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Abstract

The present thesis deals with the automatic description of percussive events in �real

world� polyphonic music. After taking a pattern recognition approach we evaluate

�bag of frames� and �object-level temporal evolution� descriptors extracted from 153

frame-level features adding up a total of more than 1450 descriptors. Three binary

instrument-level support vector machines models are built from a training set of more

that 100 songs and 10 genres. We observe an improvement in the classi�cation results

when object-level temporal evolution descriptors are added to the feature set. Then

we evaluate the binary models within a whole drum transcription system achieving

comparable results with state of the art algorithms. Finally we present 17 mid-level

percussion descriptors and evaluate their usefulness among MIR tasks like genre

classi�cation, danceability estimation and Western non-Western discrimination. We

conclude that the presented percussion-related descriptors provide complementary

information to �classic� descriptors that could help in the previously mentioned MIR

tasks.
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Chapter 1

Introduction

�If we use memory as a basis of comparison, the IBM 704 we �rst used

in Bell labs back in 1967 would worth today 12 cents, and any today's

typical laptop would worth back in 67 ... 59 billion dollars.� -John M.

Chowning. November 29, 2007

�Any su�ciently advanced technology is indistinguishable from magic.�

-Arthur C. Clarke, "Pro�les of The Future", 1961 (Clarke's third law)

1.1 Scope

During the last decade we have witnessed an exponential growth of music listeners.

We are about to reach a point in history where all the music ever recorded could

be stored in a single pocket-size gadget. Nowadays on-line music providers o�er

millions of songs to their costumers. Internet radios provide with twenty four hours

of more or less personalized programs and P2P networks make easy to share music

with people around the globe. This growth on music availability and music listeners

comes with a downside: the titanic task of choosing, and discover, music from a

collection of millions of songs [55].

The music information retrieval (MIR) �eld is becoming more and more e�cient

in providing tools for choosing, discovering and understanding the music we like.

However we are still far from bridging the semantic gap between automatic music

analysis (at signal level) and automatic music description (going from sound to

1



1.1. Scope 2

sense [39]).

The main idea behind automatic music description is to extract, from a musical

audio signal, a representation of what is happening inside the song. The goal is

to get a system that automatically extracts relevant information (descriptors) from

the signal. These music descriptions do not have the priority to be faithful scores.

The point is to obtain �predicates� that apply to a given music excerpt and usually

this information goes beyond traditional music scores. Examples of descriptors could

be: pitch, duration, type of instruments, chords, overall structure of the song, genre,

rhythm or main melody. Herrera et al. [28] call this way of understanding music

transcription as the �descriptionist� approach , as di�erent to the more traditional

�transcriptionist� approach for which obtaining a faithful score is the �nal goal.

Today most advanced music transcription systems are still far, in terms of accu-

racy and �exibility, what skilled human musicians can do [33]. Since the beginning

of this research �eld a great amount of work has been done in the transcription

of pitched instruments. During the last decade the interest in the transcription of

unpitched instruments has grown and most of the work has focused in the problem

of drum1 transcription [12] [28]. The aim of drum transcription systems is to obtain

from an audio signal a representation of the type of percussion instrument played

(instrument recognition), and when it has been played (temporal location). Even

more, if we take a �descriptionist� approach, it could address the task of determine

the amount of "percussivity" of the signal, the strength of the hits, the type of

beating (e.g. brushes, sticks), etc.

The presence of unpitched percussion instruments2 is at least as important as

melodic instruments in Western music and even more important for non-Western

compositions. A great number of important characteristics of musical signals can

be extracted from percussion descriptors. This descriptors, alone or combined with

complementary descriptors obtained from pitched events, can be used in order to

determine key aspects of a given music signal like tempo, rhythm, genre, general

1The word �drum� it refers to the standard Rock/Pop drum kit found in Western music.
2The term unpitched percussive instruments refers to percussive instruments that do not trans-

mit a clear sense of pitch (e.g. cymbals, snares, bass drums, etc.); xylophones or marimbas are not
consider unpitched percussion because they transmit a sense of pitch to the listener.
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structure, rhythmic patterns or mood. This information is relevant not only in

the musicological and musicians-oriented �elds but also in the development of more

general applications like music browsing, query by rhythm, query by humming, query

by beat-boxing, recommendation, similarity, cover song identi�cation, etc.

This thesis intends to be a step forward in solving the problem of detecting and

describing percussive events and can be understood as a continuation on the work

done in [31] and [51].

1.2 Structure

The following chapters are structured as follows: in chapter 2 we introduce the

scienti�c background i.e. description of drum kit instruments, the state of the art

on percussion transcription, commonly used descriptors, etc. Chapter 3 presents the

research problems, proposed experiments and units of study. In the following four

chapters we develop the proposed experiments by introducing speci�c background

for each experiment, its methodology and its main results and conclusions. Thus

chapter 4 is devoted to database selection and normalization experiments, chapter

5 to experiments with object-level temporal evolution descriptors. In chapter 6 we

evaluate the capabilities of our system to transcribe drum events and in chapter 7 we

present and evaluate mid-level percussion descriptors. Finally chapter 8 is devoted

to overall conclusions and further work.



Chapter 2

Scienti�c Background

In spite of the crucial role of percussion instruments in most of popular music styles

and their increasing importance in the music of the twentieth century there is a

lack of scienti�c research on percussion instruments not only from the point of

view of acoustics, but also in music content processing and automatic instrument

identi�cation. One exception to this rule is the excellent work done by Thomas

Rossing, one of the most important acousticians of the current times. Professor

Rossing writes in the preface of his book Science of percussion instruments :

�Although percussion instruments may be the oldest musical instru-

ments (with the exception of the human voice), relatively little has been

written about scienti�c research on this instruments. . . . Because the

sounds of percussion instruments change so rapidly with time, their study

and analysis require equipment that wasn't widely available until quite

recently.� [49]

2.1 The Drum kit

Due to the importance of the drum kit in western popular music we decide to con-

centrate our research e�orts of detection and description of percussive instruments

on this particular set of drums.

The standard drum kit is usually formed by (see �gure 2.1):

• a bass drum or kick (1)

4



2.1. The Drum kit 5

Figure 2.1: The drum kit. Source: wikimedia http://upload.wikimedia.org/

wikipedia/commons/6/6d/Drum_kit_illustration_edit.png

• a snare drum (3)

• two tom-toms mounted on top of the bass drum (4)

• a �oor tom (2)

• a hi-hat (5)

• a ride and a crash cymbal (6).

This set can vary according to the music style and drummer's personal pref-

erences. Following the classical Hornbostel-Sachs categorization of musical instru-

ments [65], drum kit instruments can be grouped in two categories namely: mem-

branophones and idiophones.

Next we present an overview on each drum kit instrument (see [49] for a deeper

analysis on the acoustics of these instruments).
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Membranophones:

This category is formed by instruments which sound is produced by the vibration

of a stretched membrane mounted over a hollow body. Bass drum, snare drum and

tom-toms are included in this category and they can present one or two membranes

each (one or two-head mounted).

Although these instruments are unpitched they can be �tuned� by combining

stretching tensions on their heads. One-head instruments have more de�nite pitch

than two-head ones.

• Bass drum: The bass drum or �kick� drum is, within the drum kit, the largest

instrument with sizes going from 16" to 26" diameter and depths of 16" to

22". It is played using a pedal-operated mallet or beater and it produces a

loud and short sound which energy is mainly below 150Hz.

• Tom-toms: Their sizes vary from 8� to 18� diameter. The small ones (nor-

mally 12� and 13�) are mounted over the bass drum while the big one (usually

16�) is mounted on three legs (�oor tom). Tom-toms, as a consequence of their

sizes, have a relative sense of pitch. The majority of their spectral energy can

be found between 50 and 200 Hz.

• Snare drum: It is a two-head drum with the special characteristic of having

strands of wire or gut (the snares) stretched over the low membrane. This

characteristic confers its particular sound. Snares are typically 14� diameter

and 5� to 8� deep, and can be made of metal, wood or acrylic material. Their

energy spread over almost all frequencies but most of it is usually between 100

and 500 Hz.

Idiophones:

Within this category we found all percussion instruments that produce sound by the

vibration of their own bodies. All drum kit's cymbals are included here like hi-hats,

ride, crash and splash cymbals among others.



2.1. The Drum kit 7

• Hi-hat: It is a type of cymbal that consists of two plates mounted on a stand

(one on top of the other) and operated by a foot pedal that clashes both plates.

It can be struck when both plates are closed (with the pedal) or open (without

the pedal) and the produced sound for each mode di�ers in frequency range

and duration. Its timbre can also be modi�ed by varying the gap between both

plates. Hi-hat sizes are usually between 13� and 15� and, like all cymbals, their

energy range goes through almost all the spectrum with most of the energy

within the high frequency range.

• Crash, Ride and Splash cymbals: Within the cymbals' family there are

many variations on sizes and sounds. Three commonly used cymbals are the

Crash (with sizes from 13� to 19�, loud and sharp sound) the Splash (from

6� to 12�, short and splashy sound) and the Ride (18� to 24�, sustained and

shimmering sound). Their energy goes through all the spectrum on the �rst

few milliseconds after the strike to concentrate on the high frequency range

afterwards.

The main spectral di�erences among drum kit instruments can be seen in �gure 2.2

where the x axis is represented in Barks1 and the y axis corresponds to instrument's

normalized energy. This plot is computed taking the average Bark values from

isolated drum sounds (4,209 for bass drum, 3,043 for snare, 6,316 for hi-hat and 5,762

for cymbals). It shows the strong spectral di�erences between membranophones and

idiophones, belonging the �rst class to the low level spectra and the latter to the

high frequency ranges. Some subtle di�erences between bass drum, tom-toms and

snares can be also appreciated from this averaged Bark values being bass drums the

lower in frequency followed by tom-toms and snares. It is also interesting to remark

the presence of an isolated small peak of energy in the snare drum values, belonging

to Bark band number 21 (4,400 to 5,300 Hz). We speculate about the presence of

this energy as being generated by the vibration of the actual snares. The spectral

and time evolution for bass drum, snare drum and open hi-hat can be seen in �gure

2.3.

1See section 2.3 for and explanation on Bark scale
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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Figure 2.2: Average energy for drum kit instruments. x axis in Barkbands and y axis in

normalized energy

2.2 State of the art on percussion transcription

According to [12] most of the work done in percussion transcription can be generally

included in one of two main approaches: separation-based and pattern recognition-

based systems. Separation-based algorithms try to isolate the percussion instru-

ments from the sound mixture by means of di�erent separation techniques, like In-

dependent Subspace Analysis (ISA) or Sparse Coding. The goal is to obtain several

streams containing sounds generated by a single percussion source. The next step

in the transcription process is to label each stream with the name of the instrument

(classi�cation) and then apply an onset detector to get time information about each

event within the stream. On the other side the pattern-recognition approach �rst

segments the signal into meaningful events, by e.g. an onset detector, then performs

an extraction of features within each event and �nally tries to classify them using

classi�cation algorithms like SVM, K-NN, GMM or HMM (see �gure 2.4).

Other distinctions between algorithms can be made like:
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Bass drum         Snare drum               Open Hi-hat

Figure 2.3: Waveform and spectrogram for bass drum, snare drum and open hi-hat.

• supervised (e.g. trained classi�ers or instrument templates) vs. unsupervised

(e.g. clustering and recognition of clusters).

• low-level signal analysis vs. musicological models.

• general (e.g. instrument templates) vs. local (e.g. using information extracted

from the analyzed song).

• by its type of input (e.g. monophonic percussion, polyphonic percussion or

polyphonic music).

2.2.1 Pattern Recognition Approaches

A general overview on this approach can be seen in �gure 2.5 (adapted from [66]).

Regarding sound this approach understands it as a whole and tries to detect �clues�

(features) to recognize a particular instrument into the mix; Scheirer [53] calls this
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Figure 2.4: Two main approaches in percussion transcription.

approach �understanding without separation�. The underline assumption is that

the signal processing methods will provide enough information to characterize the

aimed sounds even though they are "corrupted" with other concurrent sounds. This

approach is also closer to human perception, since we, as human listeners, do not

preserve independent waveforms as an intermediate representation of sound [53].

As mentioned above the �rst step in this kind of approach is the segmentation of

the signal into meaningful events. Early works in drum transcription of monophonic

drum sounds used information about the onsets, located based on rapid increases

on amplitude. Then each event was classi�ed by the system based on sub-band

energy features [54]. Onset detectors based on psychoacoustic knowledge like [32]

achieve very good results and are commonly used in this �eld. Other approaches

like creating a Tatum grid and de�ning onsets according to the tick are also used

for segmentation proposes [21].



2.2. State of the art on percussion transcription 11

Classification

Supervised Unsupervised

Clustering:
-K-means
-Vector Quantization
-Mixture Models 

Design of Experiments; 
Methodology; Exploratory 
Data Analysis

Feature Selection /
Feature Extraction

Parametric:
-EM
-MCMC
-Gibbs Sampler 

Nonparametric:
-K-NN
-Bayesian Networks

Via Bayes’
Theorem

Discriminant
Analysis

Linear:
-Perceptron
-SVM

Nonlinear:
-Radial Basis Function
-SVM via Kernel
-Decision trees

Assessment 

Figure 2.5: The Pattern Recognition Cycle. Adapted from [66].

The next step in a pattern-recognition approach is the extraction of features2

and its selection. Finally a small set of features is obtained that is hopefully highly

correlated with the class they represent and at the same time highly uncorrelated

whit the rest of classes [31].

Once the list of features has been proposed and selected (by e.g. a feature

selection algorithm) the next step is to train a machine learning algorithm like C4.5

or support vector machine (SVM). In this training process the selected features and

the class labels are analyzed to build a model of every class (class modeling). By

applying this model (or models) the classi�cation task is �nally achieved3. See [29,52]

as examples on using the C4.5 algorithm for drum classi�cation and [13, 14, 57, 61]

as examples of using the SVM algorithm.

The transcription task becomes increasingly di�cult as the input signal goes from

2See section 2.3 for a comprehensive explanation about audio features
3See section 4.1 for a more extensive explanation on feature selection, C4.5 and SVM algorithms
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monophonic to polyphonic percussion and polyphonic music, because the level of

�noise� (i.e. non-percussive sounds) is signi�cantly higher in the polyphonic case [51].

A large-scale study on automatic classi�cation of monophonic unpitched percus-

sion sounds was presented by Herrera et al. [25] where up to 208 subsets of temporal

and spectral descriptors were used and evaluated as features achieving a 15% error

rate for more than thirty classes of percussion instruments. Gouyon and Herrera [21]

achieved around 80 % of accuracy in transcription of drum tracks with a feature-

based approach. Steelant et al. [57] presented the �rst attempt on using SVM for

classi�cation of percussive sounds. By this method they achieve, for isolated and

overlapping drum sounds, F-measure4 values of 0.95 and 0.98 for bass drum and

snare drum respectively.

