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Abstract

In this paper we describe a machine learning approach to one
of the most challenging aspects of computer music: mod-
eling the knowledge applied by a musician when perform-
ing a score in order to produce an expressive performance of
a piece. We apply machine learning techniques to a set of
monophonic recordings of Jazz standards in order to induce
both rules and a numeric model for expressive performance.
We implement a tool for automatic expressive performance
transformations of Jazz melodies using the induced knowl-
edge.

Introduction
Expressive performance is an important issue in music
which has been studied from different perspectives (e.g.
(Seashore 1936; Gabrielsson 1999; Bresin 2000)). The main
approaches to empirically studying expressive performance
have been based on statistical analysis (e.g. (Repp 1992)),
mathematical modelling (e.g. (Todd 1992)), and analysis-
by-synthesis (e.g. (Friberg 1997)). In all these approaches, it
is a person who is responsible for devising a theory or math-
ematical model which captures different aspects of musical
expressive performance. The theory or model is later tested
on real performance data in order to determine its accuracy.

In this paper we describe an approach to investigate mu-
sical expressive performance based on inductive machine
learning. Instead of manually modelling expressive perfor-
mance and testing the model on real musical data, we let a
computer use machine learning techniques (Mitchell 1997)
to automatically discover regularities and performance prin-
ciples from real performance data (i.e. example perfor-
mances of Jazz standards). We apply both regression and
classification techniques in order to induce models of ex-
pressive performance. On the one hand, regression methods
are considered to beblack-boxin the sense that it is very dif-
ficult (or impossible) to understand the predictions they pro-
duce. Black-box statistical approaches may be good at de-
riving predictions from data, but formulating understandable
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rules from the analysis of data is something entirely differ-
ent from formulating predictive models from that data. On
the other hand, classification methods are good atexplain-
ing the predictions they provide but are restricted to a set of
discrete classes as prediction space. Our problem at hand is
one that requires the prediction precision of regression meth-
ods for generating accurate solutions (i.e. expressive perfor-
mances) but at the same time it is highly desirable to be able
to explain the system predictions. Thus, we use the induced
regression models to implement a tool for automatic expres-
sive performance transformations of Jazz melodies, and the
classification models to understand the principles and crite-
ria for performing expressively a piece of music.

The rest of the paper is organized as follows: Section
2 briefly describes the melodic transcription process in the
system, Section 3 describes our machine learning approach
to model expressive music performance. In Section 4 re-
lated work is reported, and finally Section 5 presents some
conclusions and indicates some areas of future research.

Melodic Description
Sound analysis and synthesis techniques based on spectral
models (Serra & Smith 1990) are used for extracting high-
level symbolic features from the recordings. The sound
spectral model analysis techniques are based on decompos-
ing the original signal into sinusoids plus a spectral resid-
ual. From the sinusoids of a monophonic signal it is pos-
sible to extract information on note pitch, onset, duration,
attack and energy, among other high-level information. This
information can be modified and the result added back to
the spectral representation without loss of quality. We use
the software SMSTools1 which is an ideal tool for prepro-
cessing the signal and providing a high-level description of
the audio recordings, as well as for generating an expressive
audio according to the transformations obtained by machine
learning methods.

The low-level descriptors used to characterize the melodic
features of our recordings are instantaneous energy and fun-
damental frequency. The procedure for computing the de-
scriptors is first divide the audio signal into analysis frames,
and compute a set of low-level descriptors for each analysis
frame. Then, a note segmentation is performed using low-

1http://www.iua.upf.es/sms



level descriptor values. Once the note boundaries are known,
the note descriptors are computed from the low-level and the
fundamental frequency values (see (Gómez 2002) for details
about the algorithm). Figure 1 is a snapshot of the SMSTools
software showing the audio recording and some of the low-
level descriptors extracted from it.

