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Abstract

This document discusses techniques that allow to estimate the time localization of a set of summed sinusoids
that are analyzed using the DFT. Time localization means knowing the beginning and end of the sinusoid within
the input time frame to the DFT. Although those results could be used in other contexts, this work tries to solve the
problem for audio signals, which have rich spectrum (a great number of harmonics coexist). In previous literature,
this report would have used the terms onset detection or time reassignment but here it rather focuses on the low
level part of the problem. Detailed proofs are provided so that the reader could read them fast. Latex, matlab and
maple sources are provided, and the reader is encouraged to contribute improvements or extract results as long as
the same philosophy (Free Documentation License+GNU Public License) is applied.
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1 Introduction

1.1 Notation and problem statement

N ∈ N samples are extracted from a digital signal in order to perform the DFT with optional prewindowing. N is
supposed to be a power of 2 in order to use the FFT algorithm.

We will name discrete signals with lower case letters and name their discrete independent variable n (eg. x[n]).
We will refer to their Fourier Transforms with their corresponding capital letters and to their continuous indepen-

dent variable with w (eg. X(w)).
Finally their Discrete Fourier Transforms will be written as well with their corresponding capital letters but with

a discrete independent variable k (eg. X[k]). Hence:

Let x[n] be a N samples frame from a signal (i.e. x[n] = 0 ∀n < 0 and ∀n > N − 1)

X(w) ≡ A(w)ejφ(w) ≡ FT{x[n]}(w) ≡
∞∑

n=−∞
x[n]e−jwn =

N−1∑
n=0

x[n]e−jwn

X[k] ≡ A[k]ejφ[k] ≡ DFT{x[n]}[k] ≡
N−1∑
n=0

x[n]e−j
2πk
N n = X(w)|w= 2πk

N

h[n] be a window of N samples, symmetric around (N − 1)/2 (i.e. h[k] = h[N − 1− k])

xh[n] ≡ x[n]h[n] be the windowed signal frame

Xh[k] ≡ Ah[k]ejφh[k] = DFT{x[n]h[n]}[k]

ΠB,E [n] ≡
{

1, if n ∈ B..E
0, otherwise

Now, lets suppose that x[n] is a sum of discrete sinusoids with normalized frequency fk ∈ [0, 1], phase Φk and
amplitude Ak beginning in sample Bk and ending in sample Ek.

x[n] =

M∑
k=1

Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

The goal of this document is to present methods that estimate Bk and Ek from Xh[k] without knowing the original
values of M ,fk, Ak and Φk.

1.2 Motivations

The problem isn't formulated in terms of �onsets and �time reassignment� as it has been usually done in previous
literature for various reasons.

It is di�cult to de�ne what do we mean by a musical onset. Most musicians would agree about identifying musical
onsets in some piece of musics but the mathematical characterization remains unclear. Some approaches consider
energy variation or phase discontinuities, however this document doesn't intend to understand those perceptual and
psychological concepts, it will only focus on signal processing tools that might be useful in the future for this task.

The same problem exists for time reassignment. Time reassignment consists on assigning to the DFT coe�cient
the time where the signal associated to the DFT coe�cient begins. This might have some sense for the detection of
single tones, however in music, the notion of a signal that groups certain DFT coe�cients is ambiguous.

Finally it must be said that both terms only refer to the beginning of a signal within the analysis frame. On the
other hand, signals that begin at the same sample of the analysis frame and end at di�erent samples will have very
di�erent DFT coe�cients and properties. Hence onset detection and time reassignment techniques that forget about
the end of this signal within the frame, are not considering the whole problem and won't work in all situations.
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1.3 Frequency analysis of x[n]

Our solution will be based on the frequency domain, hence, a deep study about the FT and the DFT of our signal
will help us to understand the limitations of each method. Later references to this section should be expected.

First the DFT is written in terms of the FT of the signal. That is because the frequency-continuous Fourier
Transform is easier to operate than the DFT and allows us to see the in�uence of the bu�er size N .

Let ∗ indicate a �discrete� convolution, i.e. FT {x[n] ∗ y[n]} = 1
2π

∫ π
−πX(λ)Y (w − λ)dλ

Xh[k] = DFT{x[n]h[n]}[k] = [FT{x[n]h[n]}(w)]w= 2πk
N

Now the compute the Fourier transform of x[n] is computed,

FT{x[n]}(w)

= FT{Ak · cos(2πfkn+ Φk)ΠBk,Ek [n]}(w)

= FT{Ak · cos(2πfkn+ Φk)}(w) ∗ FT{ΠBk,Ek [n]}(w)

=
Ak
2

∞∑
m=−∞

(ejΦkδ(w − 2πfk + 2πm) + e−jΦkδ(w + 2πfk + 2πm)) ∗ e−j
Bk+Ek

2 w sin(Ek−Bk2 w)

sin( 1
2w)

=
Ak
2

(e−j(
Bk+Ek

2 w−2πfk−Φk) sin(Ek−Bk2 (w − 2πfk))

sin( 1
2w)

+ e−j(
Bk+Ek

2 w+2πfk+Φk) sin(Ek−Bk2 (w + 2πfk))

sin( 1
2w)

)

For an unwindowed x[n] (h[n] is simply rectangular window) x[n]h[n] = x[n], hence,

Xh[k] =

[
Ak
2

(e−j(
Bk+Ek

2
w−2πfk−Φk) sin(Ek−Bk

2
(w − 2πfk))

sin( 1
2
w)

+ e−j(
Bk+Ek

2
w+2πfk+Φk) sin(Ek−Bk

2
(w + 2πfk))

sin( 1
2
w)

)

]
w= 2πk

N

(1)

This expression already makes us think that, when h[n] is a rectangular window, the phase derivative of the Fourier
Transform may be used to estimate the center of the sinusoid support (Bk+Ek

2 ). In fact, if both sinc's are considered
to decrease fast to 0, and that in one of the main lobes there's a majority contribution of one of them, we obtain that:

dPhase(X)

dw
=

d

dw

(
Bk + Ek

2
w − 2πfk − Φk

)
=
Bk + Ek

2

In next chapter a method is presented to numerically compute the derivative from two DFTs of x[n]. However some
simulations reveal that this expression is still quite unstable depending of the proximity of the other main lobe, and
its phase shift. That is why, in chapter 3 a more robust estimator (that depends on various values of this derivative
around the main lobe) is explained. Finally, also in chapter 3, we will see that, still with h[n] a rectangular window, it
is possible to estimate the length of the sinusoid's support by taking into account its energy computed in the frequency
domain.

