though limited to musical sounds,
is described in [Faure00]. Among other experiments, she asked subjects a free verbal
description  of  dissimilarity  in  pairs  of  sounds.  Stimulus  consisted  mostly  of
synthesised sounds imitating traditional western musical instruments and a few hybrid
sounds synthesised by morphing two known instruments. All sounds were equalised
in duration, pitch and loudness.

Interestingly, for 60% of the pairs of sounds, dissimilarity judgments contains terms
related to the origin of the sounds (material, action, name of instruments...), though it
was not specified in the instructions. This confirms the natural tendency to 'listen to
the source'. However, in that case, since the instruction was to talk about the sounds,
we  think  that  the  source  was  named  not  for  itself  but  for  the  set  of  perceptual
attributes it refers to. 

In 98% of the pairs7,  similarity judgments  actually contained words  related to  the
sound itself. Most of the terms (80%) referred to the temporal evolution of energy
concerning,  in equal  proportion,  the beginning ('slow attack',  'impact',  'fast'...),  the
middle ('stagnation', 'bouncing'...) and the end of the sound ('cut', 'muffled'...). Very
often (73%), subjects described the sounds according to criteria related to the five
senses ('high/low pitched', 'nasal', 'bright', 'rough', 'acid'...). For half of the pairs, they
talked  about  some  'shape' of  the  sound  ('large',  'sharped',  'compact'...).  Other
verbalisations were related to emotion or a judgment based on emotion ('pleasant',
'boring', 'nice'...), and sometimes the sounds were given a name ('note', 'crackling'...)
or were even imitated.

As one could expect, subjects found more difficult to talk about the hybrid sounds,
not perceived as being generated by a known source, and tended to talk about the
sounds themselves. However, since these sounds were synthesised by morphing two
instruments, some identity of how they were built remained and subjects sometimes
described  them  as  the  juxtaposition  of  two  sounds  or  could  even  recognize  the
original sounds. 

The study concerns  traditional  musical  sounds and must  not  be generalised to all
sounds. However, a similar study on free verbal description of environmental sounds
[Vander79] also observed this tendency for people to talk about the source of the
sound..

7 Several descriptions could be used for each pair, so that the percentages do not add up to 100.
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2.3 Source identification vs. sound description

We  saw  that  listeners  spontaneously  describe  sounds  by  referring  to  the  sound-
producing event. It is the primary function of auditory perception, and of perception in
general, to provide us with some information about our environment in order to locate
food, prevent from a danger or communicate... As we already mentioned, our auditory
system has  probably evolved to  optimally perform these  tasks  and  what  we call
perceptual  attributes  would  then  be  the  dimensions  of  an  optimal  space  for
recognizing events from our environment. However, our purpose is not to find some
mapping between environmental sources and a perceptual space, i.e. to identify the
source, but rather to investigate this space itself, i.e. to actually describe sound. As
pointed out by Schafer, quoting Schaeffer,  “The sound object must not be confused
with the sounding body by which it is produced, for one sounding body may supply a
great  variety  of  objects  whose  disparity  cannot  be  reconciled  by  their  common
origin.” ([Schafer77], p130).

2.4 Describing sounds

We saw in Faure's experiment that talking about sound attributes is difficult, so that
people often use analogies to others senses (bright, large...), for which more specific
vocabulary exist. Very few attempts to define a general perceptual space for sound
have  been  done.  Most  studies  deal  with  sounds  from  specific  origins  (typically
musical  instruments  or  environmental  sounds)  and then  only investigate  a  limited
perceptual  space  (for  instance  traditional  musical  sounds  are  all  harmonic  while
environmental  sounds  are  mostly  noisy).  Our  aim  here  is  to  review  the  sounds
attributes that have been used for perceptual description of sound.

2.4.1 Traditional musical notation

A well known sound representation is the western musical notation, in which each
sound is described by a pitch (horizontal position on the staff), a loudness (a symbol
corresponding to a value on a discrete loudness scale), a duration and the instrument
by which it should be played. The first note of figure 2.2 represents a C4 (261 Hz)
with duration twice shorter than the second note and played mezzo-forte (moderately
loud) by a piano.

8



This representation does not really aim at describing a sound and is rather a kind of
recipe to make it.  Although it contains important perceptual cues about the aimed
sound  (pitch,  loudness  and  duration),  it  is  still  very  limited:  it  only  applies  to
harmonic sounds with constant pitch, and most of the sound attributes, often referred
to as the 'timbre' of the sound, are only indirectly described by reference to a musical
instrument.

2.4.2 Perceptual attributes of sound

Subjective duration, loudness and pitch

An important feature of our auditory system is to convert physical scales to scales
more  appropriate  to  our  understanding  of  the  environment.  The  perceptual
counterparts  of  duration,  intensity  and  frequency are  referred  to  as,  respectively,
subjective duration, loudness and pitch.

Duration is defined as an objective, physical measure of time in seconds, minutes or
hours. However, the subjective perception we have of it seems to be quite dependent
of  what  happens  during  this  time.  Experiments  on  subjective  duration,  using
sequences of silences and bursts are described in [Zwicker90].

Loudness is defined by the American National Standards Institute (ANSI8, 1973) as
the “attribute of auditory sensation in terms of which sounds may be ordered on a
scale extending from soft to loud". Loudness perception is highly level and frequency
dependent. It has been studied by asking listeners to match the loudness of tones at
various frequency to that of a reference tone, a 1000 Hz sinusoid, for various physical
level  [Fletcher33] [Zwicker90].  All tones perceived as being as loud as the reference
tone at 40dB SPL  have a loudness level of 40 phons. Phon scale is still a reference to

8 American National Standards Institute.
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the physical level  scale and another scale,  the sone scale,  has  been defined to be
directly proportional to loudness. One sone is defined by the loudness curve at 40
phons, 2 sones is defined by the curve perceived as twice as loud as one sone and so
on. The curves obtained are showed in figure 2.3.

The equal loudness contours are standardized as ISO9 226 (last revised in 2003).

Pitch is the “attribute of auditory sensation in terms of which sounds may be ordered
on a scale extending from high to low” (ANSI, 1973). It is mostly used for harmonic
sounds, for which it is related to fundamental frequency. It has been shown that when
the fundamental is  missing,  our auditory system is able to  'reconstruct'  it,  and the
corresponding pitch is perceived (this phenomenon is often referred to as 'the missing
fundamental' or 'virtual pitch' ). The equivalent attribute could also apply to noises,
which can often be characterized on a scale from low to high frequency.   However,
'pitch of noise' has been very little investigated, and the few existing studies were
done for very specific sounds  [Zwicker90]. Pitch perception is  proportional  to the
logarithm  of  frequency,  i.e.  the  differences  between  200  and  400  Hz  tones  and
between 1000 and 2000 Hz are perceived similarly. A well-known musical pitch scale
is the equal temperament scale, in which the pitch is proportional to the logarithm of
frequency.  A  non-musical  pitch  scale,  the  mel  scale  [Stevens37],  obtained  by
experiments similar to those performed for the sone scale, is a scale of pitches judged
to be at equal distance one from another. It showed, as illustrated in figure 2.4, that
the pitch is not exactly proportional to log-frequency.

9 International Organization for Standardization.
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Timbre

In the traditional musical notation, the remaining attributes of a sound are indirectly
specified by a reference to the instrument and are often referred to as the timbre.
Timbre is still an ill-defined and controversial attribute. It is officially defined as “that
attribute of auditory sensation in terms of which a listener can judge that two sounds
similarly  presented  and  having  the  same  loudness  and  pitch  are  dissimilar”.
(ANSI,1976). This negative definition does not provide any insight into what timbre
is.  Moreover,  it  seems  to  apply  only  to  sounds  with  pitch,  leaving  aside  most
percussive  instruments  or  environmental  sounds.  As  Bregman pointed  out,  timbre
ANSI definition should rather be this: “We do not know how to define timbre, but it
is not loudness and it is not pitch” ([Bregman90], p93). 

From the numerous definitions  found in the literature10, we can see that timbre is
generally  associated  to  two  different  concepts,  related  to  two  listening  modes
described in section 2.2.1. In the context of a natural,  everyday listening, timbre is
defined as a property of the source, i.e. a set of characteristics that allows identifying

10 A review of definitions of timbre collected in the literature can be found at
http://www.zainea.com/timbre.htm.
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Figure  2.4:  Ratio  pitch (mel  scale)  versus  frequency.  The dashed line  is  a
linear approximation of the mel scale at low frequency. After [Zwicker90].



it11. However, analysing sounds from a given musical instrument shows that sound
characteristics  can be different  for  different  notes (see Schaeffer's  experiments  on
piano in [Schaef66], p234). As Schaeffer noticed, one could identify a specific timbre
for each sound that can be produced by a given object, and some patterns of timbre
transformation  across  the  register  of  an  instrument  could  even  contribute  to  its
identification12. In the context of a musical listening, timbre is defined as a property of
the  sound  which  allows  characterizing  it,  without  any  reference  to  the  source.
According to that definition, the sounds from two different piano notes, for instance,
have different, though quite similar, timbres.

A lot of research has been done in order to understand the underlying qualities of
timbre,  typically  aiming  at  identifying  the  physical  attributes  allowing  automatic
musical instrument classification (see a review in  [Herrera03]). More recent works
have investigated timbre for environmental sounds, such as dog barks, bouncing balls
or creaking doors) (see a review in  [Gygi01]). Although these studies mostly deal
with  source  recognition  and  are  limited  to  specific  sounds,  they  provide  some
dimensions of the general perceptual space we are looking for.

