
Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

ICAD02-1

Y-Windows: Proposal for a Standard AUI Environment

Martin Kaltenbrunner

Music Technology Group, IUA – Universitat Pompeu Fabra
Passeig de Circumval·lacio 8 – 08003 Barcelona, España

mkalten@iua.upf.es

ABSTRACT

This paper introduces a draft framework for a shared auditory
user interface (AUI) environment. Y-Windows, similar to the
approach of the X-Windows GUI framework [1] in the Unix
world, aims to provide common functionality for the easier
development and design of AUIs. This initial publication of
these ideas, originally roughly developed within a diploma
thesis [2], should encourage researchers and developers from
the auditory interfaces community to contribute to the further
development and possible future implementation of this
concept.

1. INTRODUCTION

Today there exists a variety of libraries, APIs and applications
([3],[4],[5]) focused on the development of auditory interfaces,
there even exist complete auditory desktop environments [6].
While each of these components provides its specific
functionality it is often impossible to incorporate them together
within a single application – because of their exclusive use of
the sound hardware for example or simply their monolithic
design. During his initial work involving the design of auditory
user interfaces [7] the author noticed a lack for a common
framework allowing these components to work together.

The Y-Windows concept therefore was designed to fill in
this gap. Usually GUI application developers don’t have to
spend their time implementing basic interface design concepts,
because they are already provided with a variety of libraries
which simplify the construction of an average GUI. Only few
GUI-developers might still attempt to develop the code for their
buttons or progress-bars “manually”, but this is still the case for
their equivalents in the AUI world. Therefore the
implementation of some AUI widget libraries will be one of the
tasks for the Y-Windows project.

Due to the known limitations in audio programming there is
also a need for a central instance which manages the resources
for various applications requiring simultaneous access to the
audio hardware. In the Unix world there already exist several so
called sound servers which have been designed exactly for that
purpose. Such a sound server, extended and optimized for the
special AUI requirements, will be the central component of Y-
Windows.

While the examples in this document are mainly borrowed
from the Linux platform context, Y-Windows ideally should be
platform-independent and network–transparent. An application
developed for Y-Windows should be easily portable to - or
executable on - any platform implementing the framework. One
possible approach to achieve this is the use of the Java
programming language or easily portable code for the high-level
interfaces, while using optimized native code for lower layers.

2. GENERAL OBJECTIVES

The general objective of this project is to create an adequate
development and operating environment for primarily pure
acoustic user interfaces. This adds an additional auditory mode
to the existing text and graphical modes of current operating
systems. Linux users might be familiar with the concept of run-
levels, where the operating system boots directly into such an
operating mode, therefore a pure auditory mode is easily to
implement for those systems. Of course, the Y-Windows system
should also be usable for multi-modal interfaces if needed.

Such a system must provide a shared environment where
multiple auditory applications can share simultaneously the
audio hardware resources and also can exchange audio data
with each other. In the simplest case this should allow
additional audio playback in the foreground while for example
an acoustic background monitoring task is running. On the
other hand it should be possible to record audio from the
microphone while a speech recognition process is listening to
the same port. And finally several independent applications
should be able to use the in- and outputs of others just like
ordinary devices. This routing functionality also should allow
the construction of application chains out of basic components.

A central engine should provide basic audio signal
processing functions which can be easily used by the connected
applications, without the need of redundant re-implementation
of known concepts. This rendering engine should provide
optimal implementations of basic sound generators and filters
and other similar components equivalent to generic graphical
operations for visual interfaces. Additional rendering tasks such
as advanced sound, music or speech synthesis and advanced
signal processing should be realized as plug-ins and therefore as
extendable or replaceable parts of this engine.

Graphical operating systems already come with the
necessary libraries for the creation and execution of standard
conformant GUI applications. This guarantees an uniform look-
and-feel and handling of all different kinds of applications. The
widely used classical desktop metaphor also allows
inexperienced user the quick understanding of the interface
principles. Therefore Y-Windows has to create a common hear-
and-feel by providing common acoustic user interface elements
which stay consistent over all applications using the provided
AUI libraries. Those libraries and interfaces not only have
advantages for the developers of auditory applications, they are
also crucial for the actual users of the framework which are not
forced to get used to various interface metaphors while using
different applications. The adequate metaphor for such an
auditory “desktop” environment is still missing though.



Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

ICAD02-2

3. BASIC DESIGN

According to these requirements the Y-Windows approach is
roughly split into four major layers: A hardware layer should
define an abstracted interface to the various parts of audio
hardware. The central layer – the Y-Server – provides the
shared acoustic workspace and performs the basic rendering of
virtually all acoustic interface elements. A third level allows
abstract access to the rendering layer through a collection of
libraries providing speech APIs, synthesis APIs and so on.
Additionally it should provide libraries for higher level AUI
elements, such as parameterized auditory icons and common
auditory widgets. Finally the actual auditory applications using
the Y-Windows server and its libraries are part of the fourth
layer. A vertical direct rendering interface (DRI) as shown in
the diagram additionally allows direct access to all the lower
levels for those applications which rely on time-critical
operations.

Figure 1. Basic Y-Windows Structure.

3.1. Hardware Layer

This lowest-level layer mainly intends to create a common
abstract interface to the various audio hardware. This not only
should include the typical sound cards but also should consider
all additional hardware relevant for auditory user interfaces:

• internal, external sound cards
• MIDI equipment
• hardware speech synthesizers
• 3D speaker systems
• head trackers
• additional multimedia hardware

Projects such as PortAudio [12] already provide such a
common interface for the different audio programming
interfaces such as OSS, ALSA, CoreAudio, DirectSound etc.
which we know on the various operating system platforms. It
has to be evaluated if such a system conceptually can be
extended for additional hardware as listed above. Although the
implementation of this lowest layer is not really crucial for the
overall concept, it generally improves the portability of the
higher layers, specially the server component.

3.2. The Y-Server

The Y-Server is the central instance of the Y-Windows
architecture. It is in charge of the generation & rendering,
composition & management and finally the actual display of the
complete auditory scene.

As already mentioned above, the server process should
already internally provide some basic built-in rendering
operations, such as simple waveform generators and the most
common filter operations, providing fast access to simple sound
synthesis methods. A modular design and plug-in architecture
should allow the versatile extension of this rendering layer with
additional components. This modular approach permits the easy
replacement of specific components, such as different brands of
speech recognition or synthesis engines for example. It should
also encourage the co-existence of both commercial and open-
source components. A collection of standard plug-ins should
include at least some of the following functionality:

• advanced sound and music synthesis, such as spectral
or physical modeling

• speech synthesis
• further filters and sound effects
• 3D sound spatialisation

The second major server task is the connection and
management of the various applications, which are
simultaneously using the sound server infrastructure. This
basically includes the routing of the audio in- and outputs of all
the connected components, which concatenates chains of
internal components, external plug-ins and actual applications.
All this components should be able to actuate equally as sound
generators, filters and consumers within this system.

Finally, the server has to render the actual output of the
complete auditory scene. While the output stream of a single
task, which is simply played back via the speakers is no difficult
issue, the rendering and presentation of multiple streams of
independent applications could use a spatial display using
headphones, where the various applications are placed at
different positions within the virtual user space. Other possible
final presentation methods to distinguish multiple tasks could
be different volume levels or finally applied sound effects
which should be definitely part of this presentation layer.

The Y-Server as well manages the various user input by
providing features such as continuous speech recognition,
speech command and control, or DTMF decoding for the use in
telephony systems. Additional features could add authentication
methods such as speaker recognition.

3.2.1. Evaluation of existing sound servers

The implementation of the Y-Server most likely will follow
the design of already existing sound-server solutions. Possible
candidates are aRTs [8], a sound server and synthesis engine
used by the KDE desktop, and Jack [9], a relatively new sound-
server optimized for real-time performance with advanced
routing features. aRTs also provides network transparent
operation via MCOP, a CORBA-like interface adapted for
multimedia. Although aRTs already provides more than the core
features one would expect from a versatile sound server, the
concept of Jack promises better performance: Instead of using a
communication protocol, applications for Jack plug-in directly



Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

ICAD02-3

into the server engine using a callback interface. It has to be
evaluated if the two approaches can be combined and extended
with the most important features required for the Y-Server, such
as speech recognition, advanced sound synthesis and
transformation, or sound spatialisation. The lean and fast design
of Jack is quite appealing, and offers better performance and
expandability over the rather large and slow aRTs server.

There also exist several other sound server solutions for the
Unix platform, such as the Enlightenment Sound Daemon [10]
used by the GNOME desktop, or the Network Audio System
[11], which focuses on network transparency for the use of
audio in X-Terminals. It is remarkable though that there exist
that many solutions for the same problem, which obviously all
don’t seem to satisfy the basic needs for such a system. Since
too many sound-servers raise the same problems as concurrent
audio applications, .it is necessary to find a common sound
server solution, which is generally accepted.

3.3. Interface Layer: Widget Libraries & APIs

Based on the possibilities offered by the Y-Server, which
provides the pool of basic technologies necessary for the
rendering of an auditory display, the interface layer enables the
access to this rendering layer through a series of libraries.
Regarding the modular architecture of the Y-Server, there is
also a need to define a set of common programming interfaces
(APIs) in order to provide the same interface for the different
possible modules. This then enables the replacement of the
speech synthesis engine manufacturer for example, while
maintaining the same interface. Existing APIs, such as the
Linux Audio Plug-In Architecture LADSPA [13] should be
included, where on the other hand still not existing APIs, such
as a common Speech API need to be developed entirely from
scratch.

Additionally, this layer should implement or adapt interface
libraries of the various existing basic auditory design elements,
such as parameterized auditory icons [14], Earcons [15],
common auditory interface widgets (acoustic progress-bars
[16], etc.) or further experimental designs. Using these basic
components, higher level embeddable components such as
sonification tools or voice browsers can be constructed. With a
growing set of those tools brought together in a collection of
AUI widget libraries - which then can be extended or modified -
developers of auditory applications are not forced to invent the
wheel again and again.

Basically such widget libraries need to provide suitable
solutions and templates for the most common dialogs in
interactive auditory systems. This should include basic menus,
forms and even some direct manipulation interfaces. On the
output side this should provide known sonification and data
auralisation methods in order to facilitate auditory feedback
design. This could also include some algorithmic composition
methods to exploit music for auditory feedback as well.

Another crucial task is the choice or definition of the
required communication protocols between Y-Server and
applications, the required file-formats and interface construction
languages. For the speech interface components, there already
exist approaches such as VoiceXML [5], which might be also
extended for the use in not purely speech based auditory
interfaces. Similar XML based formats might be suitable for
most of the other interfaces.

4. IMPLEMENTATION & APPLICATIONS

An initial implementation of the Y-Windows framework should
be realized on the Linux platform, mainly because of two
complementary reasons: First of all Linux already offers a
variety of open-source components, which can be modified for
the use within this environment. On the other hand Linux still
lacks of some common audio, multimedia and speech APIs,
which could be developed as part of this project. Of course the
framework should be ported to other mainstream operating
systems such as MacOS or Windows as well, where it can adopt
native interfaces such as QuickTime or DirectX for an initial
implementation.

The first development steps need to focus on the refinement
of the Y-Windows concept itself. Then the major requirements
and tasks need to be defined, which includes the definition of
the central API interfaces and communication protocols and a
prototype implementation of the Y-Server.

The main application areas of the Y-Windows framework in
its initial phase might be basically the research & development
of auditory interfaces themselves, since it should allow the
faster prototyping of test setups. From a user’s point of view
though, the main application areas will be auditory interfaces
for mobile devices, acoustic monitoring applications, or
auditory desktop applications for the sight-disabled. Especially
mobile devices, such as PDAs or SmartPhones with their
limited screens and keyboards would profit definitely of such a
scalable system. The pure acoustic nature of the framework
might also be interesting for various embedded applications
within industrial or home devices, which increasingly are
designed using the embedded Linux platform. Of course, the
framework can also be used for the advanced acoustic
enhancement of GUI desktop applications.

A possible future distribution of the Y-Windows framework
should also include a set of demo applications such as a voice-
browser, sonification tools, acoustic background monitors and
an auditory “desktop” shell. While such applications initially
will be probably mainly reference implementations for
developers, the final goal should be the creation of a complete
auditory environment based on the Y-Windows framework.

5. CONCLUSIONS

The Y-Windows concept is far from being completely
thought through and there are obviously several odds and ends
in some details of its design, but it is mainly meant to initiate a
discussion in that direction. The advantage though of an
implementation of such a framework would be the creation of a
common pool of current knowledge in AUI research and design,
allowing the easier access to and extension or improvement of
this knowledge. The author therefore hopes that some
researchers and developers from the auditory interfaces
community will join this effort

Together with the presentation of this article there will be
created an open-source project page in order to provide the
necessary collaborative tools for this task. This includes the
installation of a mailing list, CVS code repository and
additional web-based documentation including the further
development of this concept paper.



Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

ICAD02-4

6. REFERENCES

[1] Open Group Inc.: X11R6 URL,
http://www.x.org/last_release.htm

[2] Kaltenbrunner, M.: “Auditory User Interfaces for Desktop,
Mobile and Embedded Applications”. Diploma Thesis, FH
Hagenberg, 2000

[3] Cook, P. & Scavone, G.: “The Synthesis Toolkit”, URL,
http://ccrma-www.stanford.edu/software/stk/

[4] Sun Microsystems: Java Speech API v1.0. URL,
http://java.sun.com/products/java-media/speech/

[5] VoiceXML Forum, W3C: VoiceXML 2.0 Specification,
URL, http://www.w3.org/TR/voicexml20/

[6] Raman, T.V.: “Emacspeak – A Speech Interface”,
Proceedings of the Conference on Human Factors in
Computing Systems. p66ff, ACM Press, 1996
URL, http://emacspeak.sourceforge.net/

[7] Kaltenbrunner, M. & Huxor, A.: “Marvin: Supporting
Awareness through Audio in Collaborative Virtual
Environments”, In: Earnshaw, R. & Vince J. (eds.):
“Digital Content Creation” p294ff, Springer Verlag,
Hamburg 2001

[8] aRTs, analog realtime synthesizer, URL, http://www.arts-
project.org/

[9] JACK audio connection kit, URL,
http://jackit.sourceforge.net/

[10] Enlightenment Sound Daemon, EsounD. URL,
http//www.tux.org/~ricdude/EsounD.html

[11] Network Audio System, URL, http://radscan.com/nas.html
[12] PortAudio – An Open-Source Cross-Platform Audio API.

URL, http://www.portaudio.com/
[13] Linux Audio Developer’s Simple Plugin API, LADSPA,

URL, http://www.ladspa.org/
[14] Gaver, W.: “Synthesising Auditory Icons”, Conference

proceedings on Human Factors in Computing Systems,
Amsterdam 1993

[15] Brewster, S.: “Using Non-speech Sounds to Provide
Navigation Cues.” ACM Transactions on Computer-
Human Interaction, p224ff, 1998

[16] Crease, M. & Brewster, S.: “Making Progress with
Sounds. The Design Evaluation of an Audio Progress
Bar”, Proceedings of the International Conference on
Aditory Display, 1998


