
Dynamic Patches for Live Musical Performance
Martin Kaltenbrunner

Music Technology Group, IUA
Universitat Pompeu Fabra

Ocata 1, 08003 Barcelona, Spain
+34 93 542 2104

mkalten@iua.upf.es

Günter Geiger
Music Technology Group, IUA

Universitat Pompeu Fabra
Ocata 1, 08003 Barcelona, Spain

+34 93 542 2104
ggeiger@iua.upf.es

Sergi Jordà
Music Technology Group, IUA

Universitat Pompeu Fabra
Ocata 1, 08003 Barcelona, Spain

+34 93 542 2104
sjorda@iua.upf.es

ABSTRACT
This article reflects the current state of the reacTable* project,
an electronic music instrument with a tangible table-based
interface, which is currently under development at the
Audiovisual Institute at the Universitat Pompeu Fabra. In this
paper we are focussing on the issue of Dynamic Patching,
which is a particular and unique aspect of the sound synthesis
and control paradigms of the reacTable*. Unlike common
visual programming languages for sound synthesis, which
conceptually separate the patch building process from the
actual musical performance, the reacTable* combines the
construction and playing of the instrument in a unique way.
The tangible interface allows direct manipulation control over
any of the used building blocks, which physically represent
the whole synthesizer function.

Keywords
Tangible Interfaces, Musical Instrument, Sound Synthesis,
Visual Programming, Dynamic Patching

1. INTRODUCTION
The reacTable* is thought to be an electro-acoustic musical
instrument in the tradition of Jorda’s FMOL synthesizer [1].
The main idea is the creation of a tangible electronic musical
instrument that allows expressive collaborative live
performances for professional musicians without the limits of
many screen-based interfaces for electronic music. As its name
suggests the reacTable* is a table-based instrument; it can be
played by manipulating a set of objects that are distributed on
top of the table surface. Each of these objects has its dedicated
function for the generation, modification or control of sound.
Bringing these objects into proximity with each other
constructs and plays the instrument at the same time. While
the table is equipped with sensors for the identification and
tracking of the objects, the players themselves do not (and
must not) have to wear any controller devices. In addition to
the sound which is obviously produced while playing, the
reacTable* also provides additional visual feedback by
projecting a visualisation of the sound-flow onto the table
surface. This creates a truly multi-modal musical experience
incorporating all possible senses. Due to the large dimension
of the instrument – a round table with a diameter of around
1.5m – the reacTable* is intentionally designed to be playable
by more than one person at a time. These collaborative aspects
will be taken even further by networking two or more
instruments allowing remote collaboration. For a more
detailed description of the various aspects of this instrument
see Sergi Jordà’s last year’s papers which introduced the
general reacTable* concept [2][3].

2. CURRENT STATE
During the first project phase we have been developing the
basic reacTable* concepts within a software prototype only,
simulating the tangible user interface component with a
graphical interface. This approach allowed the rapid
prototyping and the introduction of new synthesizer and
interaction elements without worrying about sensor and
hardware problems beforehand. In the second phase the GUI
simulation was replaced by an actual computer vision module,
which allowed the identification and tracking of objects using
simple visual markers. This has led to the construction of a
first tangible prototype, which also takes into account the
design of the physical objects; this topic related to the object-
to-sound mappings is discussed elsewhere in a more detailed
manner [4].

The current system was implemented in a completely modular
way, allowing the easy reuse or replacement of the four basic
functional components: a sensor module is tracking the state,
position and orientation of any object that is currently present
on the table. These raw sensor parameters are passed to the
central management component, which drives the two actual
synthesis components for the sonic and graphical feedback.
All these components are completely independent and are
communicating via a simple proprietary network protocol
(which we consider to upgrade to OpenSound Control [5]
compatibility if necessary). This separation allows the
execution on various different hardware platforms avoiding
eventual performance bottlenecks since each of these modules
actually requires quite a lot of computational resources.

