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Abstract

The goal of this work is to review how melodic aspects of music are represented in
computer applications, and how these representations are extracted from audio signals.
This review will serve to define different levels of melodic description. We will use
this description scheme to represent melodic aspects of audio in a specific application
context, the Sound Palette application, a software tool for content-based analysis and
transformations. We will also implement and evaluate some techniques for extracting
some of these melodic features.
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"No hay una sola cosa en el mundo que no sea misteriosa,
pero ese misterio es mas evidente en determinadas cosas que en otras.

En el mar,
en el color amarillo,

en los ojos de los ancianos
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Chapter 1

Introduction

In this chapter, we introduce the problem we want to face and the context in which this
research work has been carried out. We also bring up some questions and objectives
for the present study.

1.1 Context

1.1.1 The Music Technology Group

The Music Technology Group (MTG)1 is a research group that belongs to the Au-
dio Visual Institute (IUA)2 of the Universitat Pompeu Fabra (UPF)3, in Barcelona. It
was founded in 1994 by his current director, Xavier Serra, and it has more than 30
researchers.

From the initial work on spectral modeling, the MTG is dedicated to sound syn-
thesis, audio identification, audio content analysis, description and transformations,
interactive systems, and other topics related to Music Technology research and experi-
mentation.

The research at the MTG is funded by a number private companies and various pub-
lic institutions (Generalitat de Catalunya, Ministerio Español de Ciencia y Tecnología
and European Commission).

MTG researchers are also giving classes in different teaching programmes within
and outside the UPF: Diploma in Computer Systems, Degree in Computer Engineering,
Degree in Audiovisual Communication, Doctorate in Computer Science and Digital
Communication, Doctorate in Social Communication, and at the Escuela Superior de
Música de Cataluña (ESMUC).

1.1.2 The Author

I graduated as a Telecommunication Engineer, specialized in Signal Processing, at the
Escuela Superior de Ingenieros, Universidad de Sevilla 4, in 1999.

In 2000, I received a DEA (Diplôme d’Etudes Approfondies) in Acoustics, Sig-
nal Processing and Computer Science applied to Music (ATIAM) at the Institut de

1http://www.iua.upf.es/mtg
2http://www.iua.upf.es
3http://www.upf.es
4http://www.esi.us.es
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CHAPTER 1. INTRODUCTION

Recherche et Coordination Acoustique Musique (IRCAM)5, Paris. During the research
period of this DEA, I was a visiting researcher at the Signal and Image Processing
(TSI) group of the École National Supérieure de Télécommunications (ENST) 6, Paris.
I worked on the field of digital watermarking of musical signals. Since then, I have
been collaborating in this subject with this research group and with the InfoCom-Crip5
Group of the René Descartes University7, in Paris.

From september 2000, I work as a researcher at the Music Technology Group. I
am involved in the CUIDADO8 project, an European project that aims at developing
new tools for music information retrieval, and in the TABASCO project, a project with
the support of the Spanish Ministry of Science and Technology, intended to develop
systems for indexing and transformation of sounds using Artificial Intelligence tech-
niques.

I am a PhD candidate of the doctoral program in Computer Science and Digital
Communication, organized by the Department of Technology and the Audiovisual In-
stitute, both of the UPF. This program reflects the research interests of the different
groups of the Department of Technology and of the Audiovisual Institute of the UPF:
Music Technology, Multimedia Telematics, Distributed Multimedia Applications, Im-
age Processing, Network and Telematics and Artificial Intelligence.

I hold a doctoral grant of the Spanish Ministry of Science and Technology.
A list of muy publications is presented here:

2003

� Emilia Gómez, Anssi Klapuri and Benoit Meudic, “Melody description and ex-
traction in the context of music content processing”, to appear in the Journal of
New Music Research, 2003.

� Leandro de C. T. Gomes, Pedro Cano, Emilia Gómez, Madeleine Bonnet and
Eloi Batlle, “Audio watermarking and fingerprinting: for which applications?”,
to appear in the Journal of New Music Research, 2003.

2002

� Emilia Gómez, Pedro Cano, Leandro de C. T. Gomes, Eloi Batlle and Madeleine
Bonnet, Mixed Watermarking-Fingerprinting Approach for Integrity Verification
of Audio Recordings, Proceedings of IEEE International Telecommunications
Symposium, Natal, Brazil.

� Pedro Cano, Emilia Gómez, Eloi Batlle, Leandro de C. T. Gomes and Madeleline
Bonnet, Audio Fingerprinting: Concepts and Applications, Proceedings of 2002
International Conference on Fuzzy Systems Knowledge Discovery, Singapore.

2001

� Leandro de C.T. Gomes, Emilia Gómez, Madeleine Bonnet and Nicolas Moreau,
Méthodes de resynchronisation pour le tatouage audio, Proceedings of 18th
Symposium GRETSI’01 on Signal and Image Processing, Toulouse, France.

5http://www.ircam.fr
6http://www.tsi.enst.fr
7http://www.math-info.univ-paris5.fr/crip5/infocom
8http://www.cuidado.mu

Emilia Gómez Gutiérrez 8 Research Work, UPF



CHAPTER 1. INTRODUCTION

� Nicolas Durand and Emilia Gómez, Periodicity Analysis using An Harmonic
Matching method and Bandwise Processing, Proceedings of MOSART Work-
shop on Current Research Directions in Computer Music, Barcelona.

� Gilles Peterschmitt, Emilia Gómez and Perfecto Herrera, Pitch-based Solo Lo-
cation, Proceedings of MOSART Workshop on Current Research Directions in
Computer Music, Barcelona.

� Leandro de C. T. Gomes, Emilia Gómez and Nicolas Moreau, Resynchronization
methods for audio watermarking, Proceedings of 111th AES Convention, New
York, USA.

2000

� Emilia Gómez, Tatouage de Signaux de Musique (Méthodes de synchronisation).
DEA ATIAM thesis, ENST (Paris Télécom)-IRCAM (Centre Georges Pompi-
dou).

1999

� Emilia Gómez, Desarrollo de un software decodificador de MPEG audio sobre
una plataforma DSP, degree thesis, ESI Universidad de Sevilla.

1.2 Music Content Processing

Sometimes it happens that we are looking for a song and we remember neither its title
nor its author, but only its chorus’s main melody. Sometimes someone is looking for a
particular passage of a musical piece, for example an harp arpeggio or a solo of violin.
Finally, let’s imagine that we have an audio sample and we want to transform it in order
to change its tonality from minor to major, increase its tempo or replace an instrument
for another one. All these taks are examples of how it would be useful to retrieve and
transform music according to different aspects of its content.

