
PREDOMINANT FUNDAMENTAL FREQUENCY ESTIMATION VS
SINGING VOICE SEPARATION FOR THE AUTOMATIC

TRANSCRIPTION OF ACCOMPANIED FLAMENCO SINGING

E. Gómez1, F. Cañadas2, J. Salamon1, J. Bonada1, P. Vera2 and P. Cabañas2
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ABSTRACT

This work evaluates two strategies for predominant funda-
mental frequency (f0) estimation in the context of melodic
transcription from flamenco singing with guitar accompa-
niment. The first strategy extracts the f0 from salient pitch
contours computed from the mixed spectrum; the second
separates the voice from the guitar and then performs mono-
phonic f0 estimation. We integrate both approaches with
an automatic transcription system, which first estimates the
tuning frequency and then implements an iterative strat-
egy for note segmentation and labeling. We evaluate them
on a flamenco music collection, including a wide range of
singers and recording conditions. Both strategies achieve
satisfying results. The separation-based approach yields
a good overall accuracy (76.81%), although instrumental
segments have to be manually located. The predominant
f0 estimator yields slightly higher accuracy (79.72%) but
does not require any manual annotation. Furthermore, its
accuracy increases (84.68%) if we adapt some algorithm
parameters to each analyzed excerpt. Most transcription
errors are due to incorrect f0 estimations (typically octave
and voicing errors in strong presence of guitar) and in-
correct note segmentation in highly ornamented sections.
Our study confirms the difficulty of transcribing flamenco
singing and the need for repertoire-specific and assisted al-
gorithms for improving state-of-the-art methods.

1. INTRODUCTION

Flamenco is a music tradition originating mostly from An-
dalusia in southern Spain. The singer has a main role and
is often accompanied by the guitar and other instruments
such as claps, rhythmic feet and percussion. This research
aims to develop a method for computing detailed note trans-
criptions of flamenco singing from music recordings, which
can then be processed for motive analysis or further sim-
plified to obtain an overall melodic contour that will char-
acterize the style. In this study we focus on accompanied
singing, and propose a method comprised of two stages:
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predominant f0 estimation and note segmentation. For the
first stage, two alternative strategies are evaluated and com-
pared: in the first, we use a state-of-the-art predominant f0
estimation algorithm, which estimates the f0 of the pre-
dominant melody directly from the full audio mix. In the
second, we propose a source separation approach to isolate
the singing voice and perform monophonic f0 estimation.

2. SCIENTIFIC BACKGROUND

Automatic transcription is a key challenge in the music in-
formation retrieval (MIR) field. It consists of computing
a symbolic musical representation from an audio record-
ing. In polyphonic music material, there is an interest in
transcribing the predominant melodic line [1]. Although
we find some successful approaches for singing transcrip-
tion [2,3], the singing voice is still one of the most complex
instruments to transcribe, given the continuous character of
the human voice and the variety of pitch ranges and timbre.
Additional challenges in flamenco arise from the quality
of recordings, the acoustic and expressive particularities of
flamenco singing, its ornamental and improvisational char-
acter and the yet to be formalized musical structures [4].

In [5], we proposed a melodic transcription system from
a cappella flamenco singing and we evaluated it against
manual annotations of 72 performances. The obtained over-
all accuracy was around 70% (50 cents tolerance), which
was significantly lower than the one obtained for a small
test collection of pop/jazz excerpts (∼85%). The study
showed the importance of good monophonic f0 estimation,
and confirmed the difficulty of note segmentation for ex-
cerpts with unstable tuning or highly ornamented sections.

The goals of the present study are to apply this tran-
scription system to accompanied singing and to perform
a comparative evaluation of two alternative strategies for
singing voice f0 estimation. The first is to replace the
monophonic f0 detector by a predominant f0 estimation
method. The task of predominant f0 estimation from poly-
phonic music (sometimes referred to simply as melody ex-
traction) has received much attention from the research
community in recent years, and state-of-the-art approaches
yield an overall accuracy around 75% [6, 7]. A variety of
different approaches have been proposed, based on track-
ing agents [8], classification [9], streaming rules [10] or
pitch contour characterization [11]. The most common
set of approaches are “salience based”, i.e. they compute



a pitch salience representation from the audio signal, and
then select the melody out of the peaks of this representa-
tion over time [8, 9, 11].