In this paper we are mostly concentrating on the various
functions of the central management component, but first we
are going to provide a quick overview on the current
implementation state of the further components:

2.1 Computer Vision
The current tangible prototype is incorporating Costanza’s D-
touch vision engine [6], using simple visual symbols, which
can be easily printed and attached to the objects. This system
allows the tracking of the object’s position and orientation at
a reasonable frame-rate (7fps at 640x480 using a 1GHz
System). The recognition performance of this vision engine i s
relatively robust due to the concurrent development of the
marker symbols and the recognition algorithm. The apparent
drawback of this approach is the visibility of the markers,
which partly has been overcome by attaching them onto the
objects’ bottom side. We are also using back-vision in order to
avoid hand and body occlusion problems.

2.2 Sound Synthesis
The sound synthesis is currently implemented using
Puckette’s Pure Data visual sound programming language
[7][8]. Through its internal message system Pd can be fully
controlled from the outside; most operations that are
accessible through the user interface can be addressed by these
messages. We had to extend Pd to allow the disconnection of
objects through these internal messages. These changes
meanwhile found their way into the official Pd version.

The sound engine implements a large set of basic synthesis
and control components, which can be instantiated at startup
in any desirable number. During runtime this engine is
receiving simple control messages from the management unit
redefining the sound and control connections within this
network of processing objects.

The processing objects are higher level objects implemented
as abstractions, they are built using smaller low level units
that are available in Pd. Examples of audio objects are various
analog style oscillators, wave-table oscillators and granular
synthesis. Each of the tangible reacTable* objects has its
direct counterpart in an abstraction implemented with Pd.

2.3 Vision Synthesis
As Jordà pointed out in earlier presentations [2][3], visual

feedback is a fundamental component of the reacTable*. First
informal tests indeed show that this visual feedback i s
actually crucial for the playability of the instrument.

Central feature of this visual feedback is the visualization
of the sound-flow between the processing objects, basically a
representation of the waveform state at each object. In a similar
way we visualize the control messages and the object state. The
players can control the instrument by either manipulating the
objects themselves or the sound flow representation in
between. A simple gesture to illustrate this principle is the cut
or muting of a sound stream, which is done with a karate-style
hand gesture. We have been working on various concept
studies on the visualization of sound and control flow and
object activation auras. These will be made available as
various skins or visual themes, which can be chosen for an
individual session.

Similar to the camera setup, the visual feedback i s
projected from below to avoid disturbing hand and body
occlusions.

Figure 1: Dynamic Patch Visualization.

3. THE TANGIBLE INTERFACE
The central feature of the reacTable* is its object based

tangible interface, in which virtual synthesis building blocks
are represented by corresponding physical objects, which can
be directly manipulated by the performers.

3.1 Object Handling
A set of objects, which are made available on the table, can

be manipulated by the players in various ways: Once put onto
the table the objects are activated, the objects can be moved on
the table surface - bringing the objects in relation to each
other. The rotation angle of the object is tracked as well.

Most reacTable* objects are plain and passive, meaning
that they do not come with any cables, switches buttons or
whatsoever. The user also does not have to wear any special
sensor or controller equipment for the object handling; the
plain hands are the only necessary controller. This of course,
does not rule out the possibility of smart objects that
incorporate additional internal electronics in order to retrieve
some additional sensor data, coming from squeezing, bending
or bouncing them, like in the case of Weinberg’s Squeezables
[9]. In any case, this has to be achieved in a completely
transparent way, using wireless technology for example, so
that the performer can treat all objects in an equal way. A
rubber hose or a wooden toy snake, whose state could be either
determined by the computer vision or by using some bending
sensors like in the Sonic Banana [10], can serve as an advanced
controller producing multi-dimensional control data.

3.2 Gesture Control
The hands play an important role: They not only can

manipulate the reacTable* objects, they are treated as a super-
object themselves. We also track the position and state of the
hands in order to retrieve additional control data. A nice
example is the wave-table object, which simply can be
programmed by finger-painting a waveform close to it. This
painted waveform is “absorbed” by the object that starts
playing immediately. As already mentioned above, the hand
can also control the visual sound representation by cutting or
redirecting the sound flow.

