
Freesound Radio: supporting
collective organization of
sounds

Gerard Roma Trepat

Master Thesis submitted in partial fulfillment of the requirements for the degree:
Màster en Tecnologies de la Informació, la Comunicació i els Mitjans Audiovisuals

Supervisors: Perfecto Herrera, Xavier Serra

Departament de Tecnologies de la Informació i la Comunicació
Universitat Pompeu Fabra. Barcelona, Spain
September 2008

Gerard Roma, 2008
Some rights reserved.

This document is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported license.

http://creativecommons.org/licenses/by- nc- sa/3.0/

http://creativecommons.org/licenses/by- nc- sa/3.0/

Abstract

This thesis addresses the problem of creating music collectively on the basis of a shared
repository of sound files. The classification of sounds in an heterogeneous database ac-
cording to both a semantic taxonomy and a music oriented taxonomy based on content
descriptors are analyzed, and their application to music creation is discussed. A data
structure is presented that allows expressing musical ideas as combinations of sounds
in the database, along with an interface where users can create and share such combina-
tions. Finally, an interactive genetic algorithm is devised that automatically generates
new combinations of sounds from existing ones influenced by ratings and preferences
of listeners. The application of this concepts is demonstrated in Freesound Radio, an
interactive radio station developed on top of the collaborative sound database Freesound.

Acknowledgments

I would like to thank Xavier Serra for giving me the opportunity me to work at the
Music Technology Group and for his proposal and guidance of the Freesound Radio
project, as well as Perfecto Herrera for his continuous support and advice. I would
also like to thank Bram de Jong for his support from the Freesound side.
This work would have neither been possible without the help of all my colleagues at
the MTG and the TICMA master. In particular I am indebted to Graham Coleman,
Martin Haro, Amaury Hazan and Anna Xambó for their help with early prototypes,
and to Jordi Funollet and Markus Koppenberger for their support with system ad-
ministration. Finally, I’d like to thank Josep Guasch, for his interest and feedback,
along with all the known and unknown visitors who participated in the project.

Gerard Roma
Barcelona

October 1, 2008

v

To Anna

If this word ”music” is sacred and reserved for eighteenth-
and nineteenth-century instruments, we can substitute a
more meaningful term: organization of sound.

John Cage

Contents

1 Introduction 1
1.1 Sound files . 1
1.2 Music made from recordings . 2
1.3 Motivation . 5
1.4 Goals and methodology . 6

2 Background 9
2.1 Musical mosaicing and concatenative synthesis 9

2.1.1 Sound Databases . 10
2.1.2 Segmentation . 11
2.1.3 Audio Features . 11
2.1.4 Unit Selection . 14
2.1.5 User interface . 14

2.2 Network Music . 15
2.2.1 Strategies for web based collaboration 16

2.3 Evolutionary computation, music and collective knowledge building 19
2.3.1 Overview . 19
2.3.2 Evolutionary computer music 20
2.3.3 Evolutionary models and collective knowledge building . . . 21

3 Organizing free sounds 23
3.1 Introduction . 23
3.2 Background . 24

ix

3.3 Database and tools . 26
3.3.1 Descriptors . 26
3.3.2 Decision trees . 26

3.4 Conceptual taxonomy . 27
3.5 Music oriented taxonomy . 30
3.6 Similarity . 32

4 Patching samples 37
4.1 Motivation . 37
4.2 Related work . 39
4.3 The Sample Patch . 40
4.4 Implementation . 41

4.4.1 Sequencer . 41
4.4.2 Interface . 42

5 Evolution 45
5.1 Introduction . 45
5.2 Initialization . 46
5.3 Selection . 46
5.4 Crossover . 46
5.5 Mutation . 47
5.6 Implementation . 47

6 Analysis and discussion 51
6.1 Content usage . 51
6.2 Sample patch editor . 53
6.3 Evolution . 54

7 Conclusions and future work 57

Bibliography 59

Chapter 1

Introduction

1.1 Sound files

Sound files are now everywhere. Almost anywhere a computer is involved we
find sound files. They are used in all kinds of digital media: music, games,

videos, and so on, as well as in user interfaces. Large quantities of sound files are
now carried around in mobile phones and portable devices such as music players.

Obviously there is a difference between music files, which are massively dis-
tributed for entertainment, and files containing sounds for being used in media pro-
ductions. From a cultural point of view, the difference becomes blurry very quickly
as people find all sorts of creative uses in commercial recordings. However, there
are a number of practical issues that preserve the interest of such distinction, includ-
ing among others copyright law and traditional licenses, duration of the recorded
sound (and consequently size and bandwidth usage), dynamics and sound quality.
For the purpose of this work we will rule out sounds that are distributed as fin-
ished works, although it will be in fact in our aims to help the departure from this
asymmetric producer/consumer model of communication that dominated most of
the XXth century.

Sound files have become prevalent in many applications that require the pro-
duction of sound. Again, mobile phones provide a god example of this transition:
cheaper synthesis techniques were used for ring tones until the chips became effi-
cient enough to play sound files. This evolution towards the use of sound recordings
has happened all around and may be considered a matter of usability. An audio file
is a very simple thing, regardless of how complex is the sound contained in it. This
is very convenient, since all computer users are familiar with the concept of a file:
sound files are no less files than video, text or image files. They are fixed, they don’t
contain information about the production of the sound, they contain just sound. For
the purpose of music production they are less flexible than a synthesizer, and for

2 1. Introduction

this reason they are easier to use.

However, one important difference in the use we make of sound files with re-
spect to other media is the level of abstraction. While the comparison of the use of
recorded sounds to make music with visual collage has become a cliché, the reality is
that music does not usually represent real world objects. Hence, music can be made
by assembling recordings without the listener knowing much about the production
process. A good deal of research in technologies for music production in the last two
decades can be seen as a dialogue between physical modeling and spectral model-
ing of sound (Serra 2007). By focusing on the way sounds are produced, physical
models offer control over many parameters that influence the production of sounds.
In this sense, physical modeling (including models of electronic devices) has become
widespread for applications to music production. On the other hand, spectral mod-
els deal with the mechanisms of sound perception, so that they allow to manipulate
sound with a much greater level of detail and realism. Hence, spectral models and
spectral analysis have been extensively applied to technologies related with sound
reception, especially in speech and music analysis, and are now standard for appli-
cations that require realistic imitation of voice and musical instruments.

Historically, the rigid nature of sound recordings has allowed the birth of dis-
courses whose aesthetics are based on the selection and combination of sources,
and do not depend on complex gestures or instruments. Because in general no aca-
demic training is needed, these practices are widespread in popular culture, and
continuously present new applications for spectral modelling beyond indexing and
retrieval of music files.

1.2 Music made from recordings

The possibility of making sound with recordings was kind of awaited. It is notorious
how Francis bacon predicted the possibility of mechanical production of any sound
in The New Atlantis (published e.g. in (Bacon 1862)) as early as 1626. While misun-
derstood in its time, Russolo’s futurism had stressed the need of escaping from the
tradition of orchestral music. László Moholy-Nagy speculated, back in the 1920’s,
about the possibility to create music synthetically by working on the wax discs of
the phonograph (available in (Moholy-Nagy 2004)).

Working as an engineer at the Radiodiffusion-Television Francaises (RTF), Pierre
Schaeffer had access to the technologies that would allow him to experiment with

1.2. Music made from recordings 3

the idea of making music from fixed recordings, first with the phonograph and later
using magnetic tapes. Musique concrète was born with the technique of splicing and
gluing tape. Many composers would visit Schaeffer’s studio and the technique was
incorporated in the vocabulary of experimental music. Composers like Nono, Cage
and Varèse made extensive use of the tape recorder. Schaeffer later published Traité
des objets musicaux (Schaeffer 1966) with the aim to provide some methodological
ground to the use of recordings. While the adoption of the ideas contained in the
Traité has been slowed by its complexity and extension, the concept of reduced lis-
tening (écoute réduite), inherited from phenomenological Epoché, has become key in
the development of electronic music by putting the focus on the perception of sound
regardless of its source.

Apart from the possibility of splicing and gluing tape, a prominent feature of the
tape recorder was the possibiity of creating tape loops. This technique had also an
influence on the development of the repetitive music style of the sixties. Terry Riley
pioneered this technique some of his early pieces (Mescalin Mix, Music For the Gift).
Also Steve Reich explained (Reich 2002) how his own approach to this style was
influenced by experimentation with tape loops (It’s gonna rain, Come on). Tape loops
were also used as primitive delay units, for example by pioneer Pauline Oliveros.
The degeneration of sound produced by the tape medium itself was explored e.g. in
Alvin Lucier’s I’m sitting in a room.

With the popularization of integrated modular synthesizers like the Moog, syn-
thesis gained the focus in electronic music production as being much more user
friendly than the laborious task of splicing tape. In the seventies, electronic music
was thus dominated by synthesizers, which started to appear in popular music. On
the other hand, the publication of Murray Schafer’s The tuning of the world (Schafer
1977) was an important milestone in the aesthetics of recording-based music . In his
book, Schafer drew attention towards environmental sounds and their use for mu-
sic composition, and introduced the concept of a sonic heritage that deserves some
preservation just as other cultural aspects of quickly changing societies.

Inroduced in 1979, the Fairlight CMI marked the beginning of digital sampling.
Digital samplers allowed to overcome all the inconvenience of manipulating tape
by providing a much more precise control over the recording. Also, unless tapes,
they allowed real time triggering and were designed to be played with a keyboard.
Samplers became popular along with synthesizers, sequencers and drum machines
thanks to the MIDI specification. Their primary use appeared to be the imitation of
traditional instruments, but their potential was clearly much wider than that. Soon,

4 1. Introduction

the reutilization of existing recordings using samplers was naturally exploited in hip
hop music, where the turntable had already become a musical instrument. Along
with hip hop, techno music became another important genre in popular electronic
music. While making more use of drum machines and synthesizers, techno pro-
ducers inherited from minimalist composers the habit of using loops as the basis
for their repetitive compositions. A market appeared for distributing libraries of
royality-free samples, be it instrument notes or ready-made loops, for speeding the
production of electronic music.

As computers started to be powerful enough to play samples, they begun re-
placing both samplers and traditional tape based multitrack recorders. Computers
made the management of sounds much easier, and disclosed an infinite potential for
manipulation of sound. The graphical display of the computer allowed much more
sophisticated sound editors than the ones present in samplers. With computers the
utilization of samples to create composition was in the hands of everyone with a
general purpose machine. An important aspect of using computers was that using
samples was no longer tied to the tradition of musical instruments. It was suddenly
possible for people with absolutely no background in traditional music theory or
instruments to create their own discourse by editing digital audio. In this context,
the usefulness of reusing existing music was so obvious that some people started to
question the copyright law. Music has always evolved by copy and imitation, but
digital audio allows to make it so explicitly that the clash between popular creativity
and the interest of the music industry was unavoidable. Plunderphonics, named af-
ter John Oswald’s album which was burned by the copyright authorities, became a
musical genre based on the fight against the established laws and the industry over
the right to use copyrighted material to create new music. At the same time, the tra-
dition of soundscapes grew along with the progressive development of better and
cheaper devices for field recording. Sound artists like Francisco López, advocated
for a return to the acousmatic pure listening away from the shift towards represen-
tation introduced by Schaffer. Still, many artists in this style proudly restrict their
music to mixes of recordings, refusing further processing of samples that was made
possible by computers and generally abused in many electronic music genres.

With computers, the specifics of using samples diluted into the sea of possibil-
ities for sound manipulation offered by the computer. However, the use of exist-
ing music, synth loops, field recordings and so on still carries much of these aes-
thetics sometimes with their political implications (fight against copyright, acoustic
ecology). With the change of the century, internet has become the ideal breeding

1.3. Motivation 5

ground for new ways of using samples by making it possible to share them around
the globe.