Regarding drum transcription in polyphonic music, Sandvold et al. [52] evaluated

25 CD-quality polyphonic songs using a combination of general and localized (record-

speci�c) sound models. The correct classi�ed instances by the general model (C4.5

with AdaBoost) were manually parsed to be used as localized training set. The

average classi�cation accuracy achieved by this system was: 95.06 % for bass drum,

93.1 % for snare and 89.17 for cymbals.

In [61] a whole automatic transcription system was presented. The evaluation

of this algorithm was done within the scope of the MIREX 2005 drum detection

contest5. Starting from the audio �le an onset-based classi�cation is preformed

using SVM as machine learning algorithm. F-measure results of 0.688, 0.555 and

0.601 were obtained for bass drum, snare drum and hi-hat respectively.

In [14] SVM are again used as classi�cation algorithm for a database of ten

songs played by two drummers and mixed four times (80 signals). This algorithm

use a band-wise harmonic/noise decomposition as pre-processing step to enhance the

presence of unpitched instruments. A localized adapted model like the one presented

in [52] was also evaluated. This system achieves an overall F-measure of 0.84 for

bass drum and snare drum sounds.

Paulus and Kapuri [42] use hidden Markov models (HMM) with temporal and

4See sub-section 4.1.3 for an explanation on the F-measure
5See section (6.1) for an overview on the MIREX contest.
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spectral features to achieve an overall F-measure of 0.697 for a complete transcription

system 6

In [17] a whole transcription system is presented combining the source-separation

and the pattern-recognition approaches. A set of features is computed from the

original audio signal and from a �drum enhanced� track obtained by source separa-

tion. These feature vectors are then processed by a C-SVM algorithm achieving, for

balanced mixtures between drums and music tracks, F-measures of 0.695 for bass

drums, 0.583 for snare drums and 0.755 for hi-hats. The experimental database is

formed by 28 songs from the ENST_wet database 7.

As can be seen from this review, the pattern recognition approach is well suited

for classifying isolated and polyphonic percussion events (i.e. drum samples and

drum loops). Regarding automatic transcription of drum events in polyphonic mu-

sic, this approach has delivered moderate results (no more than 70 %) and there is

still a lot of room for improvement. Following the previously described algorithm

steps, several areas can be improved in order to obtain better results. Since this is

a serial process any improvement on any area would help on increasing the perfor-

mance of the whole system. From our point of view it would be necessary to work

on:

• better training databases: since relatively small databases (no more than 50

songs) were used in the literature to train the systems. It is highly probable

that this songs are not enough to represent the variability in terms of timbre

and styles (genres) of the entire song universe.

• more e�cient event detectors: this would reduce the gap between �pure� clas-

si�cation results and �real world� transcription systems.

• better features: specially designed to extract relevant information from the

sound events (e.g. to describe the temporal evolution of descriptor values)

• better machine learning algorithms: up to date best results are obtained by

6See section (6.1) for further explanation on this paper.
7See section 3.2 for an overview on this database
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using the SVM algorithm but it would be interesting to try new algorithms

(e.g. to include probabilistic information on the decision process).

In addition, the introduction of high level information (e.g. musicological knowl-

edge) into the system could help to improve its performance. Another important

aspect is to work with publicly available databases, like ENST or MAMI, to bet-

ter compare results among authors. We believe the pattern recognition approach,

alone or combined with others, is a powerful tool to describe percussive events in

polyphonic music. This believe is supported by previous results on isolated and poly-

phonic drum events and by perceptual evidence since, as mentioned before, human

listeners do not preserve independent waveforms as an intermediate representation

of sound [53]. In words of neuroscientist Daniel Levitin [36](pag. 103):

�The brain extracts basic, low-level features from the music..., us-

ing specialized neural networks that decompose the signal into informa-

tion...It does this through a process of feature extraction, followed by

another process of feature integration.�

2.2.2 Separation-based Approaches

This approach has the hypothetical advantage that once each stream has been sep-

arated from the mix (the di�cult part), the identi�cation process can be easily

achieved because high rates of accuracy on identifying percussion instruments from

monophonic drum sounds has been reached e.g. in [29]. Generally, in terms of vari-

ation of pitch, duration and timbre within a particular song, percussion instruments

have more stable behavior than pitched sounds. This characteristic is important

for achieving good results with source separation techniques, since these techniques

assume stability of spectra.

The most commonly used technique for source separation is Independent Com-

ponent Analysis (ICA) [5]. In basic ICA the discrimination power is equal to the

number of sensors (in this case microphones), not the usual case for commercial

music recordings. The number of sensors is normally two in stereo recordings or one
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Figure 2.6: Drum loop decomposition into three sources, Bark band frequency resolu-

tion. From Paulus poster http://www.cs.tut.fi/sgn/arg/paulus/eusipco05_paulus_

poster.pdf.

if the �pan� is centered (single-channel) like in most bass drum and snare sounds in

studio recordings.

Several methods for source separation from single-channel recordings have been

developed and used in drum transcription. These methods are mainly based on the

idea that an input signal can be viewed as a sum of sources with �xed spectrum and

time-varying gains (see Equation (2.1) and �gure (2.6)).

Xt(f) ∼=
N∑

n=1

an,tSn(f) (2.1)

Where X is the power spectrum in frame t, N is the number of sources, n the

source index, f the discrete frequency index, a the gain of source n in frame t and

S is the �xed spectrum of source n.

Several systems for estimating an,t and Sn have been developed presupposing
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di�erent criteria like the independence of sources (ISA), the non-negativity of the

matrices (NMF) or the sparseness of sources (Sparse coding).

Independent Subspace Analysis (ISA) [5] can be viewed as a relaxed version of

ICA in the sense that it can be implemented with single-channel inputs. The authors

propose grouping components by partitioning a matrix of independent component

crossentropies (ixegram). The ixegram measures the mutual similarities of compo-

nents in an audio segment and clustering the ixegram yields the source subspaces

and time trajectories.

In Prior Subspace Analysis (PSA) [11] the matrix S (�xed spectrogram) is ob-

tained from previous estimations (training data) then the gain matrix can be cal-

culated by multiplying X by the pseudo-inverse of S. The result is passed through

ICA to obtain a set of independent amplitude basis functions. The main problem

with PSA is that the calculated matrix may have negative values and that does not

happens with real data (see [9, 10]).

Non-negative Matrix factorization (NMF) [34, 56] is a method based in the as-

sumption of non-negativity of the matrices (a suitable assumption when working

with spectrogram). This assumption allows to estimate S and the gain matrix by

minimizing a cost function in an iterative algorithm. This method can achieve good

results without prior knowledge (blind separation), see [23] as an example on sepa-

ration of drums and pitched instruments.

A mix between NMF and PSA, called non-negative spectrogram factorization

(NSF), was proposed by Paulus and Virtanen [43]. Other combination of techniques

is the Non-negative sparse coding (NNSC) [30] that combines NMF and sparse

coding.

2.2.3 Other Approaches

Approaches like [68] and [69] use matching template spectrogram achieving very

good results (e.g. the Adamast system implemented with this approach was the

winner system in the MIREX contest of drum transcription from polyphonic mu-

sic). The main idea is to obtain, from a large training database of sounds, a template
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spectrogram representation of a particular percussion instrument. Thus, when ana-

lyzing a song, a template-adaptation algorithm is applied on every onset. A distance

measure for template matching is used to avoid the spectral overlapping of other

sounds. The evaluation results in the Audio Drum Detection Contest were 72.8%,

70.2%, and 57.4% in transcribing bass drums, snare drums, and hi-hats, respectively.

Dittmar [6] combines source-separation (Non-Negative ICA) with spectrogram tem-

plates to achieve, also within the MIREX contest, F-measure values of 0.606, 0.581

and 0.585 for bass drum, snare drum and hi-hat.

In table 2.1 a summary of the previously seen works on drum transcription in

polyphonic music is shown. As we can see from the presented evidences, the problem

of drum transcription is not a solved one, and there is a lot of room for improve-

ment. Most of the work has been focused either on the separation-based approach or

the patter-recognition approach although other approaches like matching template

algorithms may also achieve good results.

The main problem with the separation-based approach is that source separation

techniques are still far from reliable extraction of individual sources in most of the

�real-world� sounds. Since the rest of the process depends on this �rst separation

step, taking a second approach give the impression to be a better way to deal with

the problem in the meanwhile.

Regarding the pattern-recognition approach achieved results are still far from

optimal transcription (between 60 and 69 %). As seen before, there are still many

things that can be done to improve the classi�cation results like: using more rep-

resentative training databases (this can be achieved by working with sample songs

with representative variability on timbre and genre), improving event detectors, ex-

tracting better features and working with better machine learning algorithms.

Other approaches like matching templates achieve similar results as pattern-

recognition. It could be also interesting to combine di�erent strategies in order to

get an expert system.
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In the present thesis we will follow the pattern-recognition approach to evaluate

a large set of sounds and new descriptors to determine its potential to describe

percussion events in polyphonic music.

2.3 Commonly used descriptors

In order to analyze audio with data mining algorithms we �rst need to extract

relevant features from the signal. Ideally these features will describe the sound

by producing a downsampled collection of multivariate time series [38]. Starting

from the time-domain representation of the audio we can either directly compute

�temporal� descriptors or �rst transform the signal, e.g. into frequency, Mel or

Bark representations, and then compute descriptors from this new representation.

It is also a common practice to aggregate this �low-level� descriptor into �mid-level�

representations of the sound (e.g. MFCC's, Bark band ratios, etc.) Many di�erent

sound descriptors have been proposed in the literature but there is still no consensus

on the most relevant ones for discriminating unpitched sounds in polyphonic music

[17]. In this thesis we compute a set of thirty-two descriptors that can be roughly

grouped into four categories namely:

• Temporal descriptors: computed from the time-domain representation of the

audio

• Spectral descriptors: computed from the frequency representation of the signal

obtained from the Short-Time Fourier Transform (STFT)

• Perceptual descriptors: computed from perceptual representation of the signal

like Mel and Bark scales.

• Tonal descriptors: mid-level representation of the tonal content.

Next an overview on the used descriptors is presented (see [44] , [25] , [51] and the

MPEG-7 standard on audio descriptors8 for a more comprehensive explanation).

8see web page: http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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Temporal descriptors:

• zero-crossing rate (ZCR): it counts how many times a signal changes from

positive to negative values (cross the zero axis).

• lpc: the values for the eleven linear predictive coe�cients of the signal.

Spectral descriptors:

• spectral centroid: is the center of gravity of the spectrum.

• spectral complexity: it measures the complexity of the instrumentation of

the audio piece. Normally, a big number of musical instruments increases the

complexity of the spectrum (see [58]).

• spectral crest: it measures the noisiness of the spectrum by computing the

ratio between the max value and the arithmetic mean of the spectrum.

• spectral decrease: it is a measure of the amount of decrease of the spectral

amplitude.

• spectral dissonance: it measures the roughness of the sound by means of

dissonance curves obtained from perceptual experiments (see [45]).

• spectral energy: It is the total spectrum energy at a given frame.

• spectral energyband low: the spectrum energy between 20 and 150 Hz.

• spectral energyband middle-low: the spectrum energy between 150 and

800 Hz.

• spectral energyband middle-high: the spectrum energy between 800 and

4.000 Hz.

• spectral energyband high: the spectrum energy between 4.000 and 20.000

Hz.
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• spectral �atness db: it characterizes the shape of the spectral envelope. It

is computed by the ratio between the geometric mean and the arithmetic mean

per frequency bands (in our case bark bands). For tonal signals �atness db is

close to one and for noisy signals is close to zero .

• spectral �ux: it is a measure of how quickly the power spectrum changes

from frame to frame. It is obtained by comparing the power spectrum of one

frame against the power spectrum of the previous one.

• spectral high frequency content (hfc): it is a measure of the amount of

high frequency content of a signal. It is computed by adding the magnitudes

of the spectral bins, but multiplying each magnitude by its own position value

(proportional to the frequency). See [40]

• spectral kurtosis: it gives a measure of the �atness of a distribution around

its mean value. It is computed like the fourth order statistical moment, but

taking the spectrum as the histogram of the signal.

• spectral pitch: it is represented as the fundamental frequency of the analyzed

sound. It works for monophonic sounds and it is computed using the YinFFT

method developed by Paul Brossier (see [4]).

• spectral pitch instantaneous con�dence: it is a measure of pitch con-

�dence derived from the YinFFT algorithm [4]. It gives an idea about how

much a certain pitch is a�ecting the total spectrum. An output near to one

means that exist just one pitch in the mixture, an output near to zero indicates

multiple or not distinguishable pitches.

• spectral pitch salience: It is given by the ratio of the highest peak to the

zero-lag peak in the autocorrelation function. Ideally non-pitched sounds have

a mean pitch salience value close to zero while harmonic sounds have a value

close to one (see [47]).

• spectral rms: the root mean square spectrum energy.
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• spectral rollo�: it is the frequency value who left 95% of the spectrum energy

below its value.

• spectral skewness: it is a measure of the asymmetry of a distribution around

its mean value. A negative skewness indicates a signal spectrum with more

energy in the high frequencies. A positive skewness indicates a signal spectrum

with more energy in the low frequencies. A skewness equal to zero indicates a

symmetric spectrum. For silence or constants signal, skewness it is also zero.

It is computed like the third standardized moment but assuming the spectral

values as the histogram representation.

• spectral spread: it is de�ned as the variance of a distribution around its

mean value. It is equal to the second order central moment being, for this

case, the spectral centroid the �rst central moment.

• spectral strongpeak: It is de�ned as the ratio between the spectrum max-

imum magnitude and the bandwidth of the maximum peak in the spectrum

above a threshold (half its amplitude). It reveals whether the spectrum presents

a very pronounced maximum peak (see [21]).

Perceptual descriptors:

• barkbands: It is a vector containing 27 Bark band values of a Spectrum.

For each Bark band the power-spectrum (magnitude-squared) is summed. For

better resolution the �rst two bands [0..100] and [100..200] are divided in two

(according to [25]). The Frequency edges (in Hz) are: 0, 50, 100, 150, 200,

300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150,

3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500 and 20500.

• barkbands ratio: taking the sum of the Bark band vector (27 values) on

each frame as 100%, each Bark band value is normalized to determine its

contribution to the total.

• barkbands kurtosis: it is computed like the spectral kurtosis but taking the

Bark band values instead of the spectral ones.
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• barkbands skewness: it is computed like the spectral skewness but taking

the Bark band values instead of the spectral ones.

• barkbands spread: it is computed like the spectral spread but taking the

Bark band values instead of the spectral ones.

• MFCC: the standard 13 Mel-Frequency Cepstrum Coe�cients

• MFCC ratio: taking the sum of the MFCC coe�cients (13 values) for each

frame as 100%, each MFCC coe�cient is normalized to determine its contri-

bution to the total.