4. DYNAMIC PATCHES

4.1 Object Types
The reacTable* objects can be generally categorized into

seven different functional groups: Generators, Audio Filters,
Controllers, Control Filters, Mixers, Clock synchronizers and
Containers. There are also some exceptions that do not fit
within any of these categories.

• Generators are sound sources that can produce various types
of synthesized or sample based sound. They have an audio
output and various control inputs.

• Audio Filters can modify incoming sound based on their
internal algorithms, which can range from a simple low-pass
filter to any possible sound effect. Filters have generally one
or two sound inputs and a sound output as well as several
inputs for control.

Control inputs permit the constant modification of the object
parameters. In the reacTable*, parameters for all kinds of

objects can be modified either by changing the physical object
spatial properties (e.g. position, orientation, distance to the
next object, angle to the next object, distance to the center,
angle to the center, etc.), in some cases even its morphological
properties (e.g. bending, shape…), or by connecting control
data flows to their control inputs. These data flows are
generated by a third type of objects, the Controllers.

• Contro l l e r s generally produce their control data by
algorithmic generation, which include simple low frequency
oscillators up to complex chaotic or fractal generators. Like
in any other object, their respective parameters (e.g.
frequency and range in a low frequency oscillator) also
depend on the spatial properties of the object, and can be
permanently modified. Controllers do not yet have inputs
but we plan to implement this feature soon. With some
exceptions, controller output is generally adimensional,
which means that the effect of a controller depends on the
control input it connects to.

• Control filters process control data. They have a control
input and a control output, and unlike regular controllers,
their output can sometimes be dimensional; the output
values of a harmonizer or a chord generator, for example, are
always mapped to pitch.

• The Mixer object can take various sound streams as an input
and produces a single output stream. Inverted Mixers
(Splitters) split a single sound into multiple output streams.

• Clock synchronisers introduce a higher hierarchy; they can
influence several objects on their proximity at once and in
several ways, like sending synchronised triggers or
correcting low frequencies in order to match a given
pulsation. Clock synchronisers have one fundamental
parameter, tempo (they also have tempo subdivision), which
can be modified by repeatedly hitting the object.

• Finally there are the higher-level container objects, which
virtually can contain a pre-built set of sub-patches, allowing
the construction of more complex sound structures.

4.2 Connection Rules
Dynamic patching does not require the user to explicitly

connect the objects. We defined a simple set of rules, which
automatically connect and disconnect objects. As mentioned
above all objects have a certain number of two different in-
output connectors: Sound and Control. Based on a simple
distance rule, each object checks its neighborhood for objects,
which can provide both compatible and available ports. It will
therefore always choose the closest available object. We are
currently working on some additional connection rules, such
as the introduction of pseudo-physical forces like “magnetic
fields”.

The reacTable* connection paradigm produces a highly
dynamic environment. Moving an object around the table
surface permanently interferes and alters existing connections,
creating extremely variable synthesizer morphologies. In order
to avoid this not always desirable destructive behavior we
have introduced two features. Lifting an object from the table
surface immediately deactivates it and it ceases to interfere
with nearby objects. Additionally, we introduced an explicit
linking gesture, which permanently links two objects.
Bringing two objects together so that they touch each other,
establishes a permanent link between both, which is only
broken when one of the two objects is lifted.

4.3 Building vs. Playing
Within traditional modular visual programming

synthesizers, there is a clear separation between building and
playing the patch (or instrument): There is an editing and an
execution mode. The editing is usually a lengthy development
process, which leads to a final and stable instrument patch,
which then during the execution mode is controlled on screen
or via any available controller device. The reacTable* has to be
built and played at the same time. Each piece has to be
constructed from scratch starting from an empty table (or from
a single snapshot which has been (re)constructed on the table
before the actual performance). This is a fundamental
characteristic of this instrument, which therefore always has to
evolve and change its setup. Building the instrument i s
equivalent to playing it and vice-versa, and remembering and
repeating the construction of a building process can be
compared to the reproduction of a musical score. This also
poses some conceptual constraints, which are difficult to
surpass.

4.4 The Container problem
As shown above, one could imagine some pre-built and

saved setups, but due to the physical nature of the instrument
this leads to certain problems. If we want to recall a previously
saved snapshot of the object arrangement on the table we have
basically two options: Project the previous object types and
positions onto to the table surface and wait until the performer
has re-arranged the objects in the correct way, and then
continue from the recorded point. We could also imagine that
the saved state continues to be only represented by non-
physical projected object representations, which of course
cannot be directly manipulated, but which would have at least
the same behavior as the physically present objects. The Music
Table [11] manages to overcome this problem with the
introduction of an additional controller object that is used to
manipulate these virtual objects.

A similar problem arises with the introduction of sub-
patches, a common technique in visual programming
languages. For recovering and reusing pre-constructed setups,
we have devised a container object, which can embed any
portion of the reacTable*. We are currently working on a
gesture (drawing a circle around a certain table region and
point to an available container object), which will allow to
virtualize and save parts of the current setup. Although this i s
intuitive and simple enough, we still will have to get rid of the
now deactivated physical objects that remain on the table.

5. SOME HISTORICAL BACKGROUND
Several tangible interfaces and systems have been

designed with the purpose of taking advantage of the richness
of multimodal human senses and skills developed through our
lifetime of interaction with the physical world [12]. Some of
them like the SmallFish [13], the Jam-O-Drum [14][15], the
Musical Trinkets [16], Augmented Groove [17] or the
Audiopad [18] are indeed musical applications.

However, in the reacTable*, three additional concerns are
no less important than tangibility: modular synthesis, visual
programming and visual feedback. The concept of modular
synthesis goes back to the first synthesizers, both in the
digital (Max Mathew’s Music-N) [19] as in the analog domains
(with Robert Moog’s or Donald Buchla’s Voltage-controlled

synthesizers) [20]. Modular synthesis has largely proved its
unlimited sound potential and has been indeed the essential
element of all the visual programming environments for sound
and music, which started with MAX in the late 80s [21], and
have developed into PD [8], JMax or Reaktor, to mention a few.
As shown by all of these healthy environments, visual
programming constitutes nowadays the more flexible and
widespread paradigm for interactive music making. Visual
feedback on its turn, understood as a tool for maximizing the
player-instrument bandwidth, is a more recent concept that is
just starting to show its potential [2][3][22]. In that sense, the
reacTable* is probably the first system that seeks to
incorporate all of these paradigms, in order to build a flexible,
powerful and intuitive new music instrument.

6. FUTURE WORK
The work on the reacTable* is progressing constantly. We
already have a working prototype, which still differs though in
various aspects from the original concept. Much of the future
work will go towards three major directions: We are
considering the introduction of a dual sensor system, by
introducing RFID tags for the general object tracking.
Computer vision will be mainly used for the hand gesture
recognition and the tracking of untagged objects. A lot of the
ongoing work on the visual feedback is going to be included
into the working prototype in the near future and we have been
working intensively on the object design and mapping issues,
which will also be reflected in the final instrument design.

7. ACKNOWLEDGMENTS
We would like to thank the following people for their various
contributions to the current reacTable* prototype: Enrico
Costanza from Media Lab Europe, Dublin for providing his CV
engine. And all the other collaborators of our Interactive Sonic
Systems team at UPF: Alvaro Barbosa, Ruben Hinojosa, Ignasi
Casanovas, Carlos Manias and Xavier Rubio.

8. REFERENCES

[1] Jordà, S.: FMOL: Toward User-Friendly, Sophisticated
New Musical Instrument. Computer Music Journal.
Vol.26.3 pp 23-39, 2002.

[2] Jordà, S.: Sonigraphical Instruments: From FMOL to the
reacTable*. Proceedings of the 3rd Conference on New
Instruments for Musical Expression (NIME 03), Montreal,
Canada, 2003.