The second strategy is to separate the singing voice from
the guitar accompaniment using source separation and tran-
scribe the separated track. Recent singing voice separation
methods can be classified into three categories: spectro-
gram factorization [12–14], pitch-based inference [15, 16]
and repeating-structure removal [17]. Spectrogram factor-
ization methods decompose a magnitude spectrogram as a
set of components that represent features such as the spec-
tral patterns (basis) or the activations (gains) of the active
sources along the time. Fitzgerald and Gainza [12] propose
a non-negative partial cofactorisation sharing a common
set of frequency basis functions. In [13], an accompani-
ment model is designed, from the non-vocal segments, to
fit the musical instruments and attempt separation of the
vocals. In [14], the basis of the vocal track is learned
from the mixture by keeping the accompaniment spectra
fixed. Pitch-based inference methods use information from
the pitch contour to determine the harmonic structures of
singing voice. In [16], separation of both the voiced and
the unvoiced singing voice is presented by means of the
combination of detected unvoiced sounds and a spectral
subtraction method to enhance voiced singing separation
[15]. Repeating-structure removal methods [17] use a pat-
tern recognition approach to identify and extract accompa-
niment segments, without manual labeling, which can be
classified as repeating musical structures.

3. TRANSCRIPTION METHOD

Our method relies on two main stages: low-level feature
extraction (mainly f0) and note segmentation. We present
the two alternatives for f0 estimation compared in this study
followed by a summary of the note segmentation approach.

3.1 Singing voice f0 estimation

3.1.1 Predominant f0 estimation

For predominant f0 estimation, we use [11], which ob-
tained the highest overall accuracy in MIREX 2011 [6].
First, the audio signal is analyzed and spectral peaks (si-
nusoids) are extracted. This process is comprised of three
main steps: first a time-domain equal loudness filter is ap-
plied, which has been shown to attenuate spectral com-
ponents belonging primarily to non-melody sources [19].
Next, the short-time Fourier transform is computed with a
46 ms Hann window, a hop size of 2.9 ms and a 4 zero
padding factor. At each frame the local maxima (peaks) of
the spectrum are detected. In the third step, the estimation
of the spectral peaks’ frequency and amplitude is refined
by calculating each peak’s instantaneous frequency (IF) us-
ing the phase vocoder method and re-estimating its ampli-
tude based on the IF. The detected spectral peaks are subse-
quently used to compute a representation of pitch salience
over time: a salience function. The salience function is
based on harmonic summation with magnitude weighting,
and spans a 5-octave range from 55Hz to 1760Hz. De-
tails are provided in [11]. In the next stage, the peaks of

the salience function are grouped over time using heuris-
tics based on auditory streaming cues. This results in a
set of pitch contours, out of which the contours belonging
to the melody need to be selected. The contours are au-
tomatically analyzed and a set of contour characteristics
is computed. In the final stage of the system, the con-
tour characteristics and their distributions are used to fil-
ter out non-melody contours. The distribution of contour
salience is used to filter out pitch contours at segments of
the song where the melody is not present. Next, we obtain
a rough estimate of the melodic pitch trajectory by comput-
ing a per-frame salience-weighted average of the remain-
ing pitch contours and smoothing it over time using a slid-
ing mean filter. This rough pitch trajectory is used to min-
imise octave errors (contours with the correct pitch class
but in the wrong octave) and remove pitch outliers (con-
tours representing highly unlikely jumps in the melody).
Finally, the melody f0 at each frame is selected out of the
remaining pitch contours based on their salience. For fur-
ther details the reader is referred to [11].

In addition to computing the melody f0 sequence using
the default algorithm parameters (denoted MTG), we also
computed the melody adjusting three parameters of the al-
gorithm for each musical excerpt: the minimum and maxi-
mum frequency threshold and the strictness of the voicing
filter (cf. [11] for details). The results using the per-excerpt
adjusted parameters are referred to as MTGAdaptedparam.