Tonal descriptors:

• Harmonic Pitch Class Pro�le (HPCP): it is a 36 dimensional vector which

represents the intensities of each of the frequency bins of an equal-tempered

scale (see [18]).

2.4 The �Ceiling Glass� problem

Comparing the obtained results on classi�cation of monophonic sounds with those

obtained for polyphonic sounds, it is clear that results for the latter are worst most

of the time. What could explain this low performance in polyphonic audio?

Recent studies have detected some very interesting issues that appear to be the

cause for this low performance namely:

• Problems derived from the �bag-of-frames� (BOF) approach.

• The �Ceiling Factor�.

• The need for better features.

The classic approach in pattern recognition algorithms, as described earlier, is to

cut an audio waveform into frames (usually 50 ms. with 50 % overlap [2]) and then

to compute a big number of �general� low-level features within this frame (as seen

in section 2.3). After, each sound event is described by a collection of frame-wise
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features [35] and these feature vectors are delivered to a machine learning algorithm

(like SVM, K-NN, etc.) to perform the classi�cation or clustering task. This ap-

proach is usually called the bag-of-frames (BOF) since the temporal relationship

between frames is lost within each sound event.

The BOF approach has proved to be e�ective in classi�cation and clustering of

isolated sound events and soundscapes [2]. However in the case of polyphonic audio

the time cues within sound events seem to be an important aspect in detecting such

events but these time cues are vanished in the BOF approach [35].

This classic approach (BOF) also seems to have reached a performance ceiling

since the fact of increasing the complexity of the classi�cation algorithms does not

improve signi�cantly their performance [3].

An additional problem suggested in the literature in close relationship with the

BOF problem is the requirement for better features that take into account the

temporal evolution of the sound events9 [26] [47] [8].In [41] the concept of �analytical

feature� is introduced where features are built for each speci�c problem using an

heuristic function generation process.

9In some cases the �rst and second derivative between frames are computed, but these are still
a short-time measures that do not account for mid-level changes on the temporal evolution of
descriptors.



Chapter 3

Research problems, proposed

experiments and units of study

In the previous chapters we present an overview on the problem of drum transcrip-

tion. As can be seen, from the state of the art section, this is not a solved task and

we are still far from perfect transcriptions. In chapter 1 we introduce, following the

ideas presented in [28], that score-like transcription is just one area of the automatic

�description� process. In this thesis we will address this �descriptionist� path since,

to our understanding, very useful information could be derived from �imperfect�

transcriptions (e.g. describing the �percussivity� of a song, the type of drum instru-

ment played, etc.). In section 2.2 we see that the pattern recognition approach is

one of the better suited approaches to derive these percussion-level descriptors. In

this chapter we present some research problems derived from this approach and we

also plan some experiments in order to move towards their solution.

3.1 Research problems

As seen from the state of the art on drum transcription in polyphonic music we can

detect three main research problems:

• The need for studies evaluated on larger databases as done by Herrera et al. [25]

for monophonic percussion sounds. See subsection 2.2.1 for an explanation on

this topic.

25
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• The need for mid-term temporal-evolution descriptors in order to gain infor-

mation about the evolution of the frame-level descriptors going beyond the

classical bag-of-frames (BOF) approach. As seen in section 2.4 this gained

information could help in �breaking� the �glass ceiling� observed after using

traditional BOF descriptors.

• The need for evaluate the descriptive capabilities of a system working with

imperfect detection levels. To take a �descriptionist� approach instead of a

�transcriptionist� and try to derive song-level useful information from these

imperfect descriptions. In other words: can we derive useful information from

this imperfect transcriptions, or do we have to wait for more accurate results?

3.1.1 Proposed Experiments

In order to answer the previously detected research problems we propose four sets

of experiments to be evaluated in the following chapters:

• Set 1 - Database selection and normalization (chapter 4): in these ex-

periments we will try to obtain a representative database of drum events and

a common normalization criteria. In order to do that we will �rst evaluate

three annotated-percussion databases to choose the one with best database-

crossvalidation results. Then, in order to gain con�dence about the repre-

sentativeness of the selected database, we will compare classi�cation results

by using di�erent normalization strategies. We expect, for a representative

database, that normalization parameters extracted from this database have

comparable ranges with those obtained from much bigger sets.

• Set 2 - Object-level temporal evolution descriptors (chapter 5): in these

experiments we will compute and evaluate the performance of object-level

temporal evolution descriptors. We will try to determine if by adding temporal

information, that represent the time evolution of frame-level descriptor values,

the classi�cation results are increased.

• Set 3 - Drum transcription system (chapter 6): in these experiments we
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will determine the transcription capabilities of the previously trained models

against a large number of polyphonic songs. We will evaluate �standard� tran-

scription results (i.e. what and when a percussive event is produced) and we

will also evaluate �relaxed� transcription results (i.e. what and how many per-

cussive events within a song are). The results obtained from these experiments

will lead us to propose several mid-level percussion descriptors.

• Set 4 -Mid-level percussion descriptors (chapter 7): in these experiments

we will compute and evaluate the description capabilities of mid-level percus-

sion descriptors extracted from the output of the previously evaluated drum

transcription system. We will try to determine if these new descriptors could

help in other MIR areas such as genre classi�cation or danceability estimation.

3.2 Units of study

Looking for collections of songs with proper annotations on percussive events we

found three databases that suit our needs. Two of them are publicly available and

were used in previous studies on drum transcription; the other one is an in-house

annotated collection of songs.

Next we describe the main characteristics of each database.

• ENST-Drums database: This is the largest publicly available drum database

(for a detailed overview on this database see [15]). It contains recordings from

three di�erent drummers and drum sets playing single hits, drum phrases and

complete songs covering various styles. It was carefully annotated with the as-

sistance of video recordings. The authors provide �dry� (without sound e�ects)

and �wet� drum recordings tracks on one side and its music accompaniments

on the other. In our case, since we want to detect drum events in �real world�

music, we work only with �wet� sounds. Given that the drum and music tracks

are provided in separate �les our mixing strategy is to merge them directly

(without further changes of sound levels). Afterward we segment 30 seconds

of each song, and its labels, to be used as working collection. At the end we
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obtain 28 songs with real accompaniments and 36 songs with MIDI (provided

in audio format) accompaniments adding up a total of 64 songs. We call this

database �ENST_wet�.

• MAMI database: This database is a collection of 52 music fragments ex-

tracted from commercial CD's. Each 30 seconds long fragment was annotated

by Tanghe et al. (see [62]) within the context of the Musical Audio Mining

(MAMI) project using MIDI �les to label drum events. Since only the MIDI

annotations and a list of the songs is provided, we purchase the audio �les.

We manage to gather 48 songs, we align them with the MIDI �les and then

we transform each MIDI event into a text label. This database is one of the

three databases used during the MIREX 2005 drum contest.

• Sandvold's database: This is an in-house database of 30 annotated 20-

second audio excerpts, extracted from commercial CD's (see [51]). It was

created for evaluation purposes on drum transcription systems and it has four

annotated categories: bass drum, snare, cymbals (including hi-hats) and mis-

cellaneous percussion.

As can be seen in �gure 3.1 genre distribution within each database is more or

less broad (i.e. songs are not particularly focused on one genre). A broad genre

distribution is important to get a representative training database.

In order to compatibilize the three databases we need to "translate" their labels

into a common label dictionary (see appendix A.1 for more information) . The

number of instances per database can be seen in table 3.1



3.2. Units of study 29

R
oc

k

M
et

al

Fu
nk

Ja
zz

S
hu

ffl
e/

B
lu

es

C
ou

nt
ry

D
is

co

G
ru

ng
e

S
ou

l

W
or

ld

E
le

ct
ro

ni
c

P
op

H
ip

-h
op

C
la

ss
ic

Sandvold's
MAMI

ENST_wet

0

2

4

6

8

10

12

14

Sandvold's
MAMI
ENST_wet

Figure 3.1: Genre distribution per database, y axis represents the number of songs.

Instrument ENST_Wet MAMI Sandvold's Total
bass drum 3,771 2,149 487 6,407
snare 3,763 1,459 433 5,655

hi-hat (closed) 3,790 2,487 0 6,277
hi-hat (open) 1,444 679 0 2,123
ride cymbal 1,169 518 0 1,687
crash cymbal 127 166 0 293
splash cymbal 0 40 0 40
other cymbals 431 0 618 1,049
tom toms 353 204 0 557
rim shot 20 101 0 121
cross stick 196 0 0 196
cowbell 84 75 0 159

other drum 0 1,716 1,026 2,742
total 15,148 9,594 2,564 27,306

Table 3.1: Number of drum instances per database.

Due to the number of instances and the musical importance of each instrument

within the drum kit we decide to work with the following instruments: bass drum,

snare drum, hi-hat (open and close) and cymbals (including hi-hat).

At the end of this process we obtain a large set of polyphonic audio excerpts of
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30 seconds length (mono, 16 bit, 44100 Hz). These audio segments coming from the

three databases add up a total of 142 songs labeled with four (possibly concurrent)

tags namely: bass drum, snare, hi-hat and cymbals. The �nal number of instances

can be seen in table 3.2

Instrument ENST_Wet MAMI Sandvold's Total

bass drum 3,771 2,149 487 6,407
snare drum 3,763 1,459 433 5,655

hi-hat 5,234 3,166 0 8,400
cymbals 6,961 3,890 618 11,469

Table 3.2: Final number of instances per database.



Chapter 4

Database selection and normalization

In this chapter we evaluate the capabilities of the previously described databases to

be used as training databases for machine learning algorithms.

We also perform a set of experiments to determine the best normalization criteria

to be applied on training and testing databases.

4.1 Background

4.1.1 Classi�cation techniques

C4.5

The C4.5 [46] algorithm belongs to the �binary trees� classi�cation family which

generates classi�ers expressed as decision trees. These trees are constructed top-

down using the concept of information gain. Starting with the presumable most

informative feature (the one that maximally reduces entropy), branches are created

from the di�erent values of this descriptor. Then the training examples are sorted to

the appropriate descendant node. The whole process is recursively repeated with all

the descendant nodes. Once built the tree can be pruned to avoid over�tting [24].

The attributes can be either numerical or nominal and it can handle multi-class

classi�cations.

These algorithms are fast, robust to noisy data and their outputs can be easily

summarized into interpretable trees of descriptors. This characteristic is very im-

31
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portant when we want to �learn� about the descriptors involved in the classi�cation

process.

Support vector machines

Support Vector Machines (SVM) [64] are based on statistical learning theory. The

SVM algorithm �nds the hyperplane with maximum soft-margin for the given train-

ing set [27]. Once the separating hyperplane f(x) is found, new data instances xn

can be easily classi�ed by evaluating the sign of the function f(x). If f(xn) > 0 then

xn belongs to the positive class, otherwise it belongs to the negative class [67]. If

the training data is not linearly separable it can be mapped it into a new (hopefully

linear) hyperspace. This can be done by choosing the correct kernel function. Com-

mon kernel functions are polynomial (of various degrees) and radial basis functions

(rbf). Support vector machines are better suited for binary classi�cation tasks but

multi-class SVM can also be found. Nowadays support vector machines are consid-

ered a must try on any machine learning application due to their robustness and

accurate results [67].

Within this thesis, when dealing with SVM we will use the LibSVM1 implemen-

tation found in the Rapid miner2 software.

4.1.2 Feature selection

When the number of features is too high the whole classi�cation process can be

damaged. Hence it is advisable to perform an algorithm-independent feature selec-

tion process to detect the most informative features avoiding, at the same time, the

over�tting of the training data. This kind of feature selection algorithms are also

called ��lters� as opposite to �wrappers� that use the learning algorithm itself to

evaluate the appropriateness of features.

Next we describe two feature selection algorithms used in this thesis:

1See: LibSVM web site http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2Rapid miner is an open source data mining software, see rapid-i web site http://rapid-i.

com/content/view/10/32/lang,en/
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• Correlation-based Feature Selection (CFS): this algorithm evaluates

subsets of attributes by computing the ratio between how predictive is the

selected group and how intercorrelated are their attributes. This ratio gives a

heuristic of the �merit� of the subset [22]. The best subsets are those with low

intracorrelation and, at the same time, high class-correlation (correlated with

the class attribute).

• ReliefF: is a feature weighting algorithm3 . Every feature weight is iteratively

estimated according to its capability to discriminate between neighboring pat-

terns. On every iteration, a random pattern is selected and then two nearest

neighbors are found, one from the same class (called NH) and the other from

the other class (called NM) [60]. Hence this algorithm score individual features

rather than feature subsets as the CFS algorithm.

Herrera et al. [29], within the scope of isolated percussion classi�cation, have found

better results on using ReliefF as feature selection algorithm for instance-based

classi�ers and CFS for decision-trees algorithms.

4.1.3 Evaluation

There are many evaluation measures in the information retrieval �eld, but three of

the most commonly used are: precision, recall and the F-measure.

• Precision: is the fraction of retrieved items that are correct.

P =
C

D
(4.1)

where C is the number of correct results and D is the number of detected results

• Recall: is the fraction of items that are correctly retrieved.

R =
C

GT
(4.2)

where C is the number of correct results and GT is the total number events

(ground truth).

3A real-valued number is assigned to each feature to indicate its relevance
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• F-measure: is the weighted harmonic mean of precision and recall, it sum-

marize a trade-o� between both values4.

F −measure =
2P.R

P + R
(4.3)

Following the evaluation criteria decided by the MIR community for the MIREX

2005 drum contest we decide to evaluate all our experiments using the F-measure.

This measure it is also used as evaluation criteria in [17], [61], [57] and [14].

4.2 Methodology

Since we want to detect and describe percussive sounds in polyphonic music using

a pattern-recognition approach, we need to start from the best possible database to

be used as a training set for the system. It is also recommended to have a second

database the sounds of which have been excluded from the training process to be

used as an independent test.

Another important decision, when working with machine learning algorithms

dealing with more than two classes, is whether to work with one multi-class model

or several binary-models. In our case, since we are working with percussive events

that can occur at the same time, we decide to train n binary classi�ers instead of

one model with 2n possible classes (being n the number of instruments to detect).

In this context we will have one trained model in charge of detecting the presence,

or absence, of one particular instrument (e.g. snare or not-snare). Although the

process of training several models is more expensive, in terms of time and compu-

tational cost, by taking this path we avoid building �mixed� classes for all possible

co-occurring combinations of instruments like e.g. snare+hi-hat, bass drum+snare,

etc (see [13] for comparison of both strategies in classifying drum loops).

4This measure is also known as balanced F-measure or F1−measure since the genreal F-measure
formula is Fη = (1 + η2)(P.R)/(η2.P +R) for all η > 0
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4.2.1 Database selection

As seen in section 3.2 we have three di�erent candidates to be our training database.

