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Abstract. In this paper, we describe an approach to learning expres-
sive performance rules from monophonic Jazz standards recordings by
a skilled saxophonist. We use a melodic transcription system which ex-
tracts a set of acoustic features from the recordings producing a melodic
representation of the expressive performance played by the musician. We
apply genetic algorithms to this representation in order to induce rules of
expressive music performance. The rules collected during different runs
of our system are of musical interest and have a good prediction accuracy.

1 Introduction

Expressive performance is an important issue in music which has been studied
from different perspectives (e.g. [8]). The main approaches to empirically study
expressive performance have been based on statistical analysis (e.g. [26]), math-
ematical modelling (e.g. [27]), and analysis-by-synthesis (e.g. [7]). In all these
approaches, it is a person who is responsible for devising a theory or mathemat-
ical model which captures different aspects of musical expressive performance.
The theory or model is later tested on real performance data in order to deter-
mine its accuracy.

In this paper we describe an approach to investigate musical expressive per-
formance based on evolutionary computation. Instead of manually modelling
expressive performance and testing the model on real musical data, we let a
computer use a genetic algorithm [14] to automatically discover regularities and
performance principles from real performance data (i.e. Jazz standards example
performances).

The rest of the paper is organized as follows: Section 2 describes how the
acoustic features are extracted from the monophonic recordings. In Section 3 our
approach for learning rules of expressive music performance is described. Section
4 reports on related work, and finally Section 5 presents some conclusions and
indicates some areas of future research.



2 Melodic Description

In this section, we summarize how the melodic description is extracted from
the monophonic recordings. This melodic description has already been used to
characterize monophonic recordings for expressive tempo transformations using
CBR [12]. We refer to this paper for a more detailed explanation.

We compute descriptors related to two different temporal scopes: some of
them related to an analysis frame, and some other features related to a note
segment. All the descriptors are stored into a XML document. A detailed expla-
nation about the description scheme can be found in [11].

The procedure for description computation is the following one. First, the
audio signal is divided into analysis frames, and a set of low-level descriptors are
computed for each analysis frame. Then, we perform a note segmentation using
low-level descriptor values. Once the note boundaries are known, the note de-
scriptors are computed from the low-level and the fundamental frequency values.
We refer to [10,12] for details about the algorithms.

2.1 Low-level descriptors computation

The main low-level descriptors used to characterize expressive performance are
instantaneous energy and fundamental frequency. Energy is computed on the
spectral domain, using the values of the amplitude spectrum. For the estima-
tion of the instantaneous fundamental frequency we use a harmonic matching
model, the Two-Way Mismatch procedure (TWM) [18]. First of all, we perform
a spectral analysis of a portion of sound, called analysis frame. Secondly, the
prominent spectral peaks of the spectrum are detected from the spectrum mag-
nitude. These spectral peaks of the spectrum are defined as the local maxima
of the spectrum which magnitude is greater than a threshold. These spectral
peaks are compared to a harmonic series and an TWM error is computed for
each fundamental frequency candidates. The candidate with the minimum error
is chosen to be the fundamental frequency estimate. After a first test of this im-
plementation, some improvements to the original algorithm where implemented
and reported in [10].

2.2 Note segmentation

Note segmentation is performed using a set of frame descriptors, which are energy
computation in different frequency bands and fundamental frequency. Energy
onsets are first detected following a band-wise algorithm that uses some psycho-
acoustical knowledge [17]. In a second step, fundamental frequency transitions
are also detected. Finally, both results are merged to find the note boundaries.

2.3 Note descriptor computation

We compute note descriptors using the note boundaries and the low-level descrip-
tors values. The low-level descriptors associated to a note segment are computed



by averaging the frame values within this note segment. Pitch histograms have
been used to compute the pitch note and the fundamental frequency that rep-
resents each note segment, as found in [19]. This is done to avoid taking into
account mistaken frames in the fundamental frequency mean computation.

2.4 Implementation

All the algorithms for melodic description have been implemented within the
CLAM framework . They have been integrated within a tool for melodic de-
scription, Melodia. This tool is available under GPL license. of the melodic de-
scription tool.

3 Learning expressive performance rules in Jazz

In this section, we describe our inductive approach for learning expressive per-
formance rules from Jazz standard performances by a skilled saxophone player.
Our aim is to find note-level rules which predict, for a significant number of
cases, how a particular note in a particular context should be played (e.g. longer
than its nominal duration). We are aware of the fact that not all the expressive
transformations regarding tempo (or any other aspect) performed by a musician
can be predicted at a local note level. Musicians perform music considering a
number of abstract structures (e.g. musical phrases) which makes of expressive
performance a multi-level phenomenon. In this context, our ultimate aim is to
obtain an integrated model of expressive performance which combines note-level
rules with structure-level rules. Thus, the work presented in this paper may be
seen as a starting point towards this ultimate aim.