1.3 Motivation

Computer networks are increasingly being used of communications, but in general
they are less used for music production than one would expect. Music is in fact
much of a social activity. However, computer music has remained rather individu-
alistic by the design of computer workstations. This is certainly starting to change,
especially as computer literacy and access to the internet is generalizing.

The Freesound 1 project was developed by Bram de Jong at the Music Technology
Group during the organization of the ICMC conference in Barcelona 2. The aim of
the project was to support a large repository of sound files under the Creative Com-
mons (CC) license that could be used for research. Over time, the site attracted a
large and lively community of users interested in sharing sounds, be it field record-
ings, synthesizer loops, voice and instruments or any other kind of sounds. This
enthusiasm in media sharing has become an important trend in internet usage, with
sites like Flickr and Youtube becoming among the most visited in the world. While
Freesound constitutes an interesting experiment in respect to sharing sounds as a way
to report on personal experiences, this is more typically done through video and im-
ages, and the exchange of sounds is mostly driven by their potential for media and
music production. Thus, this sharing activity seems to point to a further step: the
combination of sounds in the database to form an audible discourse. On the other
hand, as the number of sounds increases, finding interesting sounds becomes more
and more difficult. A culture of tagging and description was established by design
on the site, which helps finding sounds. However, looking for sounds for music
creation remains difficult. As implied by the concept of reduced listening, the utility
of many sounds is not necessarily connected to their source, which makes it difficult
to rely on text descriptions.

The Freesound Radio project was intended to help in the discovery of interesting
sounds by providing a continuous soundscape. It soon became clear that the output
of the radio would not be interesting unless some kind of musicality or meaningful
organization was present in the mix. Also, being the site driven by the commu-
nity, it only made sense that such process would be equally community driven. The

1http://www.freesound.org
2http://mtg.upf.edu/icmc2005/

6 1. Introduction

metaphor of a radio station was thus suitable: during the XXth century analog radio
became a prominent way to connect communities through sound waves, allowing
for more interaction (typically through phone calls) than television. The develop-
ment of internet radios has been slowed by the lack of regulation with respect to
copyright laws, but has regardless continued to grow. With computers invading the
space of media distribution, consumers become active players, and no longer be-
have as passive spectators. Many possibilities are still to be explored regarding the
creation of music through interaction among listeners. After all, Musique concrète
was born in a radio station.

1.4 Goals and methodology

In this thesis, we present the methods and concepts that have been implemented
in Radio Freesound in order to explore the possibility for internet users to drive a
musical process. It has been shown (Tillmann et al. 2000) that musical structures
are learnt implicitly through listening. Therefore, it should be possible from the
basis of working with samples to see that music itself can be created directly from
social interaction among users with no specialized education. This musical process
can be seen as a collective exploration of the database. In this work, we don’t make
a great distinction between both: any sound that is played in the music is available
under CC license for the listeners to use on their own compositions. Both music
(especially at the initial stages of creation) and exploration often share the lack of
very clear goals, which makes it difficult to objectively evaluate wether a given tool
is adequate. This contrasts with the established methodologies in Music Information
Retrieval (MIR) and task oriented Human Computer Interaction (HCI).

It has been debated in the field of Multimedia Information Retrieval wether the
intent of bridging the so-called semantic gap between user semantics and content
from bottom-up analysis is taking too much to reach meaningful applications (Shamma
et al. 2007). In the mean time, users have shown they disposition to help themselves,
organize in communities, create the content and help indexing it through tag folk-
sonomies. Hence, it has been proposed that methodology is refocused in a more
pragmatic approach to involve users in learning how to analyze and index media
in meaningful ways. This should be made possible by throwing prototypes at users
that allow the research community to understand what works and what is interest-
ing. This information can be gathered by qualitative and quantitative evaluation

1.4. Goals and methodology 7

through log analysis. In a way it means that Information Retrieval research can
progress iteratively not very differently from software development.

In this sense, the Freesound Radio prototype developed in the context of this the-
sis can be regarded as an initial step towards learning how a large shared database
of sounds can be used for making music collectively. We report three main devel-
opments that were carried on for this purpose: initial experiments regarding how to
organize and retrieve sounds from the database, a simple data structure that allows
users in the community to encode ideas as combinations of samples, and an algo-
rithm to ensure a continuous provision of content by remixing and mutating user
creations.

The following chapter reviews three different traditions from which these con-
cepts are respectively derived: Concatenative synthesis and Musical Mosaicing,
Network Music and Evolutionary Computation. Chapter 3 contains two experi-
ments for a combined top-down and bottom-up approach to sound object similarity
and retrieval. Chapter 4 presents the concept of a Sample Patch as a means to al-
low people without specific musical training to express musical ideas from samples.
Chapter 5 describes a genetic algorithm used to evolve new sample patches. Finally,
in chapter 6 we discuss the application of these concepts to an online prototype, and
in 7 we extract some conclusions and point to future developments.

Chapter 2

Background

2.1 Musical mosaicing and concatenative synthesis

Musical mosaicing and Concatenative Sound Synthesis (CSS) allow the appli-
cation of sound and music description technologies to music creation. Es-

pecially in the case of CSS, they can be seen as an evolution of analysis/synthesis
techniques that were developed in the 90s. Musical Mosaicing (Zils and Pachet 2001)
was presented as a means to assist the retrieval of suitable sound samples in the
context of music composition. By using high level descriptors to specify the musical
work, samples could be retrieved according to their fitness to the specification. The
problem of retrieving sounds from a large database was thus modelled as a con-
straint solving problem. The term was proposed as an analogy to the technique of
mosaicing in visual arts to emphasize the use of descriptors at the compositional
level, the retrieved then acting as the building blocks of the mosaic. This analogy
may be reminiscent of the Musique Concrète metaphor, which was used to distin-
guish the use of concrete recordings from traditional abstract music (based on scores)
in analogy with abstract art. In this sense Mosaicing could be depicted as a return
to this abstraction, as content descriptors allow the use of abstract specifications to
compose the work independently of the concrete recordings that are used to fulfill
the specification. Thus, Mosaicing is sometimes used in conjunction with preexist-
ing music compositions or scores (Jehan 2005), and in general requires an a priori
definition of the musical work.

Concatenative Synthesis (CSS) was adapted to the field of music creation from
the tradition in speech synthesis of using a corpus of sound samples to realistically
emulate the human voice by concatenating them using spectral domain techniques
such as Pitch Synchronous Overlap Add (PSOLA). Its application to music synthesis
(Schwarz 2004) extended the concepts of musical mosaicing by defining the ability
to transform retrieved samples mainly at the concatenation point. This application

10 2. Background

has been clearly successful in applications that are close to speech synthesis, such
as singing voice synthesis (Bonada and Serra 2007) or realistic synthesis of music
instruments like the saxophone (Kersten et al. 2008), but it has also been applied
more experimentally to texture synthesis (Schwarz 2004) .

Most Mosaicing and concatenative synthesis systems share a general architec-
ture and implement a set of concepts. A significant number of systems have been
reviewed and summarized in (Schwarz 2006, Schwarz 2005). What follows is a short
summary of these concepts in order to analyze their utility for our own problem.

2.1.1 Sound Databases

The database contains a collection of samples that will be used to generate the
sound. In many systems (Jehan 2005, Schwarz 2004, Casey 2005) the database is
generated from a corpus of preexisting music compositions, often with some ref-
erence to Oswald’s plunderphonics. In concatenative synthesis systems aimed at
realistic synthesis of voice or instruments, databases are usually created with ap-
propriate samples of these instruments. Databases can be labelled as homogeneous
or heterogeneous (Schwarz 2006). In many cases, the database is specifically created
for the application by recording or segmenting sounds contain homogenous units of
similar size. In these cases, the size of the database typically determines the quality
of the synthesis, since the probability that a sample will match a given specification
is higher. There is however a compromise between perceived quality and flexibility.
The more the synthesizer relies on models (e.g. spectral models of a given instru-
ment), the smaller will be the required size of the database. Such models will often
allow a finer degree of control over the synthesis process. Although the result of the
synthesis may be less realistic than using systems purely based on samples, this kind
of flexibility is not optional for applications like singing voice synthesis (Bonada
and Serra 2007). Examples of heterogeneous databases are less common. Clearly,
a database that has not been segmented to small units is less suited to algorithms
based on a very specified target using descriptors, since these will vary along each
segment. In (Casey 2005), a system based in acoustic lexemes is presented as a solu-
tion for indexing heterogeneous internet databases for music applications. Sounds
are defined as sequences of 40 possible spectral archetypes. However, no high level
interface is described to deal with this abstract vocabulary. In general, problems
dealing with such databases may require more application specific solutions. For
example in (Cano et al. 2004) a system is described that allows building ambiances

2.1. Musical mosaicing and concatenative synthesis 11

with environmental sounds representing real world concepts (e.g., animals, foot-
steps). Retrieval from a database of sound effects is based on a WordNet ontology.

2.1.2 Segmentation

Sound databases are composed of many (usually short) segments of sound. In mo-
saicing systems, these are often obtained from longer recordings, so a procedure
for breaking them into segments is needed. Several segmentation algorithms are
used. Algorithms often involve some kind of content analysis, so the process is
tied to the extraction of features that will be used for retrieval. For example in the
system proposed by Casey (Casey 2005), a Hidden Markov Model is used in the
segmentaion phase to cluster all possible sounds into spectral archetype classes. Je-
han (Jehan 2005) proposed that segmentation is based on automatic detection of
note onsets, which seems to be a generally accepted approach. In the Caterpillar
system by Schwarz (Schwarz 2007) segmentation is based on the original score of
the music piece that is used as material for recomposition. Some systems also em-
ploy ”fixed” segmentation schemes and cut the input sounds into short slices of
equal duration (Sturm 2006). While manual segmentation is more related to the
Musique Concrète and digital sampling traditions, few real world applications rely o
automatic segmentation of long recordings. On the other hand, commercial concate-
native synthesis products (e.g. Synful1) require manual segmentation for realistic
voice or instrument synthesis. The Freesound database is a very heterogeneous one,
containing at the time of this writing more than 50.000 sounds. Since the database is
already used for sharing sounds for music creation, many users already segment the
sounds in the ways their consider useful, like notes, chords and rhythmic loops. Our
take on this issue is to respect this tradition and rely on the segmentation performed
by users. However, we make use of onset detection for rhythmic similarity.

2.1.3 Audio Features

One crucial aspect of mosaicing and CSS is the descriptors that are extracted in order
to index, search and retrieve sounds from the database. For music creation applica-
tions, most systems revolve around the traditional ”music aspects”: pitch, loudness
and timbre. When longer segments are used, it is also common to analyze rhythm.

1http://www.synful.com/

12 2. Background

We review some of the most common approaches to automatic content-based de-
scription.

Pitch

Pitch is usually defined as the perceptual correlate of the fundamental frequency.
For monophonic signals, many algorithms have been developed for the estimation
of the fundamental frequency, both in the time domain and the frequency domain.
Time domain methods are usually faster and may be more adequate for sounds
with temporal variations of pitch. For example in (Ricard and Herrera 2004), the
autocorrelation function is used to determine both pitch and pitchness. The Zero
Crossing Rate (ZCR), i.e., the speed at which the signal changes sign, is also used
as a pitch descriptor in (Zils and Pachet 2001). One commonly used method based
on the autocorrelation function is the Yin algorithm (de Cheveigné and Kawahara
2002). Also widely used is its spectral domain version YinFFT (Brossier 2006).

In the case of polyphonic music, the problem of tracking pitch for every instru-
ment or sound source is still under intensive research in the literature. A kind of
workaround, for certain problems, is to calculate the chroma feature (Jehan 2005),
which consists in folding the entire frequency spectrum to a histogram of twelve
pitch classes representing a single octave. One prominent example of chroma fea-
ture is the Harmonic Pitch Class Profile (Gómez 2006).