Due to its size (30 songs) we decide to left Sandvold's database as independent

testing database. The training capabilities of ENST_wet, MAMI are evaluated. A

mix database is also constructed and evaluated (ENST_wet+MAMI). In this case

we split the database using 90% to train and reserving 10 % of the database to be

used as testing set.

The aim of this set of experiments is to determine which of the databases is

better to work with as training set.

The general framework of the experiment is as follows:

1. Frame based feature extraction: temporal, spectral and perceptual descriptors5

are computed by analyzing a windowed signal of 2048 frames with a hop size of

512 frames. For the tonal descriptors we increase the window size up to 4096

frames and the hop size up to 1024. The whole song is processed to store all

the frame-level descriptor values into a �le. All these frame-level descriptors

are computed using Essentia6

2. Onset detection using an in-house implementation of the onset detector algo-

rithm proposed by Brossier in [4].

3. The mean, variance, minimum and maximum values for each descriptor is

computed for every onset plus 150 milliseconds (12 frames) or until the next

onset if it is located before 150 milliseconds. At the end we get a feature vector

of 612 values for each onset.

4. Every onset is labeled according to the following strategy: every label that is

within a threshold of ±30 milliseconds from the onset value is assigned to this

onset (this strategy generates multiple-labels per onset).

5See section 2.3 for further information.
6Essentia is an audio analysis and music matching tool developed by the music technology

group (MTG), see essentia's web site: http://mtg.upf.edu/technologies/essentia for further
information.
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5. Four databases are constructed from the multi-labeled onsets (one per instru-

ment) containing one binary labeled (e.g. snare, non-snare) feature vector per

onset.

6. These steps are repeated for every database (ENST_wet, MAMI and Sand-

vold's7 ).

7. Several combinations of training and testing sets are evaluated using the C4.5

decision tree algorithm implemented in Weka8 setting the �minimum number

of objects� parameter to 5% of the number of instances of each database to

avoid extremely large trees. All training models are computed with 10-fold

cross-validation9

8. The database with better classi�cation results is selected to be the training

set.

4.2.2 Normalization

Taking the selected database from the �rst set of experiments (subsection 4.2.1) we

use a state-of-the-art algorithm to evaluate its potential as training set. We under-

stand �potential� as the possibility to derive, from the training database, models that

perfom well with �real world� songs. In order to do that an �ideal� training database

has to be a manageable sub-set of songs representative of the song universe, i.e. al-

lowing extrapolations from the training database to the population (song universe).

As mentioned in section 2.2 of this thesis the best results are obtained by using sup-

port vector machines (SVM). The only inconvenience with this (an other) machine

learning algorithm is that it requires normalized input values (all its values between

0 and 1).

7see 3.2 for an explanation on these databases
8Weka is an open source software for machine learning see: http://www.cs.waikato.ac.nz/

ml/weka/
9In the 10-fold cross-validation process the whole database is split into 10 equal sub-sets. Then

9 of these sets are used for training purposes while the remaining one is used for evaluation. This
training-testing process is preformed 10 times using the 10 sets as a testing set.
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In order to normalize a set of values we �rst need to determine its possible maxi-

mum and minimum values. A commonly used practice is to extract these parameters

from the training database and then apply these normalization coe�cients also to

the test database. In this case we are assuming that the training database is a good

representation of the universe of possible songs (and values), a desirable, but not

always correct assumption.

In this section we want to determine if a general normalization criteria can be

applied to avoid database-speci�c normalizations and to evaluate the representative-

ness of our training database.

To derive �general normalization� parameters we estimate the maximum and

minimum values of the descriptors (section 2.3) from an in-house collection of more

than 5,000 songs. To determine these values we �rst compute the mean and standard

deviation for each descriptor values. Then to estimate the minimum we subtract

two times the standard deviation to the mean value and add two times the standard

deviation to the mean to derive the maximum normalization parameter (see equa-

tions 4.4 and 4.5). We avoid computing this for the descriptors which values were

already between zero and one.

Min = mean− 2StdDev (4.4)

Max = mean + 2StdDev (4.5)

As in subsection 4.2.1 we plan a set of experiments to evaluate the classi�cation

performance of the database. In this case we �rst perform a CFS feature selection

(see subsection 4.1.2 for an explanation on this algorithm) in a 10-fold manner

keeping only the features selected on more than 5 folds10. We use SVM as learning

algorithm, 10-fold validation for model construction and database cross-validation

for testing purposes. Three evaluations are performed on each instrument:

• Each database is normalized by its own maximum and minimum values (self

10After the feature selection we kept 42 attributes for bass drum, 71 for snare, 31 for hi-hat and
27 for cymbal.
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normalization).

• The normalization coe�cients are extracted from the training database and

then applied also to the test database (train normalization).

• The parameters extracted form the general database are used to normalize

both train and test databases (general normalization).

A standard set of parameter for the SVM algorithm is applied in all the experiments

(C = 10, gamma = 0.2 and rbf kernel)

4.3 Results and Discussion

4.3.1 Results

Database selection results

In spite of the reasonable good results obtained for both databases in the 10-fold

validation scenario, the database cross-validation results are not as consistent as in

the previous scenario. When the ENST_wet database is used as training set good

results are obtained for bass drum and snare but not for hi-hat and cymbals in the

remaining databases (database cross-validation). In the case of training with MAMI

good results are achieved for bass drum and hi-hat but not for snare and cymbals

(see table 4.1 and �gure 4.1).

C4.5 Tested on

Trained on Instrument ENST_wet MAMI Sandvold's

ENST_wet bass drum 0.781 0.718 0.696

MAMI bass drum 0.775 0.782 0.821

ENST_wet snare 0.718 0.688 0.633

MAMI snare 0.467 0.760 0.555

ENST_wet hi-hat 0.712 0.436 �

MAMI hi-hat 0.624 0.653 �

ENST_wet cymbals 0.704 0.342 0.552

MAMI cymbals 0.505 0.620 0.456

Table 4.1: ENST_wet vs. MAMI. Classi�cation results per instrument using each

database as training set. Results for 10-fold self-validation and database cross-validation

(F-measure values).
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Figure 4.1: Cross-validation results per instrument. Above: training on ENST_wet.

Below: Training on MAMI.

In order to avoid these �uctuating results we decide to mix both databases

with the intention of increase the representativeness of hi-hat, snare and cymbals

examples. As mentioned before we split the mixed database and use 90% of it

to train and 10 % to test. Within the training set we train the model by 10-fold

cross-validation.

The obtained results for this new database are more homogeneous and in all

cases overpass the 60 % value for the F-measure in the database cross-validation (see

table 4.2). This new database contains more than 14,200 instances (see appendix
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C4.5 F-measure

Trained on Instrument 90%MIX ENST_wet MAMI Sandvold's 10%MIX

90%MIX bass drum 0.779 0.781 0.776 0.786 0.751

90%MIX snare 0.718 0.712 0.786 0.611 0.712

90%MIX hi-hat 0.684 0.726 0.656 � 0.711

90%MIX cymbals 0.674 0.719 0.660 0.641 0.692

Table 4.2: Mixed database evaluation.

A.2 for details) and it seems to be the best option to be used as training set for the

system. To be more con�dent with these results the same experiment is performed

�ve times with random splits (90-10) of the mixed database. The box-plot of these

experiments can be seen in �gure 4.2. The maximum distance between the lower

and upper quartile is observed in cymbal results, being this distance less than 8 %.

This means that F-measure classi�cation results are more or less independent from

the 90-10 split point.

The average number of descriptors selected by the decision tree algorithm is 5

for bass drum, 8 for snare drum and 9 for hi-hat and cymbals. The most frequently

selected features per instrument are:

• Bass drum: low Bark bands, MFCC, spectral energy low and spectral �ux.

• Snare drum: mid Bark bands , temporal lpc, MFCC and spectral �atness.

• Hi-hat: high Bark bands, temporal lpc, MFCC, spectral spread and spectral

�atness db.

• Cymbals: high Bark bands, temporal lpc, MFCC, spectral spread and spec-

tral kurtosis.

Normalization results

The results for the normalization experiments can be seen in table 4.3 and show

almost no di�erences between normalization strategies (except for the bass drum

performance in �self� normalization which performance is clearly damaged by this

approach). The small di�erences between �general� and �training� normalization cri-

teria strongly support our assumptions about the representativeness of the �90MIX�
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Figure 4.2: Five trials box-plot: F-measure classi�cation results for the 5 random splits

(90-10) per instrument. The red line corresponds to the median, the blue box represents

the inter-quartile interval (1st to 3rd quartile), the black lines correspond to the maximum

and minimum values (assuming no outliers) and the red + stands for outliers.
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LibSVM F-measure

Instrument Trained on Normalization 90%MIX Sandvold 10%MIX

bass drum 90MIX_self_norm self 0.822 0.707 0.769

bass drum 90MIX_self_norm training 0.822 0.806 0.781

bass drum 90MIX_general_norm general 0.804 0.821 0.793

snare 90MIX_self_norm self 0.791 0.598 0.743

snare 90MIX_self_norm training 0.791 0.608 0.791

snare 90MIX_general_norm general 0.786 0.579 0.784

hi-hat 90MIX_self_norm self 0.733 � 0.734

hi-hat 90MIX_self_norm training 0.733 � 0.725

hi-hat 90MIX_general_norm general 0.730 � 0.737

cymbals 90MIX_self_norm self 0.705 0.641 0.678

cymbals 90MIX_self_norm training 0.705 0.641 0.682

cymbals 90MIX_general_norm general 0.700 0.676 0.682

Table 4.3: Normalization evaluation. (SVM same parameters).

database. Because the normalization parameters extracted from this database (about

130 songs) are compatible (i.e. they can be interchanged without degrade the clas-

si�cation results) with the parameters extracted from the �general� database (a set

of more than 5,000 songs).

4.3.2 Main Conclusions

At the end of these experiments we can conclude that the 90%MIX database is

the best option to be used as training set. This assumption is supported by the

fact that database cross-validation results using this training set are more stable

(overpassing 60 % F-measure) than using ENST_wet or MAMI only. We reserve 10

% of this database and Sandvold's database for database cross-validation in future

experiments.

In the normalization experiments small di�erences between training-based and

general-based normalization criteria are detected. For this reason we are more con�-

dent about the representativeness of our database. Therefore, we adopt the �general�

normalization criteria to be used in future experiments.



Chapter 5

Object-level temporal evolution

descriptors

In the previous chapter we have selected three databases to work with, the 90%MIX

database to be used as training set, and the 10%MIX and Sandvold's databases to

be used as testing databases. A normalization criteria has also been established

by taking the �general� normalization parameters to normalize the values of the

descriptors.

In this chapter we evaluate the performance of the bag-of-frames (BOF) approach

to classify bass drum, snare drum, hi-hat and cymbal sounds in polyphonic music.

We also try to determine if by adding object-level temporal evolution descriptors for

each feature time series improved classi�cation results are obtained. We understand

the term �object� as: every sound event starting on an onset and �nishing 150

milliseconds before (or in the next onset if this new onset it is located before 150

ms.)

From now on all the experiments will use the same databases and normalization

criteria previously de�ned.

5.1 Background

As mentioned in section 2.4 the traditional bag-of-frames (BOF) approach in pattern-

recognition algorithms means to calculate a general set of frame-level feature values

43
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and then compute within each feature time series some statistical descriptor like its

mean (and sometimes its variance). An array of those descriptors is thus used as a

condensed representation of the analyzed sound event or song.

Although the BOF approach has proven to be su�cient for classi�cation of iso-

lated sounds and soundscapes it seems to present some limitations when dealing

with polyphonic music (see section 2.4). In order to avoid the limitations of this ap-

proach, i.e. the neglection of temporal-evolution information, some new descriptors

have been proposed in the recent literature. In [48] Ricard and Herrera imple-

mented a system for automatically describe morphological characteristics of sound

events (sound objects). The goal of this system was to describe each sound ac-

cording to four morphological criteria including: dynamic pro�le (energy temporal-

evolution), pitchness, pitchness pro�le (temporal-evolution of pitchness) and pitch

pro�le (temporal-evolution of pitch). These morphological descriptors were discrete

labels automatically assigned to each song after a feature extraction and classi�-

cation process. In [38] and [37] a large set of temporal, and non-temporal statis-

tics were computed from low-level feature time series. A total of 154 descriptors

were extracted including the �rst four statistical moments (mean, standard devia-

tion, skewness and kurtosis), autocorrelation, spectral centroid, spectral bandwidth,

spectral slope, modulation, together with nonlinear time series descriptors like the

mean and the standard deviation of the distances and angles in the phase space.

The �nal number of computed descriptors was close to 70,000. After a novel feature

selection process these descriptors were used to model timbre distances and genre

classi�cation.

For the case of percussion, only few authors have investigated the use of object-

level temporal evolution descriptors and when these descriptors were used refer only

to temporal-evolution of energy or amplitude values. Herrera et. al [29] segmented

isolated drum sounds into attack and decay, then several descriptors were computed

for each sound segment like log attack-time, temporal centroid, and zero-crossing

rate. Some general descriptors for the whole drum event were also computed like

MFCCs and energy descriptors. In Tindale et. al [63] isolated snare sounds were

classi�ed using only temporal descriptors extracted from the attack section of the
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sound. This descriptors included: zero-crossings, attack time, RMS and tempo-

ral centroid. Paulus and Klapuri [42] used narrow-band features to describe the

temporal evolution together with "traditional" spectral features to transcribe drum

events in polyphonic music. These narrow-band features were computed from the

energy evolution of several frequency sub-bands. In [50] the authors employed their

automatic feature �creator� introduced in [41] to classify pandeiro sounds. In this

system basic signal processing operators, like FFT or �lters, and spectral opera-

tors, like spectral centroid or spectral skewness, were combined by an evolutionary

algorithm to get a very large set of features (about 1020).

In previous experiments we compute the mean, variance, minimum and max-

imum value for each descriptor for every onset plus 150 milliseconds (12 frames),

or until the next onset if the distance between onsets is less than 150 ms. In this

chapter besides these previously computed object-level descriptors we decide to com-

pute several descriptors from the temporal evolution of every frame-based descriptor

described in section 2.3. These object-level descriptors can be grouped in two cat-

egories: amplitude-related object descriptors and time-related object descriptors.

This categorization can be seen in �gure 5.1 where we plot an example of the frame-

based evolution of one hypothetical raw feature values, designating the x axis as

amplitude (in descriptor's units) and the y axis as time (in frames).
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Amplitude-related 
object descriptors:

mean: 0.567 

var: 0.069 

min: 0.100 

max: 0.900

skewness: 0.427 

kurtosis: 0.344

temporal skewness: 0.544 

temporal kurtosis: 0.377

temporal centroid: 0.435

max. norm. position: 0.333 

min. norm. position: 0.083 

slope: 0.459 

norm. attack: 0.908 

norm. decay: 0.262

attack: 0.587 

decay: 0.475 

Temporal-related object descriptors:

Figure 5.1: Object-level descriptors: toy example.