The word content is defined as "the ideas that are contained in a piece of writing,
a speech or a film" [2]. This concept applied to a piece of music can be seen as the
implicit information that is related to this piece and that is represented in the piece
itself. Aspects to be included inside this concept are, for example, structural aspects,
rhythmic, instrumental, and melodic characteristics of the piece.

The concept of content-analysis is defined as the "analysis of the manifest and
latent content of a body of communicated material (as a book or film) through a classi-
fication, tabulation, and evaluation of its key symbols and themes in order to ascertain
its meaning and probable effect" [6]. Several techniques are included under the con-
cept of “Music-content analysis”, as techniques for automatic transcription, rhythm
and melodic characterization, instrument recognition and genre classification; that is,
the techniques intended to describe any aspect related to the content of music.

Music Content Processing is a topic of research that has become very relevant in
the last few years. The main reason for this is that a great amount of audio material
has been made accessible to the home user through networks and other storage sup-
ports. This fact makes it necessary to develop tools intended to interact with this audio
material in an easy and meaningful way. Many researchers are currently studying and
developing techniques aimed at automatically describe and deal with audio data in a
meaningful way. There are many disciplines involved in this issue, as signal process-
ing, musicology, psychoacoustics, computer music, statistics and information retrieval.

Emilia Gómez Gutiérrez 9 Research Work, UPF



CHAPTER 1. INTRODUCTION

1.3 Melodic Description

In the context of music content processing, melody plays a major role. "It is melody
that enables us to distinguish one work from another. It is melody that human beings
are innately able to reproduce by singing, humming, and whistling. It is melody that
makes music memorable: we are likely to recall a tune long after we have forgotten its
text" [103] pp. 4. The importance of melody for music perception and understanding
reveals that beneath the concept of melody there are many aspects to consider, as it
carries implicit information regarding harmony and rhythm. This fact complicates its
automatic representation, extraction and manipulation.

Melodic description techniques are oriented toward the automatic extraction of
melodic characteristics of audio. This concept comprises several disciplines. A general
schema of the relationships between these disciplines is shown in Figure 1.1. Each of
them refers to a different aspect of melody.

Melody together with rhythmic, harmonic, timbre and spatial location information
make up the main dimensions for sound description.

1.4 Objectives and Working Thesis

The goal of this research work is to overview the concepts and techniques that are
related to Melodic Description, i.e.:

1. study how melody has been represented in the literature,

2. review the different techniques and algorithms that have been used to extract this
representation, and

3. review the application contexts in which melody description and extraction are
needed.

This overview of techniques is made keeping in mind a specific application con-
text, the Sound Palette, a tool for content-based audio edition and transformation that
provides some retrieval functionalities (see section 4.6 for description). This tool is
being developed within the European IST project CUIDADO (see [3]), that aims at
developing content-based technologies. In this research work, we:

� define different levels and aspects of melodic description, grouping the different
descriptors used in the literature. The final goal is to define a description scheme
with different levels of melodic representation open enough to be adapted to any
application context, and

� study the automatic extraction of the fields of this description scheme and imple-
ment some of these techniques inside a basic melodic extractor module.

Our working thesis is that we can find different levels and ways of representing
melodic aspects of sound, and each application context needs to represent melody from
a different point of view.

In particular, some of the questions that we will answer along this study are the
following ones:

� is there any fundamental frequency estimation method appropriate for any type
of sounds in any application context?

Emilia Gómez Gutiérrez 10 Research Work, UPF



CHAPTER 1. INTRODUCTION

� can we propose an all-usage representation of the melodic features of a music
piece?

� can the MPEG-7 standard (explained in section 2.3) be used or extended in our
specific application context, the Sound Palette application?

� how does the use of some musical knowledge helps in melody description?

Melodic Description

Fundamental Frequency 
Estimation

Predominant Pitch
Multipitch estimation

Expression description
(Music performance)

Low-level description Extended description

Pattern analysis & statistics
Music symbols manipulation software

Music knowledge representation
and AI techniques

Search & retrieval 
techniques

Trasformation
Tools

Melody retrieval Melodic transformations

Musical Analysis

Figure 1.1: Disciplines and research fields related to Melody Description

This research work focuses on melodic description of monophonic audio signals
(that is one instrument without accompaniment), although some of the presented tech-
niques have been designed to work with polyphonic sounds.

We follow a bottom-up approach to represent melodic aspects of sound. We be-
gin from physical and signal-related features, up to more abstract representations con-
nected with temporal structure, musical description or cognitive aspects of melody. We
divide the work in three blocks, dealing with melodic representation, melodic descrip-
tion extraction and applications of melodic description techniques.

This report is organized in the following way. In chapter 2, the review of the dif-
ferent melodic representations in the literature drives us to define different aspects of
melodic description. In chapter 3, we describe the recurrent techniques used to ex-
tract this melodic description: from pitch detection to a MIDI-like representation, and
toward a multi-level melodic description. Chapter 4 shows the different application
contexts in which melodic analysis and representation is used. In chapter 5, we explain
the work that is currently being carried out on the development of some of these tech-
niques. Finally, both the objectives of the future research and the guiding principles
to carry it out are explained, which at the same time, work as the conclusion of this
research work.

Emilia Gómez Gutiérrez 11 Research Work, UPF



CHAPTER 1. INTRODUCTION

Part of chapters 2, 3 and 5 is part of the following publications: [37, 91], and what
will appear in [42, 41, 40].

Emilia Gómez Gutiérrez 12 Research Work, UPF



Chapter 2

Melody Representation

2.1 Melody Definition

The goal of this section is to make a review of the different ways of defining what a
melody is and how it can be described. It is very difficult to give a clear definition of
melody. Several definitions can be found in the literature, considering different aspects
of melodic characterization.

Melody in general has been defined as an auditory object that emerges from a series
of sound transformations along the six dimensions: pitch, tempo, timbre, loudness,
spatial location, and reverberant environment [58].

Most of the time the concept of melody is associated to a sequence of pitch notes.
This definition can be found for example in [106]: “a combination of a pitch series
and a rhythm having a clearly defined shape”, and on Grove Music [5]: “pitched
sounds arranged in musical time in accordance with given cultural conventions and
constraints”. Goto also considers the melody as a sequence of pitches, the most pre-
dominant detected pitches at middle and high frequency regions, in opposition to bass
line, that can be found at low frequency bands [46][45].