Loudness

Loudness is considered to be the perceptual counterpart of the sound wave ampli-
tude. The amplitude envelope is the curve that describes its evolution over time.
Usually, the problem in the context of indexing and retrieving sound segments is
reducing this temporal information to scalar values, such as the attack and decay
times, statistic moments (mean, standard deviation, temporal centroid, temporal
kurtosis and temporal skewness), or coefficients of fitted polynomials. These may
be called characteristic values (Schwarz 2007). Characteristic values are also needed
in other situations where large vectors are involved.

Rhythm

Rhythm is usually related to some regularity in the evolution of some aspect of
sound, usually loudness. Rhythm description is typically based on detection of on-

2.1. Musical mosaicing and concatenative synthesis 13

sets. While several methods exist for estimation of beat and tempo, a common basic
descriptor of rhythm is the histogram of inter-onset intervals (Gouyon 2005). On the
other hand, in (Jehan 2005), an autocorrelation function is applied to the outcome of
the onset detector to represent rhythm.

Timbre

Timbre is by far the most complex concept of this traditional categorization, to the
extent that its consistency is put in doubt by its negative definition (Donnadieu
2006) as the property that allows discriminating musical instruments regardless of
pitch or loudness. As we have seen, part of the interest in working with samples has
been the possibility of playing with timbre, for some in order to escape the closed
timbre space defined by orchestra instruments and for others in order to have richer
representations of them. Timbre is usually described in terms of the shape of the
spectrum. A vast number of features are available as a result of extensive research
in speech and music analysis. We summarize some of the most used ones.

Like in the case of the amplitude envelope, the spectrum envelope can also be
described using scalar values by means of statistic moments . The spectral centroid,
particularly, is traditionally considered to be linked to the perception of brightness
in timbre. Spectral mean, standard deviation kurtosis and skewness are also indi-
cators of the energy distribution in the spectrum. Spectral moments are routinely
used for music classification tasks in MIR, and also in music creation oriented sys-
tems (Schwarz 2007, Coleman 2007). Since they are usually calculated from the Short
Time Fourier Transform (STFT), one value is computed for each frame. Thus, tem-
poral moments of the spectral moments are also computed to describe sound seg-
ments.

Mel Frequency Cepstrum Coefficients (MFCC) have been traditionally used in
speech processing to decorrelate the excitation signal of the voice from its timbral
characteristics imposed by the vocal tract. This strategy also works well with music
instruments and in thus MFCCs are used as a descriptor of timbre in several mo-
saicing systems (Casey 2005, Lazier and Cook 2003). MFCCs are also widely used
in MIRl as general descriptors for polyphonic music files. These coefficients are ex-
tracted from the short time spectrum of a signal by mapping the magnitudes to the
Mel Scale using triangular overlapping windows. The Discrete Cosine Transform
or the Inverse Fourier transform of the logarithms of the Mel-scaled coefficients are
then computed depending on the variant.

14 2. Background

Bark bands are also a discretization of the spectrum according to a psychoa-
coustical scale, the Bark scale, which represents the 24 perceptually critical sound
frequency bands. In order to obtain a perceptual estimate of loudness, energy corre-
sponding to each band is summed yelding one value per band. Bark bands are used
in (Jehan 2005) as a descriptor of timbre. They have been showed to be effective for
identifying the timbre of musical instruments (Herrera, Dehamel and Gouyon 2003).

2.1.4 Unit Selection

Unit Selection is the term inherited from concatenative speech synthesis for the al-
gorithms that take care of finding the best sound segment for a given situation. In
musical applications this means that a sample is selected either manually on the ba-
sis of its content descriptor, or automatically because of its similarity with a target
specification. The target may be specified in a score (Schwarz 2007) or analyzed
from a musical piece (Jehan 2005) . Audio input may also be used, so that the sound
produced by a performer is used to control the system (Lazier and Cook 2003). Au-
tomatic unit selection may be performed by the path search unit selection algorithm
imported from speech synthesis (Schwarz 2007) . Here, the Viterbi algorithm is used
to find the sequence that minimizes the cost represented by several distances with
the target specification. A generalization of this idea for music applications consist
in mapping any desired property of the output as a constraint of the input units, so
that the problem becomes one of constraint satisfaction (Zils and Pachet 2001).

2.1.5 User interface

Many corpus-based synthesis systems are designed to be used in real time perfor-
mance, with the Mosievius system by Lazier and Cook (Lazier and Cook 2003) con-
sidered as the pioneer. This system included various GUIs, an interpreted scripting
language and MIDI input as mechanisms for control. Systems based on manual se-
lection typically require an interface to build dynamic queries with sliders or other
controls (Coleman 2007). Also, some feedback of the sounds that are selected with
a given configuration is sometimes provided, along with their position in the space
determined by one or two features. This allows to define interfaces on the basis of a
scatter plot, on which paths can be drawn (Schwarz 2007).

2.2. Network Music 15

2.2 Network Music

The use of computer networks for musical practice has been extensively re-
searched, either as an aid for existing music production techniques, or as a

means to explore new possibilities for music creation. On the other hand, adoption
to real world applications has been slowed down by the intrinsic limitation in speed
and initially reduced bandwidth. Research in network music is not only related
with the mechanics of sound production in the tradition of musical instruments,
but involves the complex world of collaboration and social relationships. Perhaps
related to this new complexity, research in this field has been very diverse, and de-
velopments have sometimes followed rather different (although connected) paths.
With the boom of the internet, it has become clear that there will be demand for tech-
nologies that exploit its potential for music creation, and several attempts have been
made to provide a unified theoretical base that explains most common strategies.

Since the specific affordance of the network is collaborative work, the same clas-
sification space that is used in the more general field of Computer Supported Co-
operative Work (CSCW) may be employed to classify different approaches to net-
worked music, as proposed by Barbosa (Barbosa 2003). Under this point of view,
different projects are organized in one axis in relation to time, depending on wether
interaction is synchronous (like for example in a live performance) or asynchronous
(like in a collective composition process). The other axis in this space represents dis-
tance: some strategies imply Co-located interaction (like using local networks), while
those involving longer distances can be considered Remote.

Weinberg, on the other hand, proposed a theoretical framework for intercon-
nected musical networks (Weinberg 2005), where different approaches could be
classified according to the level of interconnectivity among players and the role of
the computer. Proposed classes are the Server, where several players just send data
to the computer, the Bridge, where the computer is used to simulate proximity be-
tween remote players, the Shaper, where the computer provides musical materials
for users to modify, and the Construction Kit, where participants may submit their
creations as well as modify each other’s.

Another overview is provided by Rohrhuber (Rohrhuber 2008). Here, the main
aspects of network music are analyzed, although no attempt is made at a systematic
classification. One important aspect is Transmission: many artistic projects have re-
volved between the fascination for telepresence and transparent communication on
one side and the investigation of the medium and its opacity on the other. Not very

16 2. Background

differently, communication protocols are often used transparently, but many works
are based on the definition of protocols. Like programming languages, protocols
define procedures that help defining networks of relations. In this sense, computer
networks can be analyzed in the same way as computer programs, especially in the
era of object oriented (message passing) and distributed programming. In such net-
works, the problem of sharing information appears. The two main approaches to
informaiton sharing are concurrent access to shared objects or distributed objects .

We have seen several points of view of this generally irregular area that has
been called network music. In order to explore the possibility of music production
by casual internet users, we can narrow this field to approaches dealing with remote
collaboration. Because of the different time zones and habits, most of the time asyn-
chronous interaction must be taken into account in some way. On the other hand
coincidence does also happen but because of the nature of network connections (in-
trinsic delay, variable bandwidth) stress is rarely put on real time performance like
in physical collaboration. In order to explore the creation of new musical objects, we
focus on the Construction kit kind of environment. This usually means dealing with
distributed objects.

While for the case of mosaicing and CSS in most research efforts we found a
general pattern in combining the same elements (database, segmentation, features),
network music research is at this point focused on exploring different configurations
and strategies. While common elements exist in implementations, we focus on the
different solutions given to the problem of how to organize remote collaboration.

2.2.1 Strategies for web based collaboration

As the adoption of internet grows, especially through web based tools, its potential
for music collaboration is becoming obvious. During this decade, several experi-
ences have proposed a number of concepts and strategies.

Faust Music Online (Jordà and Wüst 2001) was a pioneer project which explored
collective composition over internet in 2001. An emphasis was put on allowing ca-
sual internet users and enforcing collaboration. Music compositions were created us-
ing a custom browser plugin for the wintel platform, which allowed composition of
sound textures by playing several layers using different generators and modulators.
Thus, a particular, experimental type of synthesis was common to all compositions,
and the project allowed unprepared visitors to become familiar with experimenting
with electronic music. Compositions could be evolved from others, and a composi-

2.2. Network Music 17

tion tree was used to store and browse the available compositions.

In Public Sound Objects (Barbosa 2005) the concept of a shared virtual space was
used to allow collective creation of music in real time. In addition, the space had
an actual physical dimension as an art installation. While the synthesis engine was
based on FMOL, it was run in the server side, and the resulting sound was streamed
to clients implemented as Java applets. Each user was presented with an interface
representing a square box with a bouncing ball, whose collisions emitted sound.
The timbre of the ball was produced by a sample, the metaphor being inspired on
Schaeffer’s sound object.

In DaisyPhone (Bryan-Kinns 2004), a music loop is shared among participants
who collectively add and remove notes with a choice of four different timbres. The
user interface is based on a radial sequencer, and the playback head is a rotating
axis. Distance from the center of the circle represents pitch, color saturation vol-
ume, and note shapes represent timbres. Each user is assigned a color hue so each
users contributions can be traced. Annotations can be made along the surface to
communicate and interact with other users by drawing or writing with the mouse
or stylus (if a tablet pc is used). The concepts of Localization (provided by graphical
annotation of any parts of the shared work), Mutual awareness (supported by color
hue), Mutual modifiability of other users’ contributions, and Shared and consistent rep-
resentation are prioritized in the design. Users have the possibility to join several
sessions, in which one such loop plays while it’s being collectively created. Synthe-
sis is performed on the client side using a Java applet, and synchronization is loose,
but sufficient to maintain the feeling of a shared experience.

The CODES project (Miletto et al. 2005) proposes the concept of Music Prototype,
an analogy of music with software prototyping that aims at facilitating the creation
of music for people with different musical backgrounds through collaboration. Mu-
sic prototypes are composed of a number of layers, of which each user is allowed to
control two. Layers consist in sequences of choices among predefined musical pat-
terns of different styles extracted from MIDI files. Interaction is fully asynchronous.
Three awareness mechanisms are presented to support community work: Music pro-
totyping rationale defines the possibility of users to annotate and comment on their
actions and decisions. ActionLogging provides a way to access the history of events
that have lead to a particular state of a music prototype. Modification marks indi-
cate, at an overview level when one user’s work has been modified by other users.
Consistently with the analogy with software prototyping, these concepts and their
interfaces bear a resemblance with group work support in software development

18 2. Background

tools, such as version management systems.

These experiences have showed the potential for internet based applications to
foster collaboration either in real time or by asynchronously sharing musical arti-
facts. Although some of them use sound samples, in general synthesis engines are
rather specialized, and they don’t provide the level of timbral richness provided by
a reasonably large corpus of samples. On the other hand, our purpose is to explore
the potential of using sound samples as ready-made building blocks of musical com-
positions (more than as resources for a music synthesizer) in order to facilitate quick
exchange of ideas to people regardless of their knowledge of traditional music con-
cepts such as notes or patterns. Moreover, in most of these projects the server side is
merely a hub that manages communication among participants and/or storage, but
doesn’t actively participate in the process.

