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Abstract

Automatic singing detection and singing phoneme recognition are two

MIR research topics that have gained a lot of attention the last years.

The first approaches borrowed successful techniques widely used in

Automatic Speech Recognition (ASR) as speech and singing share

similar acoustical features since they are produced by the same ap-

paratus. Moving from monophonic to polyphonic audio signals the

problem becomes more complex as the background instrumental ac-

companiment is regarded as a noise source that has to be attenuated.

This thesis presents research into the problem of singing phoneme de-

tection in polyphonic audio, in which the lyrics are in English. Specifi-

cally, we are interested in building statistical classification models that

are able to automatically distinguish sung consonants and vowels from

pure instrumental music in polyphonic music recordings.

The approach begins with a database creation to be used for training,

testing and evaluating the models. Several sets of extracted low-level

features are used in the classification process. Different classification

functions are compared like SVM, MLP and logistic as well as different

classification schemes (3-class classifiers, binary classifiers in series and

in parallel). The best classification model found reaches an overall

accuracy of 78% in distinguishing between the 3 different classes.
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Chapter 1

Introduction

General audio consists of a wide range of sounds such as speech, music, singing and

environmental sounds produced by very different sources. Sound classification for

humans seems to be an easy task. We can easily distinguish sounds as a door

knocking, a woman singing or rain falling, even if we don’t often consider of how

we can do it and we don’t put any conscious effort.

Automatic sound recognition, using computers, is a popular research task for

more than fifty years. Several topics, ranging from Automatic Speech Recognition

(ASR), pitch detection, speech and music discrimination, instrument and genre

classification, speech and singing voice discrimination, singing voice detection in

polyphonic audio and many more have been under research. Several techniques

and tools have been implemented and applied in order to analyze and recognize

such diverse audio content, especially threshold methods and statistical classifiers.

In this thesis, we are interested in the singing voice in polyphonic recordings

of popular music. We address the problem of processing a music audio file and

segmenting it into fragments containing vocals (with instrumental background)

and pure instrumental music. We extend this classification scheme and segment

further the singing voice segments into sung vowel and sung consonant sounds.

The procedure is based on extracting audio features from short frames of the

audio files and then classifying each frame using statistical classifiers.

The remainder of this chapter presents motivation for the research presented

in this thesis, application areas of the work done, the goals of this Master thesis

as well as the outline of the following chapters.
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1.1 Motivation

1.1 Motivation

Although ASR has reached a great level of robustness, singing phoneme recog-

nition is a new research topic with a great deal of challenges and possible ap-

plications. Taking inspiration from techniques widely used in ASR, researchers

try to adapt them to the case of the singing voice despite their wide range of

differences (2.3). Many approaches integrate higher knowledge of available lyrics,

song structure, mixing techniques etc. in order to reduce the complexity of the

task.

For the case of polyphonic popular music recordings, which is examined in

this thesis, singing phoneme recognition is not a trivial task. The background

music is in this case considered as a noise source that can cause bad performance

to models trained with pure singing voice signals. A lot of research attention is

given currently in order to solve Source Separation problems, like the classical

example of “the cocktail party problem”. In this thesis, the objective is not

to perform source separation in order to separate the singing voice from the

instrumental background. The intention is to examine if classification models are

capable of distinguishing singing vowel and singing consonant sounds from pure

instrumental music, without performing any kind of prior processing to the audio

files and without using any higher-level knowledge. Machine Learning techniques

will be used in order to handle the topic addressed.

1.2 Application Areas

During the last decade, with the release of MP3 encoder and the peer-to-peer

file sharing tools, people store in their PCs a great amount of audio files. Many

applications are being built nowadays for integrating all possible representations

for audio files, like lyrics, midi representation, score and video in order to give to

the listener more possible applications and flexibility to the use of them. Listeners

enjoy while listening to a song to have the corresponding lyrics displayed. This

is still done by searching the Web and locating the lyrics of the song in question.

Then, the user scrolls down the lyrics while listening to the song.

2



1.2 Application Areas

Furthermore, in applications such as Karaoke, which are based on lyrics to

audio alignment, the annotation is still done manually. A great deal of the ap-

proaches in Singing Voice Detection and Singing Voice Recognition is oriented

towards the development of automatic lyrics transcription or alignment systems

for Karaoke applications (Gruhne et al., 2007; Iskandar et al., 2006; Kan et al.,

2008; Shenoy et al., 2005; Wong et al., 2007; Zhu et al., 2005). Starting using

techniques from Automatic Speech Recognition, singing voice transcription was

proved to be a great challenge, since singing voice is different from normal speech

in many ways and instrumental accompaniment makes the problem even harder.

The problem soon turned to lyrics to singing voice alignment, as almost all songs’

lyrics are available on the Web. Automatic alignment between singing voice and

text refers to the temporal relationship between audio signals and the correspond-

ing lyrics. The goal of the aligner is to precise automatically the starting and

ending points of each phoneme, word or sentence (entity) in real-world polyphonic

music audio signals, given the lyrics.

As lyrics and singing voice are different representations of an audio file in

many music genres, binding efficiently these representations can help in many

research topics in the area of Music Information Retrieval. Some of them can be,

for example, a lyrics-based artist/song similarity system (Li and Ogihara, 2006;

Li et al., 2006; Logan et al., 2004; Mahedero et al., 2005) a query by lyrics music

search engine (Muller et al., 2007; Suzuki et al., 2007), an automatic language

identification system (Mahedero et al., 2005) or a system that performs semantic

analysis of the words sung and finds emotions and mood of the listeners based

on the lyrics (Laurier et al., 2008).

Another possible application of these systems could be the search for certain

words within a song. If the starting and ending points of every word were known,

as well as the word sung (from the lyrics), a database could be built containing

annotated segments of audio. A user could search for a specific word and get all

the segments of the songs in the database containing that word.

In addition, lyrics-based audio retrieval and navigation in music collections

is another possible application. Semantic analysis of song lyrics, artist similarity

based on lyrics, emotion detection and language identification can also be helped

by the aligner. One of the most significant applications of such a system is that

3



1.3 Hypotheses, Goals of this Thesis

it will make available a big database of singing phonemes and words. These frag-

ments can be used as synthesis units for systems such as Vocaloid 1. These units

can be used for further transformations and morphing, using signal processing

techniques. Within the same concept, an Audio Mosaicing (Janer and de Boer,

2008; Lazier and Cook, 2003) system, could take advantage of these singing voice

segments and add singing voice to the audio created by the Audio Mosaicing

system.

1.3 Hypotheses, Goals of this Thesis

When the research on this thesis started, the topic was balancing between voiced

vs. unvoiced and vowel vs. consonant singing phoneme discrimination. While ex-

perimenting and reviewing available literature, we found that the vowel-consonant

case is more general. The reason for this is that phonemes are clearly separable

in these categories, while for the case of voiced/unvoiced the separation depends

on the language. For example, the /h/ phoneme, in all the languages it exists is

a consonant, but its assignment to the voiced or unvoiced phoneme class depends

on the language. Thus, this thesis is focused on the discrimination between sung

vowel and sung consonant phonemes. Finally, for sake of completeness of the sys-

tem a class for pure instrumental music -without any vocals- was added turning

the problem to a three-class classification one. Thus, all the parts of the audio can

be assigned to one of the three classes, without leaving out parts of the sound that

don’t contain vocals. Also, having this classification scheme further refinements

and extensions are feasible in a second level, i.e. classification between different

vowels and consonants. One last reason for researching this topic is that many

approaches to the singing voice to lyrics alignment, trying to enhance the singing

voice over the instrumental background (accompaniment sound reduction), omit

the consonants that carry most of the information in speech (Owens et al., 1968).

This study had the following objectives in mind:

• Investigate if suitable segmentation, feature extraction and statistical mod-

elling are capable of distinguishing sung vowels from sung consonants and

1http://www.vocaloid.com

4



1.4 Outline

pure instrumental music, without performing any kind of pre-processing of

the audio signals or using any high-level or song-specific knowledge i.e. song

structure, lyrics, recording techniques etc. Such an approach, apart from

being more general, and thus widely applicable, is also more computation-

ally efficient compared to other approaches.

• Use Western music with lyrics in English to test our hypothesis

• Not interested in distinguishing between different consonants or different

vowels. Focus on vowel/ consonant/ music discrimination, as a more general

and generic case.

• Investigate the accuracy of a statistical model to distinguish consonants

from music segments with percussion. Percussion sounds resemble a lot

consonant phonemes and even the human ear is difficult to recognize an

-alone- consonant with musical background.

• Develop a more detailed discrimination of music and singing voice.

1.4 Outline

Concerning the structure of this document, it is divided in 6 chapters.

• In chapter 2 we present some necessary terms and procedures in order to

introduce the reader to the subject and describe the theoretical framework

of this study.

• In chapter 3 we review state of the art techniques used in singing voice

detection and singing phoneme recognition and alignment.

• In chapter 4 we describe the methodology used in this study.

• In chapter 5 we present the experiments performed during this thesis along

with the results and motivation behind them.

• Chapter 6 finishes off with a discussion on the conclusions and suggestions

for future work.

5



Chapter 2

Scientific Background

2.1 MIR

Music Information Retrieval (MIR) is an emerging multidisciplinary and inter-

disciplinary research area which appeared in the late nineties. It encompasses

Musicology and Music Theory, Computer Science, Information Retrieval, Engi-

neering, Signal Processing, Cognitive Science and Psychology. The term MIR

encompasses a number of different research and development activities that have

the common denominator of being related to music access. Despite its name, MIR

is not only about retrieving information from music but to fulfil users’ music in-

formation, amusement or training needs. And as these needs are more aimed at

music retrieval that music information retrieval, so are the consequent approaches.

Also, the term “retrieval” has a broader sense since it encompasses tasks such

as filtering, classification, identification, indexing and visualization that become

increasingly useful for the final users (Orio, 2006).

Most of the research works on MIR, of the proposed techniques, and of the

developed systems are content-based. The main idea underlying content-based

approaches is that a document can be described by a set of features that are

directly computed from its content (Orio, 2006). In the case of MIR, content it is

the implicit and explicit information that is related to a sound or a piece of music

and that is embedded in the signal itself. The methodologies of MIR are based

on Information Retrieval, thus techniques of statistics and probability theory are

used to describe underlying models.