Melody can also be represented as a set of unary features or attributes, when trying
to answer the question "which are the melodic features of this audio excerpt?”, that
characterize the melodic properties of sound. Several aspects to be considered are for
example key, melodic profile, melodic density (that is the degree of melodic activity),
interval distribution and tessitura (or pitch range) (see section 2.2 for a review on dif-
ferent descriptors related to melody). Sometimes melody is also associated with the
concept of unity, considering melody as an arrangement of single tones into a mean-
ingful sequence. This definition is close to the concept of phrase.

In the definition proposed in [4], melody is defined with some of these different
connotations: as a set of musical sounds in a pleasant order and arrangement, as a
theme (“sequence of single tones organized rhythmically into a distinct musical phrase
or theme”), and as a song, tune, or phrase (“a short musical composition containing
one or a few musical ideas”).

As shown in the previous definition, melody can be also related to the concept of
tune or predominant theme, that is usually defined as something recurrent, neither too
short nor too long, where all the notes are usually played by the same instrument and it
is often located at the top of the register. "Theme is an excerpt from an arbitrary por-
tion of work (not necessarily the beginning) which enjoys the greatest melodic impor-
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tance" [103]. Other related concepts are the prototypical melody (if every statement
of a theme is slightly varied, find the prototype behind), the motive (rhythmic and/or
melodic fragments characteristic to a composer, improviser, or style) and the signature
(term for motives common to two or more works of a given composer [30]). These no-
tions show up the fact that melody, apart from being a sequential phenomenon, has also
a hierarchical structure (motive, phrase, theme, etc.).

2.2 Multi-level Melody Representation

If we begin to review how to abstract melodic features of an audio file, we find dif-
ferent levels of representation, beginning at the signal level up to descriptors related to
musical or structural aspects.

Our goal is to build a melodic representation from sound, that is, we extract this
representation from the audio signal. We emphasize that many techniques for melodic
description already extract the features from another level of representation (or sym-
bolic representation), as for example methods that work with Musical Instrument Digi-
tal Interface (MIDI) representations. This means that, in order to use these techniques,
we first have to define a MIDI-like representation of the audio signal. Methods to
extract this representation from audio are presented in chapter 3.

After reviewing the features used to describe melody in the literature [42], we came
up with the idea that there exist different levels of abstraction to describe melody. This
idea can also be found in [33, 70, 96, 120, 121]:

Dannenberg [33] proposes to think of musical representations at different levels,
from most abstract (printed music) to most concrete level (the audio signal). He men-
tions the need of a multiple-hierarchy scheme to represent music, that should be exten-
sible to support new concepts and structures.

Rolland et al. [98] define what they call a Multidescription Valued Edit Mode model
(MVEM) that establishes three levels of description: individual, local, and global. In-
formation at the individual level concerns a single note or rest, described by features
related to duration and pitch. Local descriptions contain information on a segment, or
musical phrase, as, for example, the melodic profile, the contour, etc. General informa-
tion about the entire piece, such as the key or the average pitch, is given at the global
level. Nevertheless, this last group of features could also be associated to a single
phrase or audio segment.

Widmer [120, 121] also distinguishes between note-level and multi-level param-
eters to characterize music performances. According to him, some aspects of per-
formances are relevant at single note level, while others may only make sense when
viewed as parts of larger, more abstract patterns.

According to Leman et al. [70, 71], different representational levels for music exist,
and they provide cues for content representation of musical audio. It is pointed out the
need of a conceptual architecture for melodic representation in which these different
levels can be handled in a flexible way. They are currently developing this conceptual
architecture within the MAMI project (explained in section 4.1.2), distinguishing three
levels of concepts:

� Low-level concepts describe content that is close to the acoustical or sensorial
properties of the signal. This group of features includes frequency, intensity
as well as roughness, onset, loudness. They are typically related to temporal
features of the signal and local (non-contextual) properties.

Emilia Gómez Gutiérrez 14 Research Work, UPF
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� Mid-level concepts involve time-space transformations and context dependen-
cies within a time scale of the musical present. This is the level where time-space
transformations may allow for the specification of the musical signal content in
spatial terms (timbre, pitch, chords..) and temporal terms (beat, meter, rhythmic
pattern).

� High-level concepts involve learning and categorization beyond the representa-
tion of the “now”. This level deals with structure and interpretation, and may
be related to cognitive, emotional or affective issues. The concepts may involve
meanings that are not directly connected to signal features but with subjective
feelings and user-dependent interpretations.

All these approaches have in common the following:

1. They distinguish descriptors associated to different types of segments, according
to a temporal structure: single events, notes, phrase segment and entire piece.
That means that the different levels of representation are connected in some way
to structural aspects of music.

2. There are some descriptors related to signal attributes and other ones related to
musical terms, that is, musical knowledge is taken into account for the definition
of some of the features.

3. Perceptual issues are also considered, as well as context and subjective features,
for music description.

Now, we are going to make a list of the descriptors that are associated to those
different aspects of melodic representation.

� Low-level descriptors: in this group, we include signal-related descriptors, some
of them being already defined in the MPEG-7 standard (see section 2.3 for de-
tails). We refer here to descriptors that are related to the physical properties of
the sound. In turn, they can be divided in three different subgroups, as Leman
proposes [70]:

– Sample-level descriptors: they are descriptors related to the audio sample,
as the audio waveform itself.

– Frame-level descriptors include descriptors derived from an analysis of an
audio frame, i.e. a determined number of audio samples possibly weighted
by a window.

– Model-specific descriptors, that are descriptors derived from modeling tech-
niques of frame-level parameters. In this group, we can include parameters
related to some modeling techniques related to Artificial Intelligence or
Spectral Models as SMS [10]: Hidden Markov Models or Neural Networks
parameters, sinusoid amplitude and frequencies, number of sinus, residual
analysis parameters, etc.

� Note descriptors or event-related descriptors, also called individual descriptors
by Rolland et al. [98]. In this group we can consider descriptors associated to a
note segment, assuming that a segmentation into note has been performed. The
first note feature that represents melody within a note is the pitch, that has been
used in many application contexts. As an example, the system proposed by [82]

Emilia Gómez Gutiérrez 15 Research Work, UPF
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uses the note pitches as the information for melodic transcription. Other features
are note duration, vibrato, attack duration, intensity, and lyrics and phonemes if
considering singing voice.