Musical sounds

Most  experiments  on   timbre  focused  on  harmonic  musical  instruments.  Since
Helmholtz pioneer study on sound analysis ([Helm54]) and until the middle of the
20th century, timbre was very much related to the relative amplitude of the partials of
harmonic sounds. In the 60's, some experiments showed that the temporal envelope,
especially the attack, also contributed to the perceptual identity of a sound [Schaef66]
[Berger64].  Smoothing,  for  instance,  the  attack  of  a  sound  from  percussive
instruments or high piano notes modify noticeably its timbre  [Schaef66]. Since the
70's, most timbre studies have been done using subjective similarity judgments in
pairs  of  sounds  (equalized  in  pitch,  loudness  and  duration),  analysed  by  multi-
dimensional  scaling  (MDS)  techniques.  MDS  allow  « determining  the  Euclidean
space (in an appropriate number of dimensions) within which different timbres can be
ordered such that the distances separating them correspond as much as possible to
listeners'  judgments  of  their  relative  dissimilarities.  This  representation  is  called
"timbre space" and the axes are interpreted as being the perceptual  dimensions of
timbre » [Donnadieu94]. One of the first experiment using such methodology was led
by  Grey,  who  found  a  3D  timbre  space  for  sounds  from  16  wind  and  string
instruments  [Grey77]. The first dimension was related to the spectral centroid (the
center  of gravity of the spectrum,  often referred to  as the brightness),  the second
dimension to the amount of synchronicity of partials behaviour (i.e. the amount of

11 This definition is similar to that of ecologists' structural invariants (see footnote 5)
12  Recent experiments on how sound timbre is perceived across the whole register of an instrument

and the possible role of timbre transformation patterns in instrument identification are described in
[Handel04].
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spectral fluctuation) and the third one was found to be correlated to the steepness of
the  attack.  Since then many experiments  of  the  same type derived similar  results
[Wessel79] [Krum89] [Krim94] [McAd95].  In  similar  experiments  on  timbre  of
percussive sounds, Lakatos found a 2D perceptual space, with the first dimension best
explained by the steepness of the attack and the temporal energy distribution and the
second dimension related to the brightness [Laka00]. A typical timbre space is shown
in figure 2.6.

13

Figure 2.6: Timbre space derived from similarity judgments of pairs of sounds and MDS analysis
in [McAd95].



Studies on musical  sounds seem to agree on quite simple timbre space.  However,
these kind of sounds represent a very limited sub-space in of a general perceptual
space, and studies on non-musical sounds will help complete it.

Non musical sounds

Von Bismarck used subjective judgments on 30 bipolar scales (e.g. low-high, dull-
sharp...) to study salient dimensions of laboratory-generated sounds including noises
and harmonic sounds with various spectral envelopes [Bism74].  In this method, the
scales that do not provide any relevant information (scales equally rated for all sounds
or  inconsistently  rated)  are  eliminated  and  scales  that  are  strongly correlated  are
grouped. The first salient dimension found by von Bismarck was mainly related to the
verbal scale referring to the 'sharpness' of a sound and was correlated to the spectral
centroid  (same  as  brightness).  A  second  important  dimension  was  found  to  be
associated to the sound 'compactness' and correlated to some measure of noisiness.
From experiments  on natural sounds from sonar recordings,  Howards  [Howard77]
derived  a  two-dimensional  MDS  solution  corresponding  to  the  spectral  envelope
shape and to the amount of low-frequency (<1Hz) periodicity. In her study on the
perception of environmental sounds, Van Derveer (1979) found that the grouping by
perceptual similarity of sounds from events such as hammering, knocking or paper
crumpling were mostly based  on the  similarity of  the  temporal  pattern of  sounds
(continuous, repetitive, percussive...) [Vander79]. Another experiment, performed by
Bjork and based on the subjective ratings of environmental sounds according to 24
bipolar scales, yielded two salient dimensions, one related to a tense-relaxed scale,
which correlated with a measure of roughness, and the other related to a sharpness
scale, which correlated with a measure of  frequency content, on a scale from low to
high  [Bjork85]. Recent experiments based on MDS analysis of 100 environmental
sounds confirmed the  salience of  noisiness  and temporal  pattern (rhythmicity and
periodicity) in similarity judgments [Gygi00].

Roughness

Roughness, by analogy to the sense of touch, is the attribute related to the perception
of  short  irregularities  in  a  sound.  Though it  is  rarely used  or  detected  in  timbre
studies13, it clearly can allow discriminating two sounds, and should then be taken into
account in a global perceptual space. Roughness was first identified and defined by
Helmholtz after some experiments on the perception of two simultaneous pure sines.
By changing the frequency difference (Δf) between the two tones, he found out that
one  could  identify  three  'perceptual  zones':  Below  about  Δf  =10  Hz  a  listener
perceives a tone at the mean frequency modulated in amplitude by a sine at frequency
Δf  (this  phenomenon is  known as  beating),  above  10  Hz,  modulations  cannot  be

13 It is, however, often used to evaluate the subjective sound  quality. Several publications on this
subject can be found in the issue of Acustica/acta acustica, vol. 83(5), 1997.
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counted any longer and a new sensation, roughness starts to increase and reaches a
maximum at  Δf = 70 Hz [Helm54]. At higher frequency, roughness decreases and the
two tones are separately perceived. Further experiments on modulated sines showed
that roughness mainly depends on three factors: the modulation depth, the modulation
frequency and the carrier frequency [Zwicker90].  Zwicher and Fastl defined a unit,
the asper, that corresponds to the roughness of a 60 dB, 1 kHz tone, 100% modulated
by a 70 Hz sine [Zwicker90]. The dependence of roughness on carrier frequency and
modulation frequency is shown in figure 2.7.

 

Further research on more complex sounds also showed that global roughness could be
predicted from some roughness measure in frequency bands and some measure of
temporal envelope coherence across the bands (basically the perceived roughness is
higher when the envelopes coherence is high). A review on roughness theories and
models, as well as the description of of a model (described in section 3.2) derived
from recent experiments, are given in [Press98].

2.4.3 Schaeffer’s typo-morphology

In his Traité des objets musicaux (Treatise on musical object) [Schaef66] (synthesised
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Figure 2.7:  Roughness versus modulation  frequency for various pure tones.
After [Zwicker90].



and commented by Chion in  [Chion83]), Pierre Schaeffer proposed a generalization
of what is usually heard as musical sounds (typically notes generated by traditional
musical instruments) by considering all kind of  sound objects,  ignoring their origin
(electronic sounds, noise, natural sounds, loops…), for which the traditional musical
sound  representation  is  way  too  limited.  After  some  listening  experiments,  he
proposed a general sound classification (typology) according to some morphological
criteria,  in  order  to  build  a  solfège of  musical  objects,  foundation  of  musique
concrète14.

Sound object

In his research for a generalised solfège, Schaeffer defined the  sound object as the
element  of  study.  Sound  objects  are  the  correlates  of  a  reduced  listening  (or,
according, to Gaver, a musical listening [Gaver93]), during which sounds are listened
to for their intrinsic perceptual qualities, independently from their meaning or their
origin. In a sound stream, any entity perceived as having its own internal properties
and rules is considered as a sound object. In a piece of music, for example, a sequence
of notes can be perceived as a single  entity, i.e.  a  musical  phrase,  as  well  as  the
succession of smaller sound objects, i.e. the notes themselves. The sound object is the
result  of  a particular  intention,  for  which  any sound is  listened to the same way,
providing a good basis for general perceptual sound description.

Typo-morphology

In order to describe and classify sound objects, Schaeffer defined a typo-morphology,
in  which sound objects  are categorized into a  typology based on some perceptual
attributes,  called  morphological criteria.  The  building  of  this  typo-morphology is
based on the pair of criteria form/matter. The sound matter is defined by Schaeffer as
what we would hear if we could freeze the sound (then mainly –but not only- related
to spectral distribution), while the form is related to the time evolution of this matter. 

These criteria were studied by listening to sounds with fixed matter, in order to focus
on the form, and sounds with fixed form to study the matter.  Varying sounds,  in
which  both  the  form and  the  matter  vary,  are  also  studied  through the  variation
criteria.  By  refining  the  rough  sound  description  and  classification  he  obtained
through these three criteria, Schaeffer defined seven morphological criteria related to
different perceptual dimensions emerging from reduced listening:

14  'Musique concrète' (concrete music) composition starts from concrete sound material arranged in
such ways that some music emerges from it, as opposed to abstract music, which starts from an
abstract representation, the score, and is played later.
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Matter criteria

•Masse (Mass): related to the perception of the ‘pitchness’ of a sound (i.e. a scale
from noisy to pitched), and then to its spectral distribution. Schaeffer defines four
types of mass: pitched (fixed mass and identifiable pitch), complex (fixed mass and
non-identifiable pitch),  varying (pitched-varying or complex-varying, for small or
organized variation) and nondescript (excessive and unpredictable variation).

• Timbre harmonic (Harmonic timbre):  the more or less diffuse halo associated to
the  mass  and more  generally  what  allows  describing  it  ([Schaef66],  p516).  It
relates to a finer characterisation of the mass, often described by analogy to vision:
bright/mat, round/sharp… 

• Grain (Grain): roughness, defined as the micro structure of sound matter, such as
the rubbing of a bow. Even though it  has a temporal  dimension,  it  is  a matter
criterion. It is divided into three types: resonance grain, for non-sustained sounds
(e.g. cymbal resonance),  rubbing grain, for sustained sounds (e.g. bow or breath
sounds) and iteration grain, for iterative sounds (e.g. drum roll).

Form criteria

• Dynamique (Dynamics): criterion related to the shape of the amplitude envelope.
Schaeffer  distinguished  several  types  (e.g.  unvarying,  impulsive...),  as  well  as
several types of attack (smooth, steep...).

• Allure (Pace): amplitude or frequency modulation. Three types: mechanical (very
regular),  lively  (“flexible  periodicity,  revealing  a  living  being”)  and  natural
(unpredictable).

Variation criteria

• Profile mélodique (Melodic profile): related to the variation of the pitch. Schaeffer
defined  nine  types,  according  to  three  variation  types  ('imperfect  stability',
continuous -e.g. a glissando- and discontinuous -e.g. a piano phrase- variation) and
to three variation speeds (slow, medium and fast).

• Profile  de  masse  (Mass  profile):  variation  within  the  mass.  Schaeffer  defined
several typical mass variations, e.g. 'pitch to complex' or 'thin to thick'.

The complete description scheme was summarized by Schaeffer in a table shown in
Appendix 1. A similar classification system, though simplified, is used by Schafer  to
describe the sound events occurring in natural sound scenes, called  soundscapes by
the author [Schafer77].
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2.4.4 Perceptual categories

The attributes reviewed in chapter 2 can be seen as dimensions of a generic perceptual
space in which any sound can be represented by a set of coordinates specified by a
numerical value (e.g. roughness = 0.5 asper, or pitch = 400 Hz) or a type (e.g. pitch
variation = 'continuous', or amplitude envelope = 'impulsive'). In specific applications,
it can be useful to categorize sounds by identifying sub-spaces corresponding to some
types of sounds sharing a set  of properties.  Well  known perceptual  categories are
onomatopoeia, which consist in using words that imitate the sounds they denote (e.g.
bang, buzz, beep, meow...), but all sounds cannot be described that way. The only
attempt  to  provide  a  classification  system applicable  to  any sound  is  Schaeffer's
typology, based on the morphological characteristics (see 2.3.2) and the length of the
sound.  For  instance,  sounds  with  unvarying matter  and  form (e.g.  white  noise  or
sustained  organ  note)  are  called  'homogeneous'  sounds,  and  a  typical  musical
sequence of note is called a 'group' [Schaef66] [Chion83]. 