PIWeCS (Whalley 2004) is a project that aimed at interactive publication of a
corpus of sound recordings of traditional Maori instruments played by an expert
performer. A multi-agent system (MAS) is devised as a way to assist composition
to users without any experience. The system is based on a flash client that commu-
nicates through OSC with a MAX/MSP program running on the server. While few
details are given about the actual interface, apparently a mixing-board style inter-
face allows the user to switch on or off different combinations of the pre-recorded
performance. More possibilities at a compositional level are offered through graph-
ical menus which seem to require some level of knowledge. Thus, the weight of the
musical expression seems to be put on the recordings, and the project adopts the
Shaper approach in Weinberg’s taxonomy. No information is given regarding any
possible means for collaboration or interaction among users. However, the project
poses interesting questions about the use of some intelligence in the server side.
Evolutionary methods were apparently discarded and the MAS approach was cho-
sen instead to aim at a conversational interaction between human and machine.
However, such conversation seems to be defined in advance to put the user in the
level of the helpless ignorant and the program as an expert advisor. We expect
evolutionary models and facilities for social interaction to foster learning more as a
process of discovery and collective construction.

CC-Remix and Malleable Mobile music (Tanaka et al. 2005) explore the possibil-
ities for bridging between music reception and social creativity of CC licenses. The
first project is web-based and allows a group to up to four users to engage in a col-
lective remix session by choosing among previously segmented loops of a collection
of songs licensed under CC. Loops chosen by each user are beat-synced and mixed

2.3. Evolutionary computation, music and collective knowledge building 19

on the server. The software allows each participant to see what others are doing at
any moment. In the second project, the possibilities of portable devices for social in-
teraction are explored, along with their sensors as sources for music control. Users
meet and form groups in chat rooms and choose an identity, related to instrumenta-
tion or timbres in the song, for collective mash-up. Their gestures and geographical
location are interpreted by the device sensors to control a musical flow based on the
song where each user controls a module of the synthesis engine. Both projects are
based on the same framework, involving segmentation of a short collection of CC
songs on the basis of statistical similarity of FFT vectors, and a Max/Msp synthesis
engine that performs time stretching slice sampling and sample playback at vari-
able rate. While the musical outcome of these projects is limited to very constrained
mash-ups of popular music, they explore important concepts for building commu-
nities in the field of music creation. The authors enumerate Shared goals (which are
inherent in music creation), Reciprocity provided by live interaction, Engagement as
a measure of the challenge presented by the system, Awareness of users of their own
actions, and Belonging to the shared activity. These concepts may prove useful as a
framework to analyze community oriented software.

2.3 Evolutionary computation, music and collective knowl-
edge building

2.3.1 Overview

Concepts inspired in natural evolution have a long history in computer science and
have been applied in many kinds of problems. Genetic Algorithms (GA) were for-
mulated in many different ways as a general technique for search and optimization
problems. While many earlier formulations exist, there is a certain agreement on the
foundational role of Holland (Holland 1975). Although many variations exist, most
GAs are based in some type of encoding (typically a string of bits) that represents
a chromosome over which several genetic operations may be applied, along with a
fitness function that defines the characteristics of the desired solution. A sequence
of steps simulating natural evolution is repeated until the solution is reached. A
typical GA may be summarized as follows:

• Initialization. A population of potential solutions is generated (typically ran-
domly)

20 2. Background

• Selection. The individuals are evaluated according to the fitness function. Sev-
eral selection algorithms exist for selecting a group of individuals with high
fitness.

• Reproduction. Genetic operators, typically mutation (alteration of a gene in
the chromosome) and crossover (derivation of a new chromosome from two
parents) are applied to the selected individuals to generate a new population.

• Termination. The process is repeated until a certain termination condition is
met.

Evolutionary models have also been applied to more creative domains like in-
dustrial design, visual art or music. In these domains, the fitness function often can’t
be automated, and Interactive Genetic Algorithms (IGA) are used, where fitness de-
pends on human evaluation of a succession of candidate objects. An interesting
example was presented recently that bears a certain similarity with network music
projects: Picbreeder (Secretan and Beato 2008) is an online system that allows users
to evolve pictures by selecting candidates generated by the algorithm. Users can
start from scratch but they can also depart from published images by other users.

2.3.2 Evolutionary computer music

In the field of music, evolutionary methods have been used in a variety of ways.
One classical example is the automatic generation of patches for FM synsthesizers
(Horner et al. 1993). For the problem of imitating existing instruments, an auto-
matic fitness function can be implemented in terms of similarity with a certain target
sound. Another example where automatic fitness function may be used is modeling
expressive performances (Ramirez and Hazan 2005).

For music creation applications, however, fitness generally is evaluated manu-
ally by composers. One classic and very documented system is GenJam (Biles 2003),
an artificial saxophone player that has evolved since 1994. In explaining his work,
Biles details the main problems that associated with genetic algorithms in the prac-
tice of music performance. An important one is the fitness bottleneck when fitness
evaluation must be done in real time. Biles proposes the addition of musical con-
straints to the algorithm, so that his system can’t play bad notes.

2.3. Evolutionary computation, music and collective knowledge building 21

2.3.3 Evolutionary models and collective knowledge building

In 2001, Kosorukoff proposed a completely social implementation of genetic algo-
rithms, the Human Based Genetic Algorithm (HBGA) (Kosorukoff 2001). HBGA de-
parts from IGA and is presented as a workflow management aid, by involving users
in all functions of the genetic algorithm. This process was demonstrated for collec-
tive knowledge generation in several projects, bearing a certain resemblance with
the collective knowledge building site Yahoo Answers2. In fact, Kosorukoff claimed
that many of today’s tools for collective knowledge building and sharing, such as
wikis or social news promotion3 are related with evolutionary computation and
HBGA. Thus, in a way, HBGA ca be considered more a perspective than an actual
algorithm. Clearly, collective knowledge building is not something exclusively al-
lowed by computers, the rules that govern it are usually studied by social sciences.
What we have is the claim that there is a use at considering knowledge production
under the point of view of biological evolution. This perspective was proposed by
Richard Dawkins in The selfish gene (Dawkins 1976). The Meme is there proposed
as the cultural equivalent of the Gene. Interestingly, though, the origin of the con-
cept is explained in terms of music. Dawkins explains the experience of P.F. Jenkins
analyzing the songs of a bird in New Zealand:

During most of the time Jenkins was there, there was a fixed number of
songs on the island, a kind of ’song pool’ from which each young male
drew his own small repertoire. But occasionally Jenkins was privileged
to witness the ’invention’ of a new song, which occurred by a mistake in
the imitation of an old one.

A lot of people would be willing to accept this process of mistaken imitation as a
definition of how music progresses. The so called Memetic perspective has since been
adopted by those that could take some advantage of it. Regarding network music,
in 2.2.1 we have reviewed many experiments dealing with the possibility of users
creating musical objects and modifying other users’ ones, which could be easy to
interpret under the memetic perspective. HBGA, however, provides an interesting
addition: the inclusion of artificial agents in the process. Artificial agents can under-
take some of the tasks when users are not motivated enough to do them.

2http://answers.yahoo.com/
3http://digg.com

Chapter 3

Organizing free sounds

3.1 Introduction

One important challenge when dealing with a large database of sound samples
finding methods for efficiently retrieving the desired sounds. We have seen

that content based indexing has been applied to creative applications in mosaicing
and concatenative synthesis. Yet several issues have not been solved. As we have
reviewed these approaches usually rely on the existence of a previously specified
composition (the target). In many applications, however, the target is not known.
Thus, we find an important contrast between content based approaches used in mo-
saicing systems and the real world usage of databases like Freesound, where users
describe the content themselves in order to find it. While manually describing and
tagging sounds is tedious, online databases have showed the potential of doing it
collectively. The problem, though, is that collective action brings a certain level of
noise. The schaefferian metaphor of the attic illustrates our necessity to classify
sounds:

Should I measure the bird in order to put it among the tables? Should I
put a deciliter of shavings among my jars? Physics don’t help me, but to
the contrary. If I’m advised to place the clothes by size, this won’t allow
me to sort it in relationship to the bird or the bottle. (Schaeffer 1966)

In Freesound we find a varied mix of audio cultures. There are field recorders
who upload professionally recorded sounds from carefully chosen settings, field
recorders who report on their environment at a more personal level, people inter-
ested in designing strange sounds, people who play traditional instruments, people
who upload rhythm and synthesizer loops, people who exchange recordings of their
voice. How could we possibly compare or find similarities among all those sounds?

In this chapter we describe two initial experiments towards better ways to or-
ganize sounds in a large and heterogenous database that were carried during the

24 3. Organizing free sounds

development of Freesound Radio. The first one tries to obtain a conceptual map of
the database from tags. The second one deals with the problem of using musical
descriptors to define similarity when appropriate. Because its a large database built
collectively by a number of users, we hope that the methodology and results should
be applicable to other contexts. However, dealing with the whole database implies
abandoning almost any assumption about the nature of the sounds, except for the
built-in restriction that prevents users to upload complete music songs. Except mu-
sic songs, we may find anything, from long speeches to tiny noise clips or tones.
Thus, our attempt at classifying the sounds is necessarily coarse.

3.2 Background

In traditional instrumental music, all sounds can be classified according to the in-
strument that produces them. Within symbolic notation, all sounds to be produced
are defined in therms of timbre (instrument), pitch (note) and loudness (note dura-
tion and dynamics notation). This organization is lost when trying to incorporate
a wider range of sounds into the musical language. Especially in the case of music
based on recordings, composers are faced with an initial step of choosing among a
potentially large collection of discrete objects. Hence, the first step of the schaeffe-
rian program for experimental music was the typologie. In trying to avoid references
to the musical tradition or to the sources of sound recordings at a semantic level,
the typologie was strongly tied to the morphologie, forming a recursive relationship
in which each one had to be defined iteratively with the help of the other. This
resulted in a rather complicated system. As summarized by Chion (Chion 1983),
the typologie resulted in thirty classes defined with the help of six pairs of criteria
(Masse/Facture, Durée/Variation, Equilibre/ Originalité) A different perspective was
suggested by Murray Schafer (Schafer 1977). While he also proposed a classification
based on psycho-acoustical properties of sounds by extending the one in the Traité,
his proposal was more directed to the analysis of all the sources of sound in the
world. Thus, he devised a detailed taxonomy of sounds according to their sources.

With the large collections of sounds allowed by computers, the need of classify-
ing sound files became general. The issue of describing and classifying sounds from
a general perspective was addressed in MPEG-7 standard (Casey 2001). In this
new context, both the tradition of classifying sounds according to their morphol-
ogy (Ricard and Herrera 2004) and according to their semantic reference (Cano

3.2. Background 25

Figure 3.1: Schaeffer’s typologie
(Schaeffer 1966)

2007) have been pursued, along with classification focused at musical instruments
(Herrera, Peeters and Dubnov 2003).

The Freesound database allows us to experiment with both approaches. Users
describe sounds at a semantic level using tags. These tags are not always descrip-
tive of the sound sources, but they represent what the sounds refer to users. For
example the instruments used to produce an electronic loop may not be relevant.
On the other hand, automatic content descriptors make it possible to create mor-
phological taxonomies that are independent of the source of the sounds. We explore
both approaches on one hand by analyzing the tag folksonomy and on the other by
devising a taxonomy based on content descriptors. In order to avoid an arbitrary
classification based on subjective criteria, we use some specific tags as the ground
truth to define the classes of the content-based taxonomy.

26 3. Organizing free sounds

3.3 Database and tools

Four our experiments towards a coarse classification of the sounds in Freesound, we
depart from a copy of the database containing 44790 sounds and 13108 tags. We use
an in-house implementation of some common low level descriptors of pitch, timbre,
loudness and rhythm, together with a decision tree classifier.

3.3.1 Descriptors

As summarized in 2.1.3, in the context of music creation we can classify sound de-
scriptors in four groups: Pitch, Timbre, Loudness and Rhythm. In general, we use
characteristic values (mean, variance, minimum and maximum) of descriptors for
each segment.