Otherwise, for a windowed x[n] we've got the following expression:

Xh[k] =

[
Ak
2

(ejΦkY (w − 2πfk) + e−jΦkY (w + 2πfk))

]
w= 2πk

N

(2)

Where

Y (w) = e−j(
Bk+Ek

2 w+2πfk+Φk) sin(Ek−Bk2 (w + 2πfk))

sin( 1
2w)

∗H(w) (3)
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And the H(w) of two popular windows would be:

Let D(w) = ej
1
2w
sin(N2 w)

sin( 1
2w)

Hhanning(w) = 0.5D(w) + 0.25

(
D(w − 2π

N
) +D(w +

2π

N
)

)
= 0.5e−j

N−1
2 w

(
sin(N2 w)

sin( 1
2w)

+ 0.5e−j
π
N
sin(N2 (w − 2π

N ))

sin( 1
2 (w − 2π

N )
+ 0.5ej

π
N
sin(N2 (w + 2π

N ))

sin( 1
2 (w + 2π

N )

)

Hblackman−harris(92)(w) = .35875D(w) + .48829

(
D(w − 2π

N
) +D(w +

2π

N
)

)
+ .14128

(
D(w − 2

2π

N
) +D(w + 2

2π

N
)

)
+ .01168

(
D(w − 3

2π

N
) +D(w + 3

2π

N
)

)
Taking into account that the above expression may be too complex, we won't develop new methods for this case,

but we will try to bring the problem to the unwindowed case. More details are given in section 3.4.

1.4 Does a N/2 shift help?

In problem statement, windows h[n] have been chosen symmetric around (N-1)/2, i.e. symmetrical in a pair N

samples bu�er. Therefore, those windows have a Fourier Transform H(w) = e−j
N−1

2 wHR(w) where HR(w) is real.
We can get rid of most of the phase w dependent shift by shifting in the time domain xh[n] by N/2 samples (i.e.
xh(shifted)[n] = xh[n−N/2] in a circular bu�er). That way,

Xh(shifted)(w) = X(shifted)(w)e+jN2 we−j
N−1

2 wHR(w) = X(shifted)(w)e−j
1
2wHR(w)

And, because usually a non time-localized x(shifted)[n] looks like the original x[n] (when it is a sinusoid or whatever

periodic signal with period signi�cantly smaller than the bu�er size) the phase picture has less variation: e−j
1
2w.

However this doesn't seem to be very helpful for our problem. We have seen that time localization, modeled as a
pulse, contributes also a phase shift and it may have a stronger impact on the Xh(w) spectrum than the window in
much cases. Hence, as we don't know where this pulse will be centered, a N/2 doesn't seem to solve anything because
this pulse may also contribute a big w dependent phase shift.
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2 Preliminary results

2.1 Parseval

Extracted from [PG96]. However, a more speci�c proof is given here.

Lemma 2.1 (Parseval).

N−1∑
n=0

x[n]2 =
1

N

N−1∑
k=0

|X[k]|2

Proof.

N−1∑
n=0

x[n]2 =

N−1∑
n=0

x[n]x∗[n] =

N−1∑
n=0

x[n]
1

N

N−1∑
k=0

X∗[k]e−j
2πk
N n =

1

N

N−1∑
n=0

N−1∑
k=0

x[n]X∗[k]e−j
2πk
N n

=

N−1∑
k=0

X∗[k]

N−1∑
n=0

x[n]e−j
2πk
N n =

1

N

N−1∑
k=0

X∗[k]X[k] =
1

N

N−1∑
k=0

X[k]2

2.2 Time-scaled Parseval

The name �Time-scaled Parseval� will be used to refer to this result. This result was extracted from [WM03].

Lemma 2.2 (Time-scaled Parseval).

N−1∑
n=0

nx[n]2 = − 1

N

N−1∑
k=0

|X[k]|2 dφ

dw
[k]

Proof.

N−1∑
n=0

nx[n]2 =

N−1∑
n=0

nx[n]x∗[n]

=

N−1∑
n=0

nx[n]
1

N

N−1∑
k=0

X∗[k]e−j
2πk
N n

=
1

N

N−1∑
n=0

N−1∑
k=0

n · x[n]X∗[k]e−j
2πk
N n

=
1

N

N−1∑
k=0

X∗[k]

N−1∑
n=0

nx[n]e−j
2πk
N n

dX(w)

dw
=

dA(w)

dw
ejφ(w) +A(w)ejφ(w)j

dφ(w)

dw
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N−1∑
n=0

nx[n]2 =

N−1∑
k=0

X∗[k]

N−1∑
n=0

nx[n]e−j
2πk
N n

=
1

N

N−1∑
k=0

A[k]e−jφ[k]j
dX

dw
[k]

=
1

N

N−1∑
k=0

jA[k]
dA

dw
[k]−A[k]2

dφ

dw
[k]

=
1

N

N−1∑
k=0

−A[k]2
dφ

dw
[k]

The last step is based on the fact that the original result is real, so the imaginary part must cancel out.

2.3 Computing phase and amplitude frequency derivatives with the DFT

Next we'll see more results from [WM03].