� Descriptors related to structural aspects: in this level of description, a temporal
structure is imposed to the entire audio segment. Considering the segment as
a sequence of notes, they can be grouped into patterns (see section 3.5 for a
review on techniques) or motives. If we introduce some musical knowledge
(that is, considering also the musical aspects that are presented below), we can
also perform segmentations having a musical meaning, as phrase segmentation
(see section 3.4). These descriptors are then related to the following issues:

– Motive analysis

– Repetitions

– Patterns location

– Phrase segmentation (also related to the musical knowledge).

� Perceptual aspects: Human perception should be taken into account for repre-
senting melody in a meaningful way. As a consequence of studying how humans
perceive the melody, many features have been defined. For instance, as a forward
step from pitch information, pitch contour information has also been used in sev-
eral applications as query by humming, similarity matching or melodic classifi-
cation [58, 76]. A pitch contour describes a series of relative pitch transitions, an
abstraction of a sequence of notes, and it has been found to be more significant to
listeners in determining melodic similarity. It can also include rhythm informa-
tion, as also found in [88], where both pitch and duration sequences are used to
define the melody (see Figure 2.1). Different degrees of precision have been used
in representing pitch intervals, varying from up/down discrimination to a semi-
tone precision and even beyond (distinguishing enharmonic differences). The
amount of other parameters in processing the melody is heterogeneous, as well.
The earliest approaches disregarded timing information completely, but more re-
cent studies have shown that durational values may sometimes out-weight pitch
values in facilitating melody recognition [103, pp. 31]. Smith et al. studied
the length of a melodic query sequence needed to uniquely define a melody in
a database of 9,400 melodies [105]. Different pitch interval precisions (interval,
approximate interval, contour) and with/without durational values were tried.
As an obvious result, the more precise the representation is, the shorter the query
excerpt needed is (about five notes for the most precise). More importantly, how-
ever, contour matching together with durational values were more definitive than
exact pitch intervals only.

Taking into account perception also gives sense to the definition of some statis-
tical descriptors that are found to be more significant to humans (see statistical
descriptors below).

� Musical knowledge. When musical knowledge is taken into account, some de-
scriptors are relevant, as for example:

– Key or tonality related descriptor, as the key descriptor defined by MPEG-7
(see section 2.3).
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CHAPTER 2. MELODY REPRESENTATION

[ 293.66, 329.63, 349.23, 392, 349.23, 329.63, 293.66, 277.18, 329.63, 220,
329.63, 698.46, 783.99, 440, 783.99, 349.23, 329.63, 293.63, 440, 220,
293.66 ]

[ 2, 1, 2, -2, -1, -2, -1, 3, -7, 7, 1, 2, 2, -2, -2, -1, -2, 7, -1, 2, 5 ]

Pitch sequence

Duration sequence
(multiples of the

eighth note
duration)

[ 2, 1, 1, 0.5, 0.5, 0.5, 0.5, 2, 1, 3, 2, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 3 ]

Interval Sequence
(in semitones)

Figure 2.1: Melody Description Example

– Scale information, that determine which type of scale is used (diatonic,
chromatic, pentatonic, etc) and is also defined by the standard (see section
2.3).

– Cadence information

– Phrase segment definition

Musical knowledge also gives sense to the definition of some statistical descrip-
tors that are related to musical aspects (see Statistical descriptors below).

� Statistical descriptors. These are descriptors derived from a numerical analysis
of other descriptors. This type of descriptors have been used in many applica-
tions, as comparative analysis [114, 38], melody retrieval [63, 64, 62, 116, 27],
and algorithmic composition [115]. Some of these descriptors are computed us-
ing other features related to structural, musical or perceptual aspects of sound.
Some of these descriptors are computed from note descriptors, that is, they have
the need of a note segmentation algorithm (see 3.2 for review on approaches).
Nevertheless, in this statistical level we can also consider descriptors that are
computed as statistics from frame or sample descriptors. One example are the
pitch content features proposed by Tzanetakis [116].

– Number of notes, or number of notes per second, giving an idea of Melodic
density, another relevant descriptor.

– Pitch features:

� Pitch variety: Measure of diversity of the pitch class set used in writing
the melody:

PV =
NumDistinctP itch

NumPitch
(2.1)

� Pitch range or tessitura.

� Pitch Histograms: In [116] pp. 49-51, pitch histograms are used as
description features for audio retrieval. These histograms are com-
puted from the frame-level descriptors, so that note segmentation is
not needed. The three dominant peaks of an enhanced autocorrelation
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CHAPTER 2. MELODY REPRESENTATION

function (SACF) over the signal envelope are accumulated into a Pitch
Histogram (PH) over the whole audio excerpt (i.e. for all the analy-
sis frames). The frequency f corresponding to each histogram peak is
converted into MIDI note number n by the equation:

n = log 2
f

440
+ 69 (2.2)

Two versions of the PH are created: a folded (FPH) and unfolded
(UPH) histogram. The unfolded histogram bin, or MIDI note num-
ber, holds information about the pitch range of the audio excerpt. In
the folded case, all notes are mapped to a single octave using the equa-
tion:

c = nmod12 (2.3)

c represents a pitch class or chroma value. Finally, this FPH is mapped
to a circle of fifths histogram so that adjacent histogram bins are spaced
a fifth apart (7 semitones) rather than a semitone. This mapping is
achieved by the following equation:

c0 = (7� c)mod12 (2.4)

Some features are computed from these histograms:

� Amplitude of maximum peak of the histogram: this descriptor
gives an idea of the predominant pitch class used.

� Period of the maximum peak of the unfolded histogram: this de-
scriptor corresponds to the octave range of the dominant musical
pitch.

� Period of the maximum peak of the folded histogram: this features
represents the main pitch class of the audio excerpt.

� Pitch interval between the two maxima of the folded histogram:
this interval codes the main tonal interval relation.

� The overall sum of the histogram: this feature measures the strength
of the pitch detection.

– Tonality features:

� Key centered: It represents the proportion of quanta (being quantum
the shortest duration note) where the pitch is primary, that is either
tonic or dominant, giving an indication of how strongly the melody
has a sense of the key.

KC =
NumPrimaryP itchQuanta

NumQuanta
(2.5)

� Non-scale notes: Indication of how strongly tonal the melody is.

NonScale =
NumNonScaleQuanta

NumQuanta
(2.6)

� Dissonant intervals: fraction of dissonant intervals.

DI =
NumAllIntervalDissonances

NumNotes� 1
(2.7)
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Dissonance rating (interval in semitones):

interval 2 [0; 9]; 12 semitones! rating = 0:0 (2.8)

interval = 10 semitones! rating == 0:5 (2.9)

interval = 6; 1; >= 13 semitones! rating = 1:0 (2.10)

� Tonal stability: correlation between the tone profile of the melody and
the tonal hierarchy profile (C major probe-tone profile).