2.4.5 Summary

The  perceptual  criteria  described  in  this  chapter  as  well  as  some  proposals  to
characterize them are summarized in table 2.1. 
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Criteria Brief description Characterization
(proposals)

Subjective duration Perceived duration of a sounds. Categories: e.g. short, medium,
long.

Loudness

“(...) attribute of auditory sensation in
terms of which sounds may be ordered
on a scale extending from soft to loud.”
(ANSI 1973)

Categories: e.g. soft, medium
and loud.

Pitch

“(...) attribute of auditory sensation in
terms of which sounds may be ordered
on a scale extending from high to low.”
(ANSI, 1973)

Continuous frequency scale (in
Mel or Hz), or discrete values
(e.g. musical note) when
possible for harmonic sounds.

Categories: e.g. low, mid or high
frequency for noisy sounds.

+temporal pattern
characterization, e.g. , ascending
descending...

Pitchness
Scale from noise to pitched. This
attribute is related to the pattern of the
frequency partials distribution. 

Categories: e.g. noise, pitched ..

+temporal pattern
characterization, e.g. pitched to
noisy...

Roughness
Attribute related to the perception of
short amplitude envelope irregularities in
a sound.

Categories: e.g. rough, medium,
smooth.

+temporal pattern
characterization, e.g. increasing,
decreasing...

Dynamic profile 

Attack

Shape of the amplitude envelope.

Attribute related to the perception of the
temporal pattern of the attack

Categories: e.g. unvarying,
impulsive, crescendo...

Categories: e.g. smooth, steep,
straight...

Brightness   

Spectral fluctuation

Others ('Metallicness',
Richness...)

Attribute related to the perception of the
spectral centre of gravity.   

Attribute related to the perception of
short spectral fluctuation 

To be defined...

Categories: e.g. low, medium,
high.

+temporal pattern
characterization, e.g. increasing,
decreasing...

Table 2.1Summary table of perceptual description criteria
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2.5 Discussion

Our objective is to define a perceptual description scheme as complete as possible.
Some  experiments  on  timbre  have  led  to  the  identification  of  some  perceptual
dimensions for specific sounds (musical sounds and environmental  sounds),  and a
more general timbre space can be derived by combining them. The early work on
sound objects done by Pierre Schaeffer was the first attempt to provide some general
description criteria and,  though his typo-morphology was defined rather intuitively,
by  transforming  and  listening  to  all  kinds  of  sounds,  it  includes  most  of  the
dimensions derived from timbre studies on both musical and environmental sounds.
The morphological criteria based on the pitch and pitchness trajectories (melodic and
pitchness  profile)   have  not  been identified  by these  studies  as  salient  perceptual
dimensions, but it seems clear that they all help characterizing sounds and that should
be part of a general perceptual description scheme. Table 2.1 provides a basis for such
a description scheme, in which any sounds would be described for each criteria by a
numerical value or a typical category.
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3 Computational perceptual sound
description

In this chapter we review the models aiming at mimicking some features of auditory
perception.

3.1 Modelling auditory perception

Modelling auditory perception is  a difficult  and multi-disciplinary task. Perceptual
criteria cannot be easily studied directly from the ear physiology. Dimensions of our
auditory perceptual space should first be identified (see Chapter 2) and specifically
investigated  by  combining  physiological  and  cognitive  data  as  well  as
psychoacoustical data derived from listening experiments. While low-level processes,
such  as  the  frequency  decomposition  performed  by  the  cochlea,  are  quite  well
understood and have been extensively described (e.g. see [Zwicker90] or [Green01]),
current knowledge in auditory perception is limited and does not allow to construct
accurate  models  of  our  perceptual  experience  of  sound.  Numerous  models  have,
however, been proposed by the research community, for various purposes, ranging
from complex systems modelling as far as possible the human auditory system, to
more application-oriented models, aiming at providing simple and efficient methods
to extract perceptual features for specific sounds.

3.2 Models of perceptual attributes of sound

Basic modelling of the peripheral auditory system

Since  all  high-level  auditory  processes  giving  rise  to  mental  representations  are
preceded  by  a  pre-processing  of  the  acoustical  signal  in  the  ear,  designing  a
computational model of some perceptual criteria often require to mimic all or some
part of this pre-processing. Many studies on peripheral auditory system modelling,
derived  from  psychoacoustical  data  or  even  from  measurements  performed  on
animals, can be found in the literature (see e.g.  [Green01] [Zwicker90] or [Kabal02]).
A schematic view of the ear is shown in figure 3.1.
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The outer and middle ears can be modeled by a simple filter, which transfer function
A(fkHz) is given by equation 3.1 and shown in figure 3.2 [Kabal02].

AdB  f kHz =−20184  f /1000 0.86.5e−0.6  f /1000−3.3 2−0.001  f /1000 3.6
 

The most important feature of the peripheral ear processing is the decomposition of
the  signal  into  frequency  bands,  referred  to  as  critical  bands,  performed  by  the
cochlea.  Some  experiments  showed  that  this  frequency  decomposition  could  be
approximated by the bark scale, defined between 0 and 15.5 kHz by 24 critical bands
of center frequency fc, with bandwidth equal to 100 Hz below 500 Hz and to 0.2 fc
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Figure  3.1:  Schematic  view of  the  peripheral  auditory  system.  After  M.
Karjalainen's lecture material. Reprinted with permission of the author.

Figure 3.2: Transfer function of the outer and middle ear. After [Kabal02].



above [Zwicker90]. Another measure of the width of critical bands is the Equivalent
Rectangular Bandwidth (ERB) [Moore83], given in [Moore96] as a function of center
frequency fc  by equation 3.2. 

ERB=24.70.108× f c  

Loudness

The equal-loudness contours described in 2.3.2, based on the perception of pure tones,
are not sufficient for estimating the loudness of complex sounds. Further experiments
showed that the loudness produced by two tones of equal level corresponds to the
addition of the loudnesses of each tone when their frequency difference is large, but
that they influence each other and produce a smaller loudness when this difference is
smaller than a critical bandwidth. Loudness models, based on recent psychoacoustic
data, include outer and middle ear filtering models and estimate the loudnesses in
each critical band [Zwicker90] [Moore97]15, as illustrated in figure 3.3.

15 Computer  models  based  on  Moore  et  Al.'s   loudness  model  are  available  at
http://hearing.psychol.cam.ac.uk/Demos/demos.html or  in  Psysound  computer  program  for
psychoacoustical analysis [Cabrera99].
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Figure  3.3:  Block  diagram  of  loudness
models  proposed  in   [Zwicker90]
[Moore97]. 

Outer and middle ear filtering

N'
1

Critical band filters
(or third-octave band filters)

N'
2
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Each specific loudness N' is estimated assuming a relationships N' ~ Eα, where  E
stands for the excitation level in the band and α a coefficient reflecting a compression
performed by the auditory system, and an additional excitation due to internal noise in
the ear. A review of loudness models is given in [Appell02].

Pitch

Models of pitch perception basically consist in estimating the fundamental frequency
(F0), its physical counterpart, of harmonic sounds. Different pitch estimation methods
have been investigated, which have been recently reviewed by Klapuri in  [Klap04].
He proposed to classify existing algorithms in two groups, according to whether they
are based on the location of the partials (spectral place) or on the intervals between
pairs of partials (spectral interval).

Spectral place based methods

A widely used  method  for  F0  estimation,  in  the  time-domain,  is  to  look  for  the
predominant periodicity in the waveform (e.g.  [Brown91] or  [Talkin95]). A simple
measure  of  periodicities  is  the  autocorrelation  function  (ACF)  r(n),  given  for  a
discrete signal x(n) of length K by

r  n = 1
K

∑
k=0

K−n−1
x  k × x  kn 

The highest peak in the ACF is taken as the period of the fundamental frequency. The
ACF can also be  computed in the frequency domain as

r  n = IDFT ∣DFT [ x  n  ]∣
2 

where  IDFT stands  for  the  Inverse  Discrete  Fourier  Transform and  DFT for  the
Discrete Fourier Transform.

For real signal, this can be rewritten as a function of the magnitude of the Fourier
Transform X(k) of the signal as
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r  n = 1
K ∑
k=0

K−1 [ cos  2  n k
K ∣X  k ∣

2 ]
which  shows  that  the  ACF actually  corresponds  to  a  weighting  that  emphasizes
partials at harmonic location [Klap04]. A similar method, based on the cepstrum, is
obtained  by replacing  the  squared  spectral  magnitude  in  equation  3.4  by the  log
spectral  spectral  magnitude  [Noll67].  Another  method,  referred  to  by  Klapuri  as
harmonic pattern matching, is to compare directly the frequency spectrum to ideal
harmonic frequency patterns and to select the best match (e.g. [Brown92], [Dov93] or
[Maher94].

The main drawback of methods based on the location of the partials Fn is that they do
not handle well inharmonicity. High order partials of piano sounds, for instance, are
shifted towards in frequency so that the deviation from a perfect harmonic pattern (Fn

= nF0) increases with the order of the partial. In that case, methods based on partials
intervals, more stable than partials locations, perform better.

Spectral interval based methods

Since perfect  harmonic  spectra have periodic partials  distributions,  F0 can also be
estimated from autocorrelation of the magnitude spectrum (i.e. the time-domain signal
is replaced by the frequency spectrum in equation 3.3) (e.g. [Lahat87] or [Kun96]). As
Klapuri pointed out, the information provided by this method is quite different from
time-domain ACF since any interval close to the fundamental frequency increases the
autocorrelation at the corresponding lag.

Envelope periodicity

A very different approach, based on the beating phenomenon described in 2.4.2 about
experiments on roughness, was proposed in  [Meddis97]. Since each pair of partials
(Fn, Fm)  produces an amplitude modulation of frequency ΔF = |Fn-Fm| in the temporal
envelope, a predominant envelope periodicity should be observed in harmonic signals
at  F0.  Meddis  et  Al.  used  this  principle  in  an  attempt  to  model  human  pitch
perception:  The  signal  is  first  filtered  by a  filterbank  modeling  the  cochlea.  The
temporal  envelope  of  the  output  of  each  filter  is  then  extracted  and  analysed  by
autocorrelation.  Autocorrelations  are  summed  across  frequency  channels  in  a
summary autocorrelation function and the highest peak is taken as the pitch period.
This  method  demonstrated  good  performance  and  was  able  to  reproduce  many
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features of human pitch perception.