6



2.1 MIR

The first step towards music retrieval involves the automatic processing of

the audio signals in order to extract meaningful content descriptors. There are

different approaches to music processing, depending on the form and format in

which musical documents are instantiated and on the dimensions of interest. As it

can be expected, great part of the research on feature extraction has been devoted

to the audio form, from which most of the music dimensions are particularly

challenging to extract (Orio, 2006). In MIR these descriptors are usually divided

in high-level or user-centered (rhythmic patterns, tonality, key etc.), mid-level

or object-centered (spectral envelop, beat, dynamic range, etc.) and low-level or

signal-centered(fundamental frequency, onset, note duration, spectral centroid,

spectral flux, etc.) (Serra, 2008). More about these descriptors will be presented

in section 2.7. Some of the topics MIR includes are 1:

• musical feature extraction for monophonic and polyphonic audio,

• computational methods for classification, clustering, and modelling, simi-

larity and pattern matching,

• music identification and recognition, such as score following, automatic ac-

companiment,

• filtering for music and music queries, query languages, standards and other

metadata or protocols for music information handling and retrieval, multi-

agent systems, distributed search,

• software for music information retrieval, human-computer interaction and

interfaces, mobile applications, user behavior,

• music perception, cognition, affect and emotions,

• music similarity metrics, syntactical parameters, semantic parameters, mu-

sical forms, structures, styles and genres,

• music annotation methodologies,

1http://en.wikipedia.org/wiki/Music information retrieval
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2.2 The Human Voice

• music analysis and knowledge representation, automatic summarization,

citing, excerpting, downgrading, transformation, formal models of music,

digital scores and representations,

• music indexing and metadata,

• music archives, libraries, and digital collections,

• intellectual property rights, national and international intellectual property

right issues, digital rights management, identification and traceability,

• sociology and economy of music,

• user profiling, validation, user needs and expectations, evaluation of music

IR systems, building test collections, experimental design and metrics.

2.2 The Human Voice

The human vocal organ can produce several types of sounds like speech, laughing,

whispering, singing etc. When we speak, we create a disturbance in the air

around us, a small but rapid variation in air pressure. During this sound, the air

pressure at the speaker’s lips fluctuates and a corresponding wave is generated.

This sound wave reaches the listener’s ear drum and causes small movements

which are sensed by the brain and interpreted as a specific sound, with particular

pitch and loudness. The pitch of the sound depends on the rate of repetition

of the sound wave. The loudness depends on the size of the variations in air

pressure. Differences in amplitude are measured in dB. The third way in which

sounds can differ is in quality, often called timbre.

In English, like in most European languages the meaning of a word remains

the same irrespectively of the pitch. However, pitch changes in other languages

like Mandarin can change the meaning of a word. In English, pitch changes are

used in a different way. In that case, the meaning of a group of words can change

and this difference in pitch is then called a difference in intonation. Singing differs

from speaking in that when you sing the pitch of the voice has to remain constant,

usually for one or two syllables and then jump to the next note. In speech the

8



2.2 The Human Voice

pitch is always changing, even within a single syllable. Pitch changes can also

convey different kinds of information. For example, we could say if the speaker is

angry or happy just by listening to the tune without even listening to the words.

The pitch of the voice carries much of the emotional content of the speech.

The voice organ is composed of three systems, the breathing apparatus, the

vocal folds and the vocal tract. The breathing system compresses the air in the

lungs and the generated airstream passes through the glottis (the slit between

the vocal folds) and the vocal tract. In terms of activity the vibration of the

vocal folds is responsible for the phonation, the generation of a primary sound, as

the airstream passes through them. This voice source is then shaped acoustically

when passes through the vocal tract. This shaping depends on the vocal tract

configuration, which is controlled by articulation. In terms of functioning the

breathing system acts like a compressor, the vocal folds as an oscillator and the

vocal tract as a resonator (Sundberg, 1987).

Since the vocal folds open and shut the glottis at identical time intervals,

a tone is generated which poses a certain frequency, the vibration frequency of

the vocal folds. The vocal folds are not the only oscillator in the voice organ.

Other parts of the voice organ can work as oscillators to produce unvoiced sounds.

When the airstream from the lungs is forced to pass through a narrow slit with

reasonable rigid walls, noise is generated, a signal with non-periodic or irregular

variations.

The air enclosed in the vocal tract acts as a resonator. The main characteris-

tics of a resonator is that sound within it decays slowly and that it allows sounds

with specific frequency to pass through it. In the human vocal tract these espe-

cially transmitted frequencies that fit the resonator optimally are called formant

frequencies. Thus the ability of the vocal tract to transmit sounds is greatest at

the formant frequencies and tones in other than these frequencies are transmitted

with a reduced amplitude. The vocal tract possesses four or five resonance fre-

quencies. The two lowest formants determine most of the vowel colour and all of

them are significant for the voice timbre and for distinguishing between vowels.

During phonation, the vibrating vocal folds do not produce a single tone, but

an entire spectrum of tones. The lowest tone in the spectrum is called fundamen-

tal frequency and the other tones are called overtones. The fundamental plus the

9



2.3 Singing Voice vs Speech

overtones are called partials. Their frequencies form an harmonic series, which

means that the frequencies of the partials are multiple integers of the fundamen-

tal frequency. As these partials pass through the vocal tract, they are treated

differently as they have different frequencies. The partials that are closer to a for-

mant frequency are radiated with a higher amplitude than other partials. These

formant frequencies are determined by the shape of the vocal tract and determine

the vowel quality and voice colour.

Figure 2.1: Illustration of the generation of voice sounds (reproduction of Figure

2.10, (Sundberg, 1987, p.20))

2.3 Singing Voice vs Speech

Although speech and singing voice sounds have many properties in common be-

cause they originate from the same apparatus, there are several differences to

10



2.3 Singing Voice vs Speech

bear in mind (Gerhard, 2003; Kim, 2001; Loscos et al., 1999; Michael W. Macon,

1997; Sundberg, 1987):

• Duration of voiced sounds: In English, speech consists of approximately

60% voiced sounds and 40% unvoiced sounds, while in singing, the percent-

age of phonation time can increase up to 95% in the case of opera music . In

the most common classical singing technique, known as bel canto, singers

are taught that vowel sounds should be held as long as possible between

consonants because they carry the melody. Also sonorant consonants may

have very large durations.

• Loudness: The dynamic range as well as the average loudness is greater

in singing than in speech. The spectral characteristics of a voiced sound

change with the loudness. Especially, as loudness is increased, the higher

spectrum overtones gain more amplitude than the lower ones.

• Pitch: Speech utterances sometimes have a monotone pitch, but often have

a pitch track varying across syllables and indicating speaker’s intent or

other prosodic characteristics, expresses the emotional state of the speaker

or add intelligibility to the spoken words. This frequency range of f0 is

very small compared to singing where it can be up to three octaves. Sung

utterances have a noticeable melody, and target pitches adhere to some

form of musical scale. The melody is followed in precise and discrete steps

over customary musical intervals, which commonly are not smaller than

semitones in Western music, though quarter and eighth tones are frequently

used in Oriental and African music.

• Vibrato: Two types of vibrato exist in singing. The classical vibrato in

opera music corresponds to periodic modulation of the phonation frequency,

and in popular music the vibrato implies an added amplitude modulation

(tremolo) of the voice source. In speech, no vibrato exists.

• Formants: As in singing, the musical quality of the voice is more critical

than the intelligibility of the lyrics, in cases like high pitch singing, wide ex-

cursion vibratos, hoarse and aggressive attacks or very loud singing, there is

11



2.4 Phones, Phonemes and Allophones

an alteration of the formants position, and therefore “syllable identification

is more or less a guesswork” (Sundberg, 1987, p. 176).

• Rhythm: Is a feature that many listeners indicate as evidence for a sound

being a song. The rhythm of the fixed tonal steps follows the pattern

prescribed by the composer and long notes may be sustained for special

effects.

• Rhyme: Usually indicative of poetry or singing, is another difference with

normal speech. Rhyme is a higher-level repetition than rhythm, taking

phonetic information into account.

2.4 Phones, Phonemes and Allophones

Phonemes are the smallest units of speech that distinguish meaning of a language

and most languages have 50 or fewer phonemes. Phonemes are not the physical

segments themselves, but, in theoretical terms, cognitive abstractions or cate-

gorizations of them. A phoneme may encompass several recognizably different

speech sounds, called phones. Phones that belong to the same phoneme are called

allophones and they are considered equivalent for a given language. Allophones

are the linguistically non-significant variants of each phoneme or the multifarious

“physical” realizations of a given phoneme abstract category. In English for ex-

ample, [th] and [t] are allophones of the phoneme /t/, as in tip and stand. The

first consonant of tip is aspirated, while in stand is not. Switching allophones of

the same phoneme doesn’t change the meaning of the word. Their difference may

not even be audible to native speakers. However, allophones of a phoneme are

not the same for every language. For example, [p] and [ph] belong to the same

phoneme in English, but to different phonemes in Chinese, thus the meaning of

the word changes.

A broad transcription uses only one symbol for all allophones of the same

phoneme. This is enough information to distinguish a word from other words

of the language. What details you have to include in a broad transcription will

depend on what language or dialect you are transcribing. In English, there are

about 42 phonemes.
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English phonemes can be distinguished in two main categories: voiced and

unvoiced. Most languages have only voiced vowels, e.g. /a/, /e/, /i/, /o/, /u/.

The voiced consonants are /l/, /r/, /j/, /w/, /m/, /n/, /N/, /b/, /d/, /g/, /v/,

/D/, /z/, /Z/ and /dz/ while the unvoiced consonants are /p/, /t/, /k/, /T/,

/f/, /S/, /s/ and /ts/, as described in detail in the following section. Because of

their periodic nature, voiced sounds are often easier to detect and analyze.

As phonemes are language-dependent, their identification in different lan-

guages requires different phoneme detectors. In today’s speech recognition sys-

tems usually higher-level knowledge is used since they require word and syntax-

level knowledge to identify a word from the sound. Robust phoneme recognition

can contribute to systems, which need only low-level acoustic features for the

task.

2.5 Sounds of Consonants and Vowels

This section is a summary of the main characteristics of English vowels and

consonants as presented in Ladefoged (2005). This book has been one of the

main sources for our manual annotations (4.2).

There are about 200 different vowels in the world’s languages and more than

600 different consonants. In General American English there are 14 or 15 different

vowels, while in the form of British English used by national newscasters there

are 20 different vowels.

Vowels are sounds produced without any kind of obstruction of the outgoing

breath. Different vowels are like different instruments. Although a clarinet, a

piano or a violin can play the same tone-same fundamental frequency, we can

distinguish them from the smaller variations within each repetition of the sound

wave -their overtones. Within the same concept, vowels will retain their quality

irrespectively of the pitch produced by the vocal folds. In human voice these

overtones are the formants, the resonances of the vocal tract. Trying to listen to

the separate formants of a vowel is difficult because we are very used in considering

each vowel as a single meaningful entity.

The vowels of a speaker can be described by the frequencies of their formants.

These frequencies may differ between speakers, as they depend on the resonating
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2.5 Sounds of Consonants and Vowels

cavities of each person. In order to represent the vowels of a language a relative

value of the formants’ values is needed. Vowels can be described sufficiently by

the values of their first three formants.