– Contour features:

� Melodic profile: type of profile: ascendant, descendant or constant.

� Contour direction: defined as the overall tendency of the melody to
rise or fall.

CD =

P
RisingIntervalsP

Intervals
(2.11)

� Contour stability: proportion of intervals for which the following in-
terval is in the same direction. This is a measure of stability in melodic
direction.

CS =

P
ConsecutiveIntervalsMovingInTheSameDirectionP

Intervals
(2.12)

� Movement by step: proportion of intervals that are diatonic steps. A
high score indicates a smooth melodic curve with few large leaps. A
diatonic step interval will be one or two semitones. Rests are ignored.

MbS =
NumDiatonicSteps

NumIntervals
(2.13)

� Leap returns: proportion of large (leap) intervals NOT followed by a
return interval. A large leap is greater than or equal to 8 semitones
(minor 6th). The returning interval must be at least 1 semitone but less
than the leap interval preceding it.

LR =
Num of large leaps not followed by a return interval

Num of large leaps intervals
(2.14)

� Climax Strength: measured as the inverse of the number of times the
climatic note is repeated in the melody. The highest value of 1 for this
feature occurs when the climatic note is used only once. More frequent
use lessens the climatic impact.

CS =
1

Num uses of climatic note
(2.15)

– Note repetitions:

� Repeated pitch: measure of the repeated pitch intervals (that is when
both notes of interval are equal). Measure of melodic movement.

RP =
Num of repeated pitch intervals

Num of intervals
(2.16)
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� Repeated pitch patterns of several notes: number of repeated patterns
of n notes. This descriptor is derived from the structural descriptors,
and is also related to the melodic movement.

RP (n) =
Num of repeated note pitch sequences

Num of notes� n� 1
(2.17)

– Distribution features: wide group of features where we include descriptors
related to the distribution of other computed descriptors:

� Distribution of tones: also included in the group of Pitch features (de-
scribed above), as for example the mean pitch.

� Interval distribution: as, for example, the mean interval or proximity
of notes.

� Tone duration distribution.
� Two-tones transition distribution: registral direction.
� Duration transition distribution.

– Quality of successive intervals: some features intended to describe succes-
sive intervals are:

� Mean proximity of tones
� Registral return
� Registral direction
� Closure
� Intervalic difference
� Consonance

� Expressivity related descriptors: in music performances, musicians do not play
exactly what is written in the score. They deviate from the score and enrich the
sound with vibrato, tremolos, etc. All these aspects of sounds can be considered
inside a group of descriptors related to expressivity. Some of these expressivity
aspects are coded using low-level descriptors, note descriptors (as vibrato rate
and frequency of note, articulation, attack duration and type, etc), or descriptors
having a musical meaning (e.g. representing crescendos and decrescendos).

Camurri et al. [23] define some features for expressivity representation in order
to synthesize different emotions, represented in Figure 2.2 1. These features are:

– Average Tempo: metronome value expressed as percentage variation from
the metronomic value of a cold performance.

– Note Dynamics: expressed by the average of the difference between the
starting and the maximum dB values plus the difference between the max-
imum and the ending values.

– Phrase Dynamics: calculated by the variance of the average of the differ-
ence between the sustain values of all the notes.

– Articulation: local aspects of legato and staccato. Average of:

Art: =
IOI �DR

DR
(2.18)

1this figure can be found at http://musart.dist.unige.it/sito_inglese/research/r_current/expressive.html
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Figure 2.2: The expressiveness space

where DR is the note nominal duration, and IOI is the Inter-Onset Inter-
val, representing the real note duration.

– Accelerando/Ritardando: local rhythmical variations in respects to the nom-
inal duration of the current note. Average of:

Acc:Rit = jDR��(1 + �)DRnj (2.19)

where DRn is the current note nominal duration, � is the duration (in sec-
onds) of full bar note used as reference (taken from the cold performance)
and � is the Average Tempo value defined previously.

– Vibrato: index taken from the average value of the amplitude vibrato effect
for each note.

Some deviations from the score have been described by researchers at KTH [9]
in terms of context dependent rules that are used to synthesize performances.
The magnitude of the effect generated by a specific rule is determined by the
rule quantity k. If the quantity is high, the effect is great and salient.
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Performance rules affect duration of tones, loudness, change the exact pitch or
the vibrato. Other rules create crescendos and diminuendos, change the tempo,
or insert minute pauses between tones. The effects induced by a rule can be so
subtle that they are very hard to perceive, or they can be so coarse that they catch
the ear.

They define three different types of performance rules:

– Differentiation Rules: these rules enhance the differences between scale
tones and between note values.

� Duration Contrast: this rule derives from the duration contrast found
between long and short note values, such as half note and eighth note.
This contrast is sometimes enhanced by musicians. They play the short
notes shorter and the long notes longer than nominally written on the
score.

� Melodic Charge: in traditional tonal music, there is no equality be-
tween scale tones. Some are remarkable and some are trivial. For
example, the root of the chord is trivial while the augmented fourth
above the root is very special. The melodic charge of a note is consid-
ered as its remarkableness. The duration, loudness and vibrato extent
of the tones vary according to the melodic charge.

� High sharp: This rule plays high tones sharp and low tones flat, just
like some musicians tend to do when they play.

– Grouping Rules: these rules establish groups of notes at several levels:
constituting melodic gestures, phrases, etc. The rules mark, by means of
micropauses and lengthening of tones, the boundaries between all these
tone groups. This group of rules is related to the structural-level of melodic
description.

� Punctuation: the smallest unit in the hierarchical musical structure is
tone groups of up to about 7 tones, so-called melodical gestures. When
playing it, it is important to mark the boundaries between such ges-
tures. This rule automatically identifies these melodical constituents
by means of a patented set of context dependent rules. The boundaries
are marked micropauses.

� Double Duration: tone groups in two note values having the ratio of
2:1 alternate are not played according to their nominal durations. In-
stead, the short tone is lengthened at the expense of the long note. This
rule induces this effect.

� Tuning: musicians tend to enhance differences between scales by play-
ing the major third interval wide and the minor third interval narrow.
This fact is associated to this performance rule, that produces a slight
variation in the fundamental frequency of notes.

� Phrase Arch: according to the structural-level, music has a hierarchical
structure, so that small units, such as melodical gestures, join to form
subphrases, which join to form phrases, etc. When musicians play,
they mark the endings of these tone groups. This rule marks the phrase
and subphrase endings by creating minute accelerandos and deceleran-
dos within phrases and subphrases according to a parabolic function.
Thus it increases the tempo in the beginnings and decreases it toward
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the endings. The loudness is changed similarly creating crescendos
and diminuendos.