3.1.2 Singing voice separation and monophonic f0
estimation

Standard Non-negative Matrix Factorization (NMF) [20] is
not able to determine if a frequency basis belongs to a per-
cussive, harmonic or vocal sound. Our proposal attempts
to overcome this limitation without using any clustering
process. A mixture spectrogram X is factorized into three
separated spectrograms, Xp (percussive), Xh (harmonic)
and Xv (vocal). Using similar spectro-temporal features
[21, 22], harmonic sounds are modeled by sparseness in
frequency and smoothness in time. Percussive sounds are
modeled by smoothness in frequency and sparseness in
time. Vocal sounds are modeled by sparseness in frequency
and sparseness in time. Although it is not necessary to dis-
criminate between percussive and harmonic sounds in the
accompaniment, our experimental results showed we ob-
tain better vocal separation using this discrimination. The
proposed singing voice separation is composed of three
stages: segmentation, training and separation.

In the segmentation stage, the mixture signal
X = Xnonvocal

⋃
Xvocal is manually labelled into vo-

cal Xvocal (vocal+instruments) and non-vocal Xnonvocal

(only instruments) regions. In the training stage, from non-
vocal regions, the percussive Wp and harmonic Wh ba-
sis vectors are learned using an unsupervised NMF per-
cussive/harmonic separation approach based on spectro-
temporal features.

Xnonvocal ≈ Xp +Xh =Wp ·Hp +Wh ·Hh (1)

In the separation stage, the vocal spectrogram Xv is ex-
tracted from the vocal regions by keeping the percussive



Wp and harmonic Wh basis vectors fixed from the previ-
ous stage.

Xvocal ≈ X ′p+X ′h+Xv =Wp ·H ′p+Wh ·H ′h+Wv ·Hv

(2)
In this manner, the singing voice signal v(t) is synthesized
from the vocal spectrogram Xv . To obtain an f0 sequence
from the synthesized voice signal, the traditional difference
function is computed for each time frame index t:

d(τ, t) =

W−1∑
n=0

(v(t+ n)− v(t+ n+ τ))2 (3)

where W is the length of the summation window and τ is
the candidate pitch period. From this function, the cumula-
tive mean normalized difference function can be computed
as defined in [23]:

dn(τ, t) =

{
1, τ = 0
d(τ, t)/[ 1τ

∑τ
j=1 d(j, t)] otherwise.

(4)
Observe that the function dn(τ, t) can be viewed as a cost
matrix, where each element (τ, t) indicates the cost of hav-
ing a pitch period equal to τ at time frame t. We esti-
mate the whole f0 sequence by computing the lowest-cost
path through the matrix dn(τ, t). This computation is ac-
complished with dynamic programming. The endpoints of
the path are fixed only for the t-axis and the path is con-
strained to advance step-by-step along t, under the condi-
tion |τt−1 − τt| ≤ 1. This condition ensures a continuous
and smooth f0 contour. The obtained f0 is denoted as UJA.

3.2 Note segmentation and labeling

Our approach for note segmentation and labeling is adapted
from a transcription system for mainstream popular mu-
sic [18]. After consulting a group of flamenco experts
from the COFLA project 1 , we took the following design
decisions. First, we define an equal-tempered scale with
respect to an estimated tuning frequency. Second, we as-
sume a constant tuning frequency value for each analyzed
excerpt. Third, we transcribe all perceptible notes, includ-
ing short ornamentations, in order to cover both expressive
nuances and the overall melodic contour. We summarize
below the mains steps of the transcription algorithm and
we refer to [5] and [18] for further details.

3.2.1 Tuning frequency estimation

From the obtained f0 envelope, we perform an estimation
of the tuning frequency used by the singer assuming an
equal-tempered scale. The tuning frequency is assumed to
be constant for a given excerpt. We compute the maximum
of the histogram of f0 deviations from an equal-tempered
scale tuned to 440 Hz. We then map the f0 values of all
frames into a single semitone interval with a one-cent res-
olution.

In our approach, we give more weight to frames where
the included f0 is stable by assigning higher weights to

1 http://mtg.upf.edu/research/projects/cofla
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Figure 1. Matrix M used by the short note segmenta-
tion process, illustrating how the best path for a node with
frame index k and note index j is determined. All possible
note durations between dmin and dmax are considered, as
well as all possible jumps to previous notes. The selected
segmentation is marked with dark gray.

frames with low f0 derivative. In order to smooth the re-
sulting histogram and improve its robustness to noisy f0
estimations, instead of adding a value to a single bin, we
use a bell-shaped window that spans several bins. The
maximum of this histogram (bmax) determines the tuning
frequency deviation in cents from 440 Hz. The estimated
tuning frequency in Hz then becomes

fref = 440 · 2
bmax
1200 (5)

3.2.2 Short note transcription

The short note transcription step segments a single f0 con-
tour into notes. Using dynamic programming (DP), we
find the note segmentation that maximizes a set of prob-
ability functions. The estimated segmentation corresponds
to the optimal path among all possible paths along a 2-D
matrix M (see Figure 1).

This matrix M has note pitches as rows and analysis
frames as columns. Note pitches are quantized into semi-
tones according to the estimated tuning frequency. Possi-
ble note pitches should cover the tessitura of the singer and
include a −∞ value for the unvoiced sections. Note dura-
tions are limited to a certain range [dmin, dmax] of frames.
The maximum duration dmax should be long enough so
that it covers several periods of a vibrato with a low modu-
lation frequency, e.g. 2.5Hz, but also short enough to have
good temporal resolution, e.g. avoid skipping short orna-
mentations.

Possible paths considered by the DP algorithm always
start from the first frame, end at the last audio frame, and
advance in time so that notes never overlap. A path p is
defined by its sequence of Np notes,
p = {np0, np1, . . . , npNp−1}, where each note npi begins
at a certain frame kpi, has a duration of dpi frames and a
pitch value of cpi. The optimal path is defined as the path
with maximum likelihood among all possible paths.



P = argmax
p
{L(p)} (6)

The likelihood L(p) of a certain path p is determined
as the product of likelihoods of each note L(npi) times the
likelihood of each jump between consecutive notes
L(npi−1, npi):

L(p) = L(np0) ·
Np−1∏
i=1

L(npi) · L(npi−1, npi) (7)

In our approach, no particular characteristic is assumed
a priori for the sung melody; therefore all possible note
jumps have the same likelihood L(npi−1, npi) = 1. On the
other hand, the likelihood of a note L(npi) is determined
as the product of several likelihood functions based on the
following criteria: duration (Ld), pitch (Lc), existence of
voiced and unvoiced frames (Lv), and low-level features
related to stability (Ls):

L(npi) = Ld(npi) · Lc(npi) · Lv(npi) · Ls(npi) (8)

Duration likelihood Ld is set so that it is small for short
and long durations. Pitch likelihood Lc is defined so that it
is higher the closer the frame f0 values are to the note nom-
inal pitch cpi, giving more relevance to frames with low f0
derivative values. The voicing likelihood Lv is defined so
that segments with a high percentage of unvoiced frames
are unlikely to be a voiced note, while segments with a
high percentage of voiced frames are unlikely to be an un-
voiced note. Finally, the stability likelihood Ls considers
that a voiced note is unlikely to have fast and significant
timbre or energy changes in the middle. Note that this is
not in contradiction with smooth vowel changes, charac-
teristic of flamenco singing.

3.2.3 Iterative note consolidation and tuning frequency
refinement

The notes obtained in the previous step have a limited du-
ration between [dmin, dmax] frames, although longer notes
are likely to have been sung. Therefore, it makes sense to
consolidate consecutive voiced notes into longer notes if
they have the same pitch. However, significant and fast en-
ergy or timbre changes around the note connection bound-
ary may be indicative of phonetic changes unlikely to hap-
pen within a note, and thus may indicate that those con-
secutive notes are different ones. Thus, consecutive notes
will be consolidated only if they have the same pitch and
the stability measure of their connection Ls falls below a
certain threshold.

Once notes are consolidated, it may be beneficial to use
the note segmentation to refine the tuning frequency esti-
mation. For this purpose, we compute a pitch deviation
for each voiced note, and then estimate a new tuning fre-
quency value from a one-semitone histogram of weighted
note pitch deviations in similar way to that described in
Section 3.2.1. The difference is that now we add a value for

Figure 2. Visualization tool for melodic transcription. Au-
dio waveform (top), estimated f0 and pitch in a piano roll
representation (bottom).

each voiced note instead of for each voiced frame. Weights
are determined as a measure of the salience of each note,
giving more weight to longer and louder notes. As a final
step of this process, note nominal pitches are re-computed
based on the new tuning frequency. This process is re-
peated until there are no more consolidations.

Figure 2 shows an example of a computed transcrip-
tion. The system outputs both the extracted f0 envelope
and the estimated frame note pitch, according to an equal-
tempered scale, as requested by flamenco experts for higher-
level analyses.

4. EVALUATION STRATEGY

4.1 Music collection

We gathered 26.74 minutes of music, consisting of 30 per-
formances of singing voice with guitar accompaniment (Fan-
dango style). This collection has been built in the context
of the COFLA project. It contains a variety of male and
female singers and recording conditions. The average du-
ration of the analyzed excerpts is 53.48 seconds and they
contain a total of 271482 frames and 2392 notes.

4.2 Ground truth gathering

We collected manual note annotations from a musician with
limited knowledge of flamenco music, so that there was
no implicit knowledge applied in the transcription process.
We provided him with the user interface shown in Figure
2. Since transcribing everything from scratch is very time
consuming, we also provided the output of our transcrip-
tion using the MTGAdaptedParam estimation as a guide.
The annotator could listen to the original waveform and the
synthesized transcription, while editing the melodic data
until he was satisfied with the transcription. The criteria
used to differentiate ornaments and pitch glides were dis-
cussed with two flamenco experts by collectively annotat-
ing a set of working examples, so that the annotator then
followed a well-defined and consistent strategy.



Figure 3. Frame-based accuracy measures (50 cents toler-
ance) for the considered approaches.

4.3 Evaluation measures

For evaluation we compute the measures used in the Audio
Melody Extraction (AME) MIREX task [6]. The measures
are based on a frame-by-frame comparison of the ground-
truth to the estimated frequency sequence. Note that in our
case we compare the ground truth to the frequency of the
final note transcription, meaning any observed errors rep-
resent the combined errors introduced by the two stages of
our method (f0 estimation and note segmentation). Also,
since we do not provide a pitch estimate for frames de-
termined as unvoiced, incorrect voicing detection will also
influence pitch accuracy (but not overall accuracy). We
consider Voicing recall: % of voiced frames in the refer-
ence correctly estimated as voiced; Voicing false alarm: %
of unvoiced frames in the reference mistakenly estimated
as voiced; Raw pitch accuracy: % of voiced frames where
the pitch estimate is correct within a certain threshold in
cents (th); Raw chroma accuracy: same as the raw pitch
accuracy except that octave errors are ignored; and Over-
all accuracy: total % of correctly estimated frames: correct
pitch for voiced frames and correct labeling of unvoiced
frames.

5. RESULTS

5.1 Frame-based pitch accuracy

Figure 3 shows the obtained accuracy measures for th =
50 cents. At first glance, we see that satisfying results
are obtained for both strategies. The separation-based ap-
proach (UJA) yields good results (overall accuracy 76.81%,
pitch accuracy 63.62%), as the guitar timbre can be accu-
rately estimated from the instrumental segments. Never-
theless, these guitar segments have to be manually located.
The predominant f0 estimator (MTG) yields slightly higher
overall accuracy (79.72%) and pitch accuracy (71.46%),
and it does not require manual voicing annotation. More-
over, the overall accuracy increases to 84.68% (pitch accu-
racy 77.92%) if we adapt some algorithm parameters for
each excerpt (MTGAdaptedParam). The observed voicing
false alarm rate (around 10% for MTG and UJA) results

Vx Vx False Raw Raw Overall
Est. Ref. Recall Alarm pitch chroma accuracy
MTG UJA 89.24 6.35 74.20 74.82 82.67
UJA MTG 94.00 12.95 78.29 78.93 82.65

Table 1. Accuracy measures between f0 estimations.

from segments where the guitar is detected as melody.
The obtained results are slightly higher than the ones

obtained for a cappella singing [5] when considering the
same note segmentation algorithm together with a mono-
phonic f0 estimator. This is due to two main reasons. Pri-
marily, as the singer follows the tuning reference of the
guitar, there are no tuning errors and the note labeling re-
sults are improved. Also, as the voice is very predominant
with respect to the guitar, the predominant f0 estimation
method works very well for this material.