Modeling expressive performance knowledge
in Jazz

In this section, we describe our inductive approach for learn-
ing expressive performance rules from Jazz standards per-
formances by a skilled saxophone player. Our aim is to find
note-level rules which predict, for a significant number of
cases, how a particular note in a particular context should be
played (e.g. longer than its nominal duration). We are aware
of the fact that not all the expressive transformations regard-
ing tempo (or any other aspect) performed by a musician can
be predicted at a local note level. Musicians perform music
considering a number of abstract structures (e.g. musical
phrases) which makes expressive performance a multi-level
phenomenon. In this context, our ultimate aim is to obtain
an integrated model of expressive performance which com-
bines note-level rules with structure-level rules. Thus, the
work presented in this paper may be seen as a starting point
towards this ultimate aim.

The training data used in our experimental investigations
are monophonic recordings of five Jazz standards (Body and
Soul, Once I loved, Donna Lee, Like Someone in Loveand
Up Jumped Spring) performed by a professional musician at
11 different tempos. In order to discover expressive perfor-
mance regularities at different tempos we divided the record-
ings into three groups: nominal, slow and fast. The record-
ings in the nominal group are performed at the piece nom-
inal tempo (+/- 15%) while the recordings in the slow and
fast groups are respectively performed slower or faster than
the ones in the nominal group. As mentioned before, sound
analysis and synthesis techniques based on spectral models
are used for extracting high-level symbolic features from the
recordings, transforming them and synthesizing a modified
recording.

After the extraction of high-level symbolic features from
the recordings, each note in the training data is annotated
with its corresponding class and a number of attributes rep-
resenting both properties of the note itself and some aspects
of the local context in which the note appears. Informa-
tion about intrinsic properties of the note include the note
duration and the note metrical position, while information
about its context include the note Narmour group(s) (Nar-
mour 1990) (see (Ramirezet al. 2004) for a desciption of
the Narmour groups we use), duration of previous and fol-
lowing notes, and extension and direction of the intervals
between the note and the previous and following notes.

In this paper, we are concerned with note-level expres-
sive transformations (in particular transformations of note
duration, onset and energy). For classification, the perfor-
mance classes we are interested in arelengthen, shorten,
advance, delay, louderandsofter. A note is considered to
belong to classlengthenif its performed duration is 20% or

more longer that its nominal duration, e.g. its duration ac-
cording to the score. Classshortenis defined analogously.
A note is considered to be in classadvanceif its performed
onset is 5% of a bar earlier (or more) than its nominal on-
set. Classdelayis defined analogously. A note is considered
to be in classlouder if it is played louder than its prede-
cessor and louder then the average level of the piece. Class
softer is defined analogously. We have explored different
possible discretization schemes. In particular we have dis-
cretized the duration, onset and energy values space in 9
classes according to the degree of transformation. For in-
stance, we have defined 4 classes for lengthen and 4 classes
for shorten (one for same) for different degrees of lengthen-
ing and shortening. In this way, we have obtained a set of
finer-grain rules which, in addition to explaining expressive
performances principles in more detail, may be also used to
generate expressive performances. However, for generating
the actual expressive performances in our system, we have
induced predictive regression models (i.e. model trees) for
duration ratio, onset deviation and energy variation (moreon
this later).

Using this data we applied the C4.5 decision tree learning
algorithm (Quinlan 1993) and obtained a set of classification
rules directly from the decision tree generated by the algo-
rithm. We also applied the Apriori rule learning algorithm
(Agrawal, Imieliski, & Swami 1993) to induce association
rules and a sequential covering algorithm to induce first or-
der rules. Despite the relatively small amount of training
data some of the rules generated by the learning algorithms
turn out to correspond to intuitive musical knowledge (e.g.
Rule 1 bellow corresponds to the performer’s frequent inten-
tion of accentuating a note’s characteristic, in this case the
shortness of the note relative to its neighboring notes). Inor-
der to illustrate the types of rules found let us consider some
examples of learned note-duration rules:

RULE1: prevdur=+3 & nextdur=+3 &

metrstrenght=weak⇒ shorten

“If both the duration of the previous and next notes are much
longer (i.e. more than three times the duration of the current
note) and the current note is in a weak metrical position then
shorten the current note.”

RULE2:nextdur=-2⇒ lengthen

“If the duration of the next note is considerably shorter (i.e.
less than half the duration of the current note) then lengthen
the current note.”