Lemma 2.3 (DFT phase derivative).

dφ

dw
[k] = −<

(
DFT{nx[n]}[k]

X[k]

)
Proof.

dφ

dw
[k] =

d

dw
= (log(A[k]) + jφ[k]))

=
d

dw
= (log(X[k]))

= =

(
1

X[k]

d

dw

∞∑
n=−∞

x[n]ejwn

)

= =

(
1

X[k]
(−j)

∞∑
n=−∞

nx[n]ejwn

)

= −<
(
DFT{nx[n]}[k]

X[k]

)

Lemma 2.4 (DFT amplitude derivative).

dA

dw
[k] = A[k]=

(
DFT{nx[n]}[k]

X[k]

)

7



Proof.

dA

dw
[k] = A[k]

d

dw
log(A[k])

= A[k]
d

dw
< (log(X[k]))

= A[k]<

(
1

X[k]

d

dw

∞∑
n=−∞

x[n]ejwn

)

= A[k]<

(
1

X[k]
(−j)

∞∑
n=−∞

nx[n]ejwn

)

= A[k]=
(
DFT{nx[n]}[k]

X[k]

)
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3 Problem Solution

3.1 Road map

In this section we will �rst look at the solution of our problem for M = 1, i.e. for an input signal:

x[n] = Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

This solution doesn't make a lot of sense when there's only one sinusoid, because Bk and Ek could perfectly be
estimated temporally. However, those results are developed with the aim to generalize them in for �nite sums of
sinusoids, that is the DFT decomposition of any real signal.

So �rst two ways are presented to estimate, from the DFT coe�cients of an unwindowed signal (i.e. h[n] is a
rectangular window), the center of the sinusoid's support and its length. Combining both, the values of Bk and Ek
may be obtained. The error of these estimations is also analyzed and bounded.

Next the e�ect of windowing the signal is discussed, and a method is suggested to �unwindow� the sinusoid DFT
in order to use the previously explained methods.

Finally we study what happens when M sinusoids coexist:

x[n] =

M∑
k=1

Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

We will see that the above methods can be still used to localize each one in time.

3.2 Estimation of the sinusoid's support length in the frequency domain

Lemma 3.1. Let 0 < fmin < f < fmax < 0.5, and a N ∈ N samples sinusoid be:

x[n] = Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

with known Ak. Then Ek −Bk can be estimated as follows:

Ek −Bk = −1 +
2

NA2
k

N−1∑
k=0

|X[k]|2 ± ε

with

|ε| < 1 +
1

tan(2πmin(fmin, 0.5− fmax))

Proof. By lemma 2.1 (Parseval),

1

N

N−1∑
k=0

|X[k]|2 =

N−1∑
n=0

x[n]2
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The �nite sum is computed by grouping it into geometric series:

N−1∑
n=0

x[n]2 = A2
k

Ek∑
n=Bk

cos(2πfk + Φk)2

=
A2
k

2

Ek∑
n=Bk

(1 + cos(4πfk + 2Φk))

=
A2
k

2

(
Ek −Bk + 1 +

1

2

Ek∑
n=Bk

ej(4πfkn+2Φk) +
1

2

Ek∑
n=Bk

e−j(4πfkn+2Φk)

)

=
A2
k

2

(
Ek −Bk + 1 +

1

2

ej(4πfkBk+2Φk) + ej(4πfk(Ek+1)+2Φk) + e−j(4πfk(Bk−1)+2Φk) + e−j(4πfkEk+2Φk)

ej4πfk − 1

)
=
A2
k

2

(
Ek −Bk + 1 +

ej2πfk

ej4πfk − 1
(sin(4πfk(Ek + 0.5) + 2φk)− sin(4πfk(Bk − 0.5) + 2φk))

)
=
A2
k

2

(
Ek −Bk + 1 +

sin(4πfk(Ek + 0.5) + 2φk)− sin(4πfk(Bk − 0.5) + 2φk)

2sin(2πfk)

)
=
A2
k

2

(
Ek −Bk + 1 +

cos(4πfkEk + 2Φ) + cos(4πfkBk + 2Φk)

2
+
sin(4πfkEk + 2φk)− sin(4πfkBk + 2φk)

2tan(2πfk)

)
Hence,

Ek −Bk = −1 +
2

NA2
k

N−1∑
k=0

|X[k]|2 − cos(4πfkEk + 2φk) + cos(4πfkBk + 2φk)

2
− sin(4πfkEk + 2φk)− sin(4πfkBk + 2φk)

2tan(2πfk)

The �rst error term can be bounded easily:∣∣∣∣cos(4πfkEk + 2Φ) + cos(4πfkBk + 2Φk)

2

∣∣∣∣ < 1

The second one is unstable in frequencies around 0 or 0.5 (Nyquist) where tan(2πfk) is 0 valued. Therefore it can
be only bounded if we know the minimum and maximum f that will be considered. Let fmin the minimum and fmax
the maximum. Figure 1 illustrates this result.

sin(4πfkEk + 2φk)− sin(4πfkBk + 2φk)

2tan(2πfk)
< 1 +

1

tan(2πmin(fmin, 0.5− fmax))

Theorem 3.2. Let 0 < fmin < f < fmax < 0.5, and a N ∈ N samples sinusoid be:

x[n] = Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

with unknown Ak.
Let |Xmax| = max |FT{x[n]}(w)|. Then Ek −Bk can be estimated as follows:

Ek −Bk =
2N |Xmax|2∑N−1
k=0 |X[k]|2

± α

with

|α| < 2 +
1

tan(2πmin(fmin, 0.5− fmax))
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Figure 1: Graph of 1
tan(2πfk) in the interval [0, 0.5]

This theorem gives us a practical way to estimate Ek−Bk. |Xmax| can be estimated from DFT{x[n]}(w), which is
a sampled version of FT{x[n]}(w). However the reader should bear in mind that this estimation is very sensitive
to the error made in the measurement of the true |Xmax|, specially for big N , where the main lobe is narrower.
So as much zero padding as possible should be done or at least some interpolation should be implemented to
estimate the maximum of the sinc's main lobe.