[3] Jordà, S.: Interactive Music Systems For Everyone:
Exploring Visual Feedback As a Way for Creating More
Intuitive, Efficient And Learnable Instruments”,
Proceedings of the Stockholm Music Acoustics
Conference (SMAC03), Stockholm, Sweden, 2003.

[4] Kaltenbrunner, M., O’Modrain, M.S., Costanza, E.: Object
Design for Tangible Musical Interface: Proceedings of the
Cost287-ConGAS Symposium on Gesture Interfaces for
Multimedia Systems, Leeds, UK 2004.

[5] Wright, M., Freed, A., Momeni A.: OpenSound Control:
State of the Art 2003. Proceedings of the 3rd Conference
on New Instruments for Musical Expression (NIME 03),
Montreal, Canada, 2003.

[6] Costanza, E., Shelley, S. B., Robinson, J.: D-touch: A
Consumer-Grade Tangible Interface Module and Musical
Applications", Proceedings of Conference on Human-
Computer Interaction (HCI03), Bath, UK, 2003.

[7] Puckette, M.: PD - Pure Data,
http://www.crca.ucsd.edu/~msp/Pd_documentation/

[8] Puckette, M.: Pure Data. Proceedings of the International
Computer Music Conference, 1996. San Francisco:
International Computer Music Association.

[9] Weinberg G., Gan S.: The Squeezables: Toward an
Expressive and Interdependent Multi-player Musical
Instrument. Computer Music Journal. Vol.25.2, pp 37-45,
2002.

[10] Singer, E.: Sonic Banana: A Novel Bend-Sensor-Based
MIDI Controller. Proceedings of the 3rd Conference on
New Instruments for Musical Expression (NIME 03),
Montreal, Canada, 2003.

[11] Berry, R., Makino, M. , Hikawa, N. and Suzuki, M.: The
Augmented Composer Project: The Music Table.
Proceedings of the 2003 International Symposium on
Mixed and Augmented Reality," Tokyo, Japan, 2003.

[12] Ishii, H and Ullmer, B.: Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms, Proceedings of
CHI 97 Conference on Human Factors in Computing
systems, Atlanta, Georgia USA, 22-27 March 1997.

[13] SmallFish homepage:
http://hosting.zkm.de/wmuench/small_fish

[14] Blaine, T., Perkis, T.: Jam-O-Drum, A Study in Interaction
Design, Proceedings of the ACM DIS 2000 Conference,
ACM Press, NY, August 2000.

[15] Blaine, T. and Forlines, C.: Jam-O-World: Evolution of the
Jam-O-drum Multi-player Musical Controller into the
Jam-O-Whirl Gaming Interface, Proceedings of the 2002
Conference on New Interfaces for Musical Expression
(NIME-02), Dublin, Ireland, 2002.

[16] Paradiso, J. and Hsiao, K., Musical Trinkets: New Pieces to
Play, SIGGRAPH 2000 Conference Abstracts and
Applications, ACM Press, NY, July 2000, p. 90.

[17] Poupyrev, I.: Augmented Groove: Collaborative Jamming
in Augmented Reality, ACM SIGGRAPH 2000 Conference
Abstracts and Applications, p. 77.

[18] Patten, J., Recht, B. And Ishii, H.: Audiopad: A Tag-based
Interface for Musical Performance, Proceedings of the
2002 Conference on New Interfaces for Musical
Expression (NIME-02), Dublin, Ireland, 2002.

[19] Mathews, M.: The Technology of Computer Music. MIT
Press, 1969.

[20] Chadabe, J.: The Voltage-controlled synthesizer. In John
Appleton (ed.), The development and practice of
electronic music, Prentice-Hall, New Jersey, 1975.

[21] Puckette, M. 1988. The Patcher. Proceedings of the
International Computer Music Conference, 1988,
Computer Music Association.

[22] Levin, G.: Painterly Interfaces for Audiovisual
Performance, Master Thesis, Massachusetts Institute of
Technology, 2000.