Amplitude-related object descriptors:

This category includes the previously de�ned descriptors mean, variance, minimum

and maximum plus:

• skewness: it is a measure of the asymmetry of a distribution around its

amplitude mean value. The skewness value is normalized between 0 and 1,

thus a skewness value below 0.5 indicates a signal with more high-amplitude

values. A skewness value above 0.5 indicates a signal with more low-amplitude

values. It is the third order statistical moment.

• kurtosis: it is the fourth order statistical moment. It gives a measure of the

�atness of a distribution around its amplitude mean value. The output value
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is normalized between 0 and 1.

Time-related object descriptors:

• temporal_skewness: it is a measure of the asymmetry of a distribution

around its temporal mean value. The skewness value is normalized between 0

and 1, thus a skewness value below 0.5 indicates a signal with more �energy�

in the last frames. A skewness value above 0.5 indicates a signal with more

�energy� in the �rst frame values. It is computed like the third statistical

moment but taking the time series of descriptor values as a histogram.

• temporal_kurtosis: it gives a measure of the �atness of a distribution

around its temporal mean value. It is computed like the fourth order sta-

tistical moment, but taking the time series as the histogram of the signal. The

output value then is normalized between 0 and 1.

• temporal_centroid: it is the temporal center of gravity of the spectrum.

• maximum normalized position: is the position (in time) for the maximum

value of the time series normalized by its length.

• minimum normalized position: is the position (in time) for the minimum

value of the time series normalized by its length.

• slope: for this descriptor we �rst compute the slope of the linear regression

of the data (x axis in frames, y axis in feature's units). Then, in order to get

limited-range values we compute the angle of this slope by calculating the arc

tangent of this value. The output value is normalized between 0 and 1, thus a

0 degree slope is equal to 0.5.

• normalized attack: �rst the position for maximum point of the time series is

found. Then the slope descriptor for the time series that goes from the initial

point to the maximum point is computed. When computing the slope the x

axis is a normalized array going from 0 to 1.



5.2. Methodology 48

• normalized decay: �rst the position for maximum point of the time series

is found. Then the slope descriptor for the time series that goes from this

maximum point to the end is computed. When computing the slope the x axis

is a normalized array going from 0 to 1.

• attack: the same as in the normalized attack but, when computing the slope

value, instead of normalizing the x axis from 0 to 1 an array of values in

seconds is used. This array is obtained by multiplying the number of frames

of the time series by the sample rate and dividing this value by the hop size

(in samples).

• decay: the same as in the normalized decay but, when computing the slope

value, instead of normalizing the x axis from 0 to 1 an array of values in

seconds is used. This array is obtained by multiplying the number of frames

of the time series by the sample rate and dividing this value by the hop size

(in samples).

5.2 Methodology

In order to evaluate the bag-of-frame (BOF) and the object-level temporal-evolution

descriptors we �rst build a set of databases namely:

• strict-BOF: in this case we compute only the mean value for the descriptors

used in section 2.3 obtaining a 153 feature vector for each event.

• best-time-evolution: starting from the same list of frame-level descriptors

we compute the whole set of descriptors described in the previous section

(amplitude and temporal-related object descriptors) except the mean values.

This database can be seen as all-but-mean set of descriptors. Then by applying

a ranker algorithm1 we select the best 153 descriptors to equalize the number

of descriptor with the �strict BOF� database.

1In this case we use the InfoGainAttributeEval from Weka. This feature selection algorithm
evaluates every attribute by measuring information gain with respect to the class.
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• BOF: this is the same database used in chapter 4. Starting from the frame

values we compute the mean, variance, minimum and maximum values.

• BOF+TDESC: this database includes all BOF descriptors plus all object-

level temporal-evolution descriptors summing up to 2,449 descriptors.

Once completed the previous step, we compare the binary classi�cation results ob-

tained from the databases using decision trees and support vector machines (SVM)

learning algorithms.

First we evaluate the strict-BOF set against the best-time-evolution database

using the decision tree algorithm (5% MinNumObj). Then with the same algorithm

and parameters we compare the BOF database against the BOF+TDESC database.

Since it is not recommended to try the SVM algorithm with a very large set

of descriptors we perform a 10-fold CFS feature selection, as done in subsection

4.2.2, on both BOF and BOF+TDESC databases. Then we select the same number

of �best� features for both databases to compare the classi�cation results for the

�selected-BOF� vs. �selected-BOF+TDESC� databases. In this last experiment

we try to determine the best classi�cation values for the �selected-BOF� and the

�selected-BOF+TDESC� databases by performing a grid parameter search on the

SVM parameters. This grid search is performed by iterating over several hundred

of possible values for C and gamma and three kernels i.e. linear, polynomial (degree

two), and rbf.

5.3 Results and Discussion

5.3.1 Results

Strict-BOF vs. best-time-evolution

The results for the �rst set of experiments can be seen in table 5.1. From these

results we can observe that best-time-evolution descriptors (best_T_DESC) out-

performs strict-BOF in almost all instruments and databases (except for cymbals

in Sandvold's database where no improvement is shown). The number of selected
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descriptors seems to be smaller for the best_T_DESC databases, specially for the

case of the snare drum where only 2 descriptors (instead of 8 to the strict-BOF case)

are selected by the algorithm to classify sound events i.e. slope of the barkband #4

and max value for barkband_ratio #21. The average improvement on using best-

time-evolution descriptors is 4.45 % for all instruments and databases. This suggest

that using descriptors from the �time-evolution� database is better than using only

mean descriptor values.

C4.5 F-measure

Instrument Train on # Descriptors 90%MIX Sandvold's 10%MIX

bass drum 90MIX_Strict BOF 6 0.759 0.712 0.781

bass drum 90MIX_best_T_DESC 4 0.781 0.783 0.799

snare 90MIX_Strict BOF 8 0.677 0.594 0.686

snare 90MIX_best_T_DESC 2 0.704 0.631 0.733

hi-hat 90MIX_Strict BOF 6 0.684 � 0.709

hi-hat 90MIX_best_T_DESC 5 0.754 � 0.756

cymbals 90MIX_Strict BOF 7 0.679 0.640 0.690

cymbals 90MIX_best_T_DESC 5 0.742 0.640 0.763

Table 5.1: Classi�cation results for strict BOF and �best� object-level temporal-evolution

descriptors. See section 5.2 for further explanations.

BOF vs. BOF+TDESC

When comparing the BOF database (mean, variance, minimum and maximum) with

the BOF+TDESC database we also observe that by adding object-level temporal

evolution descriptors an improvement on the classi�cation results is obtained. This

improvement is observed not only in the 10-fold inter-database results but also in

the cross-database evaluations (except for the snare in Sandvold's database where no

change is shown). For this evaluation the average performance is increased by 2.95

% when using BOF+TDESC descriptors with almost the same number of selected

descriptors. These results can be seen in table 5.2.

Selected BOF vs. selected BOF+TDESC

The classi�cation results for the SVM algorithm (grid search) are shown in table 5.3.

Here the number of features in both databases are almost equal and are selected
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C4.5 F-measure

Instrument Train on # Descriptors 90%MIX Sandvold's 10%MIX

bass drum 90MIX_BOF 6 0.774 0.730 0.776

bass drum 90MIX_BOF+TDESC 6 0.781 0.791 0.802

snare 90MIX_BOF 8 0.708 0.623 0.722

snare 90MIX_BOF+TDESC 8 0.731 0.622 0.739

hi-hat 90MIX_BOF 4 0.717 � 0.720

hi-hat 90MIX_BOF+TDESC 5 0.762 � 0.749

cymbals 90MIX_BOF 6 0.720 0.630 0.684

cymbals 90MIX_BOF+TDESC 6 0.741 0.640 0.763

Table 5.2: Classi�cation results for BOF and BOF+TDEC descriptors. See section 5.2

for further explanations.

by the CFS feature selection algorithm. As in the previous tests we witness an

improvement when adding object-level temporal evolution descriptors to a BOF

database. In this case the overall performance of the BOF+TDESC_CFS is 3.46 %

above the BOF_CFS results. It is also interesting to notice that snare classi�cation

results decrease, by adding temporal-evolution descriptors, about 2.5 % on average

for both 90% and 10%MIX databases. At the same time an improvement of 12.1 %

is produced for snare classi�cation results on Sandvold's database.

LibSVM w/grid search F-measure

Instrument Train on 90%MIX Sandvold's 10%MIX

bass drum 90MIX_BOF_CFS 0.825 0.773 0.823

bass drum 90MIX_BOF+TDESC_CFS 0.834 0.812 0.835

snare 90MIX_BOF_CFS 0.795 0.566 0.806

snare 90MIX_BOF+TDESC_CFS 0.778 0.687 0.773

hi-hat 90MIX_BOF_CFS 0.757 � 0.771

hi-hat 90MIX_BOF+TDESC_CFS 0.806 � 0.802

cymbals 90MIX_BOF_CFS 0.722 0.638 0.713

cymbals 90MIX_BOF+TDESC_CFS 0.770 0.671 0.793

Table 5.3: BOF vs. BOF+temporal descriptors. LibSVM with grid parameter search.

In order to build the 90MIX_BOF_TDESC_CFS database we select (by CFS

feature selection) 56 descriptors for bass drum, 77 for snare drum, 38 for hi-hat

and 51 for cymbals2. We claim that the addition of object-level temporal evolution

descriptors to a �classic� BOF database improves the classi�cation results for these

2See appendix A.3 for a full list of selected features



5.3. Results and Discussion 52

instruments. The next question is how many temporal evolution descriptors remain

after the feature selection process. In �gure 5.2 we show the ratio between amplitude

and temporal-related object descriptors (as de�ned in section 5.1) after the feature

selection process. About 60 % (on average) of the selected descriptors belong to the

temporal evolution category.
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80%
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100%

bass drum snare drum hi-hat cymbal

Amplitude
Temporal

Figure 5.2: Amplitude-related vs. Temporal-related object descriptors per instrument

after feature selection.

5.3.2 Main Conclusions

In this chapter we have shown that adding descriptors for the temporal evolution of

the time series generated by frame-level descriptors (object-level temporal evolution

descriptors) leads to an improvement in the classi�cation results of about 3.6 % on

the overall average F-measure.

The best results are obtained using support vector machines with a relative small
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sub-set of features (selected by the CFS algorithm). With the exception of snare

drums and cymbals on Sandvold's database the obtained classi�cation results are

near 80 %.

It is worth noticing that these object-level temporal descriptors are about 60 %

of the �nal list of selected features. It is also remarkable that the presence of Bark

band derived descriptors in this �nal list is also about 60% 3.

It seems that with the addition of object-level temporal descriptors we do not

reach to �break� the glass ceiling but at least we start to �scratch� its surface.

In the next chapter we will see how the models learned on this chapter perform

in a whole drum transcription system.

364.3 % for bass drums, 62.33 % for snares, 57.9 % for hi-hats and 50.9 % for cymbals



Chapter 6

Drum transcription system

In the previous chapter we obtain three support vector machines models to classify

bass drum, snare and hi-hat sounds within polyphonic music. Good classi�cation

results are produced by adding object-level temporal evolution descriptors to the

classic BOF descriptors.

In this chapter we evaluate the behavior of these models within a whole transcrip-

tion system. Three databases are analyzed (ENST_wet, MAMI and Sandvold's)

adding up a total of 142 songs (30 seconds length). Up to our knowledge, regarding

the number of songs and genres, this is the largest evaluation performed on a drum

transcription system for polyphonic music.

6.1 Background

Up to date the main evaluation on drum transcription systems was performed in

the Music Information Retrieval Evaluation eXchange (MIREX) within the context

of the 2005 ISMIR conference 1. The goal of this contest was to detect drum events

produced by bass drums, snares and hi-hats in polyphonic audio. The evaluated

data-set was integrated by 50 �les (30 second-length) of both live and sequenced

music. The overall results of this contest can be seen in table 6.12.

1see MIREX web site: http://www.music-ir.org/mirex/2005
2for a detailed view see drum results MIREX 2005 web page http://www.music-ir.org/

evaluation/mirex-results/audio-drum/index.html

54
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Average F-measure
Rank Participant Total Bass drum Snare Hi-hat
1 Yoshii, Goto, & Okuno 0.670 0.728 0.702 0.574
2 Tanghe, Degroeve, & De Baets 3 0.611 0.688 0.555 0.601
3 Tanghe, Degroeve, & De Baets 4 0.609 0.686 0.562 0.590
4 Tanghe, Degroeve, & De Baets 1 0.599 0.677 0.542 0.588
5 Dittmar, C. 0.588 0.606 0.581 0.585
6 Paulus, J. 0.499 0.527 0.430 0.587
7 Gillet & Richard 2 0.443 0.598 0.428 0.334
8 Gillet & Richard 1 0.391 0.533 0.317 0.343

Table 6.1: MIREX 2005: drum detection contest. Overall results.

For the 2007 ISMIR Paulus and Klapuri [42] presented an evaluation of 45 songs

from RWC Pop database3 using HMM with some temporal descriptors (as described

earlier in section 5.1) obtaining an overall F-measure of 0.697 and instrument-level

results of 0.795, 0.655 and 0.660 for bass drum, snare drum and hi-hat respectively.

In a very recent paper Gillet and Richard [17] evaluate the performance of their

transcription system against 28 songs from the ENST_wet database4 achieving F-

measure values of 0.695 for bass drums, 0.583 for snare drums and 0.755 for hi_hats5

and an overall average F-measure of 0.678.

6.2 Methodology

The experiment set-up for evaluating the transcription capabilities of our system is

as follow:

1. Input the 30 seconds audio excerpts extracted from the three previously de-

scribed databases (ENST_wet, MAMI and Sandvold's) and their ground truth

labels.

2. Perform an onset detection using an in-house implementation of the onset

detector algorithm proposed by Brossier in [4].

3See [20] for a detailed view on this database
4See subsection 2.2.1 for an explanation on this paper
5These results are for the case of balanced mixtures between drums and music tracks
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3. Compare the detected onsets6 with the original labels to describe the perfor-

mance of the onset detector.

4. Compute the descriptors used by each model7 on every onset plus 150 ms (or

until the next onset). Apply the models to every set of descriptors to obtain

the predicted labels for every onset.

5. Evaluate the results of the predicted labels against the ground truth annota-

tions. As in the MIREX 2005 contest a range of ±30 milliseconds from the

true times is allowed.

6. Evaluate the total number of predicted labels per instrument against the total

number of ground truth labels per instrument. This evaluation is called relaxed

transcription and its goal is to evaluate the description capabilities of the

system at a song-level resolution.