An example may help to understand the importance this point: in an experiment without windowing, N = 2048,
no zero padding and a single sinusoid of φk = π

2 , fk = 1.3
256 ,

Ek+Bk
2 −N = 199, Ek − Bk = 1648 I got an error of 467

samples instead of the theoretical maximum error of 33 samples.
If this issue is taken into account, this theorem works reasonably well (small ε) when dealing with signals that

have bounded frequencies. The 0.5 bound is not a problem, because Nyquist theorem tells us that there's aliasing
for greater frequencies. And the other bound is not dramatic: let us consider x[n] is a musical sinusoid sampled at
44100Hz. Let fmin = 150

44100 ,fmax = 21900
44100 , then the length of the sinusoid support can be estimated blindly with an

error of |ε| = 49 samples (1ms).

Proof. Looking at formula 1 (FT{x[n]}(w)), we can see that its maximum corresponds to the center of the main lobe
of the sinc and it has magnitude |Xmax| = Ak

2 (Ek −Bk). Hence we can obtain Ak as follows: Ak = 2
Ek−Bk |Xmax|.

Let L := Ek −Bk for easier manipulation. If we put this together with the result of the previous lemma (3.1), we
obtain:

L = −1 +
2

N 4
L2 |Xmax|2

N−1∑
k=0

|X[k]|2 ± ε(∑N−1
k=0 |X[k]|2

2N |Xmax|2

)
L2 − L− 1± ε

11



Solving this equation, we get:

L =

+1 +

√
1 + 2(1± ε)

(∑N−1
k=0 |X[k]|2
N |Xmax|2

)
(∑N−1

k=0 |X[k]|2
N |Xmax|2

) =
2N |Xmax|2∑N−1
k=0 |X[k]|2

+ α

On the other hand,

Let z =

∑N−1
k=0 |X[k]|2

N |Xmax|2
α(z) =

√
1 + 2(1 + ε)z − 1

z

Applying Hï¾ 1
2pital's rule, we get: limz→0 α(z) = ε+ 1.

dα

dz
=

√
1 + 2(1 + ε)z − (1 + (1 + ε)z)

x2
√

1 + 2(1 + ε)z

=

√
2(0.5 + (1 + ε)z)− (0.5 + (1 + ε)z)− 0.5

x2
√

1 + 2(1 + ε)z

Solving,
√

2m−m2 − 0.5 = 0 we obtain m =
√

2
2 so the above derivative is negative when 0.5 + (1 + ε)z >

√
2

2

2
= 0.5

which is always true because z > 0.
Hence, α(z) is decreasing for positive values of z and its maximum is achieved in z = 0. In other words, |α| < ε+1.

And from the previous lemma (3.1) we know that:

|ε| < 1 + 1 +
1

tan(2πmin(fmin, 0.5− fmax))

3.3 Estimation of the center of a sinusoid's support in the frequency domain

This result was extracted from [Röb03].
The continuous centroid was �rst analyzed because I thought the discrete case would come as a particular case,

after considering the error between the continuous and the discrete centroid. However, this proved to be much more
di�cult than directly computing the discrete centroid and bound the error. In other words, the discretization of the
centroid does a�ect signi�cantly its estimation of the center of a sinusoid's support. In particular, when the frequency
f of the sinusoid is near 0 or 0.5 (Nyquist).

Hence, the following result is useless for our �nal purposes, but I decided to keep it in this report because it may
be useful to compare it with its discrete analog.

Lemma 3.3 (Continuous centroid). Let a continuous sinusoid be:

x(t) = Ak · cos(2πfkt+ Φk) ·ΠBk,Ek [t]

with Ek −Bk ≥ 1
4fk

, then

∫ N−0.5

−0.5
tx(t)2dt∫ N−0.5

−0.5
x(t)2dt

=
Bk + Ek

2
± ε

with

|ε| < 1

4fk
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The centroid will give exactly the center of the support of x[n] as long as x[n] is symmetrical around the center of
its support. However, the signal may be asymmetrical depending on Bk and Ek and make the value di�er from the
center of the support. This variation is relatively (to 1/fk) small and maybe considered as an error ε that is bounded
next.

Proof.

ε : =

∫ N−0.5

−0.5
tx(t)2dt∫ N−0.5

−0.5
x(t)2dt

− Bk + Ek
2

=

∫ Ek
Bk

tx(t)2dt∫ Ek
Bk

x(t)2dt
− Bk + Ek

2

=

∫ Ek
Bk

(t− Bk+Ek
2 )x(t)2dt∫ Ek

Bk
x(t)2dt

=

∫ Ek−Bk+Ek
2

Bk−
Bk+Ek

2

sx(s+ Bk+Ek
2 )2ds∫ Ek−Bk+Ek

2

Bk−
Bk+Ek

2

x(s+ Bk+Ek
2 )2ds

=

∫ Ek−Bk+Ek
2

Bk−
Bk+Ek

2

s cos(2πfks+ 2πfk
Bk+Ek

2 + Φk)2ds∫ Ek−Bk+Ek
2

Bk−
Bk+Ek

2

cos(2πfks+ 2πfk
Bk+Ek

2 + Φk)2ds

Let ∆C := Ek−Bk
2 , Ω := 2πfk

Bk+Ek
2 + Φk,

ε =

∫∆C

−∆C
s cos(2πfks+ Ω)2ds∫∆C

−∆C
cos(2πfks+ Ω)2ds

Let θ = 4πfk∆C,

∫ ∆C

−∆C

s cos(2πfks+ Ω)2ds =

[
2πfktsin(4πfkt+ 2Ω) + cos(2πfkt+ Ω)2 + 4f2

kπ
2t2

16f2
kπ

2

]∆C

−∆C

=
1

16f2
kπ

2
(2πfk∆Csin(4πfk∆C + 2Ω)− 2πfk(−∆C)sin(−4πfk∆C + 2Ω)

+ cos(2πfk∆C + Ω)2 − cos(−2πfk∆C + Ω)2)

=
1

32f2
kπ

2
(θsin(θ + 2Ω) + θsin(θ − 2Ω) + cos(θ + 2Ω)− cos(θ − 2Ω))

=
1

16f2
kπ

2
(θcos(2Ω)− sin(2Ω))sin(θ)

13



∫ ∆C

−∆C

cos(2πfks+ Ω)2ds =

[
1

2
t+

1

8πfk
sin(4πfkt+ 2Ω)

]∆C

−∆C

=∆C +
1

8πfk
sin(4π∆C + 2Ω) +

1

8πfk
sin(4πfk∆C − 2Ω)

=
1

4πfk
(θ + cos(2Ω)sin(θ))

Therefore, let θ = 4πfk∆C, x = cos(2Ω) = cos(4πfk
Bk+Ek

2 + 2Φk),

ε =
1

4fk

(
1

π

(θx−
√

1− x2)sin(θ)

θ + xsin(θ)

)

with x ∈ [−1, 1] and θ ∈ (0, 2πmax(fk)N ]
Now, if we let θ > θ0 with θ0 > 1, it can be seen that |θx−

√
1− x2| ≤ θ for x ∈ [−1, 1]. So,

|f(θ, x)| =

∣∣∣∣∣ 1π (θx−
√

1− x2)sin(θ)

θ + xsin(θ)

∣∣∣∣∣
≤ 1

π

θ

θ − 1

≤ 1

π

1

1− 1/θ0

And if we force |f(θ, x)| ≤ 1, we obtain, θ0 = 1
1−1/π ≈ 1.47

On the other hand, this is a natural condition that is veri�ed if we set ∆C ≥ 1
8fk

(equivalent to Ek −Bk ≤ 1
4fk

).
Finally, it can be said that this bound is correct as it is almost reached by θ = θ0, x = −1:

|f(θ, x)| =

∣∣∣∣∣ 1π (θx−
√

1− x2)sin(θ)

θ + xsin(θ)

∣∣∣∣∣
≤ 1

π

−θ0sin(θo)

θ − sin(θ0)

≈ 0.98

But if we consider θ >> θ0, some simpli�cations may be made to f(θ, x) in order to obtain an approximate bound
of f(θ, x) < 1

π .

|f(θ, x)| =

∣∣∣∣∣ 1π (θx−
√

1− x2)sin(θ)

θ + xsin(θ)

∣∣∣∣∣
≈
∣∣∣∣ 1π (θx)sin(θ)

θ

∣∣∣∣
≤ 1

π

As it can be seen in the graphs 2(a), 2(a) this bound better corresponds with �most probable� error that the user
will see when doing several experiments with random values of Bk, Ek, fk, φk.
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Figure 2: f(θ, x) projected to the θ axis or the x axis, with θ > 1.5.

Lemma 3.4 (Discrete centroid). Let a N ∈ N samples sinusoid be:

x[n] = Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

with 150
44100 = 0.0034 < f < 0.4966 = 21900

44100 and N ≤ 8192, then

∑N−1
n=0 n · x[n]2∑N−1
n=0 x[n]2

=
Bk + Ek

2
± ε

with approximately (error maximized by numerical evaluation on a grid of points),

|ε| < 25.2

Proof. Let B := 4πfkBk + 2φk,E := 4πfkEk + 2φk,∆ := 2πfk for easier manipulation,
We recall from lemma 3.1 that:

N−1∑
n=0

x[n]2

=
A2
k

2

(
Ek −Bk + 1 +

cos(4πfkEk + 2Φ) + cos(4πfkBk + 2Φk)

2
+
sin(4πfkEk + 2φk)− sin(4πfkBk + 2φk)

2tan(2πfk)

)
=
A2
k

2

(
Ek −Bk + 1 +

cos(E) + cos(B)

2
+
sin(E)− sin(B)

2tan(∆)

)
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And its time-scaled version is computed:

N−1∑
n=0

nx[n]2

=
A2
k

2

N−1∑
n=0

n+
A2
k

2

N−1∑
n=0

ncos(4πfkn+ φk)

=
A2
k

4
(Ek(Ek + 1)− (Bk − 1)Bk) +

(
A2
k

8π

d

dfk

N−1∑
n=0

sin(4πfkn+ φk)

)

=
A2
k

4
(Ek(Ek + 1)− (Bk − 1)Bk)

+
A2
k

j16π

d

dfk

(
1

ej4πfk − 1
(ej(4πfk(Ek+1)+2φk) − ej(4πfkBk+2φk) − e−j(4πfk(Bk−1)+2φk) + e−j(4πfkEk+2φk))

)
=
A2
k

4
(Ek +Bk)(Ek −Bk + 1) +

A2
k

j16π

d

dfk

(
2ej2πfk

ej4πfk − 1
(cos(4πfk(Ek + 0.5) + 2φk)− cos(4πfk(Bk − 0.5) + 2φk))

)
=
A2
k

4
(Ek +Bk)(Ek −Bk + 1)− A2

k

16π

d

dfk

(
cos(4πfk(Ek + 0.5) + 2φk)− cos(4πfk(Bk − 0.5) + 2φk)

sin(2πfk)

)
=
A2
k

4
(Ek +Bk)(Ek −Bk + 1)− A2

k

8sin(2πfk)
((2Bk − 1)sin(4πfkBk + 2φk − 2πfk)− (2Ek + 1)sin(4πfkEk + 2φk + 2πfk))

− A2
k

8sin(2πfk)tan(2πfk)
(cos(4πfkBk + 2φk − 2πfk)− cos(4πfkEk + 2φk + 2πfk))

after developing the above expression, we obtain:

N−1∑
n=0

nx[n]2 =
A2
k

4
(Ek +Bk)(Ek −Bk + 1) +

A2
k

4tan(∆)
(Eksin(E)−Bksin(B))

+
A2
k

8
(2Bkcos(B) + 2Ekcos(E) + cos(E)− cos(B)) +

A2
k

8tan(∆)2
(cos(E)− cos(B))

Hence,

N−1∑
n=0

n · x[n]2 − Bk + Ek
2

N−1∑
n=0

x[n]2

=
A2
k

4tan(∆)
(Eksin(E)−Bksin(B)) +

A2
k

8
(2Bkcos(B) + 2Ekcos(E) + cos(E)− cos(B)) +

A2
k

8tan(∆)2
(cos(E)− cos(B))

− A2
k

8
(cos(E) + cos(B))(Ek +Bk)− A2

k

8tan(∆)
(sin(E)− sin(B))(Ek +Bk)

=
A2
k

8tan(∆)
(Ek −Bk)(sin(E) + sin(B)) +

A2
k

8tan(∆)2
(cos(E)− cos(B)) +

A2
k

8
(Ek −Bk + 1)(cos(E)− cos(B))
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So,

ε =

∑N−1
n=0 n · x[n]2∑N−1
n=0 x[n]2

− Bk + Ek
2

=

∑N−1
n=0 n · x[n]2 − Bk+Ek

2

∑N−1
n=0 x[n]2∑N−1

n=0 x[n]2

=

A2
k

8tan(∆)
(Ek −Bk)(sin(E) + sin(B)) +

A2
k

8tan(∆)2
(cos(E)− cos(B)) +

A2
k

8
(Ek −Bk + 1)(cos(E)− cos(B))

A2
k

2

(
Ek −Bk + 1 + cos(E)+cos(B)

2
+ sin(E)−sin(B)

2tan(∆)

)
=

1

4

1
tan(∆)

(Ek −Bk)(sin(E) + sin(B)) + 1
tan(∆)2

(cos(E)− cos(B)) + (Ek −Bk + 1)(cos(E)− cos(B))

Ek −Bk + 1 + 1
2
(cos(E) + cos(B)) + 1

2tan(∆)
(sin(E)− sin(B))

=

1
2∆tan(∆)

(E −B)(sin(E) + sin(B)) + 1
2∆

(E −B)(cos(E)− cos(B)) + 1
tan(∆)2

(cos(E)− cos(B)) + (cos(E)− cos(B))

2
∆

(E −B) + 2
tan(∆)

(sin(E)− sin(B)) + 4 + 2(cos(E) + cos(B))

=

1
2tan(∆)

(E −B)(sin(E) + sin(B)) + ( 1
2
(E −B) + ∆

tan(∆)2
+ ∆)(cos(E)− cos(B))

2(E −B) + 2∆
tan(∆)

(sin(E)− sin(B)) + ∆(4 + 2cos(E) + 2cos(B))

This expression couldn't be maximized symbolically. Attached simulations with Maple show that although there are
critical continuous values of E, B for whom the error is huge, the discrete values of Ek, Bk seem to play an important
role in the stability of the error.

In the end, some bounds had to be obtained by evaluating this expression numerically in a grid of points. This
simulation was programmed in C++ (�le error_support_center_estimation_maximization.cc), which de�nes the
following grid of points:

• fmin = 150/44100,fmax = 0.5− fmin, N ≤ 8192

• fk = fmin + fmax−fmin
1000 m with m = 0..1000

• E = 0 + 2π
1000m with m = 0..1000

• B = E + 4πfkm with m = 0..8192

In this way we get obtain that, for 150
44100 = 0.0034 < f < 0.4966 = 21900

44100 and N ≤ 8192

ε < 25.2

On the other hand, in most cases the error will be even signi�cantly smaller. The reader will �nd how the successive
local maximums are found for this set of parameters and 0.0034 < f < 0.25 in �le:
error_support_center_estimation_maximization_data_fmin150_44100.txt.

In this data we notice that for 0.0428571 < f < 0.25 the error is smaller than 2, and that as we approach values
that are next to 0, the error grows faster to reach the speci�ed bound. The same behavior occurs in frequencies nearby
0.5. In conclusion, error seems to be maximum next to 0 and Nyquist (0.5), which is intuitively comprehensible, but
this estimation works much better for frequencies that are away from both ends.

Theorem 3.5. Let a N ∈ N samples sinusoid be:

x[n] = Ak · cos(2πfkn+ Φk) ·ΠBk,Ek [n]

with 150
44100 = 0.0034 < f < 0.4966 = 21900

44100 and N ≤ 8192, and let us chose a time sample reference k0 ∈ [0, N − 1]

1∑N−1
k=0 X[k]2

N−1∑
k=0

|X[k]|2<
(
DFT{(n− k0)x[n]}[k]

X[k]

)
=
Bk + Ek

2
− k0 ± ε
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with approximately (error maximized by numerical evaluation on a grid of points),

|ε| < 25.2

Contrary to the suggested estimation of the sinusoid's length, this estimation doesn't seem to depend on
zero padding. On the other hand this theorem also works reasonably well (small ε) when dealing with signals that
have bounded frequencies. Let us consider the same example that was used in the estimation of the sinusoid's support
length. Let x[n] be a musical sinusoid sampled at 44100Hz, fmin = 150

44100 ,fmax = 21900
44100 , then the center of the sinusoid

support seem to be estimated blindly with an error of |ε| = 25.2 samples (0.6ms). In this report we couldn't prove that
the maximums seem to occur when f = fmin and f = fmax, and we couldn't give an error bound in terms of fmin and
fmax. Future work should �x this. However, by now, we recommend the reader to obtain new approximate error bounds
for other fmin by running the C++ simulation program (�le error_support_center_estimation_maximization.cc).

Proof.

1∑N−1
k=0 |X[k]|2

N−1∑
k=0

|X[k]|2<
(
DFT{(n− k0)x[n]}[k]

X[k]

)

=
1∑N−1

k=0 |X[k]|2

N−1∑
k=0

|X[k]|2<
(
DFT{nx[n]}[k]− k0DFT{x[n]}[k]

X[k]

)

=
1∑N−1

k=0 |X[k]|2

N−1∑
k=0

|X[k]|2<
(
DFT{nx[n]}[k]

X[k]
− k0

)

= −k0 +
1∑N−1

k=0 |X[k]|2

N−1∑
k=0

|X[k]|2<
(
DFT{nx[n]}[k]

X[k]

)

= −k0 +
1∑N−1

k=0 |X[k]|2

N−1∑
k=0

|X[k]|2(−1)
dφ

dw
[k]

= −k0 +
N

N
∑N−1
n=0 x[n]2

N−1∑
n=0

n · x[n]2

=
Bk + Ek

2
− k0 ± ε

Using Parseval, lemma 2.2 and lemma 2.3.

3.4 Time-localization of windowed sinusoids: deconvolving the window

It easy to see intuitively that previous results are not valid when a non rectangular h[n] is used (what we will call
�windowed sinusoids�). The estimation of the sinusoid's support center is based on the centroid, which now will be
displaced to the center of the window, where the window weights x[n] with greater values. On the other hand, the
estimation of the sinusoid's support length relies on the fact that its quadratic amplitude remains constant, which is
no longer true when it is windowed. In other words, if we still use the above formulas we will compute the centroid and
the area of the windowed squared sinusoid, which don't correspond at all with its original values. Figure 3 illustrate
those ideas.

Now, two directions could be taken: adapt the formulas to be valid for a windowed sinusoid or adapt the windowed
spectra to turn it into non-windowed spectra and use the previous results. No results were obtained with the �rst
approach, so the second one was chosen.
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Figure 3: Sinusoid windowed with a Blackman-Harris -92dB window.

So let us try to �unwindow� the DFT. The convolution theorem in the discrete domain says ([PG96]):

DFT{u[n]v[n]}[k] =

N−1∑
m=0

U [m]V [k −m]

Therefore, from Xh[k], we may obtain X[k] as follows:

X[k] = DFT{x[n]} = DFT

{
xh[n]

1

h[n]

}
[k] =

N−1∑
m=0

Xh[m]DFT

{
1

h[n]

}
[k −m]

Now, we have seen a way to obtain X[k] from Xh[k] but nothing has improved. Windowing is often performed
because sinusoids are better separated using windows with lower secondary lobes which consequently cause much less
overlap. If we deconvolve the window, then we exactly obtain the same result that we would have had with the
unwindowed DFT, where there's much more overlapping between sinusoids. So, what we have done until now is still
completely useless.

However, things get better if we only deconvolve the main lobes of the sinusoid. Taking into account that the
window usually concentrates the energy in the main lobe of each sinusoid, a deconvolution that ignores the other terms
may be seen a possible good approximation which could mix the good things from the windowed analysis (sinusoid
separation) and the unwindowed analysis (time-localization).

But this isn't true for a simple reason: 1
h[n] tends to in�nity in both ends and this introduces huge values in its

DFT. Those huge values make the small values coming from the secondary lobes of the sinusoid signi�cant. See �gures
4(a),4(b),4(c).

That is why a further step was needed. The following considerations were taken into account: Usually frame
processing with the DFT is performed over overlapped frames of the input which are then overlapped-added to the
output (one of the �rst articles about this is [WL84]). In particular it is possible to take only the central part of
the window (where signals are less sensitive to the error in the DFT processing that temporal unwindowing ampli�es
in both ends) and simply crossmix those parts from consecutive frames. This is how we did in article [MV06] with
excellent results concerning to audio quality. This process is illustrated in �gure 4.

So, after those explanations it makes sense to unwindow only the part of the frame that will be used for
the output, i.e. the central part that for a hopsize of N/4 corresponds to samples [N4 ..

N
4 − 1]. Now, in �gure 5(c)

we can see as the DFT has much smaller values.
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Figure 4: Overlap and add with hopsize M=N/4
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Consequently the deconvolution will provide much more precise values by only using the coe�cients of the main
lobes of the sinusoid's DFT.

In particular, some matlab simulations are provided (see time_localization_1sinusoid_limited_spectrum.m)
that implement this method only using the �rst main lobe of the sinusoid. The following algorithm is used:

• The main lobe of the windowed DFT is detected: maximum surrounded by two local minima.

• Circular convolution of the main lobe by DFT

{
ΠN

4
, N
4

−1

h[n]

}
, considering the other coe�cients 0. The result is

stored in a separate bu�er.

• We �nd the closest local maximum from the result of the convolution. If such maximum is lower than the
maximum of the windowed lobe, this sinusoid is considered to be out of the unwindowed zone, so it won't be
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processed. Otherwise, the algorithms developed for the unwindowed case are now executed, and we get the
time-localization of the signal in the part of the frame that will be used for the output.

In simulations, this procedure was able to reproduce the original unwindowed sinusoid's main lobe with reasonable
accuracy and improved the time-localization estimators' values obtained with an unwindowed DFT in some cases.

3.5 Time-localization of M sinusoids: main lobes processing

All previous results have been developed to apply them in the future to real signals where sinusoids are separated
only if big N and windows with low secondary lobes are used. For example, recent work on audio blind separation
([MV06]) made us work with N = 8192 and a Blackman-Harris -92dB window. This is why, in fact, we felt that
time-localization techniques should be revised to face up this new di�cult high resolution framework.