Pitchness

All the algorithms described above aims at estimating the pitch of harmonic sounds,
typically on a frame-by-frame basis. In general sound analysis one first needs to know
whether a given frame is pitched or not in order to avoid inconsistent pitch estimation.
In harmonic pattern matching methods, the  pitchness  can be measured simply from
the mismatch between the magnitude spectrum of the signal analysed and the ideal
harmonic pattern that best matches it. If the mismatch between the analysed signal
and the best match is large, the sound is considered as inharmonic. An example of this
approach is given in  [Cano98]. In  [Slaney98], a measure of pitchness, called  pitch
salience, is estimated by the ratio between the amplitude of the highest peak of the
ACF and the total power of the signal, given by the amplitude of the ACF at 0. This
ratio is close to 1 for harmonic sounds and close to 0 for non-harmonic sounds, which
are not periodic and exhibit then no peak in the ACF.  A measure of noisiness, the
opposite  scale,  can also  be  estimated  by taking the  ratio  of  the  noisy component
energy to total energy in a sinusoidal plus noise analysis [Serra98].

Timbre

In 2.3.2 we reviewed some studies that  allowed identifying some dimensions of a
perceptual timbre space. Recent studies investigated the physical correlates of these
dimensions  for  sounds  from  musical  instruments  [Krim94] [Peeters00] or  from
environmental  sounds  [Gygi00] [Bone01].  The  physical  features  found  for  each
dimension can be classified as temporal, spectral or spectro-temporal features.

Temporal features

A dimension of all the timbre spaces reviewed in chapter 2 was shown to be strongly
correlated  to  temporal  characteristics:  steepness  of  the  attack  for  sounds  from
harmonic  sounds,  steepness  of  the  attack  and  temporal  energy  distribution  for
percussive  musical  sounds  and  global  temporal  pattern  (continuous,  repetitive,
percussive...)  as  well  as  some  measure  of  periodicity  and  rhythmicity  for
environmental sounds. The best physical measures of  the steepness of the attack and
the temporal energy distribution were found to be, respectively, the logarithm of the
attack time and the temporal centroid. The attack time is  computed from the time at
which the signal reaches a given threshold to the time at which the signal reaches its
maximum or its sustained part.  The temporal centroid is the center of gravity of the
temporal envelope A(n) of length N, given by equation 3.6.
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TC=
∑
n=0

N−1
A  n ⋅n

∑
n=0

N−1
n

The dimension related to rhythmicity and periodicity was found to be correlated to
some  measure  of  the  amount  of  silence  in  the  sound  and  some  autocorrelation
statistics (number of peaks and maximum value of the peaks) [Gygi00].

Spectral features

Another dimension which seems common to all types of sound is the brightness (or
sharpness),  correlated  to  the  spectral  centroid  (computed  by  replacing  the  time
domain  signal  by  the  frequency  spectrum  magnitude  in  equation  3.6).  A  more
complex  measure  of  brightness,  based  on  psychoacoustical  data,  is  described  in
[Zwicker90].

Spectro-temporal features

The  third  dimension  of  timbre  spaces  derived  for  harmonic  sounds  is  related  to
spectral fluctuations. Whereas most studies agreed on the physical correlates of  the
first two dimensions, the last one seems more dependent on the stimulus used. In their
study of  two  timbre  space  ([Krum89] and  [McAd95]),  [Krim94] found the  third
dimension to best correlate to  spectral irregularity (log of the spectral deviation of
component amplitudes from a global spectral envelope derived from a running mean
of  the  amplitudes  of  three  adjacent  harmonics) in  one  case  and  to  spectral  flux
(average of the correlations between amplitude spectra in adjacent time windows) in
the other case. A more recent study found the third dimension of the space obtained in
[McAd95] to be best described by three features:  the harmonic spectral spread (the
extent of the spectrum energy around the spectral centroid), the  harmonic spectral
variation (the amount of variation of the spectral energy distribution along time) and
the harmonic spectral deviation (the deviation of the harmonics from a global spectral
envelope) [Peeters00]. These features were integrated in the MPEG 7 audio standard
described in 3.3.

Some measures of pitchness and roughness, also found to be salient dimensions of
timbre  spaces  derived  from  environmental  sounds,  are  described  in  specific
paragraphs.
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Roughness

We saw in section 2.4.2 that roughness was due to amplitude modulations in a given
frequency range.  Several  models  have  been  developed according to  two  different
approaches. Frequency-domain models indirectly measure amplitude modulations by
estimating  the  beating  phenomenon  between  pairs  of  partials,  while  time-domain
models directly estimate the amount of amplitude modulation in the roughness range.
Many experiments  on this  phenomenon were done using simple  stimuli  (typically
pairs of tones) in a frequency range smaller than a critical bandwidth and then only
led  to  models  of  partial  roughness  (roughness  in  a  critical  band).  In a  review of
experiments and models of roughness of complex sounds, Pressnitzer showed that
global roughness could not be estimated by simply adding up partial roughnesses and
that more complex mechanisms should be taken into account [Press98]. As he pointed
out, “this result is intuitively known: non-modulated white noise produces almost no
roughness,  although  summing  up  the  fluctuations  it  causes  in  each  critical  band
should  results  in  high  roughness.”  Early  experiments,  completed  by  Pressnitzer,
showed that the main factor in partial roughnesses addition was the coherence of the
envelopes of all frequency bands: Sounds exhibiting  modulations in the roughness
range in several critical bands produce high roughness when these modulations are in
phase whereas they produce low roughness when they are not (this is the case in white
noise). From these observations, Pressnitzer designed a model based on the temporal
approach, described in figure 3.4.
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The signal is first pass-band filtered between 450 and 1000 Hz and decomposed into
critical  bands using a filterbank modeling the cochlea.  The amplitude envelope of
each band is then extracted by half-wave rectification (x(n)=0 if x(n)<0) and low-pass
filtering and compressed by taking the square root. The amount of modulation in the
roughness range is extracted by a low pass filter of order 2 (12dB/octave) with cut-off
frequency at 70 Hz followed by a high pass filter of the same order and at the same
cut-off frequency. Partial roughnesses ri are then computed by computing the squared
RMS value of the resulting signal, called 'effective' envelope, in each band. Global
roughness R is obtained by combining the results for N bands, as shown in equation
3.7.
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Figure  3.4:  Block  diagram  of  Pressnitzer's  partial  roughness  model
[Press98].



R=
1

N N−1  ∑i , j=1
j≥i

N

ci , j r ir j 

ci,j stands for the correlation between the effective envelopes of channels i and j and ri

for the partial roughness of channel i.

3.3 MPEG7 Audio

The MPEG-7 is the first attempt to provide a standard to audio content description. It
has  been  developed by the  MPEG (Motion  Picture  Expert  Group)  since  1996 to
provide  a  set  of  description  tools  aiming  at  managing  and  retrieving  multimedia
(audio  and visual)  content   on  the  web or  in  databases  [Mar03].  The  descriptors
defined in the MPEG 7 audio framework are divided into several types:

• Silence.

• Basic:  simple  descriptors  from  the  waveform  (e.g.  minimum,  maximum)  and
instantaneous power.

• Basic spectral:  simple descriptors derived from the frequency spectrum: spectral
flatness, centroid and spread.

• Signal  parameters:  fundamental  frequency  and  harmonicity  (a  measure  of
pitchness, see 3.2).

• Spectral  basis:  descriptors  representing  low-dimensional  projections  of  the
spectrum (singular value decomposition, principal component analysis....).

• Timbral16 temporal: log-attack time and temporal centroid.

• Timbral   spectral:  harmonic  spectral  centroid,  harmonic  spectral  deviation,
harmonic  spectral  spread,  harmonic  spectral  deviation  and  harmonic  spectral
spread

These  low-level  descriptors  (LLDs)  are  mainly  used  as  features  for  higher  level
analyses  performed  by  specific  tools  (e.g.  musical  instrument  timbre  description,

16  Timbral descriptors are the physical correlates of some dimensions of timbre spaces derived from
subjective experiments (see 2.4 and 3.2).
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melody description, general sound recognition) also included in the MPEG 7 audio
framework. Examples of MPEG 7-based applications are given in  [Peeters00] and
[Gomez03b].

3.4 Discussion

We showed in this chapter that most of the perceptual features described in chapter 2
can  be  analysed  by  some  computational  models,  derived  from  physiological  or
psychoacoustical data, which could be combined to extract automatically a complete
perceptual  representation.  The recent  standard  for  audio  description,  the  MPEG-7
audio,  includes  some  perceptual  descriptors  specific  to  harmonic  and  percussive
musical sounds, but lacks features for more general perceptual sound description. For
instance, there are no features allowing to characterise the temporal pattern (except
the attack) or the roughness of a sound, that was both found to be salient dimensions
of timbre spaces derived from listening experiments on environmental sounds. In next
chapter we present our first attempt to design a system for automatically describing
sound  according  to  a  description  scheme,  such  as  the  MPEG-7  audio,  based  on
general perceptual criteria.
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4 Computational morphological sound
description

Part of this chapter was published in [Ric03a], [Ric03b] and [Ric04].

We describe in this chapter a system that allows to automatically generate a
representation based on Schaeffer's typo-morphology. This system extracts specific
features that are used for characterizing each dimension by a numerical value or a
class. Some are physical correlates of timbre dimensions or derived from perceptual
models described in Chapter 3, and new features have been created when necessary. 

4.1 Simplified morphological description scheme

Schaeffer's  typo-morphology,  shown  in  Appendix  1,  is  quite  complex  and  some
criteria  or  classes  are  not  well-defined  (e.g.  harmonic  timbre)  so  we  have  not
attempted to exactly reproduce it in our automatic morphological description system.
We started from a very simple description scheme (i.e. a set of descriptors) based on
criteria that have been found to be salient dimensions of timbre spaces derived from
studies on environmental sounds (see 2.4), namely dynamic profile and pitchness, and
on pitchness profile (which was easily computable from pitchness). As we progressed,
we  have  completed  the  scheme  by  adding  more  criteria,  classes,  sub-classes  or
descriptors specified by numerical values that have also been found to be important
for discriminating sounds and/or that were parts of Schaeffer's typo-morphology. The
current morphological description scheme is shown in table 4.1.
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Morphological
Criteria

Classes, sub-classes  and additional descriptors

Dynamic profile

Unvarying

Varying

Impulsive
Iterative (several transients) + periodicity
value + velocity value
Crescendo
Decrescendo
Delta (i.e. Crescendo-Decrescendo)
Other

Pitchness
Pitched (one predominant pitch)
Complex (simultaneous pitched components or simultaneous
or sequential pitched and noisy components)
Unpitched (noise)

Pitchness profile Unvarying
Varying (e.g. from noisy to pitched)

Pitch profile
(only specified for
pitched sounds)

Unvarying + pitch value

Varying

Type of variations:

Continuous (e.g. siren)
Stepped (e.g. piano phrase)

Ascending
Descending
Delta (i.e. Ascending-Descending) 
Inverse delta
Other

Harmonic timbre Brightness value

(Roughness) Roughness value

Table 4.1: Current scheme of the automatic morphological description system.
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This description scheme includes the following criteria:

• Dynamic  profile:  describes  the  shape  of  the  temporal  envelope.  For  iterative
sounds  (sounds  having  several  transients),  some  numerical  values  of  velocity
(transients per second) and periodicity are also specified.