• Pitch. In order to represent pitch, we use both the pitch estimate and the con-
fidence values from the YinFFT (Brossier 2006), as well as HPCP histograms
(Gómez 2006)

• Timbre. Timbre features include a vector of several spectral shape measures
(centroid, crest, decrease, flux, kurtosis) (Peeters 2005, Tzanetakis and Cook
1999), as well as MFCC coefficients (Rabiner and Juang 1993) and bark fea-
tures (Herrera, Dehamel and Gouyon 2003)

• Loudness. The amplitude envelope is described using log-attack time, tempo-
ral centroid, decrease and kurtosis (Peeters 2005, Schwarz 2004) as well as the
number of detected onsets(Brossier 2006),

• Rhythm. Rhythm is described using the relative inter-onset interval histogram,
along with position and value of the three largest peaks estimated from it and
the rate of onsets per second (Gouyon 2005).

3.3.2 Decision trees

Decision tree learning (Mitchell 1997) is a very popular family of data mining algo-
rithms, which are able to extract a predictive model, in the form of a decision tree,
from a series of observations. The advantage of decision trees, especially of small
ones, is that they are intelligible and allow an understanding of which features in
the data lead to its assignment to a given class. In our case, we are dealing with or-
ganizing a very heterogeneous database in a way that is useful for music creativity.

3.4. Conceptual taxonomy 27

Thus, we don’t depart from a predefined, clear cut classification scheme, we are in
the middle between the free tagging activity of users and the concepts implied in
content descriptors. Therefore we are interested in keeping intelligible models that
can be iterated and refined in a dialogue between both. In our experiments, we use
the C4.5 decision tree algorithm available in Weka 1 (Witten and Frank 2000).

3.4 Conceptual taxonomy

Tag folksonomies have become an interesting problem in recent years. On one hand,
they provide valuable information about the communities that use them and the ob-
jects that they tag; on the other, they are noisy and unstructured, which makes it dif-
ficult to obtain a general view. Since folksonomies seem to operate on a certain level
of agreement among users, in some cases the assumption of a latent taxonomy can
be made. In (Heymann and Garcia-Molina 2006) a simple algorithm is presented
that allows to extract a hierarchical taxonomy from folksonomies. This algorithm
requires a similarity function to be defined between tags, such as cosine similarity
in the vector model (Baeza-Yates and Ribeiro-Neto 1999). We applied this algorithm
to the Freesound in order to obtain a conceptual map of the database. The process
may be summarized in the following steps.

• The folksonomy can then be represented in a matrix F where fi,j = 1 if docu-
ment i is annotated with tag j and 0 otherwise. Rows in this matrix are sound
files, and columns are tags.

• Given two tags, t1, t2 we define their similarity using the cosine of their vec-
tors: sim(t1, t2) = ~t1·~t2

|~t1|×|~t2| . This can be implemented by defining a matrix M

that has the inverses of modules of each tag at the diagonal, mi,i = 1
|~ti|

. Then

the distance matrix D can be computed as D = ((FT × F)×M)×MT

• We obtain a centrality score for each tag using the principal eigenvector of D

• The taxonomy extraction algorithm (Heymann and Garcia-Molina 2006) can
then be applied in the order of centrality: we iterate over tags starting from
the most central one and adding them to the most similar tag already in the
hierarchy if the similarity is above the threshold, or to the root if no suitable
tag exists in the taxonomy.

1http://www.cs.waikato.ac.nz/ ml/weka/

28 3. Organizing free sounds

The threshold parameter determines the number of concepts that will appear on
top of the taxonomy. A small threshold allows tags to be added below tags that are
less similar instead of to the top level. A higher threshold will increase the num-
ber of tags in the top level. We used a value of 0.15 to obtain a suitable set of top
level concepts that are representative of the sounds in the database. In addition, we
require tags with a frequency greater than 2000 in order to go to the top of the hi-
erarchy. This allows us to obtain a general overview of the content in the Freesound
website:

• Field Recording describes the use of the site to document the acoustic environ-
ment. Tags under this category usually indicate real world concepts, and do
not hint towards potential uses of the recordings. These potential uses include
video or multimedia productions where real world concepts must be repre-
sented, or music based on soundscapes.

• Electronic includes sounds of synths, loops and effects, but also acoustic sounds,
along with sounds of electronic devices. Most music related sounds are con-
nected, in one way or another, to the electronic tag, which is the most central.
Thus, one possible interpretation is that this category is focused on the elec-
tronic word more in the sense that musical sounds in the database are intended
to create electronic music.

• Noise includes all kinds of sounds that users find interesting because they are
weird, like glitches or sounds of machines. this category may include field
recordings, but in general it seems also more oriented towards electronic mu-
sic and sound design.

• Voice is the category for recordings of speeches, words, phonemes. In this cat-
egory we find often sounds that are uploaded per request containing specific
words in different languages, along with more casual recordings. Thus, this
category is similar to field-recording in that sounds can be useful for media pro-
ductions that require specific utterances.

An additional step required to use this taxonomy to analyze the database is to
define a set of general concepts and assign the samples to them. One problem here
is that since samples have several tags, there is no apparent reason to assign a sound
uniquely to one class, although this may be needed for some applications. In order
to classify all sounds according to the top level classes, we just locate their most

3.4. Conceptual taxonomy 29

Figure 3.2: Top level concepts

Figure 3.3: Concept taxonomy detail

general tag in the taxonomy. In case of ties, we keep going down and examine less
general tags to break the ties. A general problem of this way of classifying sounds
is that some sounds are annotated only with tags that are never connected to other
tags (i.e. they never appear together with other tags). These rest unassigned. Table
3.1 shows the number of assigned sounds to each category along with concepts at
the second level of the taxonomy. About half of the database falls under the elec-
tronic category. This shows that despite the (perhaps surprising) growth of the field
recording culture in the site, electronic music creation is a prominent application of
the database.

Initial experiments with classification based on low level descriptors shown that
the top categories obtained with this system are not very consistent with respect to

30 3. Organizing free sounds

concept Instances subconcepts

electronic 23926 scanner whine harmonic radio soundeffect generative fear analog police mallet

whoosh hardpcm synth destroy electro war rhythmic tones power gadget

stutter game stab fm cable alarm oscillator waldorf processed circuit loop

noise 9476 layer industrial feedback burst rattle scratch lo-fi pop glitch frequency

static bend meditation repetition micro electricity screaming mic spread pen

wood sound-design digital white household electric bleep crack effect experiment

lofi sine data white-noise noisy raw signal metal hum filter record

paper buzz reverb loud silence

field-recording 7077 summer walking outdoor office insects sound-fx london earth birds announcement

tweet environment south-spain whistle traffic background bat morning sonar spring

village ambiance thunder-storm street sea dawn canada thunder diesel children

bird explosion nature water frequency-sweep temple wildlife purist foot-steps conversation

footsteps road cracking ultrasound church turkey city jet engine rainfall

fire crackle park train tapping town christmas streetnoise car inside

tree morocco aeroplane robin binaural india voices brake ship airplane

winter machine night-time forest animal birdsong high-pitch rain insect moving

marshes building stereo natural dog block wind

voice 3611 human echo cell-phone female singing talking funny ringtone speech freesound woman

mouth baby word morph request robot vocal recording laughing english male

Table 3.1: Subterms and instance assignment of top level concepts

low level descriptors. However, they offer a good characterization of the database
from a semantic point of view. While the obvious application of concept taxonomies
is the navigation of the site, in this thesis we will use this set of classes in order to
analyze the use of samples in collective music making in the sense explained in 1.4.

As an initial step towards the use of low level descriptors, we devise another
taxonomy specific to music creation in a sense that is present both in descriptors
and in the database, using specific tags as the ground truth for the decision tree.

3.5 Music oriented taxonomy

While a taxonomy based in classic western music concepts may impose a certain
stylistic bias to the system, these concepts involve already a significant part of the
database, following the tradition of sample libraries that offer instrument notes and
rhythmic loops. Thus, it makes sense to use available description technologies to

3.5. Music oriented taxonomy 31

Figure 3.4: Music oriented taxonomy

index files that do have tempos and pitches. One point of departure is offered by
the definition of sound object as an energetical event in the Traité des objets musicaux
(Schaeffer 1966). One agreement with traditional music concepts represented in con-
tent descriptors may be based on the identification of an event and an onset. Thus,
we may use an onset detector to distinguish among simple and composite sound ob-
jects. For simple sound objects we can provide a distinction between pitched and
unpitched objects, and for composite objects one between rhythmic and arrhythmic
fragments.

This simple distinctions represent an initial step towards mapping existing con-
tent descriptors to a real world database. Further steps and refinements may pro-
ceed iteratively so that the actual categorization can be driven by users themselves.
In this sense, we rely on tags assigned by users to define the partitions. Tags are
used as annotated ground truth data to drive a decision tree classifier. We expect
that this way of proceeding should be easy to extend to any tags that provide some
consistency with descriptors.

We trained the decision tree classifier with pairs of tags representing the concepts
we wanted to split. For the pitched / unpitched distinction, we used the noise versus
note. For the rhythmic / arhythmic distinction, drumloop against rain provided good

32 3. Organizing free sounds

results (rain drops may be considered a classic example of random). Parameters
were set in order to obtain simple trees that provide some understanding of the
relationships between descriptors and tags.

The resulting tree for the note versus noise model is summarized in listing 1.
Here, the algorithm found a threshold in the spectral flux descriptor to discriminate
between notes and noises. Spectral flux (Tzanetakis and Cook 1999) is a measure
of the speed at which the spectrum changes. This doesn’t seem to say much about
pitch directly, but it seems to make sense to discriminate sounds that have a certain
stability in the spectrum. Finding suitable tags to represent this distinction turned to
be more problematic than expected. Thus, the number of note examples is low, and
the recall measure shows some room for improvement in cross-validation results.

Summarized results for the drumloop vs. rain tree can be seen in listing listing
2. The tree is also rather simple. Here, the emphasis was put on rhythmic features,
including the two greatest peaks in the inter-onset interval histogram. The second
peak of the inter-onset interval histogram was chosen along with the onset rate.
Thus, the second peak seems to be a stronger indicator of rhythm than the first one,
suggesting that non-rhythmic sounds may have a high value for one peak by chance.
In addition to a higher second peak, the model selected a threshold for the number
of onsets per second for rhythms. This may be biased towards the kind of rhythms
represented by drum loops and will probably rule out very slow rhythms. However
it makes sense to put a minimum speed for determining rhythm. Application of
this model to the rest of the database provided interesting results as a way to detect
rhythm in sounds of different sources.