So all the previous techniques have been chosen or thought to obtain results only from the main lobes of each sinusoid
present on the complex DFT. Time-localization techniques depend on sums of energy coe�cients that are spread all over
the lobe and most of the energy of the sinusoid is in its main lobes, so this shouldn't introduce a lot of error even when
some coe�cients vary slightly from their ideal value because of overlap of other sinusoid lobes. Matlab simulations back
up this hypothesis. File time_localization_1sinusoid_limited_spectrum.m �nds the time-localization parameters
of a sinusoid from its limited range of coe�cients of the DFT and �le time_localization_Msinusoids.m estimates
the time parameters of multiple randomly time-localized summed sinusoids.)

When sinusoids overlap, a critical point of the algorithm consists in choosing appropriately which lobes are processed
together as a single sinusoid. We took two approaches:

• Select only the main lobe

• Select all lobes that are between the peak's maximum and the middle point between consecutive peak maximums
may be considered.

In time_localization_Msinusoids.m these two approaches can be selected by setting variable get_main_lobe_only=1
or get_main_lobe_only=0 respectively but preliminary simulations proved that get_main_lobe_only=1 worked bet-
ter.

Finally, the most delicate step was to �nd the way to take available data from the sinusoid from the windowed
DFT and then transform it to be able to use the time-localization techniques developed for the unwindowed case. In
the previous section we already discussed how to do that with a partial unwindowing (convolution for its inverse) that
takes into account that frame processing in the context of overlap-and-add only uses the central part of the resulting
DFT.
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4 Conclusions

Several tests of time-localization of sinusoids from random sums of them were done. Results are encouraging, although
in order to extend those methods to real signals in practical tasks, there still a lot of work to be done.

4.1 Contributions

• In section Frequency analysis (1.3), a model for the DFT of a time-localized sinusoid is provided and should help
the reader to better understand the DFT of real musical signals. Often, in an academic context, the sinusoid
deltas are said to be appear convoluted with the window DFT, however this is only true for synthetic signals. For
real signals, it has been shown that time-localization may have a much stronger e�ect, causing the appearance
of broad sincs even if the window DFT is narrow.

• This report provides to the reader, in one single paper, all the signi�cant results reviewed in [WM03] proved and
explained in detail for practical use (results are given in terms of the DFT i.e. in the context of Digital Signal
Processing).

• Such results are extended, providing a way to estimate the length of a sinusoid support. Previous research
([Röb03],[BDDS04],[WM03]) only computed the center of the time-localized sinusoid's support and relied on the
particular cases Ek = N − 1 or Bk = 0. This is not true for short attacks, like for instance drums, specially
when audio is analyzed and/or processed with big windows (> 2048 samples).

• Adhoc procedures ([Röb03]) to correct the e�ect of non-rectangular windowing on the presented methods have
been substituted with a time limited deconvolution that gives promising results.

4.2 Ideas for future work

• More testing of the presented methods is needed, in particular for real signals.

• There's a lot of room to improve section 3.4 �Time-localization of windowed sinusoids�. Instead of
ΠN

4
, N
4

−1
[n]

h[n]

we could look for a signal that set an optimum trade-o� between its bandwidth the time-localization estimators
error. An unwindowing signal with narrower band would enable a more precise deconvolution and this might
be possible adding a minimal error in the time-localization estimators. For example the abrupt discontinuous
transitions at both ends could be replaced by smoother ones.

• On the other hand, also in the deconvolution section, the windowed DFT could be deconvoluted in zones instead
of peaks. In fact, in audio processing, the lower frequencies are those whose overlap is greater with the other, so
it may be enough to deconvolve the lower frequencies and the higher ones. A more general approach would be
to deconvolve only the biggest peaks and deconvolve all the other peaks together.

• A multiresolution bank of �lters combined with unwindowed DFT could be a good alternative to selective
deconvolution. In fact, the later was inspired in this �rst idea. Both methods could be compared.

• The error caused by taking only the main lobes of the sinusoid DFT should be studied and bounded.

• Formula 2 could be developed in the case of a Blackman-Harris or Hanning window. The result may be too
complex but it may help to understand how to improve the deconvolution process.

• The suggested models of time-localized sinusoids (formulas 1 or 2) could be used in frequency sound synthesis,
to add time resolution to the generated sounds. For that purpose it will be particularly useful to develop formula
2 and approximate it with a simpler one.
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• Information from the phase shift of one frame through two consecutive frames (with minimal hopsize) is also
used to detect onsets in some references ([BDDS04],[MA06]). This could help to improve the presented methods
too.

• Only a numerical error bound for the estimation of the sinusoid's support center was found. A symbolic bound
would be nicer, in order to know it for di�erent frequency bounds.

• Time-localization estimators give bad results for sinusoids with frequencies close to 0 or 0.5. Maybe some
operation could be done in the spectrum to correct distortion caused by its close alias.

• Errors are given as bounds. However, from an engineering point of view, where the error is not critical for the
application (repeated experiment, audio processing, etc), it could be better to give the probabilistic distribution
of the error, given di�erent distributions of the blind parameters (fk,Ek,Bk,Ak). In fact the reader can check that
given bounds for the error in the estimation of the support center or length are only achieved by very particular
set of values of those parameters. Maybe the notion of mean error would be more appropriate. Hence future
work on this issue would consist in obtaining the probability density function of the random variable �Error�
conditional to the values of the blind parameters: fError(Error = e|choose some between fk,Ek,Bk,Ak). In this
way the engineer could integrate this expression over the area of expected blind parameters (that may change
depending on the problem) and obtain the probability of each error value. As a particular case, the support of
this function would give us the error bound corresponding to the worst case.
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