6.3 Results and Discussion

6.3.1 Results

Onset detection results

The onset detector performance can be seen in table 6.2. The overall performance

per database is as follows:

ENST_wet 0,718, MAMI 0,610, Sandvold's 0,840 and the total average perfor-

mance is 0,7238. It is important to notice that this is not the true onset detector

performance since we are comparing ground truth labels against labeled onsets. But

this measures show the expected �top� performance for each database and instru-

ment. Since both Sandvold's and MAMI's songs were extracted from commercial

6Like in previous experiments onsets are labeled according to the following strategy: every label
that is within a threshold of ±30 milliseconds from the onset value is assigned to this onset.

7The models are the ones computed in the previous chapter. For every instrument the
�90MIX_BOF+TDESC_CFS� database is used as training database for three SVM algorithms,
one for bass drum, one for snare drum and one for hi-hat.

8Since we are dividing the number of corrected labeled onsets by the total number of labels we
are computing a �recall� measure
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Instrument database ground truth detected onsets onset / g. truth
bass drum ENST_wet 3771 2717 0.759
bass drum MAMI 2150 1252 0.582
bass drum Sandvold's 490 398 0.793
bass drum all 6411 4367 0.706

snare ENST_wet 3766 2028 0.602
snare MAMI 1464 813 0.619
snare Sandvold's 438 357 0.887
snare all 5668 3198 0.667
hi-hat ENST_wet 5234 4180 0.793
hi-hat MAMI 3176 1708 0.629
hi-hat all 8410 5888 0.723

Table 6.2: Onset detector performance per instrument.

CD's we can hypothesize that the onset performance di�erence is due to the dif-

ferences in the labeling process. In Sandvold's the annotations were done based

on pre-detected onsets while annotations in MAMI database were done basically

�by ear� (see [62]). It is also worth to notice that Sandvold's labels do not include

every drum instance since only pre-detected onsets were labeled when building this

database. Therefore it could be the case that our onset detector detects real drum

events that are un-labeled. Since we do not have a ground truth label for those

events our transcription system will mark the prediction on this onset as incorrect.

The best onset recall measure reported in the MIREX drum contest was 0.725

for the �Tanghe, Degroeve, & De Baets 1� algorithm. This measure is comparable

with the one obtained by our system.

Transcription results

Transcription results are shown in tables 6.3 and 6.4. The �ground truth�, �detected�

and �correct� columns show the sum of all songs results for each database. The

�precision�, �recall� and �F-measure� columns show the average results for all songs

on every database. The �all� measures are computed after evaluating a �bag� of all

142 songs and its labels and not by simply averaging the results of each database.

By analyzing individual instrument results for �all� songs we observe a better

performance for bass drum (69.9 %) followed by snare drum (65.2 %) and hi-hat

(62.6 %). As expected, over-detection rates are present on Sandvold's database (see
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subsection 6.3.1), this could decrease the performance on this database. We also

notice over-detection on MAMI's snare drums, that could be due to label alignment

problems or speci�c biases of the model.

Total results Average results

Instrument database ground truth detected correct precision recall F-measure

bass drum ENST_wet 3771 2615 2298 0.873 0.656 0.710

bass drum MAMI 2150 1938 1108 0.552 0.509 0.514

bass drum Sandvold's 490 655 354 0.573 0.735 0.605

bass drum all 6411 5208 3760 0.701 0.558 0.699

snare ENST_wet 3766 2054 1635 0.765 0.508 0.558

snare MAMI 1464 2050 746 0.412 0.565 0.445

snare Sandvold's 438 694 238 0.350 0.616 0.363

snare all 5668 4798 2619 0.623 0.550 0.652

hi-hat ENST_wet 5234 4436 3998 0.858 0.743 0.785

hi-hat MAMI 3176 2342 1371 0.487 0.530 0.412

hi-hat all 8410 6778 5369 0.621 0.652 0.626

Table 6.3: Average transcription results per instrument.

database precision recall F-measure

ENST_wet 0.832 0.636 0.684
MAMI 0.484 0.535 0.457

Sandvold's 0.462 0.676 0.484
all 0.648 0.587 0.659

Table 6.4: Average transcription results per database.

Considering database-level results the best results are obtained on ENST_wet

(68.4 %) and the worst on MAMI (45.7 %). The overall performance of the system

over 142 songs is 0.659.

A comparison between our system and state-of-the-art systems described in sec-

tion 6.1 can be seen in table 6.5. If we compare our results with the MIREX

2005 drum transcription contest, our system would be ranked in second place af-

ter �Yoshii, Goto and Okuno� system (0.67 overall result). Compared with Paulus

and Klapuri [42] our system preforms only 3.8 % below. This could be consid-

ered as a good result taking into account that Paulus and Klapuri's results come

from �pop� songs only, thus with less variability than our database that includes

several genres. To better compare the performance of our system against Gillet

and Richard's system [17], since their results are presented over 28 songs coming
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from the minus_one ENST_wet database, we also compute the transcription re-

sults for minus_one ENST_wet only database9. The performance of our system

over ENST_wet only database (see �our sys. ENST� in table 6.5) is 2.1 % worst

than Gillet and Richard's overall result, obtaining +3.5 % for bass drum, -7.9% for

snare and -1.8% for hi-hat.

It is worth notice that within this state-of-the-art list the only �classic� pattern

recognition system is the one presented by Tanghe et. al [61]. This algorithm uses

a pretty sophisticated onset detector followed by a standard feature extractor and

support vector machines classi�er with normalization coe�cients extracted from the

test database. Our system outperforms Tanghe's by 4.8 % in the overall measure.

This di�erence could be mainly explained by the presence of better descriptors

(possibly temporal descriptors) and a bigger training database in our system.

At this stage we can claim that our system's performance could be among the

top ranks compared with state-of-the-art algorithms.

F-measure

overall bass drum snare hi-hat # songs presented on comments

Yoshii et. al 0.670 0.728 0.702 0.574 50 MIREX 2005 1st place

Tanghe et. al 0.611 0.688 0.555 0.601 50 MIREX 2005 2nd place

Paulus & Klapuri 0.697 0.795 0.655 0.660 45 ISMIR 2007 RWC-pop db

Gillet & Richard 0.678 0.695 0.583 0.755 28 IEEE 2008 m_one ENST db

our system 0.659 0.699 0.652 0.626 142

our sys. ENST 0.657 0.730 0.504 0.737 28 m_one ENST db

Table 6.5: Transcription results compared with state-of-the-art systems.

Since simple average measures are not fully informative we decide to plot a

histogram with the F-measure results for all 142 songs per instrument. These his-

tograms are shown in �gure 6.1 where we can easily see that better results are

obtained for bass drums and hi-hats and more results close to the chance-level per-

formance are obtained for snare drums. This information can not be derived from

average results only.

9As in Gillet and Richard's paper, in this case, we consider as valid a time deviation of up to
50 ms.
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Figure 6.1: Transcription results: F-measure distribution over all songs (142 - 30 sec.

excerpts).

Relaxed transcription results

Taking into account that our �nal goal is to derive song-level percussion descriptors,

it is useful to know the performance of our system to estimate the total number

of drum events per song (e.g. how many bass drum, snare drum or hi-hat strikes

a particular song has). Thus if we are able to correctly estimate these values we

could construct accurate song-level percussion descriptors relaying on those correctly

estimated values. These descriptors could be used to characterize a song as having,

for example, a lot of snare drum, no hi-hat, etc. Hence we decide to evaluate, in these

sets of experiments, the performance of our system to detect the correct number of

drum events per song. In order to do that we now consider as �correct� the total

number of e.g. hi-hats events in the whole audio �le discarding time-information.
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The results for these experiments can be seen in tables 6.6 and 6.7. We call these

evaluations as �relaxed transcription�. By looking at instrument level results we

detect better classi�cation results on bass drum (0.822) and hi-hat (0.794) followed

by snare results (0.698). This can also be seen in the histogram plots (�gure 6.2)

where a big number of songs are near 100% performance.

Instrument database ground truth detected correct precision recall F
bass drum ENST_wet 3771 2615 2586 0.991 0.737 0.802

bass drum MAMI 2150 1938 1805 0.948 0.864 0.875

bass drum Sandvold's 490 655 454 0.742 0.936 0.778

bass drum all 6411 5208 4845 0.925 0.822 0.822

snare ENST_wet 3766 2054 2005 0.941 0.620 0.685

snare MAMI 1464 2050 1409 0.730 0.973 0.795

snare Sandvold's 438 694 363 0.561 0.899 0.570

snare all 5668 4798 3777 0.789 0.798 0.698

hi-hat ENST_wet 5234 4436 4360 0.969 0.846 0.890

hi-hat MAMI 3176 2342 2123 0.792 0.776 0.667

hi-hat all 8410 6778 6483 0.893 0.816 0.794

Table 6.6: Relaxed average transcription results per instrument.

database precision recall F

ENST_wet 0.967 0.734 0.792
MAMI 0.823 0.871 0.779

Sandvold's 0.652 0.918 0.674
all 0.869 0.812 0.771

Table 6.7: Relaxed average transcription results per database.
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Figure 6.2: Relaxed transcription: F-measure distribution over all songs (142 - 30 sec.

excerpts).

Evaluating database-level results we observe that ENST_wet and MAMI present

similar measures and Sandvold's performance is about 10% lower. As mentioned

above this could be explained by the labeling strategy of this database. The overall

performance measure of this �relaxed� transcription system is 77.1 %.

6.3.2 Main Conclusions

In this chapter we evaluate the performance of a whole drum transcription system

that uses the classi�cation models learned in the previous chapter.

From the transcription results, compared with state-of-the-art systems, we derive

that our system can be placed among the best existing ones, even though there is

still a lot of room for improvement. It is interesting to notice that these good results
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are achieved by a relative simple algorithm using the �classic� pattern-recognition

approach. We relate these results to the presence of better descriptors, specially the

temporal ones, and a good training database.

Since our �nal goal is to derive song level percussion descriptors we evaluate the

performance of our system at this level obtaining an overall result of 77.1 % when

evaluating all databases (142 songs). These results encourage us to investigate if

useful percussion descriptors could be computed, at a song-wise level, from the

transcription output of the system. This evaluation is done in the next chapter.



Chapter 7

Mid-level percussion descriptors

In this chapter we present and compute several percussion-related descriptors ex-

tracted from the output of the transcription system presented in the previous chap-

ter. Then we explore the usefulness of these new descriptors for some music infor-

mation retrieval (MIR) tasks such as genre classi�cation, danceability estimation

and Western / non-Western classi�cation.

7.1 Background

Provided that we can detect the number of occurrences of bass drum, snare and

hi-hat events in polyphonic music with an average precision and recall of more than

70% (see subsection 6.3.1) in this chapter we will try to use this information to build

mid-level percussion descriptors.

In [28] and [51] two percussion-related descriptors were presented and evaluated

with promising results namely:

• Percussion Index: a ratio between the number of detected percussion events

and the number of detected onsets.

• Percussion pro�le: the relative amount of bass drum, snare, cymbals, and

non-percussion events (normalized by the total number of onsets).

Following this idea of percussion related descriptors we decide to compute and eval-

uate the following mid-level percussion descriptors starting from the classi�cation

64
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models derived in the previous chapters. Some of this descriptors appear as sug-

gested future work in [51] but up to our knowledge they have not been implemented

nor evaluated on previous works yet.

Computed mid-level percussion descriptors:

• Percussion pro�le (as explained before): for bass drum, snare, hi-hat and

drum1 .

• Intra instrument ratio: the ratio between percussive instruments namely:

bass drum/snare, bass drum/hi-hat and snare/hi-hat

• Instrument per minute: the number of detected events per minute for bass

drum, snare, hi-hat and drum.

• Intra instrument interval (iii): we �rst construct a histogram with the dif-

ferences between successive events of the same instrument. Then the �rst and

second peak values are taken to describe the most frequent intervals between

each instrument. Thus we compute: �rst and second-iii-peak for bass drum,

snare and hi- hat. This is the only group of descriptors that strongly depends

on the correct temporal estimation of drum events, hence the less reliable (see

section 6.3 for a comparison between transcription and relaxed transcription

results).

At the end of this process we get 17 mid-level percussion descriptors for each song.

To evaluate the usefulness of these new descriptor within the MIR �eld we have fo-

cused on those applications where percussion related information could add relevant

information. We believe that genre and tempo-related processes could take advan-

tage of these new descriptors. It seems clear that, for some cases, genre de�nitions

are mainly based on rhythm (e.g. waltz, blues, tango. etc.) or at least that drum-

related events are one of the key aspects on genre identi�cation by humans. We

evaluate the mid-level percussion descriptors for genre and sub-genre classi�cation.

1In this context drum means the number of detected onsets that are labeled as bass drum, snare
or hi-hat
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We choose for the sub-genre evaluation �electronic� sub-genres because within this

group percussion seems to be one key aspect for class discrimination.

In a yet unpublished paper Gómez and Herrera [19] present an algorithm for

automatic discrimination between Western and non-Western music traditions. This

could also be an interesting task to evaluate percussion descriptors, since percussion

types, and tonal features, seem to be the most relevant di�erences between both

music traditions. Within tempo-related application we will evaluate our descriptors

to estimate the danceability of musical tracks (i.e. the easiness with which one can

dance to it [59]).

7.1.1 Units of study

• For genre classi�cation we use an in-house database of 30 seconds excerpts

extracted from 350 songs equally distributed in 7 genres: classic, dance, hip-

hop, jazz, pop, rhythm'n blues and rock.

• For electronic genre classi�cation we perform our experiments on an in-house

database of 270 songs (30 seconds length each) equally distributed among the

following genres: ambient, drum'n bass, house, techno and trance.

• For danceability tests we use an in-house database of 374 song excerpts of

30 seconds equally distributed in three classes (non-danceable, mid-danceable

and high-danceable).

• For Western / non-Western experiments we use an in-house database of 139

Western songs from 16 genres including classical, jazz, rock, pop, religious,

hip-hop, etc. and 139 non-Western songs including songs from Africa, Arabian

countries, central Asia, China, Japan and Java.
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7.2 Genre classi�cation

7.2.1 Methodology:

1. Compute, for every song on the database, the mean value of a set of �clas-

sic� descriptors to be used as baseline for the evaluation. The list of these

descriptors is as follows: barkbands, barkbands kurtosis, barkbands skewness,

barkbands spread, spectral centroid, spectral crest, spectral decrease, spectral

dissonance, spectral energy, spectral energyband high, spectral energyband

low, spectral energyband middle high, spectral energyband middle low, spec-

tral �atness db, spectral �ux, spectral hfc, spectral kurtosis, MFCC, spectral

skewness, spectral spread and temporal zerocrossingrate (see section 2.3 for an

explanation on these descriptors). We call this set of 60 descriptors as �timbral

descriptors�.