The training data used in our experimental investigations are monophonic
recordings of four Jazz standards (Body and Soul, Once I loved, Like Someone in
Love and Up Jumped Spring) performed by a professional musician at 5 different
tempos around the nominal one (i.e. the nominal, 2 slightly faster and 2 slightly
slower).

In this paper, we are concerned with note-level expressive transformations, in
particular transformations of note duration, onset and energy. The note-level per-
formance classes which interest us are lengthen, shorten, advance, delay, louder
and softer. A note is considered to belong to class lengthen if its performed dura-
tion is 20% or more longer that its nominal duration, e.g. its duration according
to the score. Class shorten is defined analogously. A note is considered to be
in class advance if its performed onset is 5% of a bar earlier (or more) than its
nominal onset. Class delay is defined analogously. A note is considered to be in
class louder if it is played louder than its predecesor and louder then the average
level of the piece. Class softer is defined analogously.

Each note in the training data is annotated with its corresponding class
and a number of attributes representing both properties of the note itself and

! http://www.iua.upf.es/mtg/clam



some aspects of the local context in which the note appears. Information about
intrinsic properties of the note includes the note duration and the note’s metrical
position, while information about its context includes the duration of previous
and following notes, and extension and direction of the intervals between the
note and both the previous and the subsequent note.

Using this data, we applied a genetic algorithm to automatically discover reg-
ularities and music performance principles. A genetic algorithm can be seen as a
general optimization method that searches a large space of candidate hypothesis
seeking one that performs best according to a fitness function. The genetic algo-
rithm we used for this investigation is the standard algorithm (reported in [6])
with parameters r, m and p respectively determining the fraction of the parent
population replaced by crossover, the mutation rate, and population size. We set
these parameters as follws: r = 0.8, m = 0.05 and p = 200. During the evolution
of the population, we collected the rules with best the fitness for the classes of
interest (i.e. shorten, same and lengthen). It is worth mentioning that although
the test was running over 40 generations, the fittest rules were obtained around
the 20th generation.

Hypothesis representation. The hypothesis space of rule preconditions con-
sists of a conjunction of a fixed set of attributes. Each rule is represented as a
bit-string as follows: the previous and next note duration are represented each by
five bits (i.e. much shorter, shorter, same, longer and much longer), previous and
next note pitch are represented each by five bits (i.e. much lower, lower, same,
higher and much higher), metrical strength by five beats (i.e. very weak, weak,
medium, strong and very strong), and tempo by three bits (i.e. slow, nominal
and fast). For example in our representation the rule

“f the previous note duration is much longer and its pitch is the same and it
is in a very strong metrical position then lengthen the duration of the current
note”

is coded as the binary string
00001 11111 00100 11111 00001 111 001

The exact meaning of the adjectives which the particular bits represent are
as follows: previous and next note durations are considered much shorter if the
duration is less than half of the current note, shorter if it is shorter than the
current note but longer than its half, and same if the duration is the same as the
current note. Much longer and longer are defined analogously. Previous and next
note pitches are considered much lower if the pitch is lower by a minor third or
more, lower if the pitch is within a minor third, and same if it has same pitch.
Higher and much higher are defined analogously. The note’s metrical position
is very strong, strong, medium, weak, and very weak if it is on the first beat
of the bar, on the third beat of the bar, on the second or fourth beat, offbeat,
and in none of the previous, respectively. The piece was played at slow, nominal,
and fast tempos if it was performed at a speed slower of more than 15% of the



nominal tempo (i.e. the tempo identified as the most natural by the performer),
within 15% of the nominal tempo, and faster than 15% of the nominal tempo,
respectively.

Genetic operators. We use the standard single-point crossover and mutation
operators with two restrictions. In order to perform a crossover operation of
two parents the crossover points are chosen at random as long as they are on
the attributes substring boundaries. Similarly the mutation points are chosen
randomly as long as they do not generate inconsistent rule strings, e.g. only one
class can be predicted so exactly one 1 can appear in the last three bit substring.

Fitness function. The fitness of each hypothesized rule is based on its clas-
sification accurracy over the training data. In particular, the function used to
measure fitness is

tp'*/(tp + fp)
where tp is the number of true positives and fp is the number of false positives.

Despite the relatively small amount of training data some of the rules gen-
erated by the learning algorithms have proved to be of musical interest and
correspond to intuitive musical knowledge. In order to illustrate the types of
rules found let us consider some examples of duration rules:

RULE1: 01000 11100 01111 01110 00111 111 010

“If the previous note is slightly shorter and not much lower in pitch, and the
next note is not longer and has a similar pitch (within a minor third), and the
current note is not on a weak metrical position, then the duration of the current
note remains the same (i.e. no lengthening or shortening).”

RULE2: 11111 01110 11110 00110 00011 010 001

“In nominal tempo, if the duration of the next note is similar and the note is in
a strong metrical position then lengthen the current note.”

RULE3: 00111 00111 00011 01101 10101 111 100

“If the previous and next notes durations are longer (or equal) than the duration
of the current note and the pitch of the previous note is higher then shorten the
current note.”

These simple rules turn out to be very accurate: the first rule predicts 90%,
the second rule predicts 92% and the third rule predicts 100% of the relevant
cases. The rules were collected during 10 independent runs of the genetic algo-
rithm. The mean accuracy of the 10 best rules collected (one for each run of
the algorithm) for “shorten”, “same” and “lengthen” was 81%, 99% and 64%,
respectively. We implemented our system using the evolutionary computation
framework GAlib [9].



4 Related work

4.1 Evolutionary computation

Evolutionary computation has been considered with growing interest in musical
applications. Since [15], it has often been used in a compositional perspective,
either to generate melodies ([4]) or rhythms ([28]). In [22] the harmonization
subtask of composition is addressed, and a comparison between a rule-based
system and a genetic algorithm is presented.

Evolutionary computation has also been considered for improvisation appli-
cations such as [3], where a genetic algorithm-based model of a novice Jazz mu-
sician learning to improvise was developed. The system evolves a set, of melodic
ideas that are mapped into notes considering the chord progression being played.
The fitness function can be altered by the feedback of the human playing with
the system.

Nevertheless, few works focusing on the use of evolutionary computation
for expressive performance analysis have been done. The issue of annotating
correctly a human Jazz performance regarding the score is addressed in [13],
where the weights of the edit distance operations are optimized with genetic
algorithm techniques.

4.2 Other machine learning techniques

Previous research in learning sets of rules in a musical context has included
a broad spectrum of music domains. The most related work to the research
presented in this paper is the work by Widmer [29, 30]. Widmer has focused on
the task of discovering general rules of expressive classical piano performance
from real performance data via inductive machine learning. The performance
data used for the study are MIDI recordings of 13 piano sonatas by W.A. Mozart
performed by a skilled pianist. In addition to these data, the music score was also
coded. The resulting substantial data consists of information about the nominal
note onsets, duration, metrical information and annotations. When trained on
the data, the inductive rule learning algorithm named PLCG [31] discovered a
small set of 17 quite simple classification rules [29] that predict a large number of
the note-level choices of the pianist.In the recordings the tempo of a performed
piece is not constant (as it is in our case). In fact, of special interest to them are
the tempo transformations throughout a musical piece.

Other inductive machine learning approaches to rule learning in music and
musical analysis include [5], [2], [21] and [16]. In [5], Dovey analyzes piano perfor-
mances of Rachmaniloff pieces using inductive logic programming and extracts
rules underlying them. In [2], Van Baelen extended Dovey’s work and attempted
to discover regularities that could be used to generate MIDI information derived
from the musical analysis of the piece. In [21], Morales reports research on learn-
ing counterpoint rules. The goal of the reported system is to obtain standard
counterpoint rules from examples of counterpoint music pieces and basic musical
knowledge from traditional music. In [16], Igarashi et al. describe the analysis of



respiration during musical performance by inductive logic programming. Using a
respiration sensor, respiration during cello performance was measured and rules
were extracted from the data together with musical/performance knowledge such
as harmonic progression and bowing direction.

5 Conclusion

This paper describes an evolutionary computation approach for learning expres-
sive performance rules from Jazz standards recordings by a skilled saxophone
player. Our objective has been to find note-level rules which predict, for a sig-
nificant number of cases, how a particular note in a particular context should
be played (e.g. longer or shorter than its nominal duration). In order to induce
expressive performance rules, we have extracted a set of acoustic features from
the recordings resulting in a symbolic representation of the performed pieces and
then applied a genetic algorithm to the symbolic data and information about
the context in which the data appear.

Future work: This paper presents work in progress so there is future work
in different directions. We plan to increase the amount of training data as well
as experiment with different information encoded in it. Increasing the training
data, extending the information in it and combining it with background musical
knowledge will certainly generate a more complete set of rules. Another short-
term research objective is to compare expressive performance rules induced from
recordings at substantially different tempos. This would give us an indication
of how the musician note-level choices vary according to the tempo. We also
intend to incorporate structure-level information to obtain an integrated model
of expressive performance which combines note-level rules with structure-level
rules. A more ambitious goal of this research is to be able not only to obtain
interpretable rules about expressive transformations in musical performances,
but also to generate expressive performances. With this aim we intend to use
genetic programming to evolve an initial population of rule trees and interpret
these trees as regression trees.
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