RULE3:next=silence⇒ lengthen

“if the next note is a silence then lengthen the current note.”

RULE4:stretch(A, B, C, shorten) :-
succ(C, D), succ(D, E),
context(A, E, [nargroup(p, 1)| F]),
context(A, C, [nargroup(p, 2)| F]).

“Shorten a note n if it belongs to a P Narmour group in



Figure 1: SMSTools showing an audio recording (top), its fundamental frequencies (middle) and spectral peaks of the first
frame (bottom)

second position and if note n+2 belongs to a P Narmour
group in first position”

These extremely simple rules proved to be very accurate:
the first rule predicts 89%, the second rule predicts 68%,
the third rule predicts 87% and the last rule predicts 96%
of the relevant cases. The learning algorithm used for the
rules 1 and 2 was C4.5, rule 3 was obtained by the Apriori
algorithm (in this case the obtained association rules are also
classification rules), and rule 4 was obtained using a sequen-
tial covering algorithm.

As mentioned before, for generating the actual expressive
performances in our system, we have induced regression
model trees for duration ratio, onset deviation and energy
variation. We have chosen model trees as a prediction mech-
anism in our system because it showed the overall highest
correlation coefficient among the regression methods we ex-
plored: 0.72, 0.44 and 0.67 for duration ratio, onset devia-
tion and energy variation, respectively (we performed a 10-
fold cross validation to obtain these numbers). We applied
Weka’s M5Rules algorithm implementation (Witten & Eibe
1999) to generate the model trees. The other methods we ex-
plored were linear regression and support vector machines
with different kernels (2nd, 3rd and 4th order polynomial
and radial basis).

For a detailed comparison among the regression methods
we explored see Table 1 (note duration), Table 2 (note onset)
and Table 3 (note energy). In Table 1, Table 2 and Table 3,
C.C refers to the correlation coefficient, A.E to the relative
absolute error, and S.E the root relative squared error.

Algorithm C.C A.E(%) S.E(%)
Linear Regression 0.33 98.69 94.39
LMS Regression 0.29 95.22 96.60

Model Tree Regression 0.72 74.89 69.14
SVM Regression (1) 0.29 95.30 96.15
SVM Regression (2) 0.48 89.01 88.24
SVM Regression (3) 0.66 76.65 75.47
SVM Regression (4) 0.70 81.11 71.23

Table 1. 10-fold cross validation results for duration ratio
Algorithm C.C A.E(%) S.E(%)

Linear Regression 0.17 101.12 98.41
LMS Regression 0.01 92.50 101.32

Model Tree Regression 0.43 91.51 90.16
SVM Regression (1) 0.14 99.92 98.88
SVM Regression (2) 0.24 89.34 98.18
SVM Regression (3) 0.38 95.41 92.50
SVM Regression (4) 0.44 94.56 90.34

Table 2. 10-fold cross validation results for onset deviation
Algorithm C.C A.E(%) S.E(%)

Linear Regression 0.27 95.69 96.13
LMS Regression 0.22 87.92 108.01

Model Tree Regression 0.67 66.31 74.31
SVM Regression (1) 0.25 89.28 98.57
SVM Regression (2) 0.47 82.53 89.4
SVM Regression (3) 0.56 75.47 82.95
SVM Regression (4) 0.64 69.28 77.23

Table 3. 10-fold cross validation results for energy variation

Synthesis tool. We have implemented a tool which trans-
forms an inexpressive melody input into an expressive one



following the induced model tree. The tool can either gen-
erate an expressive MIDI performance from an inexpressive
MIDI description of a melody, or generate an expressive au-
dio file from an inexpressive audio file. Figure 2 and Figure
3 show snapshots of the system applied to a MIDI perfor-
mance and the system applied to an audio file, respectively.
In addition to synthesising an expressive performance of a
piece, the tool may be able to provide explanations for the
transformations it has performed. Once a transformed note
is selected requesting an explanation, the tool extracts the
relevant rules generated by the different classification mod-
els and present them to the user. This explanations can be of
great interest if the tool is used with padagogical purposes.
Some samples of expressive performances generated by the
system can be found at2.

Related work
Previous research in learning sets of rules in a musical con-
text has included a broad spectrum of music domains. The
most related work to the research presented in this paper is
the work by Widmer (Widmer 2002b; 2002a). Widmer has
focused on the task of discovering general rules of expres-
sive classical piano performance from real performance data
via inductive machine learning. The performance data used
for the study are MIDI recordings of 13 piano sonatas by
W.A. Mozart performed by a skilled pianist. In addition to
these data, the music score was also coded. The resulting
substantial data consists of information about the nominal
note onsets, duration, metrical information and annotations.
When trained on the data the inductive rule learning algo-
rithm named PLCG (Widmer 2001) discovered a small set
of 17 quite simple classification rules (Widmer 2002b) that
predict a large number of the note-level choices of the pi-
anist. In the recordings, the tempo of the performed piece
was not constant, as it was in our experiments. In fact, the
tempo transformations throughout a musical piece were of
special interest.

Other inductive machine learning approaches to rule
learning in music and musical analysis include (Dovey
1995), (Van Baelen & De Raedt 1996), (Morales 1997) and
(Igarashi, Ozaki, & Furukawa 2002). In (Dovey 1995),
Dovey analyzes piano performances of Rachmaniloff pieces
using inductive logic programming and extracts rules under-
lying them. In (Van Baelen & De Raedt 1996), Van Baelen
extended Dovey’s work and attempted to discover regular-
ities that could be used to generate MIDI information de-
rived from the musical analysis of the piece. In (Morales
1997), Morales reports research on learning counterpoint
rules. The goal of the reported system is to obtain stan-
dard counterpoint rules from examples of counterpoint mu-
sic pieces and basic musical knowledge from traditional mu-
sic. In (Igarashi, Ozaki, & Furukawa 2002), Igarashi et al.
describe the analysis of respiration during musical perfor-
mance by inductive logic programming. Using a respiration
sensor, respiration during cello performance was measured
and rules were extracted from the data together with mu-
sical/performance knowledge such as harmonic progression

2http://www.iua.upf.es/∼rramirez/promusic

and bowing direction.
Tobudic et al. (Tobudic & Widmer 2003) describe a re-

lational instance-based approach to the problem of learn-
ing to apply expressive tempo and dynamics variations to
a piece of classical music, at different levels of the phrase
hierarchy. The different phrases of a piece and the rela-
tions among them are represented in first-order logic. The
description of the musical scores through predicates (e.g.
contains(ph1,ph2)) provides the background knowl-
edge. The training examples are encoded by another predi-
cate whose arguments encode information about the way the
phrase was played by the musician. Their learning algorithm
recognizes similar phrases from the training set and applies
their expressive patterns to a new piece.

Lopez de Mantaras et al. (Lopez de Mantaras & Arcos
2002) report on a performance system capable of generat-
ing expressive solo performances in jazz within a case-based
reasoning system. As ours, their system focuses on note on-
set, duration and energy. However, their system is incapable
of explaining the predictions it makes.

Conclusion
This paper describes an inductive approach to learning both
rules and a numeric model for expressive performance from
Jazz standards recordings by a skilled saxophone player. In
order to induce expressive perfromance knowledge, we have
extracted a set of acoustic features from the recordings re-
sulting in a symbolic representation of the performed pieces.
We then applied both classification and regression methods
to the symbolic data and information about the context in
which the data appears. We used the induced regression
models to implement a tool for automatic expressive per-
formance tranformations of Jazz melodies, and we used the
classification models to understand the principles and crite-
ria for performing expressively a piece of music.

Future work: There is future work in different directions.
We are currently using the timbral information of our record-
ings to extend our models in order to predict intra-note char-
acteristics of an expressive performance. We plan to in-
crease the amount of training data. Increasing the train-
ing data, extending the information in it and combining it
with background musical knowledge will certainly generate
a more complete model. As mentioned earlier, we intend
to incorporate structure-level information to obtain an in-
tegrated model of expressive performance which combines
note-level knowledge with structure-level knowledge.
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