2. Compute the mid-level percussion descriptors on the same database (17 de-

scriptors)

3. Determine the �best� classi�cation values by performing a grid search on the

parameters of the SVM classi�cation algorithm for �timbral�, �percussion� and

�timbral+percussion� descriptors 2

4. Evaluate the relevance of the mid-level percussion descriptors in the classi�-

cation process.

5. Complement the analysis by computing two feature selection algorithms for the

�timbral+percussion� database: CFS and reliefF. Evaluate the list of selected

descriptors to document the presence, or absence, of the percussion descriptors

within the selected features.

6. Finally, select the best percussion descriptors (by CFS in 10-fold). Apply an

2This database is obtained by combining the descriptors of the two previous databases resulting
in a set of 77 descriptors.
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Expectation Maximization (EM)3 clustering algorithm to automatically group

the songs into clusters. The main idea behind this experiment is to evaluate the

usefulness of the percussion descriptors to form homogeneous and meaningful

groups of songs. If this happens it could illustrate the capability of these new

descriptors to be used to browse and recommend songs.

7.2.2 Results and Discussion

The genre classi�cation results can be seen in table 7.1 and �gure 7.1. From these

results it is interesting to notice that by using the percussion descriptors only, good

discrimination rates can be achieved for classic (81.8 %), rock, dance and hip-hop

(about 60%). The overall classi�cation for the percussion-only data set is about 12 %

below �timbral� descriptors. When combining �timbral� and �percussion� descriptors

a small improvement in the overall result is observed (+2.1%). It is worth notice

that big improvements are produced in dance (+12.7 %) and pop (+15 %) results,

whereas results for rock and rhythm'n blues decrease 5.6 % and 4.4 % each.

The best accuracy results for the last MIREX 2007 genre contest 4 was 68.29 %

for 10 genre classi�cation task. While they are not exactly the same, the accuracy

measure from this contest can be compared with the precision measure in our study.

In this context we can say that our results, informally speaking, are comparable

with the ones obtained in MIREX 2007. Our overall precision result is 2.8 % above

the best MIREX result but we have 3 genres less to classify.

3The EM algorithm is an iterative method for computing maximum-likelihood estimates on in-
complete data. Every iterative step alternates between an expectation step, computing an expecta-
tion of the likelihood by including the unseen variables as if they were known, and a maximization
step, computing the maximum likelihood estimates of the parameters by maximizing the expected
likelihood found on the previous step (see [1] for further information).

4see MIREX url: http://www.music-ir.org/mirex/2007/index.php/Audio_Genre_

Classification_Results
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. Timbral Percussion Timbral + Percussion

Genre prec. recall F prec. recall F prec. recall F

classic 0.818 0.900 0.857 0.750 0.900 0.818 0.863 0.880 0.871

dance 0.623 0.760 0.685 0.611 0.660 0.635 0.804 0.820 0.812

hip-hop 0.755 0.740 0.747 0.571 0.640 0.604 0.709 0.780 0.743

jazz 0.805 0.674 0.733 0.542 0.531 0.536 0.667 0.735 0.699

pop 0.489 0.460 0.474 0.439 0.500 0.467 0.576 0.680 0.624

rhythm'n blues 0.449 0.440 0.444 0.357 0.200 0.256 0.450 0.360 0.400

rock 0.915 0.860 0.887 0.674 0.620 0.646 0.949 0.740 0.831

Average 0.694 0.691 0.690 0.563 0.579 0.566 0.717 0.714 0.711

Table 7.1: Genre classi�cation results for every set of descriptors (LibSVM grid search).
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Figure 7.1: Genre classi�cation results per genre and descriptor set.

In table 7.2 the output of two features selection algorithms can be seen. The �rst

column corresponds to features selected more than 5 times by the 10-fold CFS algo-

rithm. The second column re�ects how many times the feature have been selected

for the CFS algorithm. The maximum number of folds is 10, that means that the

feature was choose every trial. The third column corresponds to the ranking of the
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best 20 features selected by the reliefF algorithm. We observe that among the 17

computed percussion descriptors 6 are selected by the CFS algorithm as informative

features and 8 are selected by the ReliefF algorithm. It is worth noticing that for

this latter algorithm the 3 best features are percussion features.

CFS ReliefF

Descriptor # folds Descriptor

bass_drum/min 10 bass_drum/total

barkbands_0 10 bass_drum/min

barkbands_16 10 drum/total

barkbands_18 10 spectral_�ux

barkbands_24 10 drum/min

mfcc_0 10 spectral_dissonance

mfcc_2 10 mfcc_0

spectral_dissonance 10 snare/total

spectral_�ux 10 hihat/total

�rst_peak_iii_snare 9 hihat/min

barkbands_1 9 barkbands_spread

barkbands_5 9 barkbands_20

mfcc_3 9 snare/min

snare/min 7 spectral_energyband_high

barkbands_15 7 mfcc_2

bass_drum/total 6 spectral_hfc

bass_drum/snare 5 barkbands_1

hihat/min 5 barkbands_21

barkbands_kurtosis 5 spectral_energyband_low

mfcc_1 5 mfcc_1

mfcc_5 5

spectral_crest 5

Table 7.2: Selected features for genre classi�cation.

Clustering

As mentioned in the methodology section we perform a clustering experiment on

the genre database using only percussion descriptors. The EM algorithm produces

6 clusters. The genre distribution among each cluster can be seen in table 7.3 and

�gure 7.2.
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Genre Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total

classic 0 1 0 15 34 0 50

dance 2 8 23 3 0 14 50

hip-hop 9 6 2 2 0 31 50

jazz 6 13 0 21 9 1 50

pop 2 25 8 3 0 12 50

r'nb 6 14 5 7 0 18 50

rock 13 12 4 2 0 19 50

Total 38 79 42 53 43 95 350

Table 7.3: Clustering genre database with percussion descriptors (EM - CFS60).
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Figure 7.2: Clustering plot: 5 clusters produced by the EM algorithm.

We observe two clusters that are formed mainly by one musical genre namely

cluster 2, majority of dance and cluster 4 with majority of classic. Cluster number

3 has the rest of classic songs together with jazz songs. By listening cluster 3 and 4

we can say that are pretty much equals formed by mainly un-percussive songs. The

majority of jazz songs within these clusters are played with �brushes� and the two

hip-hop songs in cluster 3 are fragments with voice only sounds. Also by listening,

we can refer to cluster 0 as having drum sounds with more snares and hi-hats and
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cluster 5 as having more presence of bass drum events. Cluster 1 is hard to categorize

since no characteristic sound nor genre can be detected except for being the cluster

with majority of pop songs.

7.3 Electronic sub-genre classi�cation:

7.3.1 Methodology

1. Compute the �timbral� set of descriptors (see subsection 7.2.1).

2. Compute the �percussion� descriptors (see subsection 7.2.1).

3. Use a decision tree algorithm with the same parameters (MinNumObj = 5 %)

to evaluate the classi�cation performance for the �timbral�, �percussion� and

�timbral+percussion� sets of descriptors.

4. To complement the analysis compute two feature selection algorithms for the

�timbral+percussion� database: CFS and reliefF. The list of selected descrip-

tors is then evaluated to document the presence, or absence, of the percussion

descriptors within the selected features.

7.3.2 Results and Discussion

Results for �electronic� sub-genre classi�cation are depicted in table 7.4. In this

experiment we observe that classi�cation results obtained by percussion descriptors

only outperform �timbral� descriptors by 7.5 %5. The combination of �timbral� and

�percussion� descriptors has no signi�cant di�erence with results from percussion-

only descriptors in the overall classi�cation result. But this combination seems to

output more balanced results among categories. The number of selected descriptors

for every decision tree is as follow: 10 for �timbral�, 12 for �percussion� and 10 for

�timbral+percussion�.

5Refer to appendix A.4 to see the resulted decision tree.
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C4.5 Timbral Percussion (Timbral + Percussion)

Genre prec. recall F prec. recall F prec. recall F

ambient 0.508 0.556 0.531 0.394 0.481 0.433 0.625 0.556 0.588

drum'n bass 0.438 0.519 0.475 0.593 0.648 0.619 0.531 0.630 0.576

house 0.196 0.204 0.200 0.483 0.519 0.500 0.397 0.463 0.427

techno 0.388 0.352 0.369 0.393 0.204 0.269 0.413 0.352 0.380

trance 0.500 0.389 0.438 0.542 0.593 0.566 0.449 0.407 0.427

Average 0.406 0.404 0.403 0.481 0.489 0.478 0.483 0.482 0.480

Table 7.4: Electronic sub-genre classi�cation.

For this experiment we also perform the feature selection test done in the �genre�

evaluation. For the CFS algorithm only 8 features were selected more than 5 times.

Within this 8 features 3 come from the percussion set namely: �rst_peak_iii_hi-

hat, second_peak_iii_bass_drum and �rst_peak_iii_bass_drum. For the reliefF

algorithm 7 percussion features remain within the 20 best being bass_drum/min

ranked in the second place.

By personal communication Sesmero provide us with yet unpublished results

from electronic sub-genre classi�cation. The author evaluates 250 songs, splitted

in the same �ve sub-genres as in the previous experiment, with several state-of-

the-art descriptors (including rhythmic ones) arriving an overall F-measure of 0.907

(Sesmero J. pers. comm). We take 170 songs from Sesmero's database and add

our percussion-related descriptors to the state-of-the-art descriptor-set selected by

the author. After performing a grid search for SVM parameters we obtain almost

the same results (an overall F-measure of 0.894), detecting an improvement on

performance for �ambient�, �drum'n bass� and �trance� but a decreasing performance

for �techno� and �house�.

7.4 Danceability estimation:

7.4.1 Methodology

1. Add to the �timbral� set of descriptors an estimation on the beats per minute

(bpm) of the song. We compute bpm_value and bpm_estimates (mean, vari-

ance, minimum and maximum) using an in-house implementation of the beat
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tracking algorithm described in [7]. We call this database �timbral+bpm�

2. Compute the mid-level percussion descriptors.

3. Determine the �best� classi�cation values by performing a grid search on the

parameters of the SVM classi�cation algorithm for �timbral+bpm�, �percus-

sion� and �timbral+bpm+percussion� descriptors.

4. Evaluate the relevance of the mid-level percussion descriptors in the classi�-

cation process.

7.4.2 Results and Discussion

Results for Danceability tests are shown in table 7.5 and �gure 7.3. From these re-

sults we can derive that �percussion� descriptors perform better than �timbral+bpm�

and even than �timbral+bpm+percussion�. Percussion-only descriptors outperform

by 8.9 % and 7.4 % �timbral+bpm� and �timbral+bpm+percussion� respectively,

obtaining better results in all three categories. It is interesting to notice that per-

cussion descriptors also outperform Streich and Herrera [59] results which achieve

an accuracy of 61.78% in classi�ng 225 songs into the same three categories (i.e

Non-danceable, Mid-danceable and High-danceable) by using Detrended �uctuation

analysis (DFA)-derived features.

LibSVM grid p. Timbral + bpm Percussion Timbral+bpm+Percus.

Class prec. recall F prec. recall F prec. recall F

Non-danceable 0,609 0,602 0,606 0,747 0,705 0,725 0,654 0,580 0,614

Mid-danceable 0,452 0,477 0,464 0,529 0,614 0,568 0,439 0,534 0,482

High-danceable 0,607 0,580 0,593 0,671 0,602 0,635 0,646 0,580 0,611

Average 0,556 0,553 0,554 0,649 0,640 0,643 0,580 0,564 0,569

Table 7.5: Danceability classi�cation.
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Figure 7.3: Danceability classi�cation results.

7.5 Western and non-Western classi�cation:

7.5.1 Methodology

1. Use the same experiment set-up as in genre classi�cation (see subsection 7.2.1).

7.5.2 Results and Discussion

Finally we try to automatically classify Western vs. non-Western music. The re-

sults for these experiments are shown in table 7.6 and �gure 7.4. Here we observe

an almost linear increment in the classi�cation rates starting by �timbral� descrip-

tors with 78.2 % followed by �percussion� descriptors with 81.6 % (+3.4 %) and

�timbral+percussion� with 84.4 % (+2.8 % from �percussion�). It seems clear that

adding percussion descriptors help in the process of Western / non-Western song dis-

crimination. Is is also interesting to notice that, as expected, classi�cation results

for non-Western music are much better when percussion descriptors are used (more
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than 8 % above �timbral�). Since this experiment is inspired on an �in press� paper

by Gomez and Herrera [19] we also compare our results with those obtained by their

work. They classify over 1,500 pieces by using tonal features (with SVM) achieving

F-measure values of 86.9 % and 86.1 % for Western and non-Western respectively.

As can be seen in table 7.6 we obtain, by using �timbral+percussion� descriptors,

F-measure values of 85.6 and 83.3 for Western and non-Western respectively.

LibSVM grid p. Timbral Percussion Timbral + Percussion

Class prec. recall F prec. recall F prec. recall F

Western 0,717 0,950 0,817 0,867 0,748 0,803 0,800 0,921 0,856

non-Western 0,926 0,626 0,747 0,779 0,885 0,828 0,907 0,770 0,833

Average 0,821 0,788 0,782 0,823 0,817 0,816 0,853 0,845 0,844

Table 7.6: Western / non-Western classi�cation.
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Figure 7.4: Western / non-Western classi�cation results.

As in previous experiments we also evaluate the percussion descriptors by per-

forming two feature selection algorithm namely CFS and reliefF. The list of selected

features can be seen in table 7.7. From the output of the CFS algorithm we can ob-
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serve that 3 percussion descriptors were selected in all 10 evaluation-rounds. From

the 20 best features selected by the reliefF algorithm we can see that the 4 best

features are all percussion features.

CFS ReliefF

Descriptor # folds Descriptor

barkbands_22 10 bass_drum/total

barkbands_25 10 bass_drum/min

mfcc_0 10 hihat/total

mfcc_3 10 hihat/total

mfcc_4 10 spectral_�ux

mfcc_11 10 mfcc_3

mfcc_12 10 drum/min

barkbands_skewness 10 mfcc_2

spectral_�ux 10 hihat/min

spectral_skewness 10 mfcc_0

spectral_crest 10 mfcc_9

bass_drum/total 10 spectral_�atness_db

bass_drum/min 10 spectral_dissonance

drum/total 10 mfcc_8

barkbands_8 9 temporal_zerocrossingrate

barkbands_13 9 mfcc_4

mfcc_6 9 mfcc_1

barkbands_0 8 barkbands_22

barkbands_5 8 snare/min

mfcc_2 8 spectral_crest

Table 7.7: Selected features for genre classi�cation.

7.6 Main Conclusions

In this chapter we explore the usefulness of a set of mid-level percussion descrip-

tors. These preliminary tests suggest that these mid-level percussion descriptors can

help in several MIR tasks such as genre classi�cation, danceability estimation and

Western / non-Western classi�cation.