• Pitchness profile: discriminates sounds with one predominant pitch, sounds with
several pitches and sounds with no pitch.

• Pitchness profile: describes whether the pitchness is constant or varies in function
of time (in that case, pitchness is the mean value).

• Pitch profile: describe the variation of the pitch, only specified for pitched sounds.
For sounds with unvarying pitch, the pitch is given. Pitch-varying sounds sounds
are classified according to the type of variation (continuous or stepped) as well as
the global envelope of the pitch (e.g. ascending, descending...).

• Harmonic timbre criteria, specified by a numerical value of brightness.

• Roughness, described by a numerical value.

According to these criteria, a piano phrase of several low-frequency ascending notes,
for instance, would be described as follows: dynamic profile = 'iterative', pitchness
profile  =  'pitched',  pitchness profile  = 'unvarying',  pitch variation type = 'varying-
stepped', pitch envelope = 'ascending', a low brightness value and a low roughness
value.

4.2 Features extractions

For each morphological criteria, specific low-level descriptors (LLDs) are computed
and used for the classification.  The block diagram of our system is shown in figure
4.1. 

Each  sound  file  is  considered  as  a  single  sound  object,  i.e.  no  segmentation  is
performed. If the energy envelope has no value greater than a given threshold, the
sound is just labelled as silence. If the signal is not silent, it is filtered by the model of
the outer and middle ear given in equation 3.1 and three independent modules extract
the LLDs. 
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4.2.1 Amplitude envelope module

The amplitude envelope is  estimated by applying two cascaded one-pole low-pass
filters with a 2 ms time constant on the full-wave rectified (absolute value) waveform.

This filter has a -3 dB cut-off frequency of 80 Hz and a roll-off of -12 dB per octave
at  higher  frequencies,  so  that  the  range  of  amplitude  modulation  of  the  envelope
producing roughness is preserved (see figure 2.7). Short-term roughness is estimated
by computing the ratio of the energy between 20 and 200 Hz to the total energy of the
magnitude spectrum of the envelope in 250 ms rectangular windows. Total roughness
is obtained by averaging this ratio weighted by the envelope energy over the sound.
This very simple model was implemented recently for testing purpose. It does not
provide accurate estimation of roughness but it does discriminate 'extreme' sounds,
i.e. very rough and very smooth sounds.

The LLDs used to classify sounds into one of the dynamic profile classes, shown in
table 4.1, are all computed from the log-amplitude envelope (for rough modelling of
loudness perception) smoothed by a 60 ms half-hanning window. The other module
based on amplitude envelope analysis computes the LLD allowing to classify sounds
into one of the Dynamic Profile classes showed in table 6. The LLD were chosen
intuitively according to the specificities of each class. For instance we assumed that
the  centre  of  gravity  of  the  envelope  (the  temporal  centroid)  would  allow
discriminating between crescendo, unvarying and decrescendo, according to whether
it is rather at the left, at the middle or at the right of the envelope, and that a crescendo
sound would have a high amplitude derivative average and a maximum value close to
the beginning. A simple onset detection, based on the envelope derivative, is used to
detect  iterative sounds  (sounds with  several  transients).  The half-hanning window
used to smooth the envelope preserves sudden changes, from which the onsets are
detected, but masks rapid modulations, which could produce false onsets detection.
For  iterative  sounds,  some  estimations  of  onset  velocity  and  periodicity  are  also
computed. The velocity is a simple measure of the number of onsets per second, and
the periodicity is estimated from the histogram of the intervals between each pairs of
onsets. Histogram values are first added over a Gaussian window (which size is fixed
at  the smallest  interval value), and the periodicity is  estimated by the ratio of the
highest histogram peak value to the number of onsets. The periodicity value is close
to 1 (exactly (N-1)/N for N onsets) for perfectly periodic onsets, and smaller for non-
periodic onsets.

The  initial  intuitive  selection  of  descriptors  was  modified  according  to  the
classification performance (see 6.3).
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4.2.2 Periodicity module

Pitchness  and  pitch  estimation  is  based  on  the  autocorrelation  method  (see  3.2).
Short-term  autocorrelations  are  computed  in  the  frequency  domain,  as  shown  in
equation  3.4,  in  46  ms  overlapping  hanning  windows.  Autocorrelations  are  then
unbiased by dividing them by the autocorrelation of the hanning window. In periodic
signals, autocorrelation peaks occur at integer multiples of the periods. The amplitude
of  the  peaks  is  a  measure  of  the  pitchness  of  a  sound.  Short-term  pitchness  is
computed from pitch salience, defined in [Slaney98] as the ratio of the magnitude of
the  highest  autocorrelation  peak to  the  magnitude of  the  ACF at  0.  We used the
average of short-term pitch salience weighted by the energy of the frame to determine
the global pitchness of the signal. Highly pitched sounds will have a pitch salience
close to 1 (pure tone), unpitched sounds will have a pitch salience close to 0 (white
noise).  Using  this  measure  to  estimate  whether  a  sound  is  made  of  several
simultaneous pitched components (complex sounds) is not  mathematically justified
since  such  a  sound  will  exhibit  a  pitch  salience  of  1  at  the  smallest  common
periodicity of its partials, i.e. at the lag corresponding to the greatest common divisor
of the partials frequency (e.g. a sound made of two harmonic series with fundamental
frequencies of 200 and 350 Hz will have a pitch salience of 1 at the lag corresponding
to 50Hz). However, when the number of simultaneous pitched components is high,
the smallest common periodicity tend to be high and is likely to be greater than the
higher boundary of our pitch detection range (given below).

The  pitchness  profile  (varying  vs.  unvarying  pitchness)   is  estimated  from  pitch
salience variance.

The pitch is estimated from the highest peak in the autocorrelation for pitched sounds
only (sound with a single pitch). The lower boundary of the pitch detection range is
limited by the size of the analysis window (46 ms) to  around 50 Hz.  The higher
boundary is fixed at 5000 Hz,  i.e. the peak picking starts at the corresponding lag in
the  autocorrelation  function  (9th lag at  a  sampling rate  of  44100 Hz).  In order  to
achieve better pitch estimation, autocorrelation peaks are tracked over time and some
post processing correct  local errors.  The log pitch variance as well  as some pitch
‘step’ (discontinuity followed by flat pitch) detection are then used to discriminate
between sounds with pitch that does not vary, that varies continuously or that varies
by step. The 'shape' of the pitch trajectory (e.g. ascending or descending) is classified
using LLD similar to those used for the dynamic profile (e.g. pitch derivative average,
position of the maximum pitch...).

Short-term brightness is measured by the spectral centroid of the analysis windows.
Global brightness is computed from the average of the short-term spectral centroid
weighted by the energy of the frame.
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All  these functions  are  implemented in  CLAM17,  the  C++ Library for  Audio and
Music developed at the Music Technology Group18.

The list of the LLD used for morphological classification is given in Appendix 2.

4.3 Classification and models evaluation

In order to evaluate our system, we built a small database (around 200 instances for
each class) in which sounds were manually labeled according to the classes defined
earlier.  The  database  is  very varied,  containing sounds  from musical  instruments,
environmental sounds, electronic sounds and loops. Classes of each morphological
criterion were modeled by C4.5 decision tree19 [Win92] (the other classifiers that we
tried did not perform significantly better and decision trees give a clear view on how
features are related to classes) and tested by 10-folds cross-validation20.

Amplitude envelope were modeled for each dynamic profile class class (one against
all), excepted for the Varying-Other class, and the models were tested on the whole
database, including those labeled as  Varying-Other. Classification performance was
very  good  (around  98%)  for  the  Unvarying and  Varying-Crescendo classes,  as
expected  because  of  the  specificity  of  these  classes  and  for  Varying-Impulse and
Varying-Decrescendo classes (around 94%, and most misclassified instances in one
class was labeled as belonging to the other). The poor performance (88%), compared
to  the  other  classes,  of  Varying-Delta amplitude  envelope  classification  might  be
explained by the high variability of this class (close to crescendo, symmetric or close
to  decrescendo).  The onset  detection  correctly detected iterative  sounds  with  very
good performance21 (96%). 

Pitchness discrimination between Noisy and Pitched sounds is close to 100%. Some
errors occur when the pitch is too low to be detected by our current analysis settings
(basically a too short analysis frame size): No peak is detected in the periodogram and
the  sound is  then  classified  as  Noisy22.  The  main problem is  the  classification  of

17 http://www.iua.upf.es/mtg/clam/
18 http://www.iua.upf.es/mtg/
19 All  the  classification  tasks  were  performed  using  Weka,  available  at

http://www.cs.waikato.ac.nz/~ml/weka/
20 X-fold validation consists in building the models on 90% of the data and testing it on  the 10%

remaining. The process is performed 10 times on all the possible combinations. The performance
given by this method is more realistic than when using exactly the same data set for training and
testing.

21 This performance must not be confused with the performance of the onset detection. Here the task
was just to estimate whether a sound contains several onsets, even if some are missing, which is
much simpler than detecting all the onsets.

22 This will be solved by using an adaptive analysis frame size.
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sounds  having  Complex pitchness  (simultaneous  pitched  components,  or
simultaneous or sequential pitched and noisy components):  only 50% are correctly
classified, the rest being classified as noisy or pitched, in the same proportion. Two
issues should be addressed here: whereas the Noisy/Pitched sounds discrimination is
quite obvious, the perceptual boundary between Noisy and Complex and that between
Complex and  Pitched classes is not clear. Moreover, as we already noticed in 4.2,
though the  pitch  salience  is  a  good  feature  for  detecting  complex  sounds  having
simultaneous or sequential pitched and noisy components, it is not very appropriate
for detecting those that have several pitched components. In that case, a multi-pitch
estimation would be necessary.

Pitchness profile classification performance is 70%, which is not very good for a 2-
classes discrimination task. The pitch salience variance isprobably not appropriate or
sufficient. It works very well for sounds having a clearly unvarying (e.g. white noise
or pure sinusoid) or a clearly varying pitchness (e.g. sequence of white noise and pure
sinusoids), but we noticed that many noisy sounds that have a highly varying pitch
salience are perceived as unvaryingly noisy. Smoothing the pitch salience did not
change the performance.

Pitch profile classification error rates are tightly related to automatic pitch estimation
performance. Sounds having an unvarying pitch are correctly classified for 90% of the
instances.  Varying  sounds  are  further  classified  as  continuous or  stepped with  a
performance of 85%. When the pitch is correctly estimated, pitch profile classification
is almost perfect.

The  remaining  criteria  and  classes  were  implemented  recently,  and  only  rough
evaluation was performed. In a database of 15 sounds per class, the performance of
classification into typical pitch patterns (ascending, dedescending, delta, inverse delta
and  other)  was  around  90%.  Regarding  the  roughness,  a  database  containing  20
instances of  'rather rough sounds' and 20 of 'rather smooth sounds' was classified
correctly in 85% of the cases. No evaluation was performed for brightness, but the
feature we used (the spectral centroid) have been found to be strongly correlated to it
in timbre studies, both for musical and environmental sounds (see 2.2.2).

For  classes  modelled by a combination  of features,  such as those of  the dynamic
profile or the pitch profile criteria, the models were obtained by trial and error. We
assumed that a poor classification performance was due to a bad choice of features
rather than a bad choice of classification algorithm. If two classes were confused, we
added features that could help discriminating them better23.

23 For instance, impulsive sounds and decrescendo sounds were often confused by the classification
algorithm.  Since  the  release  of  impulsive  sounds is  typically  steeper  than  that  of  decrescendo
sounds, adding some measure of amplitude derivative after the maximum amplitude value increased
sensibly the performance.
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4.4 MPEG7 extension

An extension  of  the  MPEG  7  audio  description  scheme  based  on  morphological
description was built and integrated to an application for content-based retrieval and
transformation designed in the context of the CUIDADO project. This tool, called the
Sound Palette, is described in [Celma04].

4.5 The AudioClas sound search engine

Some morphological descriptors have been integrated as  alternative search criteria to
a prototype sound search engine designed in the AudioClas24 project [Cano04]. Some
classes of Dynamic Profile, Pitch Profile, Mass (Pitchness) and Mass Profile could be
specified for a search only based on perceptual description or for refining a search by
traditional keywords related to the origin of the sound. A snapshot of the prototype is
shown in figure 4.2.

24 http://www.audioclas.org/
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Figure 4.2: Snapshot of the AudioClas prototype sound search engine. In this example,
the original search (using the keyword 'car') retrieved more than 400 sounds. Filtering
by morphological criteria refined a lot the search and gave only 23 sounds.



5 Usability evaluation of morphological
sound representation for sound
retrieval

Part of this chapter was published in [Ric04].

Describing a sound in terms of morphological criteria requires to focus on the
intrinsic perceptual qualities of sound. We saw that this listening mode is not natural
and that we rather tend to 'hear' directly the sound-producing event or a message
transmitted by a sound (see Chapter 2). In this chapter, we describe an experiment
that aimed at investigating how easy it is for listeners with only minimal training to
describe sounds according to our morphological sound description scheme. More
specifically, we wanted to investigate how objective is this representation and how
useful it could be as a search criterion in a sound retrieval system. We evaluated the
usability of morphological representation for the retrieval of abstract and non-abstract
sounds through an on line questionnaire, including sound examples and tests on the
prototype application shown in section 4.5.

5.1 Material, procedure and subjects

After an introduction to morphological description (including sound examples) and to
the prototype sound search engine, users were asked to label 10 sounds according to
the  dynamic  profile  (crescendo,  decrescendo,  iterative,  impulse,  delta,  unvarying,
other),  the  pitchness  (pitched,  complex,  noisy),  the  pitchness  profile  (unvarying,
varying) and the pitch profile (unvarying, varying-continuous, varying-stepped). This
first  part  aimed at  measuring  the  percentage  of  classification  agreement  over  the
subjects  and to  confirm our assumption that morphological description is  listener-
independent, or can be made so, providing a minimal amount of training.

In the second part, users had to listen to three abstract sounds and to retrieve them in a
database of 100 abstract sounds using the prototype sound search engine. They could
use traditional keywords and/or morphological classes. They were then asked whether
they think that morphological representation was useful  as search criteria for such
sounds  and  if  yes,  whether  it  was  useful  as  a  main  representation  or  as  a
complementary representation to traditional source-related keywords.

The third  part  consisted  in  the same test  but,  this  time,  focusing on non-abstract
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sounds.

In the final part users were asked more general questions on the understandability of
the current dimensions and their names and on the completeness of the description of
each dimension (i.e. are there enough classes to describe each dimension?).  Some
comments were also gathered during informal discussions.

The questionnaire was answered by researchers in music technology, musicians and
sound  technicians.  14  people  answered  the  listening  test,  and  among  them  10
answered the whole questionnaire.  Most of the subjects  (13) had medium or high
musical training. Half of them used sound databases for professional purpose.  Half of
the  subjects  answered the  questionnaire  on line while  the other  half  did it  in  our
office.

5.2 Results

In order to measure how much listener-dependent was each dimension, we calculated
a percentage of agreement, given by the number of sounds classified as the system did
divided by the total number of answers (14 subjects*10 sounds) multiplied by 100.
The results for the listening test are the following:

• 71% agreement for the dynamic profile type. Typical disagreements  were between
following classes: Delta / Crescendo or Decrescendo, Impulse / Decrescendo and
Iterative  /  Any class.  The  two first  disagreement  types  are  due  to  the  unclear
boundaries  between  these  classes.  A  sound  having  a  Delta  shaped  amplitude
envelope with a crescendo part much shorter than the decrescendo part could be
perceived as globally decrescendo.  Disagreements between the Iterative class and
the  other  classes  are  all  due  to  the  fact  that  some people perceive  the  global
envelope  shape  rather  than  each  smaller  entities  a  sound  is  made  of  (e.g.
increasingly strong knocks on a door was often perceived as Crescendo, though,
according to our definition, it is Iterative ).

• 78% agreement for the pitchness type. As expected, disagreements existed mainly
between  Pitched  /  Complex  and  Complex  /  Noisy  classes.  Once  again
disagreements  are due to the unclear boundaries between the classes.  Only one
sound, a bouncing ping pong ball (sequence of very short impulses) was classified
as both Noisy (11 subjects) and Pitched (3 subjects).

• Since pitch profile is (in our current system) only defined for pitched sounds, the
result  was calculated only for such sounds,  which gives an agreement  of 83%.
Most  disagreements  happened  in  one  sound  made  of  two  successive  impulses
having the  same pitch  (bike  bell  rings).  Four  subjects  classified  this  sound as
having a varying-stepped pitch profile, probably because of the iterative amplitude
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envelope type.

• 73% agreement for pitchness profile. Despite the weakness of the model (see the
notes on the evaluation of the model for this dimension in section 4.3), this result
is  not  as  bad  as expected.  As  for  the other  dimensions,  sounds  having clearly
varying or clearly unvarying pitchness profile were correctly classified with much
higher agreement than for ambiguous sounds.

• All the subjects that answered the test  on abstract  sound retrieval (11 subjects)
considered morphological labels as useful.  6 though that they should be use on
their own (i.e. as a primary representation) and 5 though that they should be used
in combination with traditional  labels.  Comments  and suggestions included the
possibility to describe the amount of pitched components vs. noisy components in
sound having complex pitchness, the addition of a dynamic profile sub-category
for specifying the attack (smooth, steep…) and  the need for timbre description.

All the subjects that answered the test on non-abstract sound retrieval (10 subjects)
considered morphological labels as useful in combination with traditional labels. In
addition  to  those  described  above,  more  comments  and  suggestions  were  done,
including the addition of more amplitude envelope types (without  specifying what
could be added)  and some classes  related to  instrumental  practice (e.g.  glissando,
pizzicato...).

The last part dealt with the understandability and the completeness of each dimension.
All found that the  pitchness is understandable and 3 found that it should be further
described. One subject suggested distinguishing harmonic and inharmonic sounds in
the  pitched  class.  Dynamic  profile  is  well  understood  by  all  subjects,  but  one
suggested that the name ‘amplitude envelope shape’ would be more appropriate. Four
subjects though that this dimension should be further described. Suggestions included
adding tremolo and attack description as sub-dimensions,  adding the possibility to
combine the Iterative class with another one (e.g. Iterative-Crescendo) and adding a
tool for drawing any envelope and retrieving corresponding sounds. Comments were
done about the ambiguity between Delta  and Crescendo or Decrescendo for some
sounds. Pitchness profile was not well understood by 2 subjects. One pointed out that
having  three  dimensions  sharing  the  word  pitch is  misleading  and  the  second
commented  that  a  sound  could  have  two  simultaneous  unvarying  and  varying
components.  One  subject  also  found  that  pitchness  and  pitchness  profile  were
incompatible since if a sound is classified as noisy or pitched (this is not true for
complex sounds), it should have an unvarying pitchness profile. Five subjects found
that this dimension should be further described and suggested to add some typical
profile, such as  pitched to noisy. Pitch profile is not well understood by 2 subjects,
one because of the use of the word pitch (see above) and the second because he did
not  understand  well  the  class  Varying-Continuous.  Four  subjects  found  that  this
dimension  should  be  further  described  by  adding  some  pitch  contour  classes
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(ascending, descending…).

Surprisingly, only one subject suggested adding one morphological dimension, timbre
(with no more details), to the current scheme.

No correlation was found between the results and the musical training or the use of
sound databases for professional purpose.

5.3 Discussion

These results show that morphological labels are useful for retrieving abstract sounds
as  a  primary  or  complementary representation  and  for  non-abstract  sounds   as  a
complementary representation. Some useful comments were done in order to improve
the  system.  The  main  problem  seems  to  be  that  exclusive  classes  often  lead  to
misclassification  for  ambiguous  sounds.  This  could  be  solved  by  using  fuzzy
classification techniques, which give a probability of membership to all classes and
allow then to discriminate typical sounds (e.g. 95% crescendo and 5% delta) from
ambiguous  sounds  (e.g.  50% decrescendo,   40% impulse  and  10% delta).  It  also
seems  sometimes  difficult  for  users  to  perceptually  separate  the  different
morphological dimensions (see the bike bell rings example in results of the listening
test  for  pitch  profile).  Since  this  way  of  listening  (called  reduced  listening by
Schaeffer) is unnatural, we assume that some more training would be sufficient to be
able to focus on only one dimension. Some suggested features have been implemented
(e.g. roughness and pitch contour) or will be considered for future work (e.g. analysis
of each component of complex sounds). Adding a tool for drawing any profile is not
planned yet because of the technical complexities it would amount.
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6 Applications

In this chapter we review some potential applications of an automatic morphological
description tool as well as some already existing systems.

6.1 Sound retrieval

Sound databases are used a lot by professionals of  music composition and video or
movie post production. Rapid development of information storage technology allows
building larger and larger databases, making the retrieval of a specific sound a hard
task. Typical commercial sound retrieval systems are usually source-centred, which
means that retrieval is based on using the proper keywords or selecting the proper
category that  defines  or specifies  a sound source (e.g.  [SFXLib]).  In that  context,
sounds  having  no  identifiable  source  (abstract  sounds)  can  hardly  be  retrieved.
Moreover,  labels  used  for  this  type of sounds  (“electronic”,  “weird”,  “FX”...)  are
often not consistent and vary from one company to another. Other approaches, based
on perceptual description seem more suitable for abstract sound retrieval.

In  the  ECRINS  project,  a  description  scheme  is  defined,  in  which  sounds  are
described  according  to  the  following  dimensions,  some  of  them  being  based  on
Schaeffer's  morphology:  Dynamic  profile  (amplitude  evolution),  melodic  profile
(pitch evolution), pitch, spectral distribution, and sound location [Geslin02]. Each of
these dimensions is specified by a value or a set of values representing a typical case
that  can be used as a search criterion. Some of these values or sets of values are
automatically  estimated and the description can be refined manually by the user.
However, the classification allowed by the automatic description is quite limited and
the description scheme only includes pitched sounds. In Musclefish's system25 , called
Soundfisher, an automatic analysis is performed in order to classify or query sounds
according  their  perceptual  or  acoustical  content.  The  features  computed  include
loudness, pitch, brightness, bandwidth (a measure of the spectrum width, its value is 0
for a pure tone and infinity for white noise), a measure related to timbre (MFCC) and
their derivatives. Queries consist in specifying previously learned classes based on
these features or in searching sounds similar to one provided by the user (search by
similarity)  by  comparing  the  corresponding  feature  vectors  [Wold96]26.  Another
system, described in [McAd99], aimed at building a perceptual distance model from
the physical attributes found to best correlate to the dimensions of the timbre space

25 www.musclefish.com/
26 Muscefish audio content retrieval technology has been recently integrated to Virage's AudioLogger

(www.virage.com).
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derived in  [Krum89] and  [McAd95] (see chapter 2 and 3). This distance was then
used to retrieve sound by similarity in a database of harmonic musical sounds.

In the  systems  described  above,  the  perceptual  representation  is  either  limited  to
harmonic sounds or only used for search by similarity. Harmonic sounds only lie in a
small  part  of  the  much  larger  perceptual  space  we  need  to  consider  for  abstract
sounds, and it is not always possible to provide an example of a sound we want to
retrieve.  We  think  that  computational  morphological  description,  as  described  in
chapter 4, could be of great interest for perceptual sound retrieval. The labels obtained
could be used directly as search criteria, on their own or to refine a traditional search
by source, and the LLDs used to estimate the labels can be used as features for a
search by similarity, either global using the whole set of LLDs or by dimensions using
specific LLDs (for example one could search for a sound that has a similar envelope
to a given sound and a similar roughness to another one).

Our system was integrated in a prototype sound search engine combining semantic
and  perceptual  representation  to  ease  sound retrieval,  described  in  [Cano04] (see
section 4.5). A usability evaluation of morphological description for sound retrieval is
described in Chapter 5.

6.2 Segmentation

Temporal  audio  segmentation  is  the  process  of  dividing  a  sound  stream  into  a
sequence of elements. Algorithms are generally based on a two-steps process: first
some short-term features,  specific  to  the  segmentation  task  to  be  performed (e.g.
energy, phase, pitch, probability for a frame to belong to a class -e.g. speech or music
-...)  are  computed  and  then  a  detection  function  (typically  a  detection  of
discontinuities) is computed from these features in order to estimate the boundaries of
the segments. 

Segmentation is the basis of music analysis or processing and most of the research on
segmentation is done for such applications. In that context, the elements are notes or
any other musical events. Typical algorithms for  automatic segmentation of music
consist  in  detecting  the  transients  due  to  attacks  at  the  beginning  of  the  notes.
Successful methods include detecting energy bursts in high frequency (e.g. [Masri96])
or in several frequency bands (e.g.  [Klap99]), detecting discontinuities in the phase
spectrum  [Bello03] or combining amplitude and phase methods  [Dux03].  A more
complex  system,  using  different  features  and  detection  functions  for  performing
multi-level segmentation of musical signal (note segmentation, vibrato detection and
speech/music discrimination) is described in [Ros00]. Another approach, that can be
used for general-purpose segmentation, is to detect discontinuities in a measure of
global  distance  between  successive  vectors  of  features   representing  different
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dimensions of the sound (e.g. timbre, pitch, energy...) [Tzan99] [Foote00] [Zhang01]. 

All the algorithms described above are either specific to traditional musical sound or
to  limited  classes  (e.g.  speech/music)  or  perform  a  somewhat  arbitrary  global
segmentation  of  signals.  By using  morphological  descriptors  as  the  features,  one
could  perform  a  segmentation  according  to  any  combination  of  the  dimensions
described in Chapter 2 (e.g. detection of noisy segments or detection of vibrato). This
would be particularly useful for the analysis of electronic music, as discussed in 6.4.

6.3 Visualization

Sound  visualization  is  the  process  of  mapping  sonic  (physical  or  perceptual)
parameters  to  visual  parameters.  A simple  visual  representation  is  the  waveform,
which is a plot of the amplitude variation against time, as shown in figure 6.1. 

Although the waveform does not provide much perceptual information on a sound, it
is  widely  used  for  control  or  editing  purpose.  In  sound  editing  applications,  for
instance, it allows controlling visually that a file actually contains a sound and eases
sound handling tasks, such as selecting a segment for applying a given effect on it.
Another visual representation of physical sonic parameters is the 3D representation of
short-term frequency spectrum against time, called sonogram, shown in figure 6.2.
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Figure  6.1:  Waveform  of  a  fragment   of  a
saxophone  solo. 



This representation contains a lot of data and is still not easily interpretable in terms
of  perceptual  properties  of  a  sound27. Some kind  of  visual  summarization  of  the
frequency axis into simple perceptual features have been proposed for sound retrieval
purpose. Visual representations are of great interest for sound retrieval applications
since some intuitive mapping allows visually browsing quickly a large amount  of
sounds. The commercial sound search engine designed by Comparisonics28 shows for
each  sound the  waveform coloured  according to  the  frequency content.  From the
information given on the company's website, “shades of red are used for high-pitched
sounds; greens and blues are used mostly for mid-range sounds; and bass sounds are
represented  by dark  colors.”  An example  of  coloured  waveform (in  grayscale)  is
shown in figure 6.3. 

27  The inverse process, i.e. the conversion of images in such time frequency representation, has been
proposed as a sonic  interpretation of the visual environment for blind people. A system based on
this idea, as well as a description of the mapping used, is described at  www.visualprosthesis.com
and in [Meijer93]

28 http://www.findsounds.com/
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Figure 6.2: Sonogram of the fragment of saxophone solo shown in figure 5.1.



In  a  similar  representation,  described  in  [Tzan02] and  called  timbregram,  the
waveform is coloured according to timbre features. One can see in these images a
representation of the form, matter and variation criteria proposed by Schaeffer and
described in 2.3.2. The form is given by the shape of the waveform, some matter
criterion is represented by the colors and the variation of this criterion can be visually
interpreted  (e.g.  in  the  siren  sound  shown  in  figure  6.3  the  periodic  frequency
modulation is  easily visible).  Similar  mappings using morphological criteria could
allow users to choose the perceptual attribute they want to focus on, and switching
between representations based on different mappings could ease and speed up the
retrieval of a specific sound.

The visual representations described above are obtained by direct mapping of short
term  sound  descriptors  along  a  time  axis.  The  perceptual  identity  of  a  sound  is
deduced  by  an  interpretation  of  patterns  of  these  descriptors  (e.g.  shape  of  the
envelope, pitch trajectory...). Defining some perceptual categories, i.e. discrete values
along each perceptual dimension, such as those proposed by Schaeffer (see 2.4), and
mapping them to discrete values of visual  shape, colour or texture,  could provide
symbolic representations for electronic music notation, as discussed in 6.4.

6.4 Electronic music notation

Musical representations are indispensable for analysis, interpreting or communicating
a piece of music. The traditional western musical score, as shown in figure 2.3, has
been used for a long time to represent music  made of discrete  notes from known
instruments. Contemporary or electronic musics, which make use of a much larger
range of sounds (e.g. noises, environmental sounds, sounds varying continuously...)
cannot be represented using this notation, and composers of such music often devise
their own notation, such as that shown in figure 6.4
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Figure  6.3:  Waveform  of  a  siren
sound  coloured  according  to  the
frequency content. Dark regions are
high  pitched  and  light  regions are
low-pitched.  From
www.findsounds.com



A program for the annotation of electronic music was designed by the 'Groupe de
Recherche Musicale29' (Music Research Group) created by Pierre Schaeffer in the late
50's. This program, called Acousmographe, displays the waveform and a sonogram
(see figure 6.3) that can be indexed and annotated by the user. The main feature is the
possibility to manually add a graphical symbolic representation (coloured shape or
imported image) to represent a segment selected by the user [Acous00]. An  algorithm
that retrieves segments perceptually similar, to speed up the annotation, will also be
integrated [Spev02].

That was the primary objective of Schaeffer's typo-morphology (see 2.4) to provide a
basis for the analysis of electronic music [Schaef66]. Automatic transcription systems
for traditional western music (e.g.  [Klap04]) performs automatic segmentation into
notes and pitch estimation  for each note.  In the same way, morphological  criteria
could be used to automatically detect, describe and visualize sound objects in a piece
of electronic music.

29 http://www.ina.fr/grm/
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Figure 6.4: Fragment of the score designed by Fátima Miranda for her piece “A
Inciertas Edades” (from http://www.fatima-miranda.com).



7 Conclusion and future work

In this chapter we summarize and discusse the work described in this document and
propose some future work to be done for the final thesis.

7.1 Summary of contributions

We described in the first chapter of this document a study showing that listeners tend
to talk about sounds by referring to the event that produced it. Recognising the source
is the primary function of auditory perception and describing the sound itself is a
difficult and unnatural task. We showed that describing a sound with no reference to
its origin, or to a meaning it may contain, actually amounts to describe the perceptual
image built by our auditory system from the acoustic stimulus. Auditory perception is
far  from  being  fully  understood,  but  some  experiments  helped  identify  some
dimensions  of  our  auditory  perceptual  space.  These  studies  often  aimed  at
investigating  specific  dimensions  from  psycho-acoustical  data  (e.g.  pitch,
roughness...) or sub-spaces derived from subjective similarity judgments on pairs of
specific sounds (e.g. musical or environmental sounds). The first step of our work
consisted in reviewing the perceptual criteria found in these experiments (chapter 2)
and the models that have been proposed for some of them (chapter 3). We showed
that  the  perceptual  space  obtained  by combining  the  results  of  these  studies  was
similar to that defined in Pierre Schaeffer's work on sound objects description, so that
his  typo-morphology  could  serve  as  a  good  basis  for  a  general  perceptual
representation.  In chapter  4  we described a  system that  automatically generates  a
simplified perceptual description based on Schaeffer's morphological criteria. Some
specific low-level features are extracted and directly assigned as numerical values for
some criteria (e.g. roughness = '0.1') or combined by simple rules to identify a typical
class  for  others  (e.g.  dynamic  profile  =  'impulsive',  pitchness  =  'noisy'...).  An
evaluation of the usability of this representation, described in chapter 5, showed that it
is rather listener-independent and it is judged as useful in a sound retrieval task by a
pool  of users,  both  for  abstract  and non-abstract  sounds.  Finally, we described in
chapter 6 some potential applications of computational morphological description and
showed that  it  would be of great interest  for segmenting, retrieving or visualising
abstract sounds.
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7.2 Discussion and future work

The  work  reported  in  this  document  suggests  that  a  perceptual  representation  is
needed to handle abstract sounds in content-based audio description systems. It also
shows  that  perceptual  criteria  can  be  automatically  extracted  by some algorithms
based on current knowledge on auditory perception. Further research will consist in
completing the description scheme, improving the computational  models used and
investigating some potential applications described in Chapter 5.

7.2.1 Completing the description scheme

Our current description scheme, shown in table 4.1, has been built progressively from
Schaeffer's typo-morphology (see section 2.4.3 or Appendix 1), starting by the criteria
that  were  found  to  be  salient  in  our  perception  of  environmental  sounds,  which
exhibits  a  complete  range  of  the  qualities  we  aim  at  describing.  The  resulting
representation is  not complete  and, although we still  don't  know what  a complete
perceptual representation would be, it seems clear that some important features are
missing.  Remaining  criteria  from  Schaeffer's  typo-morphology  should  first  be
considered,  e.g.  characterization  of  the  attack,  description  of  the  velocity  and
periodicity  of  the  pitch  profile  or  detection  and  characterization  of  vibrato  and
tremolo, as well as  further description of what Schaeffer called harmonic timbre (e.g.
'metallicness',  'richness'...)  and further  characterization of varying pitchness  profile
(e.g. 'noisy to pitched'...). Other important missing features are the loudness and the
characterization  of  the  frequency content  of  noisy sounds,  the  'pitch  of  noise',  to
discriminate, for instance, low, middle and high frequency noises. Table 2.1, though
not exhaustive, will provide a basis for future work.

7.2.2 Improving the computational models, investigating new
features and testing fuzzy classification techniques

The  computational  models  used  in  our  system are  quite  simple  and  appeared  to
perform  poorly  for  certain  sounds.  The  onset  detection  is  based  on  energy
discontinuities  and  failed  at  detecting  smooth  transients,  such  as  those  played by
bowed  instruments  or  singing  voice.  More  complex  algorithms,  such  as  that
combining magnitude and phase discontinuities detection (see section 6.2) should be
investigated.  Regarding  pitch  estimation,  the  model  we  used  performs  well  for
monophonic  harmonic  sounds  but  does  not  explicitly  detect  several  pitched
components.  Multi-pitch  analysis would  allow  detecting  and  further  describing
polyphonic sounds30 (e.g. number of components, pitches and magnitudes) and would

30 An algorithm for multi-pitch estimation, only evaluated for musical sounds, is described by Klapuri
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therefore improve pitchness and pitchness profile classification. The simplified model
of roughness we tested recently allows discriminating extreme sounds (very rough vs.
very smooth) with correct performance, but the complete model should definitely be
implemented for a better estimation of a whole range of roughness. Some methods for
estimating the new criteria proposed in 7.2.1 (e.g. metallicness´ or 'pitch of noise')
should also be investigated.

The features extracted from the amplitude envelope for dynamic profile classification
performs  well  and  are  not  planned  to  be  modified.  Regarding  pitch  profile
classification, the main problem  seems to be the pitch estimation itself rather than the
set of features, which are similar to those used for dynamic profile classification. In
the case of pitchness classification, only one feature is used, the pitch salience, which
detects with good performance only extreme sounds (noise or monophonic harmonic
sounds) while complex sounds are detected somewhat by default, i.e. as not being a
noise nor a pitched sounds. Features extracted from multi-pitch estimation, e.g. noisy
to pitched components energy ratio and number of components, are likely to perform
much better.

Finally,  while  classification  trees  perform  well  when  applied  to  sounds  clearly
belonging to a  given class,  it  can lead to  misclassification for ambiguous sounds,
lying  at  the  boundary between  two  classes.  Some  fuzzy  classification  techniques
should be more appropriate and will be investigated.

7.2.3 Investigating potential applications

The main  practical  goal  of  designing a perceptual  audio  description  scheme is  to
provide abstract  sounds with a representation to handle them in the content-based
applications described in Chapter 6, including parametric  perceptual segmentation,
retrieval and visualization. This representation could also be used as a complement of
causal and musical representations for non-abstract sounds, as proposed  in Chapter 5.
As a final objective, we would like to combine these applications to investigate the
use of morphological description for electronic music notation.

in [Klap04]. 
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Appendix 1

Schaeffer's typo-morphology summary table
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Appendix 2 Low-level descriptors used for
morphological classification

Dynamic profile

All LLDs were computed on the log-amplitude envelope A(n), of size N.

• Flatness coefficient: ratio of the value above which lie 5%  of the values to the
value above which lie 80% of the values:

Flatness=
E 5

E80

where EX is the value above which lie X% of A(n), given by

E X=Asorted round N 100−X 
100 

This coefficient is close to one for flat envelope and large for sounds having a large
dynamic.

• Number of onsets, detected by looking for peaks above a threshold on the
amplitude envelope derivative. If the number of onsets is greater than 1 (the first
onset correspond to the attack of the sound), the sound is classified as iterative.

• Maximum amplitude time to total length ratio, given by

MaxToTot=
nmax
N
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where A  nmax =max  A  n  

This coefficient show how much the maximum amplitude is off-center. Its value is
close to 0 if the maximum is close to the beginning (e.g. Decrescendo or Impulsive
sounds), close to 0.5 if it is close to the middle (e.g. Delta sounds) and close to 1 if
it is close to the end of the sound (e.g. Crescendo sounds).

• Temporal centroid to total length ratio, given by

TCToTot=
TC
N

where the temporal centroid TC is given by 

TC=
∑
n=0

n=N−1
A n ⋅n

∑
n=0

n=N−1
n

This coefficient show how the sound is 'balanced'. It is close to 0 if most of the
energy lies at the beginning (e.g. Decrescendo or Impulsive sounds), close to 0.5 is
the sound if symmetric (e.g. Unvarying or Delta sounds) and close to 1 if most of
the energy lies at the end of the sound (e.g. Crescendo sounds).

• Derivative  average,  weighted  by the  amplitude,  after  the  maximum amplitude,
given by

DerAvAfterMax=

∑
k=nmax

k=N−1
 A n −A n−1  ×A  n 

∑
k=nmax

k=N−1
A  n 
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This  coefficient  helps  discriminating  Impulsive  sounds,  which  have  a  steepest
release, so a smaller value, from Decrescendo sounds.

• Maximum derivative before the maximum, given by

MaxDerBeforeMax=max  A n −A n−1   , for n∈[1 nmax ]

This  coefficient  helps  discriminating  Crescendo and  Delta  sounds,  that  have  a
smooth attack, so a smaller value than sounds with different dynamic profile.

Pitchness

• Average of the short-term pitch salience weighted by the short-term energy. The
pitch salience is given by the ratio of the highest peak to the 0-lag peak in the
autocorrelation function (ACF).

The ACF r(n) is given for a discrete signal x(n) by

r  n = 1
K

∑
k=0

K−n−1
x  k × x  kn 

and the pitch salience is given by

Pitch salience=
max  r  n   for n∈[ nmin nmax ]

r 0 

where nmin and nmax are specified by the pitch analysis range, as explained in 4.2.1.

Unpitched sounds have a value close to 0 while harmonic sounds have a value
close to 1.

Pitchness profile

• Pitch salience variance
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The variance of a function f(p) of length P is given by

Var  f  p  = 1
P ∑
p=0

P−1
 f  p − 2

where μ is the average value of f(p).

Sounds  having  Unvarying  pitchness  have  a  small  value  while  sounds  having
varying pitchness have a high value.

Pitch profile

All LLDs were computed on the log-pitch envelope Pitch(n). Some segmentation was
performed by detecting peaks above a threshold in the pitch envelope acceleration.
The following LLDs were then used:

For Unvarying/Varying-Continuous/Varying-stepped pitch profile classification:

• Pitch(n) variance.

Sounds having Unvarying pitch have a small value while sounds having Varying
pitch have a high value.

• Average of the log pitch variances computed in each segment.

Sounds having a pitch varying by steps have small  value (for such sounds, one
segment correspond to one step, in which the pitch does not vary) while sounds
having  a  pitch  varying  continuously  have  a  high  value  (in  that  case,  no
discontinuities are detected, so the variance is computed over the whole sound).

For  Delta/Inverse  delta/Ascending/Descending/Other  pitch  profile  classification
(test):

• Minimum pitch time to total length ratio.

Sounds having an ascending pitch a value close to 0.

• Pitch centroid (center of gravity of the pitch).

This LLD is similar to the temporal centroid use for dynamic profile classification.
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• Ratio of energy after the maximum to energy before the maximum.

Sounds having an ascending pitch have a small while sounds having a descending
pitch have a high value.
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