Sounds that have some obstruction to the breath stream, such as the bring-

ing of the lips together, are called consonants. The differences in consonants

between British and American English are only minor. The voiced and voiceless

consonants in English are divided into stops (or plosives), approximants, nasals,

fricatives and affricatives.

The phonemes /b/, /d/, /g/ are stops that constitute just ways of beginning

or ending vowels. They are called stops because the air in the vocal track is

completely stopped either by the lips or the tongue. As the stop closure is being

formed or is opening, the shape of the vocal tract is changing and the formant

frequencies are moving. For all these three sounds the frequency of the first

formant increases when they are at the beginning of a syllable and falls if they

are at the end. The movements of the other two formants distinguish these sounds

from one another. Another set of stop consonants in English is /p/, /t/, /k/ that

are made with the same gestures as /b/, /d/, /g/. The difference between these

two sets is in the vibration of the vocal folds. In words beginning with /b/,/d/,/g/

the vocal folds are vibrating while the lips or tongue are moving apart, while for

/p/, /t/, /k/ the vocal folds are apart at the beginning of the movement and there

is a burst of air that produces a different kind of sound. As these sounds are not

produced by the action of the vocal folds, these sounds are noisier with a less

well-defined pitch. These voiceless stops may have similar formant movements

to their voiced correspondent after a vowel, but at the beginning of a word they

are distinguished by the frequencies of the bursts of noise, produced as the stop

closure is released.

Another set of consonants constitutes of /w/, /j/, /l/, /r/ like in the words

wet, yet, let, rest and are called approximants. They are opposite of stop conso-

nants in that they do not involve any kind of closure of the vocal tract. Instead

there is simply a narrowing at some point caused by the lips, the teeth or the

tongue. The approximants have their own formant patterns.

The next set of sounds is called nasals because they involve sound radiated

while air comes out of the nose. The nasal sounds are /m/,/n/, /N/ like in
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2.5 Sounds of Consonants and Vowels

the words ram, ran, and rang. They are like vowels and approximants in that

they can be characterized largely in terms of their formant frequencies, but they

differ in that the formants are not as loud as they are in vowels. The nasals

are made by blocking the sound from coming out of the mouth while allowing

it to come out through the nose, and this affects the relative amplitude of the

formants. They have first formants with a very low frequency, around 200 Hz,

another visible formant around 2500Hz and little energy in the region normally

occupied by the second formant. They have similar formant movements to the

corresponding stops (/b/, /d/, /g/).

Another class of consonants comprises the fricatives. The voiceless fricatives

are /f/, /T/, /s/ and /S/ as in words fie, thigh, sigh and shy respectively. In these

sounds the vocal folds are held apart so that they do not vibrate. The noise is

made by air being forced through a narrow gap. Instead of formants, their most

prominent acoustic features are high-pitched more random frequencies. They

are called fricatives to indicate that the noise is produced by the friction, the

resistance to the air, as it rushes through a narrow gap. Another fricative that

is special from the view that its source is not air being forced through a narrow

gap is /h/ as in high. The origin of the sound is the turbulence -the random

variations in air pressure- caused by the movement of the air across the edges of

the open vocal folds and other surfaces of the vocal tract. Each of the voiceless

fricatives /f/, /T/, /s/ and /S/ has their voice counterpart /v/, /D/, /z/, /Z/

like in voice, this, zoo and pleasure respectively. Voiced fricatives have formants

produced by pulses from the vocal folds as well as more random energy produced

by forcing air through a narrow gap.

The last class of sounds to be considered is /ts/ and /dz/like in the words

church and judge. Affricatives are not really single sounds but two, a /t/ followed

by an /S/ and a /d/ followed by a /Z/ respectively. This combination of a stop

followed by a fricative is called an affricative. Both the voiceless /S/ and the

voiced /Z/ are considerably shorter than when they occur on their own.
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2.6 Speech Recognition Techniques

Signal recognition practice has a set of techniques that are applied commonly,

independently of the type of the signal (speech, singing voice, biological, economic

etc). Here we are going to refer to common practice in speech recognition even

if our target signals are not speaking voice signals but singing voice ones. These

techniques are also widely used also in the case we are examining. There are four

levels of attempts to increase robustness in speech-based pattern recognizers, as

presented in (Pool, 2002).

• Noise removal in order to enhance the speech signal and improve its qual-

ity. The background interference causes degradation of the intelligibility of

speech, which leads to bad recognition performance. The goal of speech en-

hancement algorithms is to reduce the interfering background noise, which

is added to the speech signals. Several measures, categorized in objec-

tive and perceptual are used to evaluate speech enhancement algorithms,

like signal-to-noise ratio (SNR) and intelligibility respectively. The choice

of the suitable measure depends on the application. Speech enhancement

techniques can be divided in those based on stochastic processing of speech

models and those based on perceptual aspects of speech.

• Feature Extraction, using the correct feature representation, which usually

varies in the several situations. Feature extraction or selection refers to the

representation of the speech waveform with a suitable set of characteristics,

derived from its waveform. This is based on the fact that features of speech

change slowly within frames of a few milliseconds, in contrast with its wave-

form. Thus available signal information is compressed and represented in

a more effective space. The goal is to select the more representative fea-

tures, so as to keep the more relevant information for the classification task,

depending on the application and the available signal.

• Models and classifiers, used for training and testing. One of the most im-

portant parts of the speech recognizer is the model it uses to capture and

represent the characteristics of the signal. Probabilistic models are widely

used in speech recognition, which use probability distributions to represent
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the speakers and output probabilities that are used for the classification.

They are divided in parametric and non-parametric based on the parame-

ters of the probability density function. Non-parametric models are Nearest

Neighbor and Vector Quantization (VQ) models, while parametric models

are for example Gaussian and Gaussian Mixture Models (GMMs). The last

is one of the most popular speaker models and has been widely used for

speaker identification.

• Process of the classifier likelihood scores in such a way so as to prune errors

and improve the performance of the recognition systems (widely known as

error-pruning techniques). The recognizer’s model outputs for each frame

likelihoods for each class. According to these probabilities one frame is

assigned to one of the classes. As there is often the case to get outliers in

the classification task, error-pruning techniques and rules are applied so as

to eliminate some of the errors.

These steps of speech recognition systems are adapted and implemented for

the case of singing phoneme recognition with background music. In polyphonic

music recordings, the instrumental interference is treated as the noise source that

causes degradation to the intelligibility of the singing voice signal. Singing voice

enhancement techniques are implemented in many approaches in order either to

extract the singing voice signal or to attenuate instrumental sounds. The fol-

lowing steps are the same for both speech recognition and singing voice recogni-

tion. Feature extraction and statistical modelling are performed in every singing

voice recognition system. Last, error-pruning techniques are implemented so as

to improve the models’ performance. In Chapter 3 we review several approaches

implemented in every of these steps in different singing voice recognition systems.

2.7 Audio Signal Analysis

An audio signal can be represented in both time-domain (waveform) and frequency-

domain (spectrogram). These representations are complementary and their use

depends on the type of information one wants to extract. Some features can

be estimated in both domains, while others only in one. Feature extraction is
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2.7 Audio Signal Analysis

performed in blocks of samples, commonly referred as frames. The length of the

frame, as well as the type of the window and their overlapping factor are im-

portant configuration parameters that depend usually on the type of the signal

and the application. Below we are presenting briefly some of the most common

audio features. A complete list of audio features and their description is listed in

(Peeters, 2003).

2.7.1 Time-domain Features

Autocorrelation is used for finding repeating patterns in a signal. It is defined as

the cross-correlation of a signal with a time-shifted version of itself and expresses

the amount of their similarity.

r̂x(l) =
1

N

N−1∑
n=0

x̄(n)x(n+ l) (2.1)

where N denotes the number of samples in the window.

Root-Mean Square (RMS) describes basically the global energy of the signal

by taking the root average of the square of the amplitude.

xrms =

√√√√ 1

N

N−1∑
n=0

x2
n (2.2)

Zero-crossing rate (ZCR) is the rate of sign-changes along a signal. It is

used to measure the noisiness or brightness of a signal since noisy sounds tend to

have high ZCR. For monophonic tonal signals, the zero-crossing rate can be used

as a primitive pitch detection algorithm.

Onset detection This technique is a way of determining the tempo and is

basically the computation of a curve, showing the successive bursts of energy.

Then, a pick-peaking algorithm detects the estimated positions.

2.7.2 Frequency-domain Features

Spectral centroid is the barycenter of the spectrum. Perceptually, spectral

centroid corresponds to the degree of brightness of a sound. It is computed
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considering the spectrum as a distribution which values are the frequencies and

the probabilities to observe these frequencies are the normalized amplitude:

µ =

∫
xp(x)δx (2.3)

where:

x = freq(v(x)) (2.4)

p(x) =
ampl(v(x))∑
x ampl(v(x))

(2.5)

Spectral spread is the variance of the above defined distribution, or else the

spread of the spectrum around its mean value:

σ2 =

∫
(x− µ)2p(x)δx (2.6)

The spectral skewness gives a measure of the asymmetry of a distribution

around its mean value. It is computed from the 3rd order momentum divided by

the standard deviation raised to the third power:

m3 =

∫
(x− µ)3p(x)δx, γ1 =

m3

σ3
(2.7)

The spectral kurtosis gives a measure of the flatness of a distribution around

its mean value. It is computed form the 4th order momentum divided by the

square of the variance:

m4 =

∫
(x− µ)4p(x)δx, γ2 =

m4

σ4
(2.8)

The spectral roll-off is defined as the frequency below which a certain frac-

tion of the total energy is concentrated. Usually this fraction is fixed to 0.95. It

is a way to estimate the amount of high frequency in the signal.

fc∑
0

α2(f) = 0.95

sr/2∑
0

α2(f) (2.9)

where α the amplitude, fc the spectral roll-off frequency and sr/2 the Nyquist

frequency.
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The spectral brightness is another method for measuring high-frequency

energy in fixing the cut-off energy and measuring the fraction of energy above

that.

The spectral entropy is a measure of the periodicity of a signal, since peri-

odic sounds tend to have significantly lower entropy value than noise. Entropy is

computed as:

H(x) = −
N∑
i=1

p(xi)log10p(xi) (2.10)

The spectral flatness indicates whether the distribution is smooth or not

and is computed as the ratio between the geometric mean and the arithmetic

mean of the energy spectrum value:

SF (band) =
(
∏

kεband α(k))1/k

1
k

∑
kεband α(k)

(2.11)

where, α(k)is the amplitude in frequency band number k.

Mel-frequency cepstral coefficients (MFCCs) are very important descrip-

tors for the field of speech processing. Also, they have shown to work well in

monophonic audio signals, as they capture effectively the shape of the spectrum.

In polyphonic recordings they are not such effective, as they capture the shape

of the spectrum calculated from several sources. However, if only one instrument

is playing or is relatively more salient, they have been proven to be particularly

useful. The Mel scale models how the human auditory system perceives different

frequencies, by being linear at low frequencies and logarithmic at high frequencies

(above 1000Hz) as depicted in Figure 2.2.

For the computation of the MFCCs the signal is segmented in windows and

the STFTs are computed. Then amplitudes are mapped to a filter-bank on

the Mel-scale and their logarithm is computed. Finally, the MFCCs are taken

from the Discrete Cosine Transform of these amplitudes. Usually, the number of

coefficients are 12 or 13. In his study we extracted 13 MFCCs in order to build

our classification models.
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Figure 2.2: Mel Filter-bank

2.8 Classification Basics

Classification is the task of assigning objects to one of several predefined cat-

egories. Especially, a classifier takes as input data a collection of records (or

instances) that are characterized by a tuple (x,y), where x is the attribute set

and y is the class label. The attribute set includes several features or properties

of the instance and can be either discrete or continuous. On the other hand, the

class label must be a discrete attribute and this distinguishes classification from

regression. Thus, classification is the task of learning a target function f that

maps each attribute set x to one of the predefined class labels y. This target

function is also known as classification model. A classification technique (or clas-

sifier) is a systematic approach to build classification models from a given data

set.

Examples of classifiers are decision trees, neural networks, support vector

machines, logistic models etc. Each technique employs a learning algorithm in

order to build a model that best fits the relationship between the attribute set

and the class label of the data. This model should apart from fit well input data,
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correctly predict the class labels of instances it has never seen before. The input

data consist the training set, while the unknown records consist the testing set.

In order to measure the performance of a model, the number of correctly

and incorrectly predicted test records is measured. These measures are usually

presented in a tabular form, known as a confusion matrix:

Table 2.1: Confusion matrix
Predicted Class

Actual Class class1 class2

class1 True Positive False Negative

class2 False Positive True Negative

In order to compare the performance of different models metrics such as ac-

curacy and error rate are widely used:

Accuracy =
Number of correct predictions

Total number of predictions
(2.12)

Error rate =
Number of wrong predictions

Total number of predictions
(2.13)

Other measures that are used in Information Retrieval are precision, recall

and f-measure, computed as:

Precision =
Number of documents retrieved that are relevant

total number of documents that are retrieved
(2.14)

Recall =
Number of documents retrieved that are relevant

total number of documents that are relevant
(2.15)

F-measure =
2 ∗ precision ∗ recall

precision + recall
(2.16)
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2.9 Tools

In this project we have used several software tools for audio processing and clas-

sification. Especially, we performed feature extraction from the audio files using

Essentia1, an audio processing library developed at the Music Technology Group

and also using the MIRToolbox2 for MATLAB, developed by Olivier Lartillot.

The Machine Learning tool we used to perform our experiments was Weka3,a

collection of machine learning algorithms for data mining tasks written in Java.

Apart from these main tools, several programming languages were used, mainly

Python, for writing scripts to process the features files and also for conversions

between the several outputs in order to be compatible, Java for Weka commands

and MATLAB scripts to perform feature extraction using the MIRToolbox and

plot classification results.

1http://mtg.upf.edu/technologies/essentia
2http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
3http://www.cs.waikato.ac.nz/ml/weka/
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Chapter 3

Literature Review

As the main goal of this thesis is to develop classification models that are capable

of distinguishing between sung vowels and consonants and pure instrumental mu-

sic, we are interested in reviewing techniques both on singing voice detection and

singing voice recognition. As it becomes obvious from the following sections, these

two topics are highly related and they share common techniques and procedures.

3.1 Singing Voice Detection

Singing voice detection addresses the problem of segmenting an audio file into

fragments containing singing voice (with or without instrumental background)

and purely instrumental (without singing). Apart from the approaches that ad-

dress specifically this task, there are approaches in similar problems like singer

identification (Berenzweig et al., 2002; Kim, 2002; Tsai and Wang, 2006; Zhang,

2003) or singing voice separation (Suzuki et al., 2007) that include a singing voice

discrimination step. The approaches follow some similar basic steps. Firstly, some

pre-processing of the audio files may be implemented in order to attenuate the

background instrumental sounds and enhance the singing voice signal. Then, fea-

ture extraction is performed from audio signal frames that are considered nearly

stationary. The descriptors extracted and also the frame size may differ in the

several approaches. The following step is to classify the frames to one of the

classes using statistical classifiers, or threshold methods, using as input the fea-
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3.1 Singing Voice Detection

ture vectors extracted. Last, some approaches in order to reduce classification

errors include bootstrapping or smoothing techniques, usually based in heuristics.

As long as the step of pre-processing the audio files is concerned, the main

goal is to reduce the influences from the accompaniment sounds. (Nwe et al.,

2004) and (Shenoy et al., 2005) used a filterbank of triangular filters spaced on

a linear-logarithm scale and a series of inverse comb filters respectively, in order

to attenuate the signal at the frequencies (and the corresponding harmonics) in

the key of the song. This technique is based on the fact that instrumental sounds

have a harmonic structure, while singing voice is not perfectly harmonic, due to

two important aspects of singers’ F0 control, vibrato and intonation. Thus, it will

remain after the filtering. In (Kim, 2002) the audio signal is firstly filtered with a

band-pass filter, which allows the vocal regions to pass through while attenuating

other frequency regions. In order to further cut out other high energy sounds

that belong in this region of 200Hz-2000Hz, an inverse filterbank is used to find

the fundamental frequency where the signal is most attenuated.

In the literature there is a great set of features extracted from the audio and

used for the classification. In (Shenoy et al., 2005) the audio feature extracted is

the amplitude variation over time in each subband, because the vocal frames are

normally reflected by a rise in the energy of the audio signal. In (Nwe et al., 2004)

Harmonic Attenuated LFPCs were used, while in (Tsai et al., 2004) and (Suzuki

et al., 2007) MFCCs were extracted from the audio files. In (Berenzweig and

Ellis, 2001) a vector of posterior probabilities features, their derived statistics and

averages of these values were implemented as feature vectors. In (Chou and Gu,

2001) the features extracted were 4 Hz modulation energy, harmonic coefficient,

4Hz harmonic coefficient, delta MFCC and delta log energy in order to detect

singing voice. (Berenzweig et al., 2002) used 13 PLPCs, their deltas and double

deltas. (Kim, 2002) used a harmonicity measure, defined as the ratio of the total

signal energy to the maximally harmonically attenuated signal. (Zhang, 2003)

extracted energy features, ZCR, harmonic coefficient and Spectral flux. (Maddage

et al., 2003) used LPC, LPC derived cepstrums (LPCC), MFCC, spectral power

(SP), short time energy (STE), and ZCR. In (Maddage et al., 2004) the twice-

iterated Fourier Transform (TICFT) is computed over each frame, where the

magnitude spectrum of a first FT of the audio frame is input to a second FFT.
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(Tzanetakis, 2004) used spectral shape features (Rolloff, Flux, Relative Subband

Energy), MFCCs, mean and standard deviation of pitch and centroid and LPCs

for the classification. In (Rocamora and Herrera, 2007) different sets of features

were tested such as MFCCs and their deltas, LFPC their deltas and double deltas,

PLPCs and their deltas, HC and pitch, with MFCCs and deltas found to perform

better.

The classification method used in (Shenoy et al., 2005) was a threshold method

on the energy function, such as the proportion of frames classified as vocals to be

equivalent to the proportion of the singing in the entire song, as estimated by a

vocal duration processor. In (Nwe et al., 2004) the classification was done with

multiple HMM models based on three parameters, the section type (intro, verse,

chorus, bridge and outro), the tempo and the loudness. In (Berenzweig and Ellis,

2001) an HMM framework with two states, “singing” and “not singing” was used

for the task. In (Chou and Gu, 2001) and (Tsai et al., 2004) GMM models were

implemented to distinguish vocal from non-vocal signals. In (Berenzweig et al.,

2002) a two class (voice/music) MLP has been used. (Kim, 2002) used a thresh-

old method on the harmonicity measure to classify the segments. In (Zhang,

2003) the audio features extracted were compared with a set of predetermined

thresholds. In (Maddage et al., 2003) a Multi-layer Neural Network, an SVM and

a GMM were compared for their performance and the SVM was found to out-

perform the other classifiers. In (Maddage et al., 2004) singing voice frames were

separated from instrumental frames based on a linear threshold on the energy of

the second FFT spectrum. (Tzanetakis, 2004) used a naive bayes network, near-

est neighbour algorithms, back propagation ANN, a decision tree classifier based

on the C4.5 algorithm , a support vector machine trained using the Sequential

Minimal Optimization (SMO) and logistic regression as classifiers. In (Tsai and

Wang, 2006)the vocal/non-vocal classifier consists of a front-end signal processor

that converts digital waveforms into spectrum-based feature vectors, and a back-

end statistical processor that performs modelling, matching and decision making,

based on log-likelihoods. In (Rocamora and Herrera, 2007) different classifiers

were compared an SVM, a back propagation NN, a decision tree classifier and

two different K-Nearest Neighbors, with the SVM found to outperform the other

classifiers.
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As long as classification error-pruning is concerned, a bootstrapping method

is implemented in (Nwe et al., 2004), using the frames with high confidence score

to build song-specific vocal and non-vocal models. In (Chou and Gu, 2001) the

segmentation results were further smoothed into homogeneous segments, using

a rule-based post-filtering method. (Maddage et al., 2004) used heuristic rules

which are based on knowledge of chord pattern changes of popular music in

order to improve accuracy. In (Tsai and Wang, 2006) segment-based decision

was improved by merging adjacent segments into longer homogeneous ones, if

those adjacent segments do not cross a vocal/non-vocal boundary. (Rocamora

and Herrera, 2007) considered some post processing strategies to improve the

classification performance, based on heuristics.

In the several approaches we encounter different segmentation techniques for

the audio files, which in most of the cases are acting also as an error-pruning

process (2.6), when the decision of the classifier is made for whole segments.

In (Nwe et al., 2004), (Maddage et al., 2004) and (Shenoy et al., 2005) beat

length segments were used. In (Berenzweig and Ellis, 2001) an HMM was used

to make the segmentation. In (Tzanetakis, 2004) the segmentation is performed

specifically for each individual song using a bootstrapping process. In (Li and

Wang, 2007) the segmentation was done into portions by detecting instances when

significant spectral changes occur.

3.2 Singing Phoneme Recognition

Singing phoneme recognition is very different from ASR because of the differences

we already saw between speech and singing voice. Here we are going to review

approaches to singing phoneme recognition and singing voice to lyrics alignment

either in pure singing voice signals or in polyphonic music signals.

The first approaches to the singing voice transcription problem were consider-

ing pure monophonic singing voices, without accompaniment and adapted speech

recognizers for lyrics transcription.

(Loscos et al., 1999) presented some ideas on how to move from speech phoneme

recognition to singing voice to text alignment with a real-time application. The

authors’ interest is mainly in the architecture of the HMM and the adaptation
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of its parameters in order to fit the singing voice case. Several low-level and

high-level features are extracted from the audio signal and are given as input to

the HMMs. As the task is the alignment of the audio signal with the correspond-

ing lyrics, a Viterbi text to speech algorithm is implemented to find the most

probable path and give the time positions of each phoneme.

(Suzuki et al., 2007) use both the melody and the lyrics of the user’s singing

voice in order to retrieve a song from a database. The authors used a large vocab-

ulary speech recognition system, with an HMM as the acoustic model, adapted to

the singing voice using the speaker adaptation technology. As the task of recog-

nition here exploits the constraints posed by the assumption that the sung lyrics

are a part of the database, the approach uses a FSA that accepts only lyrics from

the database.

(Sasou et al., 2005) tested an Auto Regressive HMM with pure singing voice

signals from the RWC database1. (Yaguchi and Oka, 2005) developed a system

that retrieves songs from a database using sung and spoken clauses. For the

phonemic recognition of both query and database audio signals, the authors used

discriminate functions using the Bayes estimation. 26 different discriminate func-

tions were made for 26 different kinds of phonemes, using speech data. Although

the phoneme label error was relatively high, the task was considered as a simple

conversion method, since both query and database audio signals were transformed

into phonemic sequences with the same method and thus, with a “same type” of

error. After this conversion a Continuous Dynamic Programming algorithm was

implemented to match the input query with a song from the database.

(Gruhne et al., 2007) implemented a system that performs automatic classi-

fication of 15 voiced sung phonemes in polyphonic audio. Their procedure was

based on harmonics extraction and resynthesis of a number of partials as a pre-

processing step, in order to reduce influences from accompanying sounds. Then

low-level features were extracted from the audio and classified using different

classification techniques like SVM, GMM and MLP.

LyricAlly by (Kan et al., 2008) is probably the first English lyrics sentence-

level alignment system for aligning the lyrics to the music signals for a specific

1http://staff.aist.go.jp/m.goto/RWC-MDB/
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3.2 Singing Phoneme Recognition

structure of songs. The problem of alignment is divided into a high-level align-

ment of the song’s structural elements and a second round of low-level line align-

ment. Beat, measure and chorus detection are used for the high-level alignment.

Also, repeated sections in the lyrics are detected and assigned to the chorus.

Approximate duration of each section are estimated based on the previous fea-

tures using a singing phoneme duration database. For the low-level alignment

a vocal detector is implemented like in (Nwe et al., 2004) to locate parts in the

audio which contain vocals. Durations are estimated for each line exploiting the

rhythmic structure of the song. In later work (Iskandar et al., 2006) the line-level

alignment is refined to syllabic-level. In this approach MFCCs are used to rep-

resent each frame and a triphone is implemented with a three-state left-to-right

HMM as the recognition model. Then, the two sequences are aligned using a

Dynamic Programming algorithm that takes into consideration constrains posed

by music.

(Fujihara et al., 2006) perform automatic synchronization between lyrics and

polyphonic music signals for Japan CD recordings. Their proposed system in-

cludes detection of vocal segments, segregation of vocals and adaptation of a

speech recognizer to the segregated vocal signals. During the first step, harmon-

ics extraction and resynthesis is performed as in (Gruhne et al., 2007). Then

a simple HMM is used in order to keep only the vocal regions and remove the

non-vocal sections. Last, features are extracted from the audio (MFCCs, delta

MFCCs and delta power) and the Viterbi algorithm is used to align the seg-

mented vocal parts with the corresponding lyrics. In this step, only the vowel

phonemes are considered as the consonants have been removed at the accompa-

niment sound reduction step. Thus, the sequence of lyrics is transformed to a

sequence of vowels, with short pauses introduced between the words.

(Wong et al., 2007) propose a system for real-time alignment of Cantonese

music, which is a particular tone-language. As mentioned before, in tone lan-

guages the meaning of a word changes when pronounced with a different pitch.

The authors are interested in sentence-level and not phoneme-level alignment.

The interesting technique used here is the enhancement and extraction technique

of the singing voice. This innovative technique is based on the common mixing
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3.2 Singing Phoneme Recognition

practice, where the different tracks of the singing voice and the musical instru-

ments are mixed together to give the final track. Based on the fact that the

singing voice and the drums are in the center position of the stereo channel, the

technique performs spectral subtractions to obtain the enhanced vocal signal.

Then an MLP is used to segregate the vocal from the non-vocal segments taking

as input the spectral flux, the HC, the ZCR, the MFCCs, the amplitude level and

the 4Hz modulation energy. Last, the DTW algorithm is used to align the two

sequences.
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Chapter 4

Methodology

4.1 Database Creation- Corpus Selection

As in every automatic classification problem, the first task to be accomplished

is the selection or creation of a database to be used for training, testing and

evaluating the statistical models. In this study our interest is in polyphonic

recordings with English lyrics. A set of songs has been selected that belong to a

wide spectrum of genres and that are performed both by female and male singers.

As this procedure was very time-consuming (around 8 hours for each a 15 sec

snippet), the number of the annotated songs were cut down to 15. Specifically, 3

jazz, 3 pop, 2 funk, 1 trip-hop, 1 hip-hop, 1 country, 1 soul, 1 blues, 1 electronica

and 1 rock song were annotated, 8 performed by male singers and 7 performed by

female singers. After the decision about the genres to be included in the database,

representative singers and songs were selected for each of the genres.

From these songs, 15 sec snippets containing mostly vocals were extracted

and further used in the procedure. Since our next task was to annotate phonem-

ically the singing voice signals, the segments we selected didn’t contain multiple

voices, clapping, laughing, audience screaming etc. as in these cases it would be

difficult to find the correct time boundaries. Other considerations regarding this

selection, were to take snippets from different parts (intro, chorus, verse, bridge,

outro) and avoid very strange pronunciation and accent. As many of these songs

contain slung words that are not included in a dictionary (so that their phone-

mic transcription is available), we selected parts with “clear” lyrics. Finally, we
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4.2 Data Annotation Method

added a set of 166 of pure instrumental snippets. All the audio files used in the

database were sampled at 44100Hz. In Appendix A there is a list of the songs we

used in our database, along with the starting and ending time of the durations

used. Following the same procedure we annotated 5 more 5sec snippets in order

to evaluate our models (see Section 5.2). Especially:

• one audio file containing pure instrumental music without any percussion

sounds (instance no1, Norah Jones - Seven Years)

• one file of pure instrumental music with percussion (instance no2, Brad

Mehldau - Knives Out)

• one file containing pure singing voice without any instrumental background,

even if the models were not trained with pure singing voice signals (instance

no3, Carol Sloane - My one and only love)

• one file with singing voice and instrumental accompaniment without per-

cussion (instance no4, Duffy - Syrup and Honey)

• one file with singing voice and instrumental background with percussion

(instance no5, Oi Va Voi - Refugee)

4.2 Data Annotation Method

Our next step was to manually align these songs. Alignment between singing

voice and text refers to the temporal relationship between audio signals and

the corresponding lyrics. The goal in this step was to precise the starting and

ending points of each phoneme. These manual annotations were also used as

our ground-truth for the system implemented. Before the annotation task, the

lyrics of the songs were collected from several web pages1 and a listening task

was performed in order to select the right version for each song. As some lyrics

contained abbreviations like “waitin”, “told ya”, “darlin”, “gonna”, “n”, etc.

they had to be corrected, so that the words were contained in the dictionary.

1www.lyrics.com, www.azlyrics.com, www.lyricsbay.com
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4.2 Data Annotation Method

The lyrics were then turned to their phonemic representation using a SAMPA1

transcription module (see next paragraph for details). Silences were produced

from the transcription module between the several words.

Several phonetic transcriptions have been adopted from scientists over time.

The most commonly used are the IPA2 and the SAMPA transcription. The sounds

represented by the symbols of these transcription methods are typical sounds in

many different languages (Ladefoged, 2005). Here we are interested in the English

language and the transcription we have used is the SAMPA transcription method.

Figure 4.1 shows the SAMPA chart for English (allophones are inside blue frames).

The symbols that are used throughout this thesis to represent phoneme sounds

are according to the SAMPA transcription method.

The main annotation task was about putting time borders on the signal for

the beginning and ending time of each sung phoneme. The software used in

this step was WaveSurfer3 (Sjlander and Beskow, 2000) that is used widely for

signal transcription tasks. It has an option of loading text labels, with which

the phonetic transcription in SAMPA was inserted. The software outputs the

annotations in a .lab file that includes the starting times, the ending times and

the corresponding phonemes. This software gives several options in representing

the waveform and the spectrogram and has also an interactive playback option.

Based on the signals representations in both time and frequency domain, and

continuous listening tests we assigned time boundaries for each of the phonemes.

Figure 4.2 visualizes the annotation software.

As the task of annotating signals is not trivial, a literature review had to

be done on this task. Since most of this work was done for the case of speech

we turned to annotated speech databases and manuals. The TIMIT database

(Garofolo et al., 1993) and its documentation provided a very useful guide. Sev-

eral practice tests had to be made using speech signals from the TIMIT database

and their correspondent annotations. Also several guides were used that describe

spectrogram properties for each phoneme, their average durations and other prop-

1http://www.phon.ucl.ac.uk/home/sampa/
2http://www.arts.gla.ac.uk/IPA/
3http://www.speech.kth.se/wavesurfer/
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4.2 Data Annotation Method

Figure 4.1: SAMPA chart for English
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Figure 4.2: Annotation with Wave Surfer Software

erties of each phoneme (Ladefoged, 2005)), based on which phonemic annotations

are done for speech signals.

Of course, in our case the background noise made the task not so clear as

several properties of the phonemes are “hidden” under the instrumental accom-

paniment. Especially the percussive sounds were causing deterioration to the

spectrograms and the annotation was difficult in cases were consonant phonemes

coincided with percussion. In cases like that even the human listener is not able

to perceive the consonant phonemes. It was a challenge if a classification model

would be able to overcome this.

4.3 Splitting Methods- Segmentation

The fundamental step for audio content analysis is the signal segmentation. In-

formation within segments has to be nearly stationary. After the segmentation

step, feature extraction is performed and other kinds of processing, like statistical

information modelling. In this thesis we implemented 3 segmentation techniques

that are described below.
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The first approach followed was to segment the audio signal according to

the time boundaries we have annotated, hereinafter called manual annotation

segmentation. This procedure was done with a python script using as input a set

of audio signals in .wav format along with their corresponding annotations. The

output was a set of smaller audio files, each one containing only one phoneme, or

pure instrumental music according to the annotations and a set of corresponding

annotation files. Figure 4.3 visualizes this segmentation procedure.

Figure 4.3: Manual annotation segmentation procedure

As our final goal was not to build a classifier that would decide on the class

based on the manual annotation segmentation but to try to segment automati-

cally the audio files in an “optimal” way, further segmentation techniques were

implemented. The manual annotation segmentation method would give us an

upper limit for the accuracy of any automatic segmentation method. Also, the

information it conveys, like the average length of vowel and consonant phonemes
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4.3 Splitting Methods- Segmentation

can be used in the final system.

Our next approach was to automatically segment the audio files using a fixed

frame length of a few milliseconds. In order not to lose any information from

the manual annotations in the training phase this algorithm was implemented

so as to use the annotated time stamps. In figure 4.4 we present the flow chart

diagram of the python script we implemented for this segmentation, hereinafter

called annotation-dependent fixed-length segmentation.

Figure 4.4: Annotation-dependent fixed-length segmentation algorithm flow-

chart

Different segmentation lengths (from 30 ms to 150 ms) were applied in order

to find peaks in precision and recall for each class and for each frame length and
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4.4 Extracted Features

incorporate this information in the final system.

The last step was to find the optimal segmentation length for any unknown to

the classification system audio file for the evaluation phase. This segmentation

technique need not to use any information from the manual annotations. The

audio signals were segmented in fixed frame length snippets of different lengths,

overlapping and non-overlapping in order to observe the accuracy in each case. In

order to evaluate the classification models in this case labels had to be assigned

for each frame of the evaluation set. As each frame could belong to more than

one class, decisions about the real class of each frame are decided according to

class that the middle sample of each frame belongs. Using this technique, the

accuracy was measured as the percentage of correctly classified frames. Another

possible technique in order to measure the accuracy of the models, is to find the

percentage of correctly assigned overall durations. This segmentation technique

will be called hereinafter annotation independent fixed length segmentation.

4.4 Extracted Features

Feature extraction is a major stage in any classification system in general, and

in audio signal classification systems in particular. After the segmentation of the

audio, several representative features are extracted from the audio files.

In this research we used two main tools for feature extraction. The first tool,

was the MIRToolbox for MATLAB and the second was Essentia, which outputs

a large set of features. Especially, using MIRToolbox, we extracted a set of 13

MFCCs, the spectral centroid, brightness, skewness, spread, kurtosis, entropy,

flatness, irregularity and roll-off, while using Essentia we extracted more than

300 available features. In the second case the feature vector had to be cut down

in order to avoid overfitting, and a feature selection process has been carried

out, using the Weka software. The final number of features selected for each

experiment is cited along with the results in Chapter 5.
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4.5 Classifiers

4.5 Classifiers

For the classification process we used the Weka software. Input data were con-

verted to a CSV or an ARFF file, so as to be compatible with Weka. They were

firstly filtered so as to have the same number of instances in each class. Also,

feature selection was performed using Weka algorithms, in order to reduce the fea-

ture vector dimension and avoid overfitting. Weka gives many options for the test

set. Apart from supplying a different set as a test set, a 10-fold cross validation,

a percentage split of the training set or an evaluation set with no labels can be

loaded. For the testing phase a 10-fold cross validation was performed. Our eval-

uation phase was performed on a holdout independent validation set using Weka’s

option for outputting predictions for an unknown set with no labels assigned to

each frame. Several classifiers have been tested in this research like Weka’s SMO

algorithm for SVM, j48 trees, the logistic function and Multi-layer Perceptrons.

Weka outputs several performance measures, like the confusion matrix precision,

recall, f-measure etc.

Figure 4.5 presents the block diagram of the system.

Figure 4.5: Block Diagram of the Methodology
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Chapter 5

Experiments and Results

During this project several experiments have been performed in order to opti-

mize the performance of the classification scheme. These experiments can be

categorized in attempts to:

• locate the optimal segmentation length. A fundamental step in audio con-

tent analysis is the segmentation technique used. Within a segment, signal

parameters are considered fairly stationary. As this step is then followed

by feature extraction and statistical information modelling, it is important

for the overall accuracy of the system. In speech, fixed length segmentation

has been used commonly. In audio content analysis, fixed length segmenta-

tion has also been employed. Other segmentation techniques that are being

used for music signals are based usually on the rhythm (Maddage et al.,

2004, 2008; Nwe et al., 2004; Shenoy et al., 2005) or in detection of spectral

changes (Li and Wang, 2007). The segmentation techniques used in this

study are described in section 4.3.

• extract a representative set of descriptors. As we already described, feature

extraction is also an important step. The goal is to extract a representative

set of features to train the classification model. In this thesis several relevant

features have been tested. Feature selection has been performed mainly

using Weka’s algorithms, that gives the importance of each descriptor, so

as to filter out features that can cause the model either to over-fit or to use

a large set of non-important features.
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5.1 Experiments

• find the optimal classification scheme and classification function. As in this

study we had to deal with a 3-class (multi-class) classification problem,

there were several schemes of classification models. The first and simplest

scheme is a 3-class classifier to assign each frame into one of the 3 classes

(vowels, consonants, music). Another scheme implemented consisted of 3

binary (one-against-rest) classifiers in parallel, a music-vs-other (vowels or

consonants), a vowel-vs-other (consonants or music) and a consonant-vs-

other (vowels or music) classifier. The last scheme implemented consists

of 2 binary classifiers in series (chained), a music-vs-singing voice binary

classifier and a vowel-vs-consonant binary classifier that takes as input only

the frames classified as containing singing voice.

5.1 Experiments

In this chapter we present the main categories of experiments performed in this

study. All the results obtained during the testing phase are acquired using a

10-fold cross-validation in Weka. Also, filters are applied in all the experiments

so as to get the same number of instances in each class. In this section the most

representative experiments are presented along with the procedure followed and

the corresponding results.

5.1.1 Experiment no1: Annotation-based Segmentation

Models

One of the first experiments performed was the classification of features extracted

from phoneme-length segments. Following the manual annotation segmentation

we described in section 4.3, we segmented the audio files into smaller snippets.

We extracted several features that are considered relevant for discriminating vow-

els from consonants and music. Using the MIRToolbox, 13 MFCCs as well as the

spectral centroid, brightness, skewness, spread, kurtosis, entropy, flatness, irreg-

ularity and roll off were extracted for each audio snippet. We, then, performed

feature selection to this initial feature set in order to find a smaller set of impor-

tant descriptors. 12 descriptors were considered relevant (MFCC mean 1, 3, 6, 8,
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5.1 Experiments

Table 5.1: f-measure of different classification functions in Experiment no1

class logistic SMO MLP

consonant 0.811 0.793 0.779

music 0.9 0.924 0.887

vowel 0.753 0.77 0.694

10, 11, Spectral skewness mean, Spectral spread mean, Spectral kurtosis mean,

Entropy of Audio waveform mean, Spectral flatness mean, Spectral irregularity

mean). Performing this experiment using different classification functions we got

the results presented in Table 5.1.

Evaluation of the logistic model on the evaluation set described in Section 5.2

gave 75 % of accuracy (as computed by formula 2.12). From these first evaluation

results it is quite safe to conclude that since the performance of the model in the

two sets is close (6.92% decrease in the evaluation set), the training set is good

enough in capturing the variability of the data of the different classes. Table 5.2

shows the confusion matrix of this classification results.

Table 5.2: Evaluation of classifier in Experiment no1

consonants music vowel classified as

12 0 6 consonant

1 3 0 music

3 0 15 vowel

From the confusion matrix in Table 5.2 we can conclude that vowels achieve

high precision, music high precision and recall and consonants high recall. Fur-

thermore, even if the number of instances used in the evaluation set is small, we

can observe that the classifier achieves quite high accuracy if the segmentation of

the audio snippets is that of their duration.

From these first results we could see that extracting a small set of features (12

as defined from feature selection) the f-measure of the classifier reached an average

of 81.9209 %. Of course, in any unknown audio file to be classified, annotation
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5.1 Experiments

based segmentation cannot be applied, so we had to implement an automatic

segmentation technique. These results could be used as an upper bound of the

feasible system accuracy. The experiments that followed focused on finding the

optimal segmentation length.

5.1.2 Experiment no2: Fixed Length Segmentation

The next set of experiments performed were about finding the optimal segmenta-

tion length (fixed) for the audio files. Each audio file was segmented in fixed length

non-overlapping frames, according to the annotation dependent fixed length seg-

mentation technique described in Chapter 4. From each of these frames the same

feature set as in Experiment no1 was extracted and used for the classification.

We searched in the area of 30 ms to 150 ms. Table 5.3 shows the performance of

an SMO classifier (that was found to out-perform other classification functions)

built using different segmentation lengths.

Table 5.3: Performance of 3-class classifiers at different segmentation lengths

Segmentation length Precision Recall F-measure Class

30 ms

0.69 0.637 0.663 vowel

0.608 0.686 0.645 consonant

0.687 0.651 0.669 music

60 ms

0.637 0.618 0.628 vowel

0.572 0.626 0.598 consonant

0.686 0.643 0.664 music

90 ms

0.648 0.63 0.639 vowel

0.637 0.602 0.619 consonant

0.639 0.692 0.664 music

120 ms

0.682 0.641 0.661 vowel

0.648 0.722 0.683 consonant

0.769 0.726 0.747 music

150 ms

0.663 0.61 0.635 vowel

0.619 0.657 0.637 consonant

0.687 0.7 0.693 music
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5.1 Experiments

From these results we could see that generally the 120 ms segmentation was

the optimal one for a 3-class classifier. Nevertheless, from the accuracy of each

class at each segmentation length, we saw that different classes had different

“optimal” segmentation lengths. Figure 5.1 shows the precision obtained for each

class at each segmentation length. This information could be used in building

three one-class-versus-other (binary) classifiers for each class using these optimal

segmentation lengths found and then combining their results.

Figure 5.1: Precision per class per segmentation frame length

5.1.3 Experiment no3: Binary Classifiers based on Opti-

mized Segmentation Length

As in the previous experiment we found that each class had a different optimal

segmentation length, we used this information and built three one-vs-all (binary)
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5.1 Experiments

classifiers. For the classes of music and consonants the optimal segmentation

length found was 120 ms, while for the vowels was 30 ms. Thus, we segmented

our audio files in 30 ms and classified our instances as belonging to the vowel class

or the other classes (music or consonants), in 120 ms and classified our instances

as belonging to the music class or the others (vowels or consonants) and finally

to the consonant class or the others (vowels or music). In this experiment the

segments were obtained using the annotation-dependent fixed length segmenta-

tion technique. The same set of features as before was extracted from the audio

segments and used for the classification. Table 5.4 shows the precision and recall

obtained for each class by the three optimized binary classifiers, using the SMO

algorithm for SVM in Weka that was found to out-perform MLP and logistic

classification functions.

Table 5.4: Performance of binary classifiers

Classifier Precision Recall Class

Vowels vs other
0.789 0.826 vowel

0.817 0.779 other

Consonants vs other
0.764 0.803 consonants

0.793 0.752 other

Music vs other
0.817 0.79 music

0.797 0.823 other

These binary classifiers can be used in parallel in order to assign each segment

into one of the three classes. A short evaluation of this scheme showed that further

heuristic rules have to be implemented in order to handle overlaps between the

three classes. Some of these heuristics can be based in the average duration of

each class. Usually, classes do not change very quickly between music and singing

voice (vowels and consonants). Music segments between singing voice segments

last for several seconds, so it is quite safe to apply heuristic rules based on class

durations to the classification output in order to improve accuracy. Specifically,

we applied the following smoothing heuristic rule to the classification output:

if (frame(i-1)=music and frame(i+1)=music ) then frame(i)=music (5.1)
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The result was an additional 5% increase in the overall accuracy of the models.

Some comments that can be made on this rule is that it doesn’t handle overlaps

between the vowel and consonant classes and further post-processing of the output

is needed. Furthermore, this evaluation procedure showed that it is probably

more efficient to have two classifiers in series, one binary classifier to detect music

segments and a second one to assign singing voice segments into vowels and

consonants.

5.1.4 Experiment no4: Extraction of a Large Feature Set

After experimenting with different segmentation lengths and techniques, we used

the optimal ones found to build more robust classification models using a larger

set of audio features. Essentia was used to get an initial set of 389 audio features.

After that, feature selection was performed using Weka’s feature selection algo-

rithms. As explained in Experiment no3 the optimal segmentation lengths found

were 30 ms and 120 ms. Those lengths were used for the segmentation in this

experiment and again the segmentation method was the annotation dependent

fixed length segmentation. In Table 5.5 the results of the 3-class classifiers are

presented. For this classification a set of 60 features was selected and Weka’s

algorithm SMO for SVM was used as the classifier.

Table 5.5: Performance of 3-class classifiers with Essentia’s feature extraction
Segmentation length Precision Recall F-measure Class

30 ms

0.795 0.779 0.787 vowel

0.745 0.709 0.727 consonant

0.75 0.801 0.775 music

120 ms

0.739 0.732 0.736 vowel

0.739 0.739 0.739 consonant

0.862 0.871 0.867 music

If we compare these results with those of Table 5.3 for the correspondent

segmentation lengths we can observe a 9.38% increase in performance as we used

a bigger set of descriptors to train the models (Figure 5.2).
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Figure 5.2: Comparison of 3-class models’ f-measure using different feature sets
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Another classification scheme that was considered as rational and was imple-

mented consists of two classifiers in series. The first one to distinguishes music

from singing voice and the second takes as input the singing voice segments and

classifies them as vowels or consonants. From the results we got by the 3-class

classification scheme in Table 5.5 we expected the 120 ms segmentation to per-

form better for the singing voice detection and the 30 ms segmentation to be

the optimal one for distinguishing vowels from consonants. This hypothesis was

consistent with the results. In tables 5.6, 5.7 the performance measures of these

binary classifiers are presented. Again here the SMO algorithm was used for the

classification.

Table 5.6: Performance of binary classifiers using 120 ms segments

Classifier Precision Recall F-measure Class

Music vs Singing Voice
0.874 0.907 0.89 music

0.904 0.869 0.886 Singing voice

Vowels vs Consonants
0.786 0.794 0.79 vowels

0.792 0.784 0.788 consonants

Table 5.7: Performance of binary classifiers using 30 ms segments

Classifier Precision Recall F-measure Class

Music vs Singing Voice
0.841 0.883 0.861 music

0.877 0.833 0.854 Singing voice

Vowels vs Consonants
0.845 0.805 0.825 vowels

0.814 0.853 0.833 consonants

5.2 Evaluation

As in every classification problem, evaluation of the models is needed in order to

verify the accuracy of the obtained models. In this study, we evaluated the final

models built in Experiment no4, as they are the optimal models that gave us the

best results in the testing phase. For the evaluation we used a set of unknown to

the system audio files (see Section 4.1).
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From the selection of the audio files, it becomes obvious that special attention

is given to percussion sounds. As we stated in sections 1.3 and 4.2 we assume

that percussion sounds are highly possible to be confused with consonants, as they

resemble a lot and even the human ear is difficult to distinguish them, especially

when they coincide. As already explained in section 4.3, the audio files used for

evaluation were segmented according to the annotation-independent fixed-length

segmentation technique. Using Essentia, a set of 389 features were extracted from

the audio snippets and finally a smaller set was used according to the feature

selection of the training sets. Using the testing mode that outputs predictions

in Weka, we got a class assignment for every frame of the audio signals in the

evaluation set. Table 5.8 presents the correctly classified instances obtained by

the several classification models of Experiment no4, for the 5 different instances

used in the set. As every instance represents a different case of audio music signal

we will comment each one and its results separately.

5.2.1 Instance no1, pure instrumental audio signal,no per-

cussion

As we can see from the evaluation results in Table 5.8, instance no1 achieves high

accuracy with every classification scheme. The 3-class classifier correctly classifies

most music frames, as well as the binary music-vs-singing voice classifier. Table

5.9 presents the confusion matrices of this instance for the 3-class classifiers and

Table 5.10 for the binary classifiers using different segmentation lengths.

Also, applying simple heuristics in this case, so as not to allow quick changes

between the classes (see equation 5.1), the accuracy of the classifier reaches 100

% for the 3-class classifier and for the binary music-vs-singing classifier apply-

ing 120ms non-overlapping segmentation. From these results we can see that

the models are able to distinguish pure instrumental music segments without

percussion from sung vowels and consonants with high accuracy.
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Table 5.9: Confusion matrices of instance no1 for 3-class classifiers, music should

be detected in all frames
segmentation pred.as:music pred.as:consonant pred.as:vowel

120ms (non-overlap) 44 2 2

120ms (overlap) 172 9 5

30ms (non-overlap) 171 13 5

Table 5.10: Confusion matrices of instance no1 for binary classifiers, music should

be detected in all frames
segmentation pred.as:music pred.as:singing voice

120ms (non-overlap) 183 3

120ms (overlap) 47 1

5.2.2 Instance no2, pure instrumental audio signal with

percussion

Instance no2 from the other hand gets very low accuracy, random for the 3-class

classifiers and worse than random for the binary classifiers. Table 5.11 presents

the confusion matrices of this instance for the 3-class classifiers and Table 5.12

for the binary classifiers using different segmentation lengths.

Table 5.11: Confusion matrices of instance no2 for 3-class classifiers, music should

be detected in all frames
segmentation pred.as:music pred.as:consonant pred.as:vowel

120ms (non-overlap) 57 51 58

120ms (overlap) 14 11 18

30ms (non-overlap) 73 64 32

A closer look at the frames assigned by the model to the vowel class shows that

contained a dominant piano. Figure 5.3 depicts the spectrogram of this instance

and the frames assigned by the model to the vowel class (according to the 3-

class model with 120ms non overlapping segmentation) are inside yellow frames.

From the spectrogram and the waveform of these frames we could observe high

51



5.2 Evaluation

Table 5.12: Confusion matrices of instance no2 for binary classifiers, music should

be detected in all frames
segmentation pred.as:music pred.as:singing voice

120ms (non-overlap) 47 119

120ms (overlap) 15 28

harmonicity and higher energy in low bands. The same durations were assigned

by the binary music-vs-singing classifier to the singing voice class. The frames

that were recognized as consonants presented low amplitude and energy spread

in a wide range of bands. Frames that had dominant percussion sounds were

correctly assigned to the music class.

Figure 5.3: Spectrogram of Instance no2

5.2.3 Instance no3, pure singing voice

Instance no3 is pure singing voice without any instrumental background. Al-

though the models are not trained with pure singing voice signals, one such file

was included in the evaluation set in order to observe the reaction of the model in

this case and learn from his mis-classifications. Furthermore it is useful to observe
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its performance for the binary vowels-vs-consonants classifier. Tables 5.13, 5.15,

5.14 present the confusion matrices of the 3-class classifier, the binary classifiers

vowels-vs-consonant and music-vs-singing voice respectively for instance no3.

Table 5.13: Confusion matrices of instance no3 for 3-class classifiers, singing voice

should be detected in all frames
Segmentation real class pred.as:music pred.as:cons. pred.as:vowel

120ms, overlapping
consonant 10 38 2

vowel 12 114 22

120ms, non-overlapping
consonant 3 11 0

vowel 4 29 4

30ms, non-overlapping
consonant 38 12 2

vowel 138 10 1

As we can see in Table 5.13 apart from the consonants that are correctly

assigned as ones, the majority of the vowel instances are also assigned to the con-

sonant class using 120ms segmentation. In Figure 5.4 we can see the spectrogram

of this instance. The areas in yellow frames are two vowels with vibrato that the

recognizer mis-classified as consonants using the 120 ms segmentation, probably

because of the quick frequency modulation and thus quick spectral change it de-

tects in these frames. Furthermore, for this evaluation we can see that different

characteristics of the singing voice are captured by the models when instrumental

background is present, that are not able to do so in the case of pure singing voice.

On the contrary, using the 30ms 3-class model, the same vowel frames are

assigned to music. This also happens with the binary music-vs-singing voice

models. This is caused probably because of the high harmonicity of the voice in

this case.

Table 5.14: Confusion matrices of instance no3 for music/singing classifiers,

singing voice should be detected in all frames

Segmentation pred.as:music pred.as:singing voice

120ms (non-overlap) 47 4

120ms (overlap) 183 15
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Figure 5.4: Spectrogram of Instance no3

If we observe the class predictions for the binary vowels-vs-consonants clas-

sifier, we can see that most of the consonants are correctly identified, but many

vowel frames are assigned to consonants. Those frames are again the vowels with

high vibrato.

Table 5.15: Confusion matrix of instance no3 for vowels/consonants classifier

Segmentation real class pred.as:cons. pred.as:vowel

30 ms
consonant 44 7

vowel 77 73

5.2.4 Instance no4, singing voice with instrumental back-

ground, no percussion

This instance contains a female singing voice along with instrumental background

and has no frames that contains only music, so all of the frames are either sung

vowels or sung consonants. Tables 5.16, 5.18, 5.17 present the confusion matrices
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of the 3-class classifier, the binary classifiers vowels-vs-consonant and music-vs-

singing voice respectively for instance no4. For the 3-class classifiers using 120

ms segmentation we can see that vowel frames are well recognized and the overall

percentage of correctly classified instances is high enough. The 3-class model

with the 30 ms segmentation mis-classifies some vowel and consonant instances

to the music class, probably because frames are short.

Table 5.16: Confusion matrices of instance no4 for 3-class classifiers, singing voice

should be detected in all frames
Segmentation real class pred.as:music pred.as:cons. pred.as:vowel

120ms, overlapping
consonant 4 13 30

vowel 0 19 111

120ms, non-overlapping
consonant 2 4 5

vowel 0 5 30

30ms, non-overlapping
consonant 10 19 15

vowel 39 15 82

Table 5.17: Confusion matrix of instance no4 for vowels/consonants classifier

Segmentation real class pred.as:cons. pred.as:vowel

30 ms
consonant 28 17

vowel 36 100

Table 5.18: Confusion matrices of instance no4 for music/singing classifiers,

singing voice should be detected in all frames

Segmentation pred.as:music pred.as:singing voice

120ms (non-overlap) 6 40

120ms (overlap) 24 153

The binary music-vs-singing voice classifiers achieves high accuracy. For the

binary vowel-vs-consonant classifier, we can see from the confusion matrix that

some vowel instances are assigned to the consonant class. Like in instance no3,
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Figure 5.5: Spectrogram of Instance no4

vibrato exists in these frames. Figure 5.5 shows the spectrogram at these frames

with the real class at the bottom and the predicted ones on the top.

5.2.5 Instance no5, singing voice with instrumental back-

ground and percussion

Instance no5 contains a female singing voice along with instrumental background

with percussion. Also, contains frames only with music and no singing voice. This

is the most common case in popular music. Tables 5.19, 5.20 and 5.21 present

the confusion matrices of the 3-class classifier, the binary classifiers vowels-vs-

consonant and music-vs-singing voice respectively for instance no5.

We can see that for the 3-class classification most of the vowels are correctly

predicted, but some music instances are assigned to the consonant class. Figure

5.6 shows the spectrogram of a music snippet from Instance no5. The 3-class

models mis-classified some of these frames as consonants, as it is shown in the

transcription pane on the top of the figure. These frames contain high frequency
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Table 5.19: Confusion matrices of instance no5 for 3-class classifiers
Segmentation real class pred.as:music pred.as:cons. pred.as:vowel

120ms, overlapping

music 24 19 10

consonant 2 4 10

vowel 0 4 53

120ms, non-overlapping

music 5 6 2

consonant 1 0 3

vowel 0 1 14

30ms, non-overlapping

music 21 20 12

consonant 6 5 5

vowel 3 0 58

Table 5.20: Confusion matrix of instance no5 for vowels/consonants classifier

Segmentation real class pred.as:cons. pred.as:vowel

30 ms
consonant 12 5

vowel 7 52

Table 5.21: Confusion matrices of instance no5 for music/singing classifiers

Segmentation real class pred.as:music. pred.as:singing voice

120ms, overlapping
music 21 32

singing voice 2 81

120ms, non-overlapping
music 5 8

singing voice 0 22
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bell chime synth-effect sounds that are recognized by the models as consonants.

The same instances are assigned to voice using the music-vs-singing voice models.

Figure 5.6: Spectrogram of Instance no5

5.3 Conclusions

In this Chapter we elaborated the experiments held during this thesis and the

classification models obtained. The models that show the highest accuracy were

evaluated with a set of different music instances in order to observe better the

weaknesses found in each one. Especially, we found that models mis-classify as

consonants music instances that have vibrato in the singing voice and also music

frames that contain high pitched chimes. Also, we found that fricative consonants

are very robustly detected by the models.
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Chapter 6

Conclusion

6.1 Discussion

In this thesis we have developed statistical models that distinguish pure instru-

mental music from sung vowels and consonants. Our approach was based on fixed-

length segmentation of the raw audio, followed by low-level feature extraction and

classification. A manually annotated phoneme-based database was created and

used as ground-truth for our experiments and also for training and testing our

models.

From our experiments, we have found that if the segmentation is based on

the annotations, feature extraction and segment-based classification achieves an

average f-measure of 82.13% for the 3-class classification model. Further explo-

ration of suitable fixed-length segmentation showed that performance drops and

that different classes have different optimal segmentation length. Binary clas-

sifiers were built based on this optimal segmentation length for each class and

gave an average f-measure of 76.88%. These models presented overlaps between

the assignments in different classes that were difficult to overcome using simple

heuristic rules. At that point, other classification schemes were considered as pos-

sibly more efficient, especially two chained binary classifiers, one to distinguish

between music and singing voice and a second one to assign the singing voice

segments into sung vowels or consonants. Afterwards, a larger set of features was

extracted and used to train 3-class classification models and the binary music-vs-

singing voice and vowels-vs-consonants classifiers. A 9.38% increase in accuracy
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was achieved in the 3-class classification models (77.18% average f-measure). For

the binary classifiers we found that a 120ms segmentation is optimal for distin-

guishing between music and singing voice (88.8% average f-measure) while the

30ms segmentation was optimal for distinguishing between sung vowels and conso-

nants (82.9% average f-measure). From these experiments we could observe that

suitable fixed-length segmentation can yield accuracy close to the one achieved

based on annotation-based segmentation.

From the evaluation procedure performed, the results showed close perfor-

mance achieved with that of a 10-fold cross validation of the testing set. Also,

some confusions of the system came up, like in the case of vibrato in the singing

voice or in the case of music containing high-pitched chimes, when frames are

assigned to the consonant class. Furthermore, the models were not able to dis-

tinguish robustly pure singing voice segments (without any instrumental back-

ground) as they were not trained to do so. It was also found that fricatives and

pure instrumental music without percussion are very robustly detected by the

models.

With the current configurations, the models developed could be used in any

polyphonic audio signal with English lyrics in order to distinguish between the

3 classes in question but also the binary models could be used to distinguish

singing voice from pure instrumental music and also to distinguish sung vowels

from consonants in singing voice segments.

6.2 Future Work

Several improvements could extend this study. First, a larger training set could

yield better results, in order to overcome confusions like i.e. in the case of vibrato,

which was probably observed because not many instances of vibrato voice where

included in the training set. In addition, different segmentation algorithms could

be applied and tested for their effectiveness in this task. For example, for the

singing voice discrimination beat-length segmentation could probably yield better

results.

Furthermore, pre-processing techniques could be applied to the raw audio in

order to enhance the singing voice signal, like for example a band-pass filter,

60



6.3 Contributions

which allows the vocal regions to pass through while attenuating other frequency

regions.

Also, the output of the models could be aligned with the corresponding lyrics

in order to improve the accuracy and reduce classification errors. As shown from

the evaluation of the models, fricatives are more reliable than other consonants in

their classification and several post-processing rules could take advantage of this

fact if the corresponding text is given. Such rules for example, taking advantage

of fricatives reliability were developed in (Loscos et al., 1999).

Furthermore, different sets of extracted features can be tested for their abil-

ity to distinguish between the different classes along with different classification

algorithms and their parametrization.

It would be interesting to test the robustness of the models in other languages

apart from English, that share a common set of phonemes. One interesting topic

for research, given a robust classifier to detect vowels, consonants and music is

presented in (Patel et al., 2006). The authors compare the rhythm and melody

between British and French for both speech and music. Their hypothesis is that

music reflects prosodic patterns in the composer’s native language and although

they are interested in the case of pure instrumental music they state that “It

might not be surprising if vocal music reflected speech prosody; after all, such

music must adapt itself to the rhythmic and melodic properties of a text”. For the

case of speech, authors propose the use of an index that measures the durational

contrast between successive vowels. Such an index could also be applied for the

case of singing voice, given a robust vowel detector.

6.3 Contributions

In this thesis we developed several classification schemes in order to distinguish

singing vowel sounds from singing consonant sounds and pure instrumental mu-

sic. The models were trained using the boundaries assigned by the annotation

process and using several segmentation lengths. Evaluation on a set of unknown

to the system files, using simple fixed-frame segmentation showed that the models

achieve good performance.
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Especially, this study showed that even without any preprocessing of the au-

dio signals and extracting only low-level features, 3-class models are capable to

distinguish between the different classes with an average error-rate of 23%. Also,

the several binary models give greater flexibility, as they can be tested and ap-

plied replacing for instance the music vs singing voice model with another one

developed or applying the vowel vs consonant classifier to singing voice segments.

As we saw in the literature review, many approaches, in order to perform

singing voice enhancement, pre-process the signals using harmonic analysis and

omit unvoiced sounds or consonants. Also, many approaches perform singing

phoneme recognition in segments that are a priori manually classified as contain-

ing singing voice. In contrast, in this study music is considered as a separate class

in the models and no a priori segmentation of the audio files is needed.

To our knowledge, for the singing voice case in polyphonic recordings, no

relevant research exists that considers consonants as a class. This classification

can be used as a first classification step in a singing phoneme recognition system

in order to first classify sounds in groups. In a relevant study in speech recog-

nition by (K.Driaunys et al., 2005) the authors begin from recognizing groups

of phonemes and then try to recognize each phoneme itself. They state “Our

experience showed that direct phoneme classification can’t provide good enough

recognition results. As were observed in some of our later investigations it could

be meaningful prior to direct phoneme classification perform phoneme classifica-

tion into some of phoneme groups or some super-classes using group features of

phonemes.” Thus, such a classification scheme could be further extended, build-

ing one-phoneme recognizers to recognize each phoneme exactly inside this group

using additional features or additional classification methods.
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Appendix A

List of Songs

Air- Playground Love (146-161 sec)

Amy Winehouse- You know that I am no good (198.8-213.8 sec)

Ella Fitzerald- Sunshine (13.43-28.62 sec)

Faith Hill- Red Umbrella (49.58-64.58 sec)

Frank Sinatra- Fly me to the moon (8-13 sec)

James Brown- I feel good (21-36 sec)

Madonna- Frozen (17.518-32.385 sec)

Nina Simone- My baby just cares for me (155-170 sec)

2Pac- California Love (160-175 sec)

Robbie Williams- Rock DJ (49-64 sec)

Aretha Franklin- Rescue Me (15-30 sec)

Lamb- Gabriel (9-24 sec)

Gary Moore- Still got the blues (75-90 sec)

Green Day- She (27-42 sec)

Michael Bolton- How can we be lovers (56-71 sec)
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Appendix B

Glossary

ASR Automatic Speech Recognition

MFCC Mel-Frequency Cepstral Coefficient

MLP Multi-Layer Perceptron

SVM Support Vector Machine

GMM Gaussian Mixture Model

SMO Sequential Minimal Optimization

KNN K-Nearest Neighbors

HMM Hidden Markov Model

LPC Linear Predictive Coding

LFPC Log-Frequency Power Coefficients

PLPCs Perceptual Linear Prediction Coefficients

HC Harmonic Coefficient

DTW Dynamic Time Warping

ZCR Zero-Crossing Rate

FT Fourier Transform

FFT Fast Fourier Transform

DFT Discrete Fourier Transform

STFT Short-time Fourier Transform

DCT Discrete Cosine Transform

DP Dynamic Programming

FSA Finite State Automaton
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