For genre estimation the percussion descriptors give the impression to help in

the classi�cation of some genres such as �dance� and �pop�.

The results extracted from the clustering experiment suggest that these percus-

sion descriptors could be used to retrieve similar songs from the point of view of their
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rhythm or �type� of percussion, e.g. songs containing a lot of bass drum sounds, like

the ones belonging to cluster 5 in the test.

The classi�cation of sub-genres can also take advantage of these new descriptors.

The �electronic� sub-genre classi�cation tests suggest that again by using these de-

scriptors we can achieve better results than using �timbral� descriptors. Notice the

case of the �drum'n bass� sub-genre where almost 15 % of improvement is obtained

by using percussion descriptors only.

The case of danceability estimation seems to be an area where these mid-level

descriptors o�er big help in the classi�cation task, obtaining almost 9 % of improve-

ment by using them only6.

For Western / non-Western song discrimination we obtain an improvement of 8.6

% in the classi�cation of non-Western music by combining �timbral� and �percussion�

descriptors. Since Gomez and Herrera also achieve more than 80 % of accuracy on

discriminating Western and non-Western music [19] by using tonal features, it would

be interesting to evaluate the performance of our percussion descriptors combined

with tonal features,.

These experiments, although exploratory, o�er a good starting point for stimu-

lating the use of mid-level percussion related descriptors. It seems clear that these

descriptors o�er useful information that complements the one provided by classic

�spectral� and �timbre� descriptors.

6We also perform some exploratory experiments on beat detection, i.e. trying to determine the
beat per minute (bpm) measure of a song, since a priori this is an area where these percussion-
related descriptors could help to improve state of the art algorithms. Unfortunately we could
not report any conclusion on this subject yet. More experimentation is needed, and probably
new percussion descriptors to retrieve in a more consistent way time-related information for every
percussion instrument.



Chapter 8

Conclusions and further work

8.1 Conclusions

Within the present thesis we have conducted percussion related experiments in order

to detect and describe percussive events in polyphonic music. Due to their impor-

tance in several music styles we decide to focus on the problem of bass drum, snare

drum and hi-hat detection and description.

Firstly we build, by combining publicly available databases, a large set of songs

(more than 100 songs and more than 10 genres) and evaluate their representativeness

by cross-database classi�cation experiments and by comparing normalization param-

eters. At the end of these experiments we conclude that the evaluated database is

a good option, in terms of variability and representativeness, to be used as training

set.

Secondly we present and evaluate object-level temporal evolution descriptors to

be computed on every frame-level descriptor. After several experiments we conclude

that adding these descriptors to classic BOF descriptors leads to an improvement in

the classi�cation results of about 3.6 % on overall classi�cation results. This is an

interesting outcome provided that we are dealing with �near ceiling� performances.

The best classi�cation results (about 80 %) are obtained by using support vector

machines (SVM) with a relative small sub-set of descriptors. Within these selected

descriptors more than a half come from the object-level temporal descriptors. We

also observe that Bark band related descriptors are always more than 50 % of these

79
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selected features.

Thirdly we evaluate the performance of a whole automatic drum transcription

system that uses the previously de�ned SVM models and a state of the art onset

detector to transcribe percussion events in polyphonic music.

From the transcription results we derive that our relatively simple algorithm can

be placed among the top ranked ones, even though there is still a lot of room for im-

provement. We relate these good results to the presence of well de�ned descriptors,

specially the temporal ones, and a good training database.

After performing �relaxed� transcription experiments we realize that our system

can detect the total number of percussion events within a song with an overall

accuracy of 77.1 %. These results encourage us to investigate if useful percussion

descriptors could be computed, at a song-wise level, from the transcription output

of this system.

Finally we present 17 mid-level percussion descriptors to evaluate their useful-

ness among MIR tasks in where we suspect these descriptors could provide useful

information. These preliminary results tests suggest that mid-level percussion de-

scriptors can help in several MIR tasks such as genre classi�cation, danceability

estimation and Western / non-Western classi�cation.

For genre estimation the presented descriptors seem to improve the classi�ca-

tion results for some genres (such as �dance� and �pop�) and some sub-genres (like

�ambient� and �drum'n bass�). The clustering results suggest that these percussion

descriptors could be used to retrieve similar songs from the point of view of their

rhythm or percussion type.

The tests on �danceability� estimation re�ect that this could be an area where

the percussion descriptors o�er big help. We obtain classi�cation results of about

64 % for three-class experiments. This result, obtained from percussion descriptors

only, represents almost 9 % of improvement than using general timbre plus bpm

descriptors.

For Western / non-Western song discrimination we obtain an improvement of 8.6

% in the classi�cation of non-Western music by combining timbre and percussion

descriptors.
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These experiments o�er a good starting point for stimulating the use of mid-level

percussion related descriptors into MIR tasks. It seems clear that these descriptors

provide useful information that complements the one obtained by classic descriptors.

At the end of this work we strongly believe that to add object-level temporal

descriptors to a traditional BOF set, and to take a �descriptionist� approach is an

excellent path to derive useful information from polyphonic music. We humbly

encourage other authors to dive into these waters.

8.2 Further work

Several things can be done in order to improve the present percussion description

system like: to train more percussion instruments, to develop instrument-speci�c

onset detectors, to derive new object-level temporal descriptors, to evaluate other

machine learning algorithms or to use localized models like in [68] and [52]. One

interesting path could be to add �knowledge� to the system by e.g. sequence mod-

eling [16] or some other heuristic information.

It could be important to evaluate the in�uence of pre-processing steps like har-

monic/noise decomposition, drum enhancement by source separation or by simple

band-�ltering of the input signal.

We believe that more object-level temporal descriptors must be evaluated beyond

those described in this thesis e.g. non-linear time series related descriptors like the

mean and the standard deviation of the distances and angles in the phase space [37].

Finally we see as an interesting area of development the use of techniques de-

picted in this thesis to detect and describe more general sound objects (i.e. sounds

that share some characteristic but are not necessarily produced by the same type of

instrument) going beyond instrument-level sounds to focus on perceptually related

sound events.
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Appendix A

Appendices per chapter

A.1 Chapter 3 appendix

Table A.1: Common label dictionary for database compatibilization.

Original labels

MAMI ENST_wet Sandvold's Adopted Label Description

BD bd Kick, Kick+Cymbal bd Bass drum

SD sd Snare, Snare+Cymbal sd Snare drum

OH, CH chh, ohh �- hh Hi-hat

OH, CH, RC, chh, ohh, rc, Cymbal, Kick+Cymbal, cy Cymbal

CC, SC ch, cr, c, spl Snare+Cymbal

Table A.1: Original and adopted labels for database compatibility.

A.2 Chapter 4 appendix:

Instances (after equalization) from MIX (ENST_wet+MAMI) database can be seen

in table A.2. Figure A.1 shows the genre distribution within this new database

Instrument Instances
bass_drum 4,011

snare 2,857
hi-hat 5,854
cymbals 5,254

Table A.2: MIX database instances (after equalization).
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MIX db: Songs per genre

Rock; 26

Metal; 9

Funk; 9

Jazz; 13

Shuffle/Blues; 4

Country; 3

Disco; 3

Grunge; 3

Soul; 9

World; 16

Electronic; 6

Pop; 5

Hip-hop; 6 Classic; 0

Figure A.1: MIX database: genre distribution.

A.3 Chapter 5 appendix

Selected features from 90%MIX_BOF+TDESC

• Bass drums:

spectral-pitch-salience-centroid barkbands-slope-1 barkbands-slope-2 barkbands-skewness-2

barkbands-skewness-3 barkbands-decay-2 barkbands-max-0 barkbands-max-2 barkbands-max-5

barkbands-norm-decay-1 barkbands-norm-decay-25 barkbands-t-skewness-1 barkbands-t-

skewness-2 barkbands-norm-attack-0 barkbands-norm-attack-1 barkbands-norm-attack-2

barkbands-centroid-26 barkbands-var-0 barkbands-var-1 barkbands-var-2 barkbands-t-kurtosis-

0 barkbands-t-kurtosis-1 barkbands-kurtosis-2 spectral-energy-slope-0 spectral-�ux-slope-0

spectral-�ux-max-norm-pos-0 spectral-�ux-min-0 spectral-�ux-centroid-0 spectral-�ux-t-

skewness-0 spectral-�ux-mean-0 spectral-�atness-db-decay-0 spectral-energyband-low-norm-

attack-0 spectral-energyband-low-t-skewness-0 barkbands-ratio-slope-2 barkbands-ratio-slope-19

barkbands-ratio-slope-21 barkbands-ratio-attack-0 barkbands-ratio-decay-1 barkbands-ratio-

decay-21 barkbands-ratio-var-0 barkbands-ratio-var-1 barkbands-ratio-var-2 barkbands-ratio-

max-0 barkbands-ratio-max-4 barkbands-ratio-norm-attack-0 barkbands-ratio-norm-attack-1

barkbands-ratio-t-skewness-1 MFCC-max-4 MFCC-max-7 MFCC-max-8 MFCC-norm-attack-11

spectral-rms-kurtosis-0 hpcp-var-21 hpcp-var-29 hpcp-var-30 hpcp-centroid-0.
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• Snare drums:

temporal-lpc-var-8 temporal-lpc-var-9 temporal-lpc-max-9 temporal-lpc-skewness-1 temporal-

lpc-min-6 barkbands-slope-4 barkbands-slope-5 barkbands-slope-7 barkbands-slope-9 barkbands-

slope-14 barkbands-slope-19 barkbands-skewness-4 barkbands-skewness-11 barkbands-skewness-22

barkbands-min-22 barkbands-min-23 barkbands-min-25 barkbands-max-4 barkbands-max-

5 barkbands-decay-4 barkbands-norm-attack-4 barkbands-t-skewness-4 barkbands-attack-4

barkbands-centroid-4 barkbands-var-4 barkbands-var-5 barkbands-t-kurtosis-4 barkbands-t-

kurtosis-20 barkbands-t-kurtosis-22 barkbands-kurtosis-4 barkbands-kurtosis-5 spectral-pitch-

slope-0 spectral-�atness-db-min-0 barkbands-ratio-slope-4 barkbands-ratio-max-norm-pos-4

barkbands-ratio-min-4 barkbands-ratio-max-4 barkbands-ratio-max-5 barkbands-ratio-max-

12 barkbands-ratio-decay-4 barkbands-ratio-norm-attack-4 barkbands-ratio-norm-attack-21

barkbands-ratio-min-norm-pos-1 barkbands-ratio-min-norm-pos-4 barkbands-ratio-attack-4

barkbands-ratio-attack-22 barkbands-ratio-centroid-2 barkbands-ratio-centroid-4 barkbands-

ratio-t-skewness-4 barkbands-ratio-var-3 barkbands-ratio-var-4 barkbands-ratio-var-5 barkbands-

ratio-mean-4 barkbands-ratio-mean-21 barkbands-ratio-mean-22 MFCC-slope-0 MFCC-min-6

MFCC-min-8 MFCC-var-2 MFCC-max-4 MFCC-max-6 MFCC-max-8 MFCC-min-norm-pos-0

MFCC-mean-6 spectral-energyband-middle-low-slope-0 spectral-energyband-middle-low-skewness-

0 spectral-energyband-middle-low-centroid-0 spectral-energyband-middle-low-t-skewness-0

spectral-hfc-t-kurtosis-0 MFCC-ratio-max-4 MFCC-ratio-attack-1 MFCC-ratio-t-kurtosis-1

hpcp-slope-3 hpcp-t-kurtosis-24 hpcp-min-0 hpcp-min-13 hpcp-mean-22.

• Hi-hats:

temporal-lpc-slope-2 temporal-lpc-skewness-3 temporal-lpc-centroid-4 temporal-lpc-centroid-6

temporal-lpc-min-4 temporal-lpc-min-6 temporal-lpc-max-7 temporal-lpc-t-kurtosis-3 temporal-

lpc-t-kurtosis-4 temporal-lpc-mean-9 barkbands-slope-25 barkbands-slope-26 barkbands-max-

norm-pos-26 barkbands-decay-26 barkbands-norm-decay-26 barkbands-norm-attack-23 barkbands-

min-norm-pos-26 barkbands-attack-25 barkbands-centroid-26 barkbands-t-skewness-26 barkbands-

var-26 spectral-skewness-mean-0 spectral-�ux-t-skewness-0 spectral-�atness-db-min-0 barkbands-

ratio-slope-26 barkbands-ratio-max-norm-pos-26 barkbands-ratio-min-19 barkbands-ratio-max-0

barkbands-ratio-max-2 barkbands-ratio-max-9 barkbands-ratio-min-norm-pos-0 barkbands-ratio-

min-norm-pos-26 barkbands-ratio-centroid-26 barkbands-ratio-t-skewness-26 barkbands-ratio-t-

kurtosis-26 MFCC-slope-3 MFCC-min-3 MFCC-ratio-norm-attack-1.
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• Cymbals:

temporal-lpc-slope-3 temporal-lpc-slope-4 temporal-lpc-slope-7 temporal-lpc-skewness-1 temporal-

lpc-norm-attack-7 temporal-lpc-t-kurtosis-3 temporal-lpc-t-kurtosis-4 temporal-lpc-t-skewness-2

temporal-lpc-centroid-3 temporal-lpc-centroid-4 temporal-lpc-centroid-5 temporal-lpc-centroid-

6 temporal-lpc-mean-6 temporal-lpc-mean-8 MFCC-slope-0 MFCC-min-3 MFCC-mean-

8 barkbands-slope-25 barkbands-slope-26 barkbands-max-25 barkbands-min-norm-pos-25

barkbands-min-norm-pos-26 barkbands-max-norm-pos-26 barkbands-decay-25 barkbands-decay-

26 barkbands-norm-decay-25 barkbands-t-skewness-11 barkbands-t-skewness-23 barkbands-t-

skewness-24 barkbands-t-skewness-25 barkbands-t-skewness-26 barkbands-centroid-26 barkbands-

var-24 barkbands-var-25 barkbands-var-26 barkbands-mean-25 spectral-pitch-salience-max-0

spectral-rms-norm-attack-0 spectral-pitch-instantaneous-con�dence-centroid-0 spectral-�ux-

slope-0 spectral-�ux-t-skewness-0 barkbands-ratio-slope-26 barkbands-ratio-min-norm-pos-0

barkbands-ratio-min-norm-pos-26 barkbands-ratio-max-norm-pos-26 barkbands-ratio-min-

19 barkbands-ratio-attack-26 barkbands-ratio-centroid-26 spectral-dissonance-norm-decay-0

spectral-crest-mean-0 hpcp-centroid-34.

A.4 Chapter 7 appendix:

A.4.1 Genre classi�cation

Electronic:

Decision tree for �electronic� sub-genre classi�cation (�gure A.2)
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Figure A.2: Decision tree for �electronic� sub-genre classi�cation using percussion descrip-
tors only.