� Inégales (or swing): this rule lengthens the stressed notes in sequences
of notes having the same note value. This effect is used in Baroque
music and jazz. The duration relations between the stressed and un-
stressed notes can be changed.

� Final Ritard: when a piece comes to its end, musicians generally slow
down the tempo somewhat. The slowing down generally follows a
parabolic.

� Harmonic Charge: just as with the scale tones, the harmonies in tradi-
tional Western tonal music are not equal: there are trivial chords and
fantastic chords. Harmonic charge is a concept reflecting the remark-
ableness of chord in its harmonic context. It is a weighted sum of the
chord tones’ melodic charges, using the root of the main chord of the
key, that is the root of the tonic, as the reference.

– Ensemble Rules: these rules keep the order in ensembles. They achieve
synchronization by lengthening and shortening the individual tones in the
various voices according to a common overall strategy and they achieve
fine tuning of successive and simultaneous intervals.

Combinations of performance rules and of their parameters can be used for syn-
thesizing interpretations that differ in emotional quality. A proper selection of
rules and rule parameters can produce a wide variety of meaningful, emotional
performances, even extending the scope of the original rule definition.

Widmer et al. [120, 121] also focus in these dimensions of expressive variations:
tempo and timing, dynamics and articulation to generate formal models of music
expressivity.

As explained in section 1.4, we have not considered polyphonic representations,
that should also take into account multiple pitches, chord and harmony representation.

2.3 The MPEG-7 Standard

A separate section has been devoted to MPEG-7, as it constitutes a relevant effort
to define an unified standard for music content description. We concentrate here in
describing how MPEG-7 deals with melody in different abstraction levels. Information
related to MPEG-7 melody description scheme can be found in [1, 7], and is explained
in [77]. Our intention is to review it here.

The Moving Picture Experts Group (MPEG) [8] is a working group of the Inter-
national Standard Organization/International Electrotechnical Committee (ISO/IEC) in
charge of developing standards for coded representation of digital audio and video. Es-
tablished in 1988, the group has produced MPEG-1, MPEG-2, MPEG-4, MPEG-7, and
now is working on the new standard MPEG-21 "Multimedia Framework" since June
2000. More details on the standards can be found in [48].

MPEG-7 is formally named “Multimedia Content Description Interface”, and it is
the standard that performs multimedia content description utilities for browsing and
retrieval of audio and visual content.
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This standard provides normative elements, as Descriptors (also Ds), Description
Schemes (also DSs) and a Description Definition Language (also DDL). The Descrip-
tors define the syntax and the semantic of the represented features. The Description
Schemes are used to group several Ds into structured and semantic relationships and
units between other Ds and DSs. The Description Schemes are specified using the
DDL.

The Audio part of the standard relies on two basic structures: the segment, inherited
from the Multimedia Description Scheme, that allows to define a temporal structure
of the audio signal, and the scalable series, a type that is inherited by all the low-
level descriptors. It then distinguishes two classes of structures, the generic audio
description framework and the application-related tools. The first one is defined as
the basic compatibility layer upon with generic descriptions and unique applications
may be built for any signal, and it includes low-level descriptors (LLDs), the scalable
series scheme, and the silence segment. The second one includes sound recognition,
instrumental timbre description, spoken content description and melody description
tools, as well as tools for audio matching.

The MPEG-7 standard proposes a melodic DS that includes melody as a sequence
of pitches or contour values, plus some information about scale, meter, beat and key
(see Figure 2.3).

In the MPEG-7 scheme, the melodic contour uses a 5-step contour (from -2 to +2)
in which intervals are quantized, and also represents basic rhythm information by stor-
ing the number of the nearest whole beat of each note, which can dramatically increase
the accuracy of matches to a query. This contour has been found to be inadequate for
some applications, as melodies of very different nature can be represented by similar
contours. One example is the case of having a descendant chromatic melody and a
descendant diatonic one. Both of them have the same contour although their melodic
features are very dissimilar.

For applications requiring greater descriptive precision or reconstruction of a given
melody, the Melody Description Scheme (or Melody DS) supports an expanded de-
scriptor set and higher precision of interval encoding. Rather than quantizing to one of
five levels, the precise pitch interval (with cent or greater precision) between notes is
kept. Precise rhythmic information is kept by encoding the relative duration of notes
defined as the logarithm of the ratio between the differential onsets, following the for-
mula below:

NoteRelDuration[n] = log2

�
Onset[n+ 1]�Onset[n]

Onset[n]�Onset[n� 1]

�
; for n � 2 (2.20)

NoteRelDuration[1] = log2

�
Onset[2]�Onset[1]

0:5

�
(2.21)

Arranged around these core descriptors are a series of optional support descriptors
such as lyrics, key, meter, and starting note, to be used as desired for an application.

This expanded description does not take into account silence parts that sometimes
play an essential role for melodic perception. Except for lyrics and phonemes, the
description could be completely extracted from the score, and no information related
to the signal level would be necessary. Some examples of melodic description can be
found in the MPEG schema specification documents [1] and [7].
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2.4 Relationship with other description axes

In order to describe melodic aspects of music, it is important to take into account other
aspects of music description that are normally closely related to melody.

Rhythm: Melody description has always been associated to rhythm description.
Melodic representation usually includes features related to rhythm as note durations,
tempo, beat, etc. In the MPEG-7 standard, there are only some descriptors related to
rhythm description, which are meter and the beat descriptor associated to each note.
Both are included in the Melody description scheme. This is a good example of inter-
connection between rhythmic and melodic characterization.

Instrument: In a first moment, the melodic features of an audio excerpt do not
depend on the instrument or the instruments that are playing this audio excerpt. Never-
theless, some aspects of melodic perception are related to the instrument and melodic
characterization is sometimes performed jointly with instrument analysis. The MPEG-
7 standard also proposes tools to describe timbre as a perceptual phenomena. Comple-
mentary to this, one could think on defining tools for instrument labelling and categor-
ical search. This issue arises in [41]

2.5 Representation coding

Once a description scheme is defined, another subject appears, that is the storage and
management of these descriptions in an efficient way.

MPEG-7 adopted the XML syntax to store MPEG-7 descriptions, as well as the
XML Schema Language with some extensions as the MPEG-7 Description Definition
Language (DDL). This language provides descriptive tools by which users can create
their own Description Schemes (DSs) and Descriptors (Ds).