5.2 Agreement between f0 estimations

We also estimate the agreement between both f0 strategies
by computing the evaluation measures with one estimator
as ground truth and the other one as estimation. Results
are presented in Table 1. We observe that in both cases
the overall agreement is around 82.5%. The main differ-
ence between the approaches is in the determination of
voiced sections. Whilst in UJA only large non-voiced sec-
tions were manually annotated, MTGAdaptedParam also
attempts to automatically detect shorter unvoiced sections
in the middle of the piece.

5.3 Error analysis

We observe that for the two considered strategies, tran-
scription errors are introduced in both stages of the tran-
scription process (f0 estimation and note segmentation).

Regarding singing voice f0 estimation, voicing seems
to be the main aspect to improve. Voicing false positives
occasionally appear during melodic guitar segments and
in short unvoiced phonemes (e.g. fricatives). On the other
hand, the singing voice f0 is sometimes missed in the pres-
ence of strong instrumental accompaniment, resulting in
voicing false negatives. Since the subsequent note segmen-
tation stage relies on the voicing estimation, voicing errors
during the f0 estimation are bound to introduce errors in
the note segmentation stage as well. Another type of error
is fifth or octave errors at segments with highly predomi-
nant accompaniment. This occurs especially with the UJA
method, as low harmonics of the singing voice might be
erased from the spectrum during the separation process.

Regarding the note segmentation algorithm, most of the
errors happen for short notes; either they are consolidated
while the annotation consists of several close notes, or vice
versa. This especially happens where the energy envelope
also accounts for the presence of guitar, so that onset esti-
mation becomes more difficult. Finally, some of the errors
occur due to wrong pitch labeling of very short notes, as
the f0 contour is short and unstable. This demonstrates
the difficulty of obtaining accurate note transcriptions for
flamenco singing, given its ornamental character and the



continuous variations of f0, easily confused with deep vi-
brato or pitch glides. The great variability of the vocal f0
contour can be observed in Figure 2.

6. CONCLUSIONS

This paper presents an approach for computer-assisted tran-
scription of accompanied flamenco singing. It is based
on an iterative note segmentation and labelling technique
from f0, energy and timbre. Two different strategies for
singing voice f0 estimation were evaluated on 30 minutes
of flamenco music, obtaining promising results which are
comparable to (and even better than) previous results for
monophonic singing transcription. The main sources of
transcription errors were identified: in the first stage (f0
estimation) the main issue is voicing detection (e.g. identi-
fication of the guitar as voice), though we occasionally ob-
serve pitch errors (e.g. wrong f0 in the presence of guitar)
as well. In the second stage (note segmentation) we ob-
served errors in segmenting short notes and labeling notes
with an unstable f0 contour. There is still much room
for improvement. One limitation of this work is the small
amount of manual annotations. This is due to the fact that
manual annotation is very time consuming and difficult to
obtain, and has a degree of subjectivity. We are currently
expanding the amount of manual annotations. The second
limitation is that we only have manual annotations on a
note level (quantized to 12 semitones) and not the contin-
uous f0 ground truth, which would allow us to evaluate
separately the accuracy of the two main stages of the algo-
rithm. We plan to work on this issue. Finally, we plan to
quantify the uncertainty of the ground truth information by
comparing annotations in different contexts, and adapt the
algorithm parameters accordingly.
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[5] E. Gómez, J. Bonada, and J. Salamon: “Automatic Transcrip-
tion of Flamenco Singing from Monophonic and Polyphonic
Music Recordings,” Proc. of FMA, 2012.
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