Class Instances

Simple Pitched 1001

Simple Unpitched 8390

Composite rhythmic 13950

Composite arhythmic 21449

Table 3.2: Number of sounds per morphological class

3.6 Similarity

The music oriented taxonomy defined in the previous section allows us to tell apart
sounds for which it makes sense to compute rhythm features from those where it

3.6. Similarity 33

Listing 1 Model and cross-validation results for simple object noise/note

J48 pruned tree

spectral_flux <= 0.022925: note (97.0/6.0)

spectral_flux > 0.022925: noise (601.0/26.0)

Number of Leaves : 2

Size of the tree : 3

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

0.99 0.265 0.949 0.99 0.969 noise

0.735 0.01 0.935 0.735 0.823 note

=== Confusion Matrix ===

a b <-- classified as

575 6 | a = noise

31 86 | b = note

doesn’t. Regarding pitch, since we have made the distinction regarding the spectral
flux, we assume that sounds with a varying pitch may be classified as unpitched. This
is not bad regarding musical uses of both classes (e.g. sounds with a stable pitch are
typical in traditional use of samplers to imitate musical instruments, while short
sounds with a varying pitch or no pitch at all are both common in rhythm compo-
sition) but in order to preserve perceived similarity we don’t remove pitch features.
We do remove pitch for composite objects and rely on hpcp histograms. Introduc-

34 3. Organizing free sounds

Listing 2 Model and cross-validation results for drumloop/rain

JJ48 pruned tree

peak2_val <= 0.055556: rain (398.0/17.0)

peak2_val > 0.055556

| rhythm_onset_rate <= 1.395535: rain (32.0/6.0)

| rhythm_onset_rate > 1.395535: drumloop (571.0/14.0)

Number of Leaves : 3

Size of the tree : 5

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

0.947 0.043 0.968 0.947 0.957 drumloop

0.957 0.053 0.929 0.957 0.943 rain

=== Confusion Matrix ===

a b <-- classified as

549 31 | a = drumloop

18 403 | b = rain

ing partitions in the database helps reducing the cost of computing distances. Since
we are interested in distances that are meaningful in a musical context, this allows
us to use relatively large feature sets that are focused to the musical properties of
sound objects. In order to obtain similarities, we normalize features locally inside

the class and compute the euclidean distance, i.e: DE =
√∑N

i=1 (xi − yi)2 gives the
distance between sound x and sound y described by N features. Given this distance,
we compute a table of the 10 nearest neighbors of each sound in its class in order

3.6. Similarity 35

to substitute sounds in genetic mutation. The table is computed using a python
wrapper 2 to the ANN library 3

Simple pitched pitch

envelope

hpcp

mfcc

barkbands

spectral shape

Simple unpitched pitch

envelope

hpcp

mfcc

barkbands

spectral shape

Composite rhythmic envelope

mfcc

barkbands

hpcp

ioi

ioi peaks

spectral shape

Composite arrhytmic envelope

mfcc

barkbands

hpcp

spectral shape

Table 3.3: Selection of features for class local distances

2http://scipy.org/scipy/scikits/wiki/AnnWrapper
3http://www.cs.umd.edu/ mount/ANN/

Chapter 4

Patching samples

4.1 Motivation

Tthe potential of the web as a platform for collaborative music creation was in-
vestigated in various projects reviewed in 2.2. In general, interaction on the

web is asynchronous, both because of the latency imposed by the medium, and be-
cause of the different usage patterns and time zones of the users. Moreover, the web
poses the challenge of engaging casual, anonymous users whose background is not
known. Many of those projects had to use some way of organizing data to express a
musical composition. Ideally, such compositions should be accessible to users with
different levels of expertise, and be adapted to the usage pattern of the web: they
should allow to quickly share ideas and receive feedback; because the limited inter-
action possibilities available on browser based technologies, they should be easy to
create. In other words, the point is not replicating the available tools, but to exploit
the potential for collaboration and interaction with other users.

A good definition of the problem was provided by the Musical Prototyping (Miletto
et al. 2005) concept, in the sense that in the context of joint work, the musical cre-
ation should not be deemed as a finished piece of work, but rather as something
built progressively. Hence, the metaphor of software prototyping. One problem
with the approach proposed in this paper, however is the utilization of traditional
form based interfaces that are used for business. In this sense, the implementation of
the software prototyping analogy puts the user in a situation of considering music
creation at the same level of a paid job: a boring task that needs to be done efficiently
and in the less time possible. This is clearly not the way in which most casual inter-
net users approach music creation. While some may be music professionals, in most
cases music is an activity developed without a clear connection with an economic
gain, and is not carried by accomplishing a set of predefined tasks that determinis-
tically lead to a goal.

38 4. Patching samples

One interesting explanation regarding the distinction between working and play-
ing, and its relation to the arts was provided by the work of Hans-Georg Gadamer.
In The Relevance of the Beautiful (Gadamer 1977), Gadamer stressed the difference
between two different experiences of time. Work time is related to the traditional
spatial conception of time. Under the point of view of work, time is like a line that
can be divided, an empty container to be filled with events. In contrast, play time
does not exist with independence of events. When playing, time is conceived as a
property of the activity itself.

Most software audio sequencers are based on time lines that allow the visual-
ization of the whole work, with independence of the moment that is being played.
This interface has become the de facto standard for music production, especially for
all the phases in the process that can be easily considered work, and carried out
by a single person in control. For obvious reasons, audio sequencers of this kind
have not found great acceptance in live performance situations, or for collective cre-
ation. Some programs, such as Ableton Live 1, became very popular by allowing a
more real-time approach to audio sequencing. The simple excel-style interface of-
fered by Live still inherits the limitation of the mixing desk metaphor. Sounds are
no longer necessarily forced into a time grid, but they are still forced into channels.
With computers, especially with nowadays computers capable of playing hundreds
of tracks, the mixing desk metaphor is a limitation that is not needed when dealing
with sound samples.

We propose the concept of a sample patch as a way to sequence sound objects
that is not based on a time grid neither on a mixing desk, but makes it possible
to quickly create short musical compositions on top of a large database of sounds.
Patching interfaces have been very common in computer music since the beginning.
The Music V paradigm allowed to define music programs as signal flow graphs.
With the popularization of Max many musicians without a background in computer
programming were able to create such programs by using graphical patchers. The
patching interface has since become widespread and implemented in a wide variety
of programs. Incidentally, graphical patchers were also popular during some time
as code generators in some software development environments, so an analogy with
software prototyping is mantained. Because of many usability problems associated
with visual patching as a way to program, text based interfaces for music have be-
come increasingly popular, especially as computer users become less scared at text
based programming, and live coding has emerged as a way to use such interfaces

1http://www.ableton.com

4.2. Related work 39

in live performances. In a somehow opposite direction, visual patching has been
brought to the tradition of musical instruments. The Reactable (Jordà et al. 2007)
implemented dynamic patching (Kaltenbrunner et al. 2004) with a tangible interface.
The massive success of the Reactable outside of the world of research has showed
the general acceptance of the patching interface as a way to allow the end user to
access infinite recombination possibilities.

4.2 Related work

Besides modeling networks of signal flow, graphs have been used in computer mu-
sic mainly to model networks of transition probabilities. Less common is the usage
of graphs as deterministic sequencers, and even less as sound object sequencers.
The first iteration of the sample patcher was developed by the author in collab-
oration with Anna Xambó as a project for the real-time interaction course taught
by Sergi Jordà and Günter Geiger at UPF. Initially, we weren’t aware of any graph
based sample sequencer. However, with the generalization of the use sound files
as building blocks for music composition and the popularization of patching inter-
faces, the combination of both has become a somehow obvious step to create sample
sequencers that escape the mixing desk metaphor

Graph theory (Freeman 2008) explores the possibilities of graphs to allow the
audience of a concert to define the actual score of a musical piece by voting their
favorite path through a web site. While the aim of the project is to generate a score
for a classical music concert, the interface is based on samples to allow users to have
an idea of how the result will sound like. Thus, samples are limited to the instru-
mentation defined for the pieces, and user activity is reduced to selecting among a
range of previously defined paths.

Mash! 2 is an online java applet aimed to allow users to make collaborative
mash-ups by cutting loops from music songs and remixing them using a graph-
like interface. Although the implementation is still in a very rough alpha state, the
interface allows to load some loops and make connections. Sequencing is based on a
pre-established tempo, and thus the collection of available loops seems to be limited
by their accordance to the tempo. Creating multiple paths or having several entry
points doesn’t seem to be possible. Loops are not represented by transitions, since
all objects are loops and their duration is defined as the number of cycles.

2http://www.sonasphere.com/mash/

40 4. Patching samples

Geography (Valle 2008) is a graph based sequencer of sound objects built using
the SuperCollider language that aims at bridging between the algorithmic compo-
sition and the live performance traditions by supporting both graphical patching
and text based interaction. Sound objects are represented by vertices in a graph,
and edges are assigned durations. Thus, multiple edges are possible between two
given vertices, in addition to loops. Music sequences are played by actants that nav-
igate the graph randomly according to a certain distribution. This creates a rather
complex sequencing environment to be used presumably by a single experienced
composer / performer.

4.3 The Sample Patch

With the goal of providing a simple but flexible data structure to express music
ideas as organizations of sounds in a database, we propose the sample patch. A
sample patch is defined as a directed graph where vertices represent sounds from
the database and edges represent transitions between them. Transitions are trig-
gered when the sound of their source vertex finishes playing, and immediately start
playback of the target vertex sound. Cycles are allowed, which results in patches
of infinite duration. In particular, one vertex can be connected to itself to play it as
a loop. Each vertex can have several incoming and outgoing edges, but only one
edge in each direction is possible between two given vertices. Vertices are always
followed and thus patches are deterministic.

The idea is that this model is equivalent to the classic ”brickwall” model that
is used by conventional audio sequencers, but silence must be supplied by silent
samples from the database. The main difference is that instead of focusing on the
timeline, the interface is focused on the sounds and transitions among them, and
durations and time structures are determined by the available samples. This restric-
tion is obviously a major one. Our hypothesis is that it will force users to abandon
any intention to do ”serious work” and allow a more playful attitude that is focused
on discovering new sounds.

In order to provide the possibility of several entry points (i.e. not forcing all
patches to start with one sound), a root node with no sound neither duration is
defined. From the root, as well as from any other vertex, multiple outgoing edges
will correspond to multiple audio tracks. The situation is more complex if two paths
converge to a single target. This means that one transition may be fired when the

4.4. Implementation 41

Figure 4.1: Equivalence of sample patch to traditional sequencer representation

target vertex is already playing. In such situation, the second transition will be
simply ignored. The reason is that if we chose to restart the target vertex each time
one of the sources ends, the target vertex may never reach to its own end (e.g. if
one of the sources is in a loop that is shorter than the target). Trying to fix this
brings even more complications that move us further away from the behavior the
user would expect. The option of always allowing the sound to reach its end is
less suited for repetitive rhythmic patterns, unless the duration of sounds involved
in loops is chosen carefully, but it allows more complex structures. Once more, we
resort to the database to provide the material that determines the rhythmic structure.

4.4 Implementation

The sample patch was designed to allow users to create and share simple musical
constructs based on a large collaborative database of sounds. Although nothing pre-
vents its use as a compositional tool in other contexts, this application was evaluated
by implementing prototype to create sample patches in the ActionScript language
on the Adobe Flex3 platform on top of the Freesound datbase. The implementation
is designed to work in real time so that the model can be played at the same time it
is being modified.

4.4.1 Sequencer

Real time audio applications typically employ either a callback mechanism or a
blocking mechanism to feed the audio output with the necessary amount of sam-

3http://opensource.adobe.com/flex

42 4. Patching samples

ples at a given rate. One important concept is the control block, which defines the
speed at which user actions are polled and decisions are made to influence the signal
processing mechanism. In our case, while the sequencer lives inside the Flash player
runtime and has no direct access to the sound card, one such callback mechanism
can be hooked to the completion event of a very short sound. We use the popforge
library 4 to provide this callback . However, since no synthesis is required, and the
Flash player already provides sample playback, no other feature of this library is
used.

The sequencer maintains a list of events where the time remaining to finish each
of the currently playing sounds is stored. Each callback, the buffer time is removed
from each event. If the event falls inside this buffer, all children of the ending vertex
are fired. Thus a new list of events is generated for the current callback and latter
added to the existing list. A stage of removal of duplicate events is performed to
avoid multiple parallel paths among the same vertices.

4.4.2 Interface

The interface is based on a graph visualization provided by the flare 5 library. Inter-
action is implemented to allow the user to modify the underlying graph. Custom
renderers were implemented for sounds to display a summary of the waveform
(provided by Freesound). Also, edge renderers are customized to allow curves (only
for nodes pointing to themselves) and arrows. Users can drag samples from the
database to the playground area, connect nodes by clicking once on each, and dis-
connect them by clicking again in the same sequence. A more detailed view of each
sound is provided in an auxiliary display which displays the author of the sound
and its duration, along with a larger waveform.

4http://code.google.com/p/popforge/
5http://flare.prefuse.org/

4.4. Implementation 43

Figure 4.2: Sample patch editor interface

Chapter 5

Evolution

5.1 Introduction

The proposal of an evolutionary interpretation of collective knowledge building
was briefly reviewed in section 2.3. We have also acknowledged the existence

of a strong tradition in computer music of using evolutionary algorithms. By im-
plementing an evolutionary model as a workflow for users to produce knowledge,
we may consider both human and artificial agents performing the genetic operators.
The advantage of this approach is that it takes into account the potential asymmetry
in the tasks realized by users voluntarily. In the Freesound website, the number of
people who actually contribute content is tiny compared to the number of people
who merely download content. This asymmetric model of producers and specta-
tors has been inherited from non interactive media distribution, and is reflected for
instance in the different upload / download capacities of asymmetric DSL lines.
Hence, we propose a framework that can produce an infinite amount of combina-
tions of samples for consumption, but at the same time allows users to participate
in the process, and eventually produce all of the content. The algorithm is based on
the sample patch data structure presented in chapter 4. It evolves sample patches
by recombining and mutating existing ones. We expect user submitted content to be
generally more interesting than automatically generated content. However, by per-
forming crossover on user-submitted patches, we implement a sort of automated
collaboration that in most cases wouldn’t happen spontaneously. Given the limited
interaction possibilities of the web, this method may become a useful way to speed
up collaboration between users without even knowing each other.

46 5. Evolution

5.2 Initialization

Typically, in genetic algorithms with automatic fitness function, initialization may
be random. Random initialization has also been used in many creative applications
of genetic algorithms . In these cases, the algorithm is regarded as a random search,
and from the creative point of view they are regarded as ways to obtain new ob-
jects that wouldn’t be imagined by humans. Clearly, random initialization puts a
burden on the fitness function, which in our case relies on subjective judgement of
the listeners. In a context where users are not expected to have any further goal
than listening to the music and specifying their preferences, random initialization
is not affordable, as confirmed by early experiments with the genetic algorithm.
Thus, initialization is performed by users with the sample patch editor described in
the previous chapter. For an infinite process, like a radio providing a continuous
soundscape, this initialization is only needed once. However, as more patches are
provided by users, they are involved in the reproduction process, which results in
more interesting combinations and a greater population diversity.

5.3 Selection

Several methods exist in genetic algorithms to select among the best individuals in
the population, which in our case is determined by collective rating. Tournament
selection (Miller et al. 1995) is one common method that preserves some of the pop-
ulation diversity. We implement the deterministic variant where the best individual
is chosen from a random sample of the population whose size is adjustable through
a selection pressure parameter. This process is repeated until the desired amount of
parents is obtained. We then perform crossover with a certain probability to obtain
new patches. Both original and newly generated patches have also a probability of
mutation.

5.4 Crossover

Graph crossover algorithms have been developed mainly for evolution of drug
molecules and circuits. It usually requires splitting graphs in two halves and con-
necting spare pieces. We implemented a simplified version of the algorithm de-
scribed in (Al Globus and Wipke 2001). The main complication is introduced by

5.5. Mutation 47

cycles, which in the case of sample patches are important. A random edge is cho-
sen for breaking up the patch. Then, if the edge is part of a cycle, other paths may
remain that connect both nodes; for each of these, a random edge is removed until
no paths exist between them. Since one of the graphs ends the process without the
root node, we connect a new root to the best candidate identified as the node that
allows access to most nodes. This allows us to connect two graphs by simply replac-
ing the root node in one with a random node in the other. A quality control stage
is introduced to ensure that all nodes are accessible and that the number of nodes
and edges remains within limits. This method can be improved by imposing some
musical constraints to the breakup and merge points. The problem is obviously who
is in charge of deciding these constraints. We store the counts of transitions between
samples of the different classes in user submitted patches in order to maintain a
musical tradition that can bias this crossover process.

5.5 Mutation

Mutation operations that can be applied to graphs include adding or removing
nodes and edges or replacing nodes. Substitution of nodes is consistent with the
analogy of music to natural language: in the Traité, Schaeffer reviewed the linguis-
tics of the time and studied the applicability to Musique concrète of the rules of se-
lection and combination of basic units into more complex units of meaning. Selection
implies that term may be replaced by another of similar meaning. For example,
the note of an instrument can be replaced by the recording of the same note form
another instrument (Schaeffer 1966). We can implement this philosophy thanks to
the class local similarities we have defined in chapter 3. Mutation is performed by
substitution of a sample by the most similar sample in its class.

5.6 Implementation

The algorithm was implemented in Freesound Radio in a server that continuously
generates playlists in real time. A corresponding flash client plays them using
the sample patch sequencer described in chapter 4. The playlist is a population
of patches that may be rated by users while they hear them. When a playlist is
complete a new one is formed by incorporating recent user submitted patches and
generating new ones by mutation and crossover from the previous generation.

48 5. Evolution

Figure 5.1: Playlist management

The player interface includes buttons for rating different patches and allows
bookmarking samples and tags. Bookmarking a sample decreases its probability
of disappearing from a patch by mutation, while bookmarking both tags and sam-
ples biases choices in of suitable replacement samples from the nearest neighbors
table. This allows users to influence the evolution of patches along with ratings.

A chat is also provided to support mutual awareness. In (Shamma et al. 2007)
chats are implemented on the basis of psychological studies regarding how humans
enjoy more media if they can share the experience. Acousmatic concerts are an obvi-
ous example in music. In (Tanaka et al. 2005), chats are used to allow users to form
groups. In order to allow users to coordinate strategies, user votes are displayed in
the chat window.

5.6. Implementation 49

Figure 5.2: Player interface

Chapter 6

Analysis and discussion

6.1 Content usage

The Freesound Radio prototypes were put online initially internally in our re-
search lab, and later on on the Freesound website open to general public. We

analyzed 70 patches submitted by 20 distinct users during this initial period, using
the general classes outlined in chapter 2 to obtain a rough overview of what samples
are used in this kind of application. Regarding conceptual classes, the prevalence
of the electronic class was predictable, since most musical concepts fell under the
electronic category in the taxonomy. The role of noise is less obvious. This cate-
gory is related with all people who use Freesound to exchange glitches and weird
sounds they find interesting. We assume that the radio allows the continuation of
this activity at a more compositional level.

The use of sounds regarding to the coarse morphological categories in the mu-
sic oriented taxonomy was biased towards rhythmic material, which was also pre-
dictable. Less rhythmic composite fragments were also very common. In a way,
graph based sequencing allows more experimentation with this kind of material
that wouldn’t fit the time grids of traditional sequencers. Simple sounds also find
some use, but clearly have an accessory role. Pitched sounds as discriminated by
our classifier trained with the ’note’ tag are rather scarce in the database and few of
them are used.

Finally, the table of transition counts shows the most common transitions among
the morphological categories. Clearly most of the action is among composite sounds,
allowing them to determine the rhythmic structure of the piece. However, a few
very interesting patches were produced by experimentation with faster sequences
of short sounds.

52 6. Analysis and discussion

Figure 6.1: Sounds used in patches per conceptual class

Figure 6.2: Sounds used in patches per morphological class

6.2. Sample patch editor 53

SP SU CR CA

SP 0 0 1 0

SU 1 19 9 15

CR 2 14 125 25

CA 0 14 24 63

Table 6.1: Number of transitions between morphological classes (rows: source node
class, columns: target node class

6.2 Sample patch editor

The sample editor included a small survey for users upon registry, and logged the
time to complete and the number of searches realized per patch, as well as the num-
ber that samples were played in the preview box. An online help tooltip was in-
cluded with a minimal set of instructions (four lines). In general users found no
problems using the interface and no lengthy manual was required. The question-
naire included questions about age, musical training (in four levels) and experience
with computer music (also four levels). Once registered, users could listen to other
people’s patches and submit new ones.

The 20% of users who registered submitted sample patches. From these, there
was none with absolutely no musical training. This could mean that there is still
some entry barrier, and probably a more friendly help file would be needed, but it
may also be related to the level of interest in users towards music and music cre-
ation. Since we only recorded submitted patches, we don’t have much information
to analyze what happened with those who didn’t contribute. A higher level of mu-
sical training seems to be related with motivation and confidence. Interestingly the
opposite is true with experience with computer music. While again no user who re-
ported zero experience submitted a patch, interest seems to decay as users are more
accustomed to existing interfaces.

While we expected the interface to allow composing samples quickly, we do
not seek to account this activity as a task. We checked that time on the interface
was spent in exploring the database, searching and listening to sounds and not on
complications with the interface. In extreme cases, there were hundreds of sound
previews.

54 6. Analysis and discussion

6.3 Evolution

In order to support manual mutation and crossover, the sample patch editor inter-
face provided loading and saving, as well as an Add button that allowed merging
different patches. In general, the latter didn’t find much use. In some cases, users
saved snapshots of their own patches and kept working on them. Thus, collab-

6.3. Evolution 55

Figure 6.3: Number of searches and previews per patch, sorted by time to complete

oration was mostly provided by the radio player, and this resulted in some very
interesting combinations of the different patches submitted by users. Rating was
rather spontaneous in users, and in general no explanation was needed about how
an evolutionary algorithm works.

One problem in the initial implementation of the algorithm was the tendency to
converge, which produced very repetitive patches. This was solved by continuously
allowing user-submitted patches to be selected for reproduction, and increasing the
mutation probability. Thus, mutation is the main operator to allow exploring the
database. A general observation in the evolution of sample patches is that they
seemed to converge more than what they actually did. This is due to the predom-
inance of certain samples over the mix which have stronger emotional or musical
information. In this sense, some users suggested the need of a sample banning fea-

56 6. Analysis and discussion

ture. Some analysis of this difference among predominant and accessory samples
could be interesting from a general point of view to understand how samples are
used in electronic music.

Regarding tag and sample bookmarks, tag bookmarking was much more used
in order to influence the algorithm. Users created more than 500 tag bookmarks
but only about 70 sample bookmarks. A single reproduction process with a popu-
lation size of 6 patches could hit more than 20 tag bookmarks. This highlights the
importance of tags in the way users interact with samples in a shared database.

The population size was keep small in order to allow users to understand the
effects of their actions. Even so, many users would stay for short periods. In this
sense the evolution of patches was easier to understand when used by a single user
or a small group of already connected people. This means that for real world usage
the output of the radio would benefit from a larger population in the algorithm,
since users can pass by at any moment and give their opinion, without the need to
actively and consciously follow the evolution of the system.

Similarly, in real world usage the chat was rarely used. The chat window pub-
licly displayed votes of each participant in order to promote shared goals, but again
this only seemed to work with a certain level of acquaintance. However, as users
came and went, the persistence of the chat display provided a sense of mutual
awareness.

Chapter 7

Conclusions and future work

During the development of Freesound Radio, many questions arose regarding how
musical collaboration at a higher level can emerge from the activity of sharing

sounds. We hope we are now closer to an answer some of them, or at least, to foresee
which directions have more possibilities to succeed.

In chapter 3, we presented some experiments to determine how to deal with the
diversity in the database both from a conceptual point of view and by automatic
sound description. By applying a taxonomy extraction algorithm, we obtained a
clearer view of the main cultures that are involved in the site. An even clearer map
can be obtained by performing some cleanup of the folksonomy and providing aids
to users to help maintaining some consistency. A deeper characterization of the
usage of the site and its history could be relevant to an understanding of how people
are using sounds to create music and multimedia products. This information can
lead to further work in organizing and indexing sounds. Regarding the bridging of
content description to user semantics, we showed that it is quite possible to establish
links that are solid enough. However, for machine learning approaches to succeed
great quantities of data are needed. Even an apparently large database like Freesound
shows some limitations in this respect. Especially with respect to rhythm, the site
offers an interesting playground for further research on sound indexing.

The sample patch editor interface presented in chapter 4 worked quite well as a
compositional tool on top of a large database. Many users reported it was fun and
easy to use, and some of them quickly started to seek the limits of the concept and
quickly demanded new features. It could be extended in several ways to allow more
complete compositions, like adding attributes for edges (for example the number of
times it will be followed) or providing an abstraction mechanism to convert patches
into new building blocks. Both the concept and the interface showed potential for
collaboration. Using samples recorded or created by other people is obviously al-
ready one way to collaborate. On top of that, users would submit their creations
and listen to other users’ ones, without the complications involved in the traditional

58 7. Conclusions and future work

workflow of the music industry, form buying equipment to marketing. One possi-
ble improvement regarding collaborative work is allowing several users to create a
patch collectively, in real time. On the other hand, further evaluation is required to
analyze wether the tool is appropriate for users with absolutely no musical training,
possibly using more traditional HCI methodologies.

Finally, the evolutionary algorithm and the radio interface were the most ex-
perimental aspects of this work. In this sense, the general approach regarding the
generation of new content was proved necessary and useful, on one hand because
users were quite shy at starting collaboration by themselves. We assume that tradi-
tional music practice in general warrants that such collaboration should be possible.
On the other hand, the player interface tended to receive many more visits, which
shows the potential of a solution that involves listeners and producers in the same
process and tends to erase the distinction among both. In recent times, applications
such as Last.fm 1 have become quite successful in implementing a concept of radio
station that is not so focused on concurrent interaction but provides features that
support the formation of communities and social networks. Further work could
focus on allowing personal and shared spaces (radio channels) to be created on de-
mand, as it might be easier to automatically create mixes of sounds that suit personal
tastes of users or are evolved upon agreement.

The rules to organize sounds can be learnt from community activity. In this
sense, we have completed an initial cycle in supporting music as collective organi-
zation of sounds.

The radio can be accessed at http://radio.freesound.org

1http://last.fm

http://radio.freesound.org

Bibliography

Al Globus, Sean Atsat, J. L. and Wipke, T.: 2001, Graph crossover, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2001.

Bacon, F.: 1862, The works of Francis Bacon, Brown and Taggard.

Baeza-Yates, R. and Ribeiro-Neto, B.: 1999, Modern Information Retrieval, Addison Wesley.

Barbosa, A.: 2003, Displaced soundscapes: A survey of network systems for music and sonic
art creation, Leonardo Music Journal 13.

Barbosa, A.: 2005, Public sound objects: a shared environment for networked music practice
on the web, Org. Sound 10(3), 233–242.

Biles, J.: 2003, Genjam in perspective: a tentative taxonomy for ga music and art systems,
Leonardo: Journal of the International Society for the Arts, Sciences, and Technology 36(1), 43–
45.

Bonada, J. and Serra, X.: 2007, Synthesis of the singing voice by performance sampling and
spectral models, IEEE Signal Processing Magazine 24(2), 67–79.

Brossier, P.: 2006, Automatic Annotation of Musical Audio for Interactive Applications, PhD thesis,
Queen Mary University of London, UK.

Bryan-Kinns, N.: 2004, Daisyphone: the design and impact of a novel environment for re-
mote group music improvisation, DIS ’04: Proceedings of the 5th conference on Designing
interactive systems, ACM, New York, NY, USA, pp. 135–144.

Cano, P.: 2007, Content-Based Audio Search from Fingerprinting to Semantic Audio Retrieval, PhD
thesis, Ph.D. Dissertation. UPF.

Cano, P., Fabig, L., Gouyon, F., Koppenberger, M., Loscos, A. and Barbosa, A.: 2004, Semi-
automatic ambiance generation, Proc. of the 7 Int. Conference on Digital Audio Effects
(DAFx’04).

60 BIBLIOGRAPHY

Casey, M.: 2001, General sound classification and similarity in mpeg-7, Organised Sound
6(2), 153–164.

Casey, M.: 2005, Acoustic lexemes for organizing internet audio, Contemporary Music Review
24, 6, 489–508.

Chion, M.: 1983, Guide des objets sonores, Buchet/Chastel.

Coleman, G.: 2007, Mused: Navigating the personal sample library, International Computer
Music Conference (ICMC), ICMC.

Dawkins, R.: 1976, The Selfish Gene, Oxford University Press.

de Cheveigné, A. and Kawahara, H.: 2002, Yin, a fundamental frequency estimator for speech
and music, Journal of Acoust Society America 111(4), 1917–1930.

Donnadieu, S.: 2006, Analysis, Synthesis, and Perception of Musical Sounds: The Sound of Music
(Modern Acoustics and Signal Processing), Springer.

Freeman, J.: 2008, Graph theory: Linking online musical exploration to concert hall perfor-
mance, Leonardo 4(1).

Gadamer, H. G.: 1977, Die Aktualität des Schönen, Reclam.

Gómez, E.: 2006, Tonal Description of Music Audio Signals, PhD thesis, Ph.D. Dissertation. UPF.

Gouyon, F.: 2005, A computational approach to rhythm description. Audio features for the com-
putation of rhythm periodicity functions and their use in tempo induction and music content
processing, PhD thesis, Ph.D. Dissertation. UPF.

Herrera, P., Dehamel, A. and Gouyon, F.: 2003, Automatic labeling of unpitched percussion
sounds, Proceedings of the Audio Engineering Society, 114th Convention.

Herrera, P., Peeters, G. and Dubnov, S.: 2003, Automatic classification of musical instrument
sounds, Journal of New Music Research 32.

Heymann, P. and Garcia-Molina, H.: 2006, Collaborative creation of communal hierarchical
taxonomies in social tagging systems, Technical Report 2006-10, Stanford University.

Holland, J. H.: 1975, Adaptation in natural and artificial systems, University of Michigan Press.

Horner, A., Beauchamp, J. and Hake, L.: 1993, Machine tongues xvi: Genetic algorithms and
their application to fm matching synthesis, Computer Music Journal 14(4), 17–29.

Jehan, T.: 2005, Creating Music by Listening, PhD thesis, Massachussets Institute of Technology.

Jordà, S., Geiger, G., Alonso, M. and Kaltenbrunner, M.: 2007, The reactable: exploring the
synergy between live music performance and tabletop tangible interfaces, TEI ’07: Pro-
ceedings of the 1st international conference on Tangible and embedded interaction, ACM Press,
New York, NY, USA, pp. 139–146.

Jordà, S. and Wüst, O.: 2001, Fmol: A system for collaborative music composition over the
web, Proceedings of Web Based Collaboration DEXA 2001, Munich, Germany.

BIBLIOGRAPHY 61

Kaltenbrunner, M., Geiger, G. and Jordà, S.: 2004, Dynamic patches for live musical perfor-
mance, Proceedings of the 4th Conference on New Interfaces for Musical Expression (NIME
04), Hamamatsu, Japan.

Kersten, S., Maestre, E. and Ramirez, R.: 2008, Concatenative synthesis of expressive saxo-
phone performance, Music Computing Conference.

Kosorukoff, A.: 2001, Human based genetic algorithm, IEEE International Conference on Sys-
tems, Man, and Cybernetics, Vol. 5, pp. 3464–3469 vol.5.

Lazier, A. and Cook, P.: 2003, Mosievius: Feature driven interactive audio mosaicing.

Miletto, E. M., Pimenta, M. S., Vicari, R. M. and Flores, L. V.: 2005, Codes: a web-based
environment for cooperative music prototyping, Org. Sound 10(3), 243–253.

Miller, B. L., Miller, B. L. and Goldberg, D. E.: 1995, Genetic algorithms, tournament selection,
and the effects of noise, Complex Systems .

Mitchell, T. M.: 1997, Machine Learning, McGraw Hill.

Moholy-Nagy, L.: 2004, Audio Culture: Readings in Modern Music, Continuum, New York,
USA, chapter 8, pp. 331–334.

Peeters, G.: 2005, A large set of audio features for sound description (similarity and classifi-
cation) in the cuidado project, Technical report, CUIDADO I.S.T. Project Report.

Rabiner, L. and Juang, B.-H.: 1993, Fundamentals of speech recognition, Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA.

Ramirez, R. and Hazan, A.: 2005, Understanding expressive music performance using genetic
algorithms, Applications on Evolutionary Computing.

Reich, S.: 2002, Writings on music, Oxford University Press.

Ricard, J. and Herrera, P.: 2004, Morphological sound description: computational model and
usability evaluation, Proceedings of AES 116th Convention, Berlin, Germany.

Rohrhuber, J.: 2008, The Cambridge Companion to Electronic Music, Cambridge University Press.

Schaeffer, P.: 1966, Traité des objets Musicaux, Seuil, Paris.

Schafer, R. M.: 1977, The tuning of the world, Random House.

Schwarz, D.: 2004, Data-Driven Concatenative Sound Synthesis, Thèse de doctorat, Université
Paris 6 - Pierre et Marie Curie, Paris.

Schwarz, D.: 2005, Current research in concatenative sound synthesis, International Computer
Music Conference (ICMC), Barcelona, Spain.

Schwarz, D.: 2006, Concatenative sound synthesis: The early years, Journal of New Music
Research 35(1), 3–22. Special Issue on Audio Mosaicing.

Schwarz, D.: 2007, Corpus-based concatenative synthesis : Assembling sounds by content-
based selection of units from large sound databases, 24-2, 92–104.

62 BIBLIOGRAPHY

Secretan, J. and Beato, N.: 2008, Picbreeder: evolving pictures collaboratively online, CHI
’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing
systems, ACM, New York, NY, USA, pp. 1759–1768.

Serra, X.: 2007, State of the art and future directions in musical sound synthesis, Chania,
Crete.

Shamma, D. A., Shaw, R., Shafton, P. L. and Liu, Y.: 2007, Watch what i watch: using commu-
nity activity to understand content, MIR ’07: Proceedings of the international workshop on
Workshop on multimedia information retrieval, ACM, New York, NY, USA, pp. 275–284.

Sturm, B. L.: 2006, Adaptive concatenative sound synthesis and its application to micromon-
tage composition, Comput. Music J. 30(4), 46–66.

Tanaka, A., Tokui, N. and Momeni, A.: 2005, Facilitating collective musical creativity, MUL-
TIMEDIA 05: Proceedings of the 13th annual ACM international conference on Multimedia,
ACM, New York, NY, USA, pp. 191–198.

Tillmann, B., Bharucha, J. J. and Bigand, E.: 2000, Implicit learning of music: A self-organizing
approach, Psychological Review 107, 885–913.

Tzanetakis, G. and Cook, P.: 1999, Multifeature audio segmentation for browsing and annota-
tion, in Proc.1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
WASPAA99.

Valle, A.: 2008, Geography: a real-time, graph-based composition environment, Proceedings of
the 8th Conference on New Interfaces for Musical Expression (NIME 08).

Weinberg, G.: 2005, Interconnected musical networks: Toward a theoretical framework, Com-
puter Music Journal 29(2), 23–39.

Whalley, I.: 2004, Piwecs: enhancing human/machine agency in an interactive com-
position system, Org. Sound 9(2), 167–174.

Witten, I. and Frank, E.: 2000, Data Mining: Practical machine learning tools with Java implemen-
tations, Morgan Kaufmann.

Zils, A. and Pachet, F.: 2001, Musical mosaicing, Proceedings of the COST G-6 Conference on
Digital Audio Effects (DAFx-01), Limmerick, Ireland.

	Introduction
	Sound files
	Music made from recordings
	Motivation
	Goals and methodology

	Background
	Musical mosaicing and concatenative synthesis
	Sound Databases
	Segmentation
	Audio Features
	Unit Selection
	User interface

	Network Music
	Strategies for web based collaboration

	Evolutionary computation, music and collective knowledge building
	Overview
	Evolutionary computer music
	Evolutionary models and collective knowledge building

	Organizing free sounds
	Introduction
	Background
	Database and tools
	Descriptors
	Decision trees

	Conceptual taxonomy
	Music oriented taxonomy
	Similarity

	Patching samples
	Motivation
	Related work
	The Sample Patch
	Implementation
	Sequencer
	Interface

	Evolution
	Introduction
	Initialization
	Selection
	Crossover
	Mutation
	Implementation

	Analysis and discussion
	Content usage
	Sample patch editor
	Evolution

	Conclusions and future work
	Bibliography