The XML syntax is used in two different formats: a textual and a binary one. This
binary format allows the compressing of MPEG-7 descriptions, because textual XML
format is oriented to human reading, but it is not efficient for storage and transmission
purposes. For more details, please refer to [1, 7, 48].
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Figure 2.3: MPEG-7 melody description scheme
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Chapter 3

Methods for Melody Extraction

The aim of this chapter is to describe the recurrent techniques used to extract this
melodic description: from pitch detection to MIDI, and toward a multi-level melodic
description.

3.1 Pitch Estimation

Fundamental frequency is the main Low-Level Descriptor to be considered when de-
scribing melody. Due to the significance of pitch detection for speech and music anal-
ysis, a lot of research has been made on this field. We can also find several surveys
and evaluations of pitch detection algorithms for different purposes, as for example
[52, 95, 99, 60].

3.1.1 Fundamental Frequency Estimation for Monophonic Sounds

The first solution adopted for fundamental frequency detection of musical signals was
to adapt the techniques proposed for speech [52]. Later, other methods have been
specifically designed for dealing with music.

There are many ways of classifying the different algorithms. One could classify
them according to their processing domain. Following this rule, we can discrimi-
nate between time-domain algorithms, dealing with the signal in time domain, and
frequency-domain algorithms, that use the signal in frequency domain (the spectrum
of the signal). This distinction between time-domain and frequency-domain algorithms
is not always so clear, as some of the algorithms can be expressed in both (time and
frequency) domains, as the Autocorrelation Function (ACF) method. Another way of
classifying the different methods, more adapted to the frequency domain, could be to
distinguish between spectral place algorithms and spectral interval algorithms, classifi-
cation proposed by Klapuri in [60]. The spectral place algorithms, as the ACF method
and the cepstrum analysis (explained in this section), weight spectral components ac-
cording to their spectral location. Other systems, as those that are based on envelope
periodicity or spectrum autocorrelation computation, use the information correspond-
ing to spectral intervals between components. Then, the spectrum can be arbitrary
shifted without affecting the output value. These algorithms work relatively well for
sounds that exhibit inharmonicity, because intervals between harmonics remain more
stable than the places for the partials.
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All the fundamental frequency estimation algorithms give us a measure correspond-
ing to a portion of the signal (analysis frame). According to McKinney [52], the fun-
damental frequency detection process can be subdivided into three main steps that
are passed through successively: the preprocessor, the basic extractor, and the post-
processor (see Figure 3.1). The basic extractor performs the main task of measure-
ment: it converts the input signal into a series of fundamental frequency estimates. The
main task of the pre-processor is data reduction in order to facilitate the fundamental
frequency extraction. Finally, the post-processor is a block that performs more diverse
tasks, such as error detection and correction, or smoothing of an obtained contour.

Preprocessor Extractor Postprocessor
Estimated

fundamental
frequency

Audio
Signal

Figure 3.1: Steps of the fundamental frequency detection process

Time-domain algorithms

These algorithms try to find the periodicity of the input sound signal in the time domain.

� Zero-crossing rate (ZCR): ZCR is among the first and simplest techniques to-
ward estimating the frequency content of a signal in time domain, and consists
on counting the number of times the signal crosses the 0-level reference in order
to estimate the signal period. This method is very simple and inexpensive but
not very accurate when dealing with noisy signals or harmonic signals where
the partials are stronger than the fundamental. The value of ZCR has also been
found to correlate strongly with spectral centroid, also called spectral balancing
point, which is the first moment of spectral power distribution. It follows that the
value of ZCR has more to do with timbre than with pitch. Due to these reasons,
this method and its variants are not very much used for fundamental frequency
estimation.

� Autocorrelation (ACF): Time-domain Autocorrelation function based algorithms
have been among the most frequently used fundamental frequency estimators.
The ACF of a sequence x(n) of length K is defined as:

r(n) =
1

k

K�n�1X
k=0

x(k) � x(k + n) (3.1)

The maximum of this function corresponds to the fundamental frequency for pe-
riodic signals. The autocorrelation can also be computed in frequency domain
[60]. First, x(k) is zero-padded to twice its length and transformed into the fre-
quency domain using a short FFT algorithm. Then, the square of the magnitude
spectrum is obtained, and transformed back to the time domain. The autocorre-
lation function can be expressed as:
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r(n) =
1

K

K�1X
k=0

�
jX(k)j2 � cos

�
2�nk

K

��
(3.2)

According to the classification made by Klapuri in [60] as the ACF weight spec-
tral components according to their spectral location, systems that perform this
type of fundamental frequency detection can be called spectral place type funda-
mental frequency estimator. In this algorithm, "twice-too low" octave errors are
likely to occur, since integer multiples of the fundamental frequency n � f 0 also
have positive weights at the harmonics frequencies. "Too high" octave errors are
not probable, since in that case off harmonics get a negative weight.

ACF based fundamental frequency detectors have been reported to be relatively
noise immune [99] but sensitive to formants and spectral peculiarities of the
analyzed sound [60].

One good example of fundamental frequency detection using correlation meth-
ods is [83], that tries to maximize the cross-correlation function over the range of
feasible pitch values. This algorithm was tested on synthetic and real speech data
covering a large range of speakers and a full range of pitch frequencies. A latter
example of algorithms based on cross-correlation based is the Robust Algorithm
for Pitch Tracking by Talkin [110]. The algorithm uses a two-phase normalized
cross correlation function (NCCF) calculation between successive segments of
the input signal. Through the use of cross correlation instead of autocorrelation
functions, these algorithms achieve a relatively good time resolution even for
low-pitched sounds.

� Envelope periodicity: the idea behind this model is derived from the observa-
tion that signals with more than one frequency component exhibit periodic fluc-
tuations in its time domain amplitude envelope. The rate of these fluctuations
depends on the frequency difference of each two frequency components. In the
case of a harmonic sound, interval f0 will dominate and the fundamental fre-
quency is clearly visible in the amplitude envelope of the signal. This algorithm
is spectral interval oriented and makes implicit spectral smoothing, because the
amplitude envelope computation filters out single clearly higher amplitude har-
monic partials [60]. It follows that smooth spectrum causes strong beating. A
third property of EP models is that they are phase sensitive in summing up the
harmonic partials.

The most recent models of human pitch perception calculate envelope period-
icity separately at distinct frequency bands and then combine the results across
channels [84]. These methods attempt to estimate the perceived pitch, not pure
physical periodicity, in acoustic signals of various kinds. The algorithm proposed
by E. Terhardt represents an early and valuable model [111, 112]. Except for the
simplest algorithms, that only look for signal periodicity, "perceived pitch" es-
timators use some knowledge about the auditory system at their different steps:
when preprocessing, extracting or post processing data. Then, they could be con-
sidered as pitch estimators. However, as the psychoacoustic knowledge is only
applied to better accurate the periodicity estimation and no complete model of
pitch perception is applied, some auditory phenomena are not explained.

� Parallel processing approach: the fundamental frequency detector defined by
Gold and later modified by Rabiner was designed to deal with speech signals [44,
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94]. This algorithm has been successfully used in a wide variety of applications
and it is based on purely time domain processing. The algorithm has three main
steps:

1. The speech signal is processed so as to create a number of impulse trains
that retain the periodicity of the original signal and discard features that
are irrelevant to the pitch detection method. This can be considered as the
pre-processing part of the algorithm.

2. Simple estimators are used to detect the period of these impulse trains.

3. All the estimates are logically combined to infer the period of the speech
waveform.

The particular scheme proposed by Gold and Rabiner is presented in Figure 3.2.

 

Final 
Period  

decisi on 

Filter  Processor 
of signal 

peaks 

PPE1 

PPE2 

PPE3 

PPE4 

PPE5 

PPE6  

Figure 3.2: Parallel processing approach

The fundamental approach of having several processes working in parallel is
unique and interesting here. This path has been little explored, but is plausible
from the human perception point of view, and might be very fruitful. Bregman
remarks: "I believe that there is a great deal of redundancy in the mechanisms
responsible for many phenomena in perception" [17]. Several different processes
analyze the same problem, and when one fails, the other succeeds.

This algorithm has a very low computational complexity and it gives relatively
good performances.

Frequency-domain algorithms

These algorithms try to find the fundamental frequency using the spectral information
of the signal, obtained by a short-time Fourier Transform or another transformation.

� Cepstrum analysis: Noll [89] introduced this idea for pitch determination of
speech signals. The cepstrum pitch detection algorithm was the first short-term
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analysis algorithm that proved realizable on a computer. This algorithm worked
as a calibration standard for other, simple, algorithms. The cepstrum is the in-
verse Fourier transform of the power spectrum logarithm of the signal. By the
logarithm operation, the source and the transfer functions are separated. Con-
sequently, the pulse sequence originating from the periodicity source reappears
in the cepstrum as a strong peak at the "quefrency" (lag) T 0, which is readily
discovered by the peak-picking logic of the basic extractor. Some modifications
were made to the algorithm in order to speed up the analysis. Nevertheless, these
modifications elucidate the role of certain pre-processing methods, such as center
clipping (see postprocessing methods section below).

Cepstrum fundamental frequency detection has close model level similarity with
autocorrelation systems. The only difference to frequency domain ACF calcula-
tions is that the logarithm of the magnitude spectrum is used instead of second
power. Cepstrum can also be considered as a spectral place type algorithm, with
"too low" octave errors. Unlike ACF systems, cepstrum pitch estimators have
been found to perform poorly in noise and to have good performances with for-
mants and spectral peculiarities of the analyzed sounds [60, 99].

� Spectrum autocorrelation: the idea of these methods is derived from the obser-
vation that a periodic but non-sinusoidal signal has a periodic magnitude spec-
trum, the period of which is the fundamental frequency. The goal is to detect
the period of the magnitude spectrum using its autocorrelation function. It can
be called spectral interval type fundamental frequency estimator [60]. "Too low"
octave errors are not probable since there is no spectral periodicity at half the
fundamental frequency rate. But "twice too high" octave errors are likely to oc-
cur, since doubling the true spectral period picks every second harmonic of the
sound. A nice implementation of this principle can be found in [66].

� Harmonic Matching Methods: these algorithms try to extract a period from a
set of spectral maximum of the magnitude spectrum of the signal. Once these
peaks in the spectrum are identified, they can be compared to the predicted har-
monics for each of the possible candidate note frequencies, and a measure to fit
can be developed. One of the first developed methods was [92], which tries to
find the best fitting harmonic number for each component pair of the spectrum.
A particular fitness measure is described on [78] as a "Two Way Mismatch"
procedure. For each fundamental frequency candidate, mismatches between the
harmonics generated and the measured partials frequencies are averaged over a
fixed subset of the available partials. A weighting scheme is used to make the
procedure robust to the presence of noise or absence of certain partials in the
spectral data. The discrepancy between the measured and predicted sequences
of harmonic partials is referred as the mismatch error. The harmonics and par-
tials would "live up" for fundamental frequencies that are one or more octaves
above and below the actual fundamental; thus even in the ideal case, some am-
biguity occurs. In real situations, where noise and measurement uncertainty are
present, the mismatch error will never be exactly zero.

The solution presented on [78] is to employ two mismatch error calculations.
The first one is based on the frequency difference between each partial in the
measured sequence and its nearest neighbor in the predicted sequence (see Fig-
ure 3.3). The second is based on the mismatch between each harmonic in the
predicted sequence and its nearest partial neighbor in the measured sequence.
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This two-way mismatch helps to avoid octave errors by applying a penalty for
partials that are present in the measured data but are not predicted, and also
for partials whose presence is predicted but which do not actually appear in the
measured sequence. The TWM mismatch procedure has also the benefit that the
effect of any spurious components or partial missing from the measurement can
be counteracted by the presence of uncorrupted partials in the same frame.
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Figure 3.3: Two-Way Mismatch procedure

The two error measurements are computed as follows:

– Predicted-to-measured mismatch error:

Ep!m =

NX
n=1

E!(�fn; fn; an; Amax) = (3.3)

=

NX
n=1

�fn � f
�p

n
+

�
an

Amax

�
�
q ��fn � f

�p

n
� r

��
(3.4)

where an; fn correspond to the amplitude and frequency of the predicted
partial number n, Amax is the maximum amplitude, and �fn is the differ-
ence between the frequency of the predicted partial and its closest measured
partial.

– Measured-to-predicted mismatch error:
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Em!p =

KX
k=1

E!(�fk; fk; ak; Amax) = (3.5)

=

KX
k=1

�fk � f
�p

k
+

�
ak

Amax

�
�
q ��fk � f

�p

k
� r

��
(3.6)

where ak; fk correspond to the amplitude and frequency of the measured
partial number k, Amax is the maximum amplitude, and �fk is the differ-
ence between the frequency of the measured partial and its closest predicted
partial.

The total error for the predicted fundamental frequency is then given by:

Errtotal = