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Abstract

This master thesis is a combination of two areas of Sound and Music Computing, Blind

Source Separation and Cochlear Implants. The research focuses in the evaluation of

existing source separation algorithms in order to improve noise reduction strategies in

the context of cochlear implants. The modification and adaptation of a low latency

algorithm is the point of start for the evaluation based in the requirements of speech

signals in cochlear implants. The evaluation consists in a different set of objective

and subjective experiments to determine the speech intelligibility enhancement pro-

duced by the separation process. Objective evaluation has revealed that a very good

performance level is achieved with low latency algorithms compared to NMF which

take considerably higher computation time. A series of subjective tests have been con-

ducted with cochlear implant patients in order to compare the objective results and

determine the real speech intelligibility level. The low latency algorithm showed only

improvements in few situations where the noise reduction algorithm outperforms in

most of the cases. Accurate analysis determined that the main reason of the speech

degradation caused by low latency algorithm is because of the algorithm is not de-

signed to detect unvoiced consonants and a lot of speech content is missing. But last

experiments revealed that is possible to recover this consonants which can considerably

improve the performance and later speech intelligibility of LLIS.
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Chapter 1

INTRODUCTION

1.1 Motivation and Goals

Cochlear implants are electronic devices that are implanted in people suffering from

hearing loss. These devices are implanted surgically inside the patient head directly

connected to the cochlea. By means of electric pulses, the implant stimulates the

cochlea with a set of small electrodes corresponding to different frequency bands. The

sounds are transduced by a microphone located in the processor part, out of the head.

This has the function of process, adapt and after transmitted to the internal part, map

the sound in the different frequency bands for the stimulation.

Ideally patients are implanted at early stages of the childhood, which is perfect to

adapt to the behavior and perception obtained with the implant. This really facilitates

the speech learning process. Another successful case of implantation is for post locutive

hearing people i.e. for people that suffered an accident or disease that provoked hearing

loss but they learned to speech years ago.

Once implanted, there is a whole process of adaption which is regularly calibrated.

The patients need to adjust the intensity of the currents in the electrodes and other

configuration issues regarding the transmission between the processor and the internal

part. Ideally when the implant is working, patients can perceive sounds in a very similar

way than normal people do. There are some limitations like the frequency resolution

that is lower or the dynamic range which is narrower than for normal people. But real

problems begin in the presence of noisy environments. The noise reduction is one of

the big challenges of the audio processing in cochlear implants. There is a large set

of successful noise reduction algorithms and all the implants have several strategies

implemented in their processors. Patients can dynamically select different programs

depending on the nature of the noise and the scenario. But the most conflict situations

are in the presence of non stationary noises, where most noise reduction algorithms

1
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reduce their performance. The problem is that in real life, most of the noises are non

stationary noises, like could be a cafeteria, a train station or simply the traffic sound.

In these situations if the SNR of speech is not considerably higher the intelligibility

becomes harder and sometimes impossible.

In some way blind source separation can be seen as a noise reduction method. If we

have a mixture of sounds composed by a speech signal and a set of other components,

if we detect the speech signal and we separate them from the rest of components of

the mixture we can considerate it as a noise reduction strategy. Blind audio source

separation is a well known technique specially for music signals. Retrieving the iso-

lated components in a given mixture like the instruments or the lead voice have been

demonstrated to be successfully achievable.

Most well known algorithms for blind audio source separation are tho so called

offline algorithms. The term offline means that can not operate in real time due the

computation time required to separate the sources. These normally are implemented

with a popular technique called Non Negative Matrix Factorization (NMF). This tech-

nique is very useful for the factorization of audio data such as spectrograms which

values are all positive. This method reported some of the best quality results in the

recent years. But unfortunately the computation cost of the iteration algorithms used

for NMF makes this algorithms unable to use it real time. In contrast to NMF, time

frequency masking is a technique that has some online implementations which has

obtained really good results. This technique is principally focused on the creation of

binary masks corresponding to the target frequency components of the sources.

The main goal of this thesis is to determine the state of the art of blind source

separation and then evaluate how these techniques can improve speech intelligibility in

the context of cochlear implants. More concretely we want to evaluate the performance

of an online or low latency method in contrast to offline strategies. The reason is that

if an algorithm presents good results the next step could be include the strategy to

the cochlear implant processor and this must be obviously with the low latency as

possible. Derived objectives of this work is to evaluate the low latency source separation

techniques with different kind of noise, specially non stationary noises which are the

most conflict for the current noise reduction algorithms implemented in the implants.

Also compare the performance of other source separation algorithms is contemplated

to determine main differences and problems.

2
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1.2 Structure of the document

This document is organized in six chapters. First chapter is this same chapter which

represents an introduction to the both fields treated in the documents and also the

motivation and goals are defined. Second chapter is a literature review of the most

relevant research done in the last years within the context of source separation and

cochlear implants. The third chapter is basically a quick description of the algorithm

selected for source separation and some of his requirements regarding speech. Then

the evaluation process is explained in the fourth chapter with the description of all

the objective and subjective measures used. Results are detailed in the fifth chapter

where also a discussion related is made. Finally, the last chapter describes the main

contributions and conclusions followed of some future work strategies.

3
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Chapter 2

STATE OF THE ART

This chapter presents the present state of the art of Source Separation and Cochlear

implants. In section 2.1 we define the theoretical and basic principles of Source Sepa-

ration. We define also the most common approaches in order to deal with speech and

music. Finally we describe some of the existing Frameworks and its characteristics.

In section 2.2 we will explain the main features of the hearing with Cochlear Im-

plants (CI) and then the used signal processing strategies in CI. At the end, Some

Source separation methods applied to CI are reviewed.

2.1 Source Separation

Source separation is the task of extracting individual signals from an observed mixture

by computational means. This technique is used in different fields of research like Audio

and Image processing, Biology or Data Mining. We will be focused on the separation

of Audio signals. This problem is always compared with the cocktail party problem

which describes a cocktail party situation, where many sound sources are mixed like

voices, music and noise in general. Humans have the ability of naturally focus on a

specific source and isolate it from the rest. This is a relatively easy task for the human

auditory system but it becomes difficult when we attempt to simulate the problem in

a computational way.

One of the responsible of the popularization of source separation is [Bregman, 1990].

He proposed a cognitive approach for describing how humans perceive and understand

sound objects in mixtures as independent components. This process was called Audi-

tory Scene Analysis (ASA). He proposed five grouping principles that are used by the

brain to separate and isolate sound sources. These are proximity, similarity, good con-

tinuation, closure and common fate. These ideas correspond to how we perceive sounds

in time and frequency and are very close to the Gestalt Psychology. In order to simu-

4
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late the ASA principles, it was raised Computational Auditory Analysis (CASA) which

proposes algorithms focused on extract the individual sources of an audio mixture in a

similar way as the human auditory system does. Although most of the methods used

for source separation means in the field of signal processing are more focused on the

mathematical way to solve the problem, it is always good to consider the cognitive

approach by Bergman in order to build a more complete and robust strategy.

Different names are used in the literature to talk about source separation, mainly

because the difference between blind and non-blind source separation. This could in-

duce sometimes to the confusion of what is blind and what is non-blind. The requisite

to be blind is to have any prior information about the sources that are going to be

separated. But this is a little bit ambiguous, is difficult(or impossible) to have ab-

solutely any prior information of the sources, we normally assume at least statistical

independence or even if we are considering to separate speech from music, this can be

itself considerate as prior information.

[Burred, 2009] gives a good approach for classify the mentioned types of source

separation. Blind Source Separation (BSS) is defined as the situations where there is

a little or any previous knowledge of the sources. We talk about Semi Blind Source

Separation (SBSS) when advanced models like sinusoidal are took into account in order

to separate the sources. This method can be considerate as a supervised separation,

where the system is trained with sound/music examples. Finally we can consider that

the system is Non-Blind Source Separation when the an input is required to perform the

separation, like could be a score or other high-detailed information about the sources.

In the rest of the document, if is not specified (blindness), we will be talking about

source separation referring to a general approach.

A good distinction between the applications of source separation could be the made

by [Vincent et al., 2003]. They distinguished two main types of applications, Audio

Quality Oriented (AQO) and Significance Oriented(SO) applications. The main dif-

ference between AQO and SO is the quality of the output signal. AQO applications

deals with the quality of the extracted sound, and the finality of his application is to

listen the separated signal. In contrast, SO applications are interested more in the

content and information of the extracted signal. This is very well suited with Music

Information Retrieval (MIR) where the intrinsic information about the source in form

of features and specific descriptors are required. As we will see in section 2.2, speech

and music intelligibility deals with the maximization of audio quality, so the work done

in this thesis will be more related to AQO applications.

5
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2.1.1 Overview and principles

Mixing Models

[Burred, 2009] describes the concept of sound as mixtures of signals. When a sound

wave incises into a microphone it starts the process of transduction form acoustic

sound to electrical oscillation. The information about propagation directions gets lost

and is translated into vibrations that at most, can simulate the effect of propagation in

function of the amplitude and depending on the directionality of the given microphone.

Once the sound is transduced, it will become unidimensional so the different sources

that are present at this moment will be merged into one. We can define our sound

x(t) as a mixture of N signals y(t), n = 1, ..., N where each signal has its corresponding

instantaneous amplitude.

x(t) =
N∑

n=1

y(t) (2.1)

The different mixing conditions are these represented by the source signals sn(t)

that will be transformed into the source images yn(t).

Instantaneous mixing model The most simple mixing model is the called linear

or instantaneous mixing model, and only assumes that the source signals have been

modified by an amplitude scaling:

xm(t) =
N∑

n=1

amnsn(t), m = 1, · · · ,M (2.2)

Equation 2.2 can be traduced as a linear equations system:
x1(t) = a11s1(t) + a12s2(t) + ...+ a1NsN(t)

...

xM(t) = aM1sM(t) + aM2sM(t) + ...+ aMNsN(t)

 (2.3)

We can express the whole system as Mx1 vector mixtures x = (x1(t), ..., xM(t))T

and Nx1 vector of sources s = (s1(t), ..., sN(t))T :
x1(t)

x2(t)
...

xM(t)

 =


a11(t) a12(t) · · · a1N(t)

a21(t) a22(t) · · · a2N(t)
...

...
. . .

...

aM1(t) aM2(t) · · · aMN(t)

 ·


s1(t)

s2(t)
...

sN(t)

 , (2.4)

what can be expressed as:

6
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x = As (2.5)

The goal of linear source separation is, given the observed set of mixtures x, to

solve such a set of linear equations towards the unknown s. However, in contrast to

basic linear algebra problems, the coefficients amn are also unknown. As in linear

algebra, a system with more equations than unknowns (M mixtures > N sources)

is called overdetermined, less equations than unknowns (M mixtures < N sources)

undetermined and finally the same number of equations than unknowns (M mixtures

= N sources) even-determined.

Delayed mixing model The delayed model is referred for this cases where sounds

reach each of the existing sensors at different times giving a source-to-sensor delay δmn:

xm(t) =
N∑

n=1

amnsn(t− δmn), m = 1, · · · ,M (2.6)

Convolutive mixing model The convolutive model appears when a source is fil-

tered between the sensor. We can define the impulse response filter is:

hmn(t) =
Kmn∑
mn

amnkδ(t− δmnk), (2.7)

where Kmn is the length of that particular impulse response. Then the mixture

received is:

xm(t) =
∑
n=1

hmn ∗ sn(t) =
N∑

n=1

Kmn∑
mn

sn(t− δmn), m = 1, · · · ,M (2.8)

This model is often referred to reverberant scenarios, where Kmn is defined by the

number of possible reverberant paths that the sources need to do to reach the sensors.

The delayed model is the same than a convolutive model for Kmn = 1 for all m,n.

PCA, ICA and ISA

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are

methods widely used for BSS. The main objective of PCA[Jolliffe, 2002] is to reduce

the dimensionality of a data set consisting of a large number or interrelated variable,

maintaining as much as possible the variance. This is achieved transforming the data

into new variables, the principal components, which are uncorrelated.

7
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Independent component analysis (ICA) is an extension of PCA which estimates

[Itoyama, 2011] source data from observed data which have instantaneous or convolu-

tive mixture representation based only on the assumption that sources are statistically

independent. Basically [Jutten and Comon, 2010], for linear instantaneous mixtures,

ICA methods aim at estimating the demixing matrix A yielding the estimated sources

x(t) = As(t), which are statistically independent.

ICA[Itoyama, 2011] has the advantage that can by applied to arbitrary time-series

signals by assuming statistical independence of the sources. Although this assumption

is correct for speech signals, is unsuitable for separating complex musical signal where

the independence is not correct.

Finally, another used method for source separation related to PCA and ICA is

Independent Subspace Analysis (ISA). ISA[Casey, 2000] extends ICA by identifying

mutiple independent “spaces” from a given data. A typical[Vincent, 2006] decomposi-

tion in sound could be the power spectrogram as two independent subspaces.

NMF

Nonnegative matrix factorization(NMF) is another common method used for dimen-

sionality reduction and one of the most used methods for source separation. This

method is used to separate music signals, but is also very common in other fields like

image processing or text mining[Jutten and Comon, 2010]. One of the main reasons

why NMF is due it is a representation of only non-negative data, this is very useful

to represent certain amounts of data like for example could be an spectrogram where

time and frequency are factorized in two independent matrices.

We can approximate our mixture as[Lee and Seung, 1999][Hoyer, 2004]:

vt ≈
M∑
i=1

wih
t
i = Wht (2.9)

W is a NxM matrix containing the basis vectors of our mixture, so if we consider

that we have T basis vectors wi then we can assume that our system can be expressed

as:

V ≈WH, (2.10)

where H contains the coefficients ht corresponding to each measurement vector vt.

PCA, ICA and NMF all can be seen as a matrix factorization of the data that we want

to separate, the difference is that NMF imposes that all elements will be positives. So

any component will be subtractive.

8
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Once the factorization equation is defined, the goal is to solve the minimization

problem given by the following distance[Févotte et al., 2009]:

min D(V|WH) W,H ≥ 0, (2.11)

where D(V|WH) is a cost function defined by:

min D(V|WH) =
N∑

f=1

M∑
n=1

d([V]fn|[WH]fn), (2.12)

The most popular cost functions are the Euclidean distance in equation 2.13 and

the Kullback-Leibler divergence in equation 2.14.

dEUC(x|y) =
1

2
(x− y)2 (2.13)

dKL(x|y) = x log
x

y
− x+ y (2.14)

[Lee and Seung, 2001] proposed a series of “Multiplicative update rules” in order to

solve more efficiently the gradient step algorithms raised from the cost functions. Here,

they proved that convergence is considerably faster using the mentioned multiplicative

update rules.

2.1.2 Source Separation Methods for Speech and Music

Many of the different approaches are studied during these years have been proposed for

extracting the independent sources of mixed audio signals. Some of them are designed

to extract a very specific source like could be speech/singing or percussive sounds.

But most of the proposed algorithms are thought to work in a more general mixture

of signals, where voice, instruments and noise are all mixed together. Most of the

approaches are different combinations or extensions of the methods presented in the

following sections.

Source Separation with PCA, ICA and ISA

As we have mentioned in section 2.1.1 PCA, ICA and ISA is a widely used method

for BSS. [Casey, 2000] presented a method for extracting independent audio sources

from a single-channel mixture using ISA. An example of how the audio is separated

is the called “Spectrogram subspace separation”. In this example the audio signal is

decomposed as an spectrogram separated by its spectral components as independent

subspaces.

9
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Another interesting approach is presented by [Burred, 2009] where the core of the

separation tasks is PCA. This separation approach is based on timbre models. A

mixture signal is sinusoidally modeled. After an onset detection, the source separation

task is made by comparing the timbres of each signal with a predefined timbre model

library. Finally the tracks are extracted by matching the timbres.

But ICA[Vincent, 2006] is more effective when the system is overdetermined, there

are more mixtures than sources and also his performance decreases when the reverber-

ation increases.

Source Separation with NMF

In ISA, ICA and PCA the estimation is based on the independence of the spectral

components, if those components are magnitude or power is a good approach to use

nonnegative constraints. Currently there are not effective algorithms for non-negative

PCA. This is the reason why in the recent years NMF has become more popular. As

we have seen in section 2.1.1, the estimation is based on a series of iteration algo-

rithms where the cost function of a distance between the mixture X and the sources

and its coefficients AS is attempted to be minimized. The algorithms proposed by

[Févotte et al., 2009] are based on the Itakura-Saito divergence denoted by:

dIS(x|y) =
x

y
− logx

y
− 1 (2.15)

The use of IS-divergence has multiple advantages in front of other cost functions

like Euclidean distance or Kullback-Leiber. For example the scale invariance is very

useful for the decomposition of audio spectra and also has a faster convergence. The

performance of the IS cost function is demonstrated with a piano excerpt. Here the six

individual components have been successfully separated, the first four as the individual

pitches, the fifth with the content of the hammer hits and pedal releases. Finally the

sixth component contents the residual noise.

[Durrieu et al., 2009a] presented a system for separating the main instrument in

stereophonic mixtures. His algorithm is an extension of the algorithm presented in

[Durrieu et al., 2009b], where the same methodology is applied for mono mixtures.

The operation of the algorithm has two very important steps for the separation of the

solo or main instrument and the accompaniment. These are the Melody tracking and

the Wiener filters. The melody tracking is made with the Viterbi smoothing algorithm

which estimates the fundamental frequency of the solo instrument at each frame. The

final separation is based on Weiner filtering which is applied in the frequency domain

and allows separate the solo from the accompaniment. The algorithm is complemented

10
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with different steps of parameter estimation through multiplicative update rules. The

overall operation of solo/accompaniment separation for mono signals is depicted in

figure 2.1

Figure 2.1: Solo/Accompaniment Separation algorithm [Durrieu et al., 2009b]

Another interesting example of the use of NMF is the study done by [Virtanen, 2005].

Virtanen defines his method as “Weighted Non-Negative Matrix Factorization”. As

in other cases the observed signal is transformed to the frequency domain to obtain

the spectrogram and factorize the sources and its coefficients. But he introduces the

concept of weight for the divergence in contrast to other methods. He defines the

weighted divergence as:

D(X|AS; W) = D(W. ∗X|W. ∗ (AS)), (2.16)

where W is a positive TxF weight matrix and .* is the element-wise multiplication.

This method is described as perceptual weight, because the weighted sum of the spec-

trum bins are selected to be equal to the estimated loudness. The algorithm was tested

with mixed pitched and percussive sounds and it was found that a very high perceptual

quality of the separated sources is achieved. In the other hand, some problems were

encountered in order to separate two note mixtures of pitched instruments.

[Paulus and Virtanen, 2005] describes a method fully focused on percussive sounds.

They start by obtain the instrument spectra from a trained dataset. This dataset

is composed of different percussive instrument sounds(bass drum, snare and hi-hat)

recordings. These sounds are factorized by NMF to extract the spectrogram. The esti-

mation of the time-varying gains is done by minimizing the cost function between the

observed spectrum and the model AS. Finally an onset detection procedure is applied

with the time-varying gains and finally the training signals are separated according to

the onset locations.

Usually NMF-based algorithms are designated as off-line. This is due in most of

the algorithms the estimation requires that the whole signal has to be known. The

problem of off-line methods is that can not be used for real-time applications where

11
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only the present and past frames of the audio information are known. But recently

some approaches for real-time NMF have been proposed. An example could be the

approach presented by [Joder et al., 2012]. Here they define an “On-Line NMF” as a

sliding window method for decomposing the recent and past spectrum. The matrices

are updated using a fixed number of iterations. With the sliding window approach, a

low number of iterations is enough. Although this system is outperformed by off-line

algorithms, the results obtained are successfully achieved for speech separation.

Time-Frequency Masking

In contrast to NMF, Time-Frequency Masking is a method very extended for real-time

applications. This is mainly due the simplicity and inexpensiveness of computation

of his algorithms. Time-frequency masks assumes that the sources to separate are

orthogonal in the time-frequency domain. One of the most common binary mask in

stereo music is based on panning information.

An approach for separation of speech mixtures with time-frequency masking is

described in [Rickard and Yilmaz, 2004]. They demonstrate that through the use

of W-disjoint orthogonality a perfect demixing of not overlapping sources is possi-

ble with binary time-frequency masks. His results demonstrate that an ideal binary

time-frequency mask allow separate speech mixtures.

[Vinyes et al., 2006] proposes a method where is combined the use of time-frequency

masks with stereophonic information of the audio tracks. This means using the panning

of each channel of the stereophonic track. Thanks to this information they can extract

inter-channel phase difference (IPD) and distinguish the different sources thanks to

phase information. Moreover, this approach is implemented with a visual interface

where the user can select dynamically the inter-channel magnitude ratio and IPD to

adapt the separation.

Another example of on-line source separation approach related to time-frequency

masking is presented by [Marxer et al., 2012]. They propose a method for real-time

applications that unless not the same performance than in off-line approaches like NMF

algorithms is achieved, they demonstrate how it is better than other existing real time

algorithms with only a low-latency of 232 ms. Their method is designed for harmonic

sources, specially for singing voice, although can be extended to other instruments.

2.1.3 Existing Frameworks

Several studies and approaches for source separation tend to include his implemented

algorithms in his own websites, which is very useful in order to evaluate the performance
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of them not only by reading statistics. But some of the authors have contributed with

more than simple algorithm implementations. There exist some frameworks that are

the most used and extended. This frameworks are more complete than the simple

algorithms, in the sense that allow to configure the source separation according to the

user preferred strategy and methods.

FASST, the Flexible Audio Source Separation Toolbox [Ozerov and Vincent, 2010]

is the most extended and used framework. This framework is implemented in MATLAB

and it can be downloaded for free. His main advantages are that is a general, flexible

and modular framework that generalizes some of the most used source separation

methods and it merges all of them in the same framework. To good point of that

is that the user can design new sources separation strategies based on the delivered

methods which can induce in more effective methods.

VIMM or VUIMM is another well known framework based on the work done

by [Durrieu et al., 2011]. VIMM and VUIMM aim to Voiced and Unvoiced Instan-

taneous Mixture Model (IMM). This software is also free and is implemented in

Python/NumPy. This framework is not that general than FASST, due it is based

on the source/filter model described in [Durrieu et al., 2011], but is still very useful in

order to separate instruments with solo and accompaniment.

Another existing framework is Low-Latency Instrument Separation in Polyphonic

Audio Using Timbre Models. This is developed by [Marxer et al., 2012] and is still

in development phase. This is done in collaboration between MTG-UPF and Yamaha

Corp. As we seen in section 2.1.2 this framework is designed to work with singing voice

mainly, but can be easily extended to work with other sounds.

2.2 Source Separation in Cochlear Implants

2.2.1 Hearing with CIs

Sound

Sound [Nogueira, 2008] is the perception of pressure waves by compressing the air

molecules. The unit for sound pressure is the sound pressure level(SPL) in db:

SPL(dB) = 20 log10

P

P0

, (2.17)

where P is the absolute pressure in µbar and P0=0.0002 µbar. This value is the

reference 0 dB that corresponds to the threshold of hearing.
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Figure 2.2: Outer, Middle and Inner Ear [Nogueira, 2008]

Anatomy and physiology of the auditory system

Sound is transformed into neural codes once pressure waves incises in the Ear. In

figure 2.2 we can see a graphical representation of the outer, middle and inner ear.

The part where sounds are coded to the brain is the cochlea, in the inner ear. The

outer and middle ear with its components is the responsible of amplify pressure waves

and modify the timbre of sound depending on the position of the source.

Figure 2.3: Middle and Inner Ear [Nogueira, 2008]

In figure 2.3 we can see both middle ear and the unrolled cochlea at the left side.

In the other side we can distinguish also a representation of a transversal cut of the

cochlea. Sound vibrations incoming from the middle ear travel along the cochlea

fluids and is traduced in perpendicular pressure into the basilar membrane (BM). The

frequency at which the BM is most sensitive to sound vibrations is the characteristic

frequency (CF). The BM is narrow at the base, which makes it more sensitive to

high frequency vibrations while it is three times wider at the apex where more low
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frequency vibrations happen. The BM can be considered as a overlapping filter bank

with a bandwidth equal to the critical bandwidth. This critical bandwidth is usually

to be constant from 100Hz up to 500Hz.

Figure 2.4: Organ of Corti [Nogueira, 2008]

The organ of Corti, in figure 2.4 is located on the top of the BM and comprises

the sound receptors or hair cells and the tectorial membrane. There are two kind of

hair cells, the Inner Hair Cells (IHC) and the Outer Hair Cells (OHC). IHC are the

responsible of transmit the electric current to the auditory nerve. This is made by the

movement of the tectorial membrane in contact with the IHC. OHCs are in charge of

the mechanics of the organ of Corti by influencing the response of the BM.

Figure 2.5: External and Internal part of a CI device [Nogueira, 2008]

Cochlear Implants

People suffering from hearing loss have a damage that hinders the sound path between

the outer ear and the auditory nerve. The optimal case for a CI treatment is when this
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damage is caused directly in the hair cells which stimulate electrically the auditory

nerve. The main function of CI is to stimulate directly the auditory nerve with small

currents and voltages in the order of milivolts.

All the currently implanted CIs are composed by two main parts, the internal

and external part. The external part can be Behind-The-Ear (BTE) or a body-worn

processor and both are connected to a transmitting coil through a cable. The internal

part is surgically implanted in the patient head, and consists of a receiving coil a

decode and stimulator, and the electrode array. The first carrier is composed by 16-22

electrode contacts and is inserted into the scala tympani of the cochlea. The second

carrier is inserted beneath the skin and can be used as return electrode. In figure

2.5 we can observe a representation of an implanted CI. In the external part, 1 and

2 corresponds to the microphone and the sound processor respectively, 3 is the small

cable that connects the transmitting coil represented as 4. In the other side, 5 is the

receiving coil that is connected to 6, the electrodes array, and finally 7 represents the

path to the brain.

Figure 2.6: CI device [Nogueira, 2008]

Almost all the existing CIs are manufactured by four companies: Clarion implants

from Advanced Bionics (U.S.), the Nucleus implants by Cochlear Ltd.(Australia),

the Pulsar implants from Med-El(Austria) and the Digisonic implants from Neurelec

(France). In figure 2.6 we can see the Harmony BTE speech processor at the left side

and the HiRes90k electrode array of Advanced Bionics.

Speech and music perception with CIs

Speech intelligibility in noise and reverberation can be predicted from how well envelope

information from different frequency bands is preserved. For normal hearing listeners,

envelope information for 3-4 frequency bands is enough for speech intelligibility and are

able to understand sentences when noise is around 5 dB louder than speech. Implant
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patients needs a higher Signal-to-Noise Ratio (SNR) to understand speech. There is a

10 dB of difference between implant patients and normal hearing listeners for speech

intelligibility. A very important factor in the success of the CI is the age of the patients

and whether the deafness is produced before(pre-lingual) or after(post-lingual) learning

speech and language. This last are the patients that perform better with CI.

It has been demonstrated that CI patients can enjoy music. However, the enjoyment

is poorer than before their haring loss. One of the main problem in music perception

is the melody recognition. Normal hearing listeners can achieve up to 0.2 semitones

while CI patients only achieve between 2 to 7 semitones. This bad perception of pitch

is what induces to bad melody recognition. In the other hand, in terms of timber

perception, CIs are very similar to normal hearing.

Figure 2.7: HiRes Block diagram [Nogueira, 2008]

2.2.2 Audio signal processing for CIs

Each CI manufacturer has its own algorithms and signal processing strategy adapted

for his specific CI. We will be focused on the strategy followed by Clarion, Auria and

Harmony devices by Advanced Bionics which is the High Resolution strategy (HiRes).

The basic block diagram of the HiRes strategy is the presented in figure 2.7. In the first

stage, the audio is sampled at 17400 Hz, pre-emphasized by the microphone and then

digitalized. Then an Adaptive Gain Control (AGC) is applied digitally. After that the

signal is divided in frequency bands using IIR Butterworth filters of order 6. Each of

the frequency bands is associated with one electrode of the implant. Then each filtered

signal is half-wave rectified (only positive amplitudes) and averaged for the duration

Ts of the stimulation cycle. Finally the last block maps the acoustic signal for each
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band. The output of each band will be in a dynamic range set by the clinician. In each

cycle the HiRes stimulates the 16 electrodes sequentially to avoid channel interactions.

2.2.3 Speech recognition with BSS in CIs

As we have discussed in section 2.2.1 the speech intelligibility is as task that has still

room for improvement. Independently of the many speech coding and signal processing

techniques developed in the past years, BSS is a new approach in order to attempt for

enhance speech recognition in CIs. The main objective of BSS in CIs is to recover and

improve independently the desired source from a set of mixed signals.

The research done in BSS applied to CIs is not so much extensive yet but some

studies have demonstrated that it is a very good strategy for improving speech recog-

nition. In the other hand, the inclusion of BSS in speech recognition algorithms for

Hearing Aids (HA) it has been considerably active in the recent years. HA are devices

very much simpler than CI, his main operation is based on filtering and amplification

of the input audio signal. But at the end, the objective of HA is the same, improve

speech recognition and perception. The research done by [Reindl et al., 2010] is an

example of the use of BSS for speech enhancement with HA. Here a combination of

different source separation techniques is proposed, Directional BSS which estimates the

interfering point sources and Weiner filtering which enhances the independent sources.

[Han et al., 2009] proposed a method for post-processing of audio signals based on con-

volutive blind source separation in reverberant scenarios. The main separation strategy

is achieved through Binary masks.

As we have said there is not a huge amount of literature about research in BSS and

CIs. One of the most relevant studies, is the work done by [Kokkinakis and Loizou, 2008].

His approach is based on BSS applied to bilateral CIs. The core separation algorithm

is based on ICA and he assumed a cascaded mixing and unmixing system with two

sources and two sensors as can be shown in figure 2.8. Here the experiments were done

with patients with bilateral implants and different configuration for the sources. A

fixed source with the target speech sound situated at a fixed phase of 0 ◦ and a noise

masker with variable phase between 0 ◦ and 90 ◦. The experiments were ran in two dif-

ferent scenarios, first in an anechoic room and in then in two reverberant rooms with

different reverberation time. The results obtained for the both scenarios are found to

improve speech recognition with the use of BSS, specially for the non-reverberant case

and low-reverberant time case.

Another example of the application of source separation in CI was proposed by

[Suhail and Oweiss, 2006]. This approach proposes a not very common method as is

Subband Decomposition. This method uses the Discrete Wavelet Packet Decomposi-
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Figure 2.8: Cascaded mixing and unmixing MBD system configuration with two-source

two-sensor scenario [Kokkinakis and Loizou, 2008]

tion (DWPT) to separate the desired signals. This study was tested with mixtures of

multiple speech voices and the target speech signal was extracted as expected, but it

was not tested with CI patients.
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Chapter 3

METHODOLOGY

The methodology followed in this master thesis is relatively simple. Since the primary

objective of the thesis is to enchance speech inteligibility by means of source separation,

a decisive point is how the separation is made. As we commented, the development

and implementation of the source separation algorithm is not the goal of this thesis but

we will be more focused on the evaluation. This is the reason why the methodology is

simple. After selecting the desired algorithm, most of the work will be on the evaluation

and analysis of the results.

A very important aspect, like in all research, is to make an accurate literature

review. Maybe in this case even more important due we will be using an existing

framework, and we need to ensure that this will fit our requirements and needs. As

we have seen in the state of the art section, we can divide source separation methods

as online and offline. So this is a decisive aspect to have into account if we want to

work with CI. The sound processors of the CI work by capturing the incoming signal

directly from the microphones and after the corresponding processing, the information

is translated in stimulation pulses in the cochlea. If we take an offline algorithm in

order to pre-process the signal in a CI this maybe will be translated in a higher quality

of the signal. But the stimulation will be produced after some seconds than the sound

arrives the microphone or even minutes. The patient will be listening continuously with

a considerable delay in the perceived sound. This is the reason why we encouraged to

use an online method in order to separate the sources.

Although we will evaluate also an offline method to compare the performance,

we will be focused in the use of an online method. Specifically we used the Low-

Latency Instrument Separation in Polyphonic Audio Using Timbre Models (LLIS) by

[Marxer et al., 2012]. This algorithm is designed to separate music signals and more

specifically to remove the lead singing voice of the audio track. These are not a priory

requirements for improve speech intelligibility, and this is why we have modified some
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aspects of the algorithm.

3.1 Baseline Algorithm: LLIS

Low-Latency Instrument Separation in Polyphonic Audio Using Timbre Models rep-

resents the starting point of the research done in this Master Thesis. As we have

commented in section 2.1.2 some of the available online source separation solutions are

designed used Time Frequency Masking. LLIS is one example of using Time Frequency

Masking, using the binary masks is achieved a good quality level while maintaining

the low-latency.

A useful method to decompose sources with Time Frequency Masking is by using

panning information and IPD (inter-channel phase difference)[Vinyes et al., 2006]. Us-

ing the pan and the frequency parameters we can create the desired frequency mask.

But in some cases is not enough or effective due reverberations or monophonic record-

ings that lack of pan information. This method is incompatible for our case because

we need to work with monophonic recordings to be compatible with the monaural CI

of our experiments.

3.1.1 Harmonic Mask

The base of this algorithm is the creation of harmonic masks. The creation of this

masks starts with the assumption that the vocal component is localized around the

partials of the singing voice so the optimal mask to remove the voice, consists on zeros

around the partials and ones elsewhere.

But many parts of the vocal component such as consonants, fricatives or breath that

are very important for speech intelligibility, normally are not harmonic components and

thus will not be neither detected nor separated using this algorithm. For the voiced

components, the harmonic mask is created considering the whole components of the

vocal part. To do that the f0i of the source must be estimated. This is made in three

steps: pitch likelihood estimation, timbre classification and pitch tracking.

Pitch Likelihood Estimation

This step is similar to NMF in the sense that a linear signal decomposition is made

in order to do the pitch likelihood estimation. As in other linear decompositions, here

is assumed that the spectrum at each frame is a linear combination of the elementary

spectra or the so-called basis components. One of the peculiarities of this method is

that the Tikhonov regularization is used to estimate the components. This method
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has the advantages in front of NMF of the low-latency and his simple implementation

but in contrast the gains can take negative values. To have an effective likelihood, all

the negative values are set to 0.

Timbre Classification

In order to estimate the pitch of the present instruments in the mixture it is needed

to select the right values from the pitch likelihood estimation algorithm corresponding

to each instrument. With the pitch candidates it is created a group of features vectors

which is classified using Support Vector Machines (SVM). The envelopes are calculated

with an interpolation on the magnitude of the spectrum at the harmonic frequency bins.

The feature vectors are a variant of the Mel-Frequency Cepstrum Coefficients (MFCC).

In the figure 3.1 we can see the spectrum (black line) and the pitch candidates as the

different envelopes (colored dashed lines).

Figure 3.1: Spectrum magnitude (solid black line) and the harmonic spectral envelopes

(colored dashed lines) of three pitch candidates [Marxer et al., 2012]

Figure 3.2 shows a diagram of how the voice model is created based on the pitch

estimations and the annotations. Based on the pitch information, the envelopes are

created and the timbre features are extracted. Finally, the classification is made com-

paring with a test dataset and the model is generated.

Instrument Pitch Tracking

This step is a dynamic programming algorithm that is composed of two processes.

First a Viterbi allows determine the optimal pitch track and the second determines
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Figure 3.2: Workflow of the supervised training method[Marxer et al., 2012]

the voiced and unvoiced frames. This step has a latency of 20 frames (232 ms) what

makes possible to use it online.

3.2 LLIS Requeriments and modifications

As explained, LLIS is an existing algorithm designed to deal with musical signals and

one of the main objectives is to remove the main singing voice. This is not the goal of

this research, but since singing voice signals are very similar to a normal speech signal,

we decided to use this algorithm and try to adapt as maximum as possible to detect

speech signals.

Figure 3.3: Singing voice and Speech spectrograms

In figure 3.3 we have the spectrograms of a Singing Voice signal and a Speech

signal. In order to see the differences we have chosen two random signals, different
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languages and male and female. We can distinguish easily the two spectrograms,

one considerable difference is that the singing voice is more continuous in time while

the speech signal have the words, even syllables well separated with short silences.

Another important difference is that in the singing voice most of the partials have

similar energy than the fundamental while in the speech signal only the first partials

have considerable energy. These are simple examples of the differences in both signals,

but still the behavior is similar so we can consider that if the system can recognize the

singing voice it will be capable of detect the speech signal.

The first requirement is to restrict the system to only monophonic recordings due

the aforementioned problem that all the CI patients have only one implant. Then an

important but simple modification is to remove the components except the speech. As

we have seen in the algorithm description, the algorithm is designed to remove the lead

singing voice. Then to get only the speech part we need only to invert the harmonic

mask. The algorithm does not allow a big number of modifications, most of them

are frame size, hop size, window size or type and none of them affects directly speech

intelligibility or to improve speech separation. The only parameters that seemed to

improve speech separation in terms of Signal to Distortion Ration (SDR) is the limits

of the Viterbi algorithm, which have been improved (about 0,3-0,5 dB) by reducing the

low boundary. One of the important aspects of the configuration of the system is the

selected voice model. The voice model is what determines how the pitch candidates

of the envelopes are selected. So the used models are trained for singing voice, what

means that the pitch tracking will perform better for singing voice. The optimal case

will be a model totally trained with speech signals. This should be one of the first

steps in the future work out of the scope of this thesis.

It is worth to comment that LLIS is not designed to detect unvoiced consonants

such as stop, affricate, fricative consonants. This mean that these kind of consonants

like “s” or “p” the type of consonant will never strictly detected. In some cases some

content of these consonants will remain in the estimated speech due it can be mixed

with the harmonic component. In order to solve this missing capability, is being

developed a new strategy complementary to LLIS with the goal of detect unvoiced

consonants. This new strategy is originally designed to detect transient signals in

music like percussive instruments. But this can be adapted to detect some unvoiced

consonants. Specially consonants from the beginning of the word or syllable which in

many cases act as transient signals.

24



“ThesisDoc” — 2012/9/11 — 15:20 — page 25 — #35

Chapter 4

EVALUATION

Typically, the evaluation of SS algorithms is a simple task, computing a number of

objective measures (SDR,..) given a the original separated sources. But when we need

to evaluate speech intelligibility it becomes harder. None of the objective methods used

to evaluate the algorithm is strictly reliable in order to detect an speech intelligibility

enhance. Moreover if we add the difficulty that we need to test our system with CI

patients, it becomes even more unpredictable.

A goal of this research is also to determine the performance of the used source

separation system in order to separate speech signals. Taking this assumption, most

of the objective measures are good indicatives. Then we decided that the best way to

evaluate speech intelligibility is to realize tests directly with the patients and volunteers

and trust in this results.

Another important aspect in the evaluation of the system is the selected dataset.

Previously, LLIS have been tested mostly with music samples which with the multitrack

recordings we can evaluate how well each of the individual sources have been separated.

In our case we are more interested in separate speech signals from different kind of

noises. For this reason we have created our own dataset from different speech and

commonly used noise audio signals. Furthermore, we have had to use the appropriate

speech and noise samples to run the experiments with the CI patients.

4.1 Dataset

As mentioned, normally when evaluating source separation algorithms, multitrack

recordings are used in order to have a reference of the real sources of the mixtures.

In our case we do not need strictly to use music samples. Concretely we used speech

samples mixed with different noise samples. As the main goal is to separate the speech

from the rest of sources, we assumed that our mixtures are composed by only two
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components: speech plus noise, where the noise could be more than one source itself.

So first we need to define which kind of speech and noise samples we are going to use.

4.1.1 Noise

We can see this system more than a source separation, as a speech enhancement or

noise reduction tool since the key point is to isolate the speech signal from the rest of

components and try to keep it unchanged. In order to evaluate real or similar situations

that CI patients can suffer we decided to try different kind of noises. We have divided

the noise samples in three cathegories accordint to their structure or behavior:

• Stationary Noise

The main property of stationary noises is that the probability distribution does

not changes along time. This kind of noise is often used in order to evaluate

noise reduction algorithms and is with this kind of noise when normally these

algorithms perform better. Although this kind of noise is not very “real” in the

sense that we normally do not perceive sounds with such invariability among

time. So normally these are artificially generated sounds.

• Non-stationary Noise

In contrast to the stationary, the non-stationary noise as expected changes the

probability function along time. These noises are very commonly found in real

life like could be any kind of background noise such a fabric, traffic or a cafeteria

situation. It is very interesting to do the evaluation using this kind of noise

due normally noise reduction algorithm does not work at all since these are very

unpredictable and are an heterogeneous mix of sounds which his spectral content

could be very different or very similar.

• Music Noise

We decided to include also a simple music sample because of the nature of LLIS

algorithm and in some cases can be perceived as a noise that is interfering with the

speech. As this is originally designed to separate music signals like instruments

and singing voice it is also a good opportunity to see how well speech can be

separated from music sounds.

Noise Selection

• CCITT

CCIT is the chosen noise for the stationary type. CCITT is a well known noise
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Figure 4.1: Three example waveforms of the different selected noises

Figure 4.2: Three example spectrograms of the different selected noises

and commonly used in tests for speech enhancement that was created by the

[International Telecommunication Union, ]. As we can see in figure 4.1 the am-

plitude of the waveform varies between about 0.1 and -0.1 but the envelope is

very stable compared to the other two. About the spectrogram in figure 4.2 we

can see that the energy distribution is equally distributed along time with a huge

precence in frequencies from 0 up to 4-5 kHz, specially up to 1 kHz.

• Auditech 4T Babble

As we commented we can found non-stationary noise in a lot of quotidian situa-

tions. This is why we selected a babble noise composed by 4 talkers. We thought

about this noise as a very common situation like could be a cafeteria where dif-

ferent people talks at the same time. This is very difficult noise to deal with

because of the problems that we commented about the non-stationary noises.

Moreover if we consider that we will be adding more voices to the speech sig-
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nal this complicates even more the task of differentiate and separate the desired

speech signal. Mainly because the noise itself it is a mixture of different speech

signals that can easily be confused with the target signal. In figure 4.1 we can

see clearly that this is the one with more changes in time. Furthermore figure

4.2 reveals how the different speech signals are mixed together most of the time

very close in frequency.

• Mazoni

The selected music sample is an excerpt of a pop rock song. We did not have

many requisites for the music sample selection. Principally we chose this song

because we wanted the presence of typical instruments like guitar, piano, drums,

bass-guitar and singing voice. The idea was to simulate a real situation similar

to a concert or a place where the music is considerably higher. Tho reinforce

this situation we added a slightly reverberation effect in order to simulate the

acoustics of a standard hall. This signal can be considerered as non-stationary

due different instruments are playing at same time changing arbitrarily during

this time. In figure 4.2 the spectrogram of the music sample reveals that the

signal is more constant than expected. This could obviously change with each

music sample that we choose but in this case each instrument is very constant in

time and this effect is reinforced thanks to the reverberation effect.

4.1.2 Speech

The set of speech samples selected is composed by two collections of words and sen-

tences. Both of this collections have been elaborated and recorded by spanish linguists

in order to have an standarized speech dataset. The only requisite that we had in

order to select the speech dataset is that this had to be in spanish basically because

the experiments with CI patients have to be in spanish due it is the native language

of all of them.

As we can see in figure 4.3 although both signals are similar, there are some dif-

ferences. Mainly the word has a higher spectral content what means that each fun-

damental frequency has more partials and the non pitched components such us some

consonants or other sounds produced by the speech are more defined. In the sentence

spectrogram we can see the silence spaces between words but moreover, there are some

frequency regions between the words that are not very energy dense. This behavior

gives the word a higher intelligibility level due each phoneme is more defined and makes

it highly noticeable.
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Figure 4.3: Sentence and word spectrograms

4.1.3 Calibration and Mixing

The final database that he used to evaluate LLIS is basically a set of mixed speech

plus noise signals. The database is composed different lists of words and sentences and

each one has his own different SNR levels with each one of the used noise samples. The

procedure followed for mixing in each case is described in figure 4.4. We can distinguish

basically two main steps, first the calibration and second the mixing step. In order

to compute the SNR for each signal we decided to use the Root Mean Square (RMS)

measure. The RMS is basically a measurement of the magnitude of a set of values in

continuous change over time. It is very useful in electronic signals like audio which are

constantly changing their positive and negative values. Usually RMS is calculated as

is described in equation 4.1. But in order to have more accurate values on the RMS

we decide to average the squared signal by low pass filtering. This method is normally

used to remove the ripple frequency noise. So in equation 4.2 H(ejω) represents a

low pass filter, and µ[n] is the average squared signal. Finally xrms[n] represent the

magnitude of the values.

xrms[n] =

√√√√ 1

N

N∑
n=1

x2[n] (4.1)

µ[n] = x2[n]H(ejω) (4.2)
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xrms[n] = 10 log(µ[n]) (4.3)

Figure 4.4: Speech + Noise Database creation through the calibration and mixing

process

After computing the RMS value of both speech and noise signals, we calibrate the

noise signal by adjusting the desired dB level. We simply compute the mean of the

RMS values and we adjust 0, 5, 10 or the desired dB level in each case. We think that

this is a good method to compute the SNR because it depends on each case how the

word or the sentences are composed. For example in figure 4.5 we have an example of

a word mixed with noise at 4 different levels. If we observe to the first plot at 0 dB

SNR, in the middle of the word the magnitude of the noise is higher than the noise

but at the beginning is a little bit higher the word. In this example is shown how the

average value of the RMS is appropriate to compute the SNR.

Finally the mixing process it is a very simple procedure where each speech signal is

joint with the corresponding speech signals at each SNR level. Just some other issues

are considered like adjust the duration of the noise to the same duration of the speech

or re-sample all the samples to 44100.

4.2 Objective Evaluation

For the objective evaluation we selected two type of measures. First the measures

in charge of evaluate the performance of the separation i.e. how well the sources are

separated or basically how well the speech is separated from the rest due we only

consider a mixture of two sources. Then we use other measures in order to evaluate

the intelligibility or speech degradation caused by the separation where some speech

components are lost and some noise artifacts are added.
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Figure 4.5: RMS values from both noise and speech signals at 0, 5, 10 and 15 dB

SNR levels

In figure 4.6 is depicted a representation of the objective evaluation procedure. As

we can see is very simple, after the speech and noise samples are mixed, each mixed

sample is passed to the algorithms in order to estimate the sources. Then with the

estimates and the original sources is evaluated the performance with a given set of

measures. We have to comment also that we used another algorithm a part from LLIS

to estimate the sources called IMM developed by [Durrieu et al., 2011] which is based

in NMF. We used that algorithm in order to compare the performance between online

and offline methods.

The second kind of measures used in the evaluation are those more focused on a

perceptive point of view. These measures are centered in the evaluation of speech

intelligibility in contrast to most of the objective measures that are focused mainly in

the separation performance.
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Figure 4.6: Objective Evaluation Diagram

4.2.1 Evaluation Measures

BSS Measures

Signal Separation Evaluation Campaign (SISEC)1 is contest oriented for scientific eval-

uation where speech and music datasets are evaluated and standarized measures are

used. Within the context of SISEC was created BSS Eval2 [Févotte et al., 2005] that

is a MATLAB toolbox specially implemented for evaluate the performance of source

separation. Once the estimate singnals ŝimg
ij (t) are obtained, these must be compared

with the source images simg
ij (t). The criteria[Vincent et al., 2007b] to evaluate this

comparison is by express the estimate ŝimg
ij (t) as:

ŝimg
ij (t) = simg

ij (t) + espatij (t) + einterfij (t) + eartifij (t) (4.4)

1 http://sisec.wiki.irisa.fr/tiki-index.php
2 http://bass-db.gforge.inria.fr/bss eval/
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where simg
ij (t) is the true image and espatij (t), einterfij (t) and eartifij (t) are error compo-

nents representing spatial distortion, Interference and artifacts. The relative amounts

of this error components are represented by the Source Image to Spatial Distortion

Ratio (ISRj), the Source to Interference Ratio (SIRj) and the Sources to Artifacts

Ratio (SARj), defined by

ISRj = 10 · log10

∑I
i

∑
t s

img
ij (t)2∑I

i

∑
t e

spat
ij (t)2

(4.5)

SIRj = 10 · log10

∑I
i

∑
t(s

img
ij (t) + espatij (t))2∑I

i

∑
t e

interf
ij (t)2

(4.6)

SARj = 10 · log10

∑I
i

∑
t(s

img
ij (t) + espatij (t) + einterfij (t))2∑I

i

∑
t e

artif
ij (t)2

(4.7)

Finally a combination of the previous measures, the Signal to Distortion Ratio

(SDRj)

SDRj = 10 · log10

∑I
i

∑
t s

img
ij (t)2∑I

i

∑
t(e

spat
ij (t) + einterfij (t) + eartifij (t))2

(4.8)

Sometimes comparing different evaluation measures from the mentioned above can

be complicated. This could happen when we compare two different samples which their

in dB differ substantially. To solve this, BSS Oracle1[Vincent et al., 2007a] was created.

BSS Oracle, like BSS Eval, is a MATLAB Toolbox which has a set of algorithms dealing

with the mentioned problem. Principally, the objective is to define oracle estimators

which compute the best performance achievable by the separation algorithms. With

this estimators we can have an accurate version of the BSS measures. Instead of

comparing the performance of the BSS measures, we can evaluate the performance

with the error, or the difference between the estimates and the oracle estimates. If

1 http://bass-db.gforge.inria.fr/bss oracle/
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SDROraclej is the maximum SDR achievable level and SDRj is the estimated SDR,

the error is defined as

SDRErrj = SDROraclej − SDRj (4.9)

PESQ

Perceptual Evaluation of Speech Quality (PESQ) is a measure to evaluate speech

enhancement defined by [a.W. Rix et al., ] and also used by [Hu and Loizou, 2008].

PESQ measure is recommended by ITU-T for speech quality assessment of 3.2 kHz(narrow-

band) handset telephony and narrow-band speech codecs. PESQ aims to compare a

reference signal with the same signal with a quality degradation. To do that, first each

signal is aligned to a standard listening level. Then, they are filtered using the FFT.

After that, the signals are aligned temporally and processed into an Auditory trans-

form. Finally thanks a disturbance processing, errors are extracted and aggregated in

frequency and time to be evaluated with a subjective mean score (MOS). Some mea-

sures taken into account in order to do the transformations and quantize errors are the

Bark Spectrum, Frequency Equalization, Gain Variation or Loudness Mapping.

4.3 Subjective Evaluation

In order to have a subjective point of view we have evaluated the system with different

tests which principally consist in listening and evaluate the speech intelligibility of the

samples produced by the LLIS system.

4.3.1 Word Identification Test

The used method for the subjective evaluation is a word identification test. In this

test, the user is asked to listen to different speech plus noise samples and answer the

understood words. The test is made by combining different SNR levels and several

algorithms which produce different intelligibility levels depending on the case. Each

test is evaluated by simply counting the percent of correct words of each list.This

method is very simple, but is a very effective way to detect when and when not the

user identifies correct words and sentences.
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Figure 4.7: Levenshtein Distance operation examples. + = Insertion and - = Deletion

4.3.2 Phoneme Error Rate

Parallel to the word identification test, each test is recorded and transcribed with the

goal of having all the answered words transcribed to be able to evaluate them. Thanks

to that we can then observe and have an idea of wich words are more typically failed.

Specially we found very interesting to go deeper and make the evaluation phoneme

errors wich are the responisbles of the intelligibility. To do this evaluation we need to

calculate the phoneme errors between the original and the answered word. We selected

the Levenshtein Distance1[Apostolico and Galil, 1997] also called Edit Distance to de-

termine this error. The Levenshtein distance is a metric tha measures the similarity of

two strings. We used the simple form where the Levenshtein Distance, is the minimum

number of operations necessary to modify a srting to another. The possible operations

are substitution, deletion or insertion. This is normally implemented with a dynamic

1 http://www.levenshtein.net/index.html
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programming algorithm wich checks both strings character by character.

In figure 4.7 there is represented the Levenshtein edit operations. The example takes

the original and observed strings “anchos” and “sancho” in their phonetic transcription.

The advantage of using this algorithm in front of simply align the strings and compare

character by character is that matches the best similarity between the strings. In

the example if each character is simply aligned, each character will be confused by

substitution errors what it is erroneous. As can be seen, the algorithm computes

the minimum value from the edit operations substitution, insertion or deletion. The

matrix with both strings contain the values of the distances for each possibility. Each

jump horizontally, vertically or diagonally represents a cost of 1 and if the characters

match then the cost is 0. Following the path from the upper left corner to the lower

right we can find the Levenshtein distance. In this case we have only 1 deletion and 1

substitution, so the Levenshtein distance is 2.

Finally we compute the Phoneme Error Rate (PER) as follows

PER =
LevDist(Soriginal, Sobserved)

length(Soriginal)
× 100% (4.10)
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Chapter 5

RESULTS

After a clear evaluation structure definition, a big set of date is obtained from the

simulations and tests that must be accurately analyzed. The procedure is as follows,

first each list of words and sentences from the database is processed with LLIS to

obtain the audio estimates of the isolated speech. With these samples we can compute

the evaluation measures for the objective evaluation. After the objective evaluation,

the estimated speech is used in the tests with CI patients to compare the speech

intelligibility obtained in front of other algorithms. Some audio examples obtained

with the source separation algorithms can be found in tables 5.1,5.2 and 5.3.

Babble Noise

Algorithm SNR 0 dB SNR 5 dB SNR 10 dB

Original Mix Babble SNR 0 Babble SNR 5 Babble SNR 10

IMM Babble IMM SNR 0 Babble IMM SNR 5 Babble IMM SNR 10

LLIS Babble LLIS SNR 0 Babble LLIS SNR 5 Babble LLIS SNR 10

Table 5.1: Audio Examples of Babble noise with the different condition

Music Noise

Algorithm SNR 0 dB SNR 5 dB SNR 10 dB

Original Mix Music SNR 0 Music SNR 5 Music SNR 10

IMM Music IMM SNR 0 Music IMM SNR 5 Music IMM SNR 10

LLIS Music LLIS SNR 0 Music LLIS SNR 5 Music LLIS SNR 10

Table 5.2: Audio Examples of Music noise with the different condition

37

http://www.jordihidalgo.com/wp-content/uploads/originalBabble0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/originalBabble5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/originalBabble10dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmBabble0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmBabble5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmBabble10dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisBabble0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisBabble5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisBabble10dB.wav
http://www.jordihidalgo.com/wp-content/uploads/originalMusic0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/originalMusic5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/originalMusic10dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmMusic0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmMusic5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/simmMusic10dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisMusic0dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisMusic5dB.wav
http://www.jordihidalgo.com/wp-content/uploads/llisMusic10dB.wav


“ThesisDoc” — 2012/9/11 — 15:20 — page 38 — #48

5.1. Objective Evaluation Chapter 5. RESULTS

CCITT Noise

Algorithm SNR 0 dB SNR 5 dB SNR 10 dB

Original Mix CCITT SNR 0 CCITT SNR 5 CCITT SNR 10

IMM CCITT IMM SNR 0 CCITT IMM SNR 5 CCITT IMM SNR 10

LLIS CCITT LLIS SNR 0 CCITT LLIS SNR 5 CCITT LLIS SNR 10

Table 5.3: Audio Examples of CCITT noise with the different condition

5.1 Objective Evaluation

We have detailed in chapter 4 the differences of how we have evaluated the results

obtained. The objective evaluation is all based in the simulations done with MATLAB

using the target algorithms.

5.1.1 BSS-EVAL Results

BSS-EVAL Toolbox provides a set of measures which all of them are used to evaluate

the performance of the obtained separation from a given mixture of sources. As we

have seen in section 4.2.1, ISR, SIR, SAR and SDR are these main evaluation measures.

For the analysis of the results we found more interesting to focus on SDR since this is a

combination of the rest of measures. Figure 5.1 depict the behavior of SDR for a set of

20 instances of speech estimates. These instances are composed by estimates obtained

through mixtures of different noises. In this case the used noises are the music, babble

and CCITT noise. As can be seen, each SNR level is represented by a different color.

The plot of SDR Oracle shows the ideal SDR level which is the maximum that can be

achieved by separating the mixtures. In this case, it is very clear the curve that follows

each instance at the same level which are clearly separated increasing the SDR while

increasing the SNR level. In the case of the estimates for IMM and LLIS algorithms,

we can still appreciate the differences between SNR levels but now some values are

mixed.

In order to have a clear idea of which instances perform better or wrong in contrast

of the rest, figures 5.2 and 5.3 shows the obtained SDR Error for the cases IMM and

LLIS. Contrary as expected the higher error values are obtained at 15 dB SNR. We

explain this effect because of the oracle levels obtained at this SNR are very high

and the algorithms can not reach such level by estimating the sources. Then we can

distinguish between the effect of the noise and the SNR to see which one has a bigger

impact in the SDR. In figure 5.4 we an see the different average SDR values obtained

by both algorithms at 5 different SNR levels. As commented before, at SNR = 15 dB
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Figure 5.1: Speech SDR values for Oracle, IMM and LLIS estimates

is reached the maximum SDR error level for both cases IMM and LLIS. At levels 0 and

5 dB seems to be the best results obtained below 15 dB. There is not a significance

difference in the results obtained by IMM comparing with LLIS(≈ 1 - 1.5 dB), but

IMM seems to work better at 10 and 15 dB while LLIS at -5 and 0 dB. Regarding the

results by noise, figure 5.5 shows the average values for a fixed SNR level at 10 dB.

Again, both algorithms show similar SDR error levels where the music noise is the one

with more difference where IMM obtains slightly better results.

Figure 5.2: Speech SDR Error values for IMM estimate

Comparing these results to other cases like in [Marxer et al., 2012] where the differ-

ence on average SDR error obtained for IMM and LLIS is between 5-10 dB, it is clear

that the algorithms do not work with the same accuracy. But this could be produced

by different factors, like the data used in the evaluation that in their case are music
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Figure 5.3: Speech SDR Error values for LLIS estimate

samples which have a different SNR between the lead voice and the rest of components

than in our mixtures. Another example could be the effect of the training, which in

our case the system trained with singing voice could be not detecting the speech signal

with the same precision.

Figure 5.4: Speech average SDR error for each noise SNR level with different noise

mixed

5.1.2 PESQ Results

The other side of the objective results is the Perceptual Evaluation of Speech Quality.

In these experiments we have used an additional algorithm in order to contrast the
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Figure 5.5: Speech average SDR error for each noise Babble, CCITT and Music at

SNR 10 dB

results. This is a noise reduction algorithm [J. Benesty, ][M. M. Sondhi and Rabiner, ]

[J. Chen and Huang, ][Diethorn, ] which basically reduces the background noise. The

algorithm works perfectly with stationary noises but has not very good effect with non

stationary noises. In figures 5.6 and 5.7 we can see the results obtained with the pesq

evaluation. As can be observed, in most of the cases the original mixture with speech

plus noise and the results obtained with the noise reduction algorithm are significantly

better than both algorithms LLIS and IMM. The most optimistic case is the babble

noise, where LLIS reaches a similar level than the original and the denoised. The good

point is that the results obtained with LLIS for the babble noise is considerably better

than the IMM.

5.2 Subjective Evaluation

The tests realized for the subjective evaluation are the decisive exercise to determine

how well the system works for our main objective, improve speech intelligibility. After

evaluating the objective results we can have a preliminary idea of how the algorithm

will work in the different scenarios. But unfortunately objective measures are not

always reliable specially with speech intelligibility. This is why we decided to do some
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Figure 5.6: PESQ measure for each noise Babble, CCITT and Music at SNR 5 dB

obtained with the different algorithms

tests with volunteers before the definitive tests with CI patients.

With the goal of have coherent and useful results, we tried to have a correct con-

figuration reagarding the environment and the procedure. The first requirement was

to have a quiet and confortable place to run the experiments essentially because the

tests need a considerable level of concentration specially for the CI patients which any

kind of background noise can disturb their perception. We used a small room from

the CBCLaB1, a neuroscience laboratories used by some brain and cognition research

groups of the UPF. In figure 5.8 is depicted a simple representation of the room. The

room is considerably good isolated acoustically and has no reberveration. The speaker

is placed 1.5 meters from the subject and the audio level is calibrated each time at 60

dBSPL. We were very restricted with the test structure because with 6 conditions we

had 9 possible combinations, so 9 lists of 25 words or 20 sentences plus a training phase

took about 1.5 hours. It is important to mention that all the tests were not realized at

the same SNR level. This is because each CI patient has very different hearing levels.

So the procedure was during the training stage, different levels were presented to the

CI patient and we selected the optimal level which we considered that is at 50% of

correct words independently of the SNR.

1http://lnucc.upf.edu/?q=en
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Figure 5.7: PESQ measure for each noise Babble, CCITT and Music at SNR 10 dB

obtained with the different algorithms

5.2.1 Experiments with normal hearing people

The tests done with volunteers are not 100% reliable mainly by the fact that the

volunteers had not any known hearing disease. So we assumed that they can hear

perfectly good. In order to adapt this situation to be similar to the CI patients we

used a processed version of the estimated audios. We can see that as a CI simulator

but essentially it is not. The objective is not simulate how CI patients hear due it is

very difficult to approximate to model how they internally perceive. So what we have

done is degrade the signal to an inferior level similar to the degradation level that CI

have. An example of these measures can be the lower frequency bandwidth used in the

implants, where is mapped the original frequency bands into 16-22 frequency bands

corresponding to the number of electrodes used to stimulate the cochlea.

In these preliminary tests we had 6 volunteers which 2 of them are not reflected in

the results due in the first tests were more introductory and we needed to test different

combinations of noise plus SNR in order to have a good test structure. In these tests

we evaluated both algorithms IMM and LLIS compared to the original mix. These

conditions where tested for a sentence plus babble noise, and a word mixed with music

and babble noise. We chose babble noise because was one of the only scenarios where

the algorithms obtained good results. Then we selected the music noise to compare it.

As can be seen in figure 5.9 the obtained results are quite different for each scenario. For

the sentence case, the results obtained by the LLIS algorithm are considerably good.

In all the cases outperforms IMM and also the average is higher than the original.
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Figure 5.8: CBCLaB Room

Although in this case the subject number 3 makes elevate the mean considerably. In

the word plus babble noise case the original obtains the best results in most of the

situations, specially in the word plus babble noise. The case of word plus music is

favorable to the IMM algorithm if we consider that with the first subject where some

problems and these conditions were unable to be realized. The differences obtained

with the sentence and word with babble noise are introduced by the differences between

the sentence and the word. As the sentence have a context, it is easier to deduce more

words while in the test with words it becomes harder to deduce it. This demonstrates

that the word test is more reliable in terms of intelligibility.

5.2.2 Experiments with CI patients

After the tests with volunteers we built the definitive test configuration. First of all we

focused on evaluate only lists of words due the reliability in order to evaluate intelligi-

bility. Then we focused on same music noise from the previous tests and we added the

CCITT and a new music noise. We discarted the babble noise because, even though

LLIS showed significant good results with in the previous tests, we tested some lists

with the first patient and it was impossible to recognize any word. We introduced the

sationary noise CCITT to compare LLIS with the noise reduction algorithm. Finally

the new music nois it is composed by only cello playing some notes at fixed frequency.

In table 5.4 we can see a summary of some characteristics regarding their experience

with Hearing loss and CI. Is important to consider these set of characteristics in order

to determine possible differences in the obtained results.
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(a) (b)

(c)

Figure 5.9: Test realized with 4 volunteers with mixed words and noise and with the

different algorithms

Pacient Age Cause of H.loss Device Duration of H.loss Experience with CI Pre/Postlocutive

P1 57 Cofosis Nucleus5 1.5 years 8 years Postlocutive

P2 34 Accident Nucleus5 10 years 3 years Postlocutive

P3 49 Congenital Esprit 32 years 17 years Prelocutive

P4 59 Infection Nucleus5 2 years 1 years Postlocutive

P5 56 Infection Nucleus5 15 days 2 years Postlocutive

Table 5.4: CI patients main characteristics

After realizing the tests, we had the results in percentage of correct words per

list, but we decided to go deeper and analyze it phoneme by phoneme as explained in

section 4.3.2. The results are practically the same that if we count the percentage of

correct words but during the tests we encountered many situations where the patient

answered very similar words but with some changed phonemes which sometimes can
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be a wrong word but with only one wrong phoneme. Even this way, the overall results

for most of the cases is favorable to the noise reduction algorithm and for the original

speech mixed with noise. As can be seen in figure 5.10 the PER error for LLIS is

considerable higher than the rest. Only in some sporadic cases LLIS obtained good

results like in the music case for the patient 1 which improved significantly the PER

error of the original mixture but still very similar to the noise reduction.

(a) (b)

(c)

Figure 5.10: Test realized with 5 CI Patients with mixed words and noise and with

the different algorithms

With the goal of analyse where specifically LLIS fails, we have made a re-count

of the errors made by the patients. Concretely we have gathered all the substitution

errors to determine which phonemes are more commonly confused. In figure 5.11 is

showed an histogram of the error phonemes ordered by repetition times. In the first
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4 positions we have the phonemes “e”, “s”, “a” and “o” which have been confused

about 50 or more times. It is normal that the most confused phonemes are vowels due

are more common in each word (at least in Spanish) and every time that a word is

confused, some vowels will be confused. And considering that there are 5 vowels the

probability of fail is higher. But the interesting point is that in the second position it

is the phoneme s. We can assume with these results that the fact that LLIS does not

recognize some consonants is a problem, and s is a clear example.

Figure 5.11: Phoneme error recount

5.3 Discussion

From the results obtained with the 5 CI patients we did not need plots to determine

that there is some problems with LLIS regarding to the speech intelligibility. After

generating all the estimates, in most cases LLIS successfully separated the speech

signals from the rest of components. But we encountered another problem that is

worse for speech intelligibility that is speech degradation. Although it only affects

to some parts of the words, degrading the speech signal makes reduce abruptly the

intelligibility. We found that consonants are fundamental components of the speech in

order to understand. As commented in the methodology section, LLIS does not detects

unvoiced consonants. There are two type of consonants: obstruents and sonorants.

Sonorants are those type of phonemes that have a certain pitch like could be “n” or “m”.

Vowels are also sonorants. But obstruent consonants are those sounds produced by

obstructing the airflow with no interaction of the vocal folds. So obstruent consonants
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have no pitch which is the main problem of dealing with LLIS wich does not detect

these certain consonants.

Figure 5.12: Spectrograms of a original word and a word mixed with CCITT noise

with consonant “s” missing

We can return to figure 5.11 and the case of the phoneme “s”. This phoneme is

a fricative obstruent so it has no specific pitch. Figure 5.12 shows the spectrograms

of a original word and estimated from a mixture with CCITT noise. It is a perfect

example of how LLIS remove the consonants. In this case there is practically absolute

silence between phonemes “a” and “e”. In the original spectrogram we can see how the

spectral content of the phoneme “s” is not harmonic at all. We can see a concentration

of energy randomly distributed in time specially around 3.5 kHz and 5 kHz. There is

some problems also with the first phoneme “k” which is a stop consonant or occlusive

and it behaves like a transient with a huge concentration of energy suddenly when

starts. Here the estimates also loose a lot of content but still there are some parts that

make the phoneme recognizable.

Another phenomena could be the observed in figure 5.13 where now the estimated

is a mix with cello noise. In this case LLIS neither detects correctly “s”. But now in

contrast to the anterior case, when the algorithm does not detect any pitch in the

place of the consonant, some harmonics of the cello are present and this makes that

also some spectral content of phoneme “s” remain present. The fact that the cello

shares some partials makes that this is not removed totally and this is also a problem

for intelligibility.
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Figure 5.13: Spectrograms of a original word and a word mixed with Cello noise with

consonant “s” replaced or degradated

5.3.1 Transient detection

The problem related to the consonants was expected before running the experiments

since LLIS was designed without considering unvoiced consonants detection. As com-

mented in section 3.2 a new approach with the goal of solve the consonants detection

is being carried out. Following with the example of the word “clase”, we used this

new strategy to have preliminary results of the consonant detection. In figure 5.14 we

have the same estimated speech signal from the previous example compared with the

transient detection.

Figure 5.14: Spectrograms of estimated speech and estimated speech with transient

detection strategy
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The obtained consonants signal is extracted from the same noise plus speech

signal of the previous example. As can be noticed it is not completely a consonant

recovery but some content of the phonemes “k” and “s” is detected. But this few

content of the consonants is enough to make change the intelligibility of the word. The

result of the added consonants to the estimated signal can be easily perceived

audibly and also in the spectrogram we can observe how some of the missing component

in the middle of the word is filled with part of the recovered phoneme “s” as well as

“k”. This simple example shows how this strategy can successfully improve speech

intelligibility working with LLIS.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

The research done in this master thesis is a relatively new contribution for both ar-

eas blind source separation and cochlear implants. Perhaps the contribution has more

impact in the field of cochlear implant as the main goal was to improve speech intelligi-

bility in the context of cochlear implants. While we used an existing source separation

framework with not so much emphasis in the modification but with an accurate eval-

uation process.

6.0.2 Contributions

Regarding both topics involved in this master thesis we can extract the following

contributions:

• The literature review done in the related areas of research have determined that

there is a large amount of research done in source separation and his different

methods and strategies, but the application of this methods is still very new to

the field of cochlear implants which only a few contributions have been done.

• It has been demonstrated how a low latency source separation algorithm can

reach similar quality levels to an offline algorithm in many scenarios with different

kind of noises and SNR levels.

• We showed how the low latency algorithm can reach considerable good results in

tests with normal hearing people

• The realization of tests with volunteers and CI patients revealed some critical

aspects of LLIS algorithm regarding to speech intelligibility
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• The proposed solution can be a very effective solution to noise reduction algo-

rithms which normally work only with stationary noise

6.0.3 Conclusions

Considering the motivations and goals presented in the introduction and having into

account the contributions commented in section 6.0.2 we can obtain some conclusions.

First we can consider the presented work as an innovative contribution due we

have encountered only a few contributions dealing with cochlear implants and source

separation. It is worth to mention that in contrast to cochlear implants, the use of

source separation in hearing aids it is quite extensive with successful results.

Then, in respect to source separation we can comment that even using a framework

focused in singing voice and music, this have obtained relatively good results in the

task of separating speech and other components different from musical instruments.

It is very important to have into account that only obtaining similar results to an

offline algorithm this is very positive, but in some cases LLIS even outperforms IMM.

We observed that still the estimation error is considerable high compared to other

examples. This can be improved adapting more the system with a speech training and

consonant detection strategies which is part of the future work. For the case of the

transient detection, some preliminary tests were conducted, but unfortunately was not

possible to be evaluated with the subjective tests. However the first obtained results

are promising.

The results obtained with normal hearing people in the preliminary tests were

promisingly due in some scenarios like the music noise the results obtained with the

source separation algorithms have reported some good results. In contrast, babble

noise needs improvement and was not evalueted with the cochlear implants test.

Tests realized with CI patients have been the final point in this evaluation pro-

cess. The results obtained with the tests showed that there is not so much correlation

between separation measures and speech intelligibility. Even in cases where the sep-

aration is considerably good, if some parts of the speech components are degraded

this becomes a huge problem for intelligibility. In most of the cases the original audio

samples with the speech and the noise is best understood together with the de-noised

sample through the noise reduction algorithm. Another good point of making the sub-

jective evaluation directly with the patients is that a part from the data strictly from

the test, we were constantly receiving feedback about little details of the algorithms.

This has a lot of advantages in order to analyze the performance of the system. For

example in some cases the intelligibility obtained with the LLIS algorithm was similar

or equal to the original mixture. This could be a lack of improvement, but if the
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patient reveals that in this case the noise was totally removed and he felt more com-

fortable, although we are not enhancing speech intelligibility, we can assume that we

are improving his quality of life.

We observed also in the tests that the noise reduction algorithm, the most effective,

does not work at all with non stationary noise like the babble or the cello. This gives

a good opportunity for LLIS due can perfectly work with non stationary noise. It is

also obvious that the problem of the consonants needs to be solved in order to be a

serious solution.

6.0.4 Futrue Work

Transient detection

Some preliminary tests have been done with an improved version of LLIS with the

goal of detect transient signals as it have been demonstrated in section 5.3.1. This

is mostly designed to track percussive instruments or similar. But as we have seen

in some of the spectrograms exposed in this work, some consonants behaves similar

to transients, like the case of the word “clase”, the phoneme “k” it can be seen as

a transient signal. Specially occlusive consonants which are a quick duration in time

and a sudden change of energy. This could work for some cases where LLIS does not

detect unvoiced consonants by applying the transient detection and then adding the

found consonants to the estimated speech signal.

Speech training

One of the commented problems of LLIS when working with speech signals is the

mentioned training strategy. As the system is trained to remove the lead singing voice,

the training strategy have been designed with singing voice signals which makes that

the model generated is not the best. A good improvement of the system could be

the generation of a new model fully trained with speech samples. A very special and

restricted scenario could be the possibility of restricting the speech training to real

recordings of the CI patients familiar or friends. This can be seen as a customized

program from the amount of strategies installed in the implants with the possibility

that the user selects the program in presence of the person whose voice has been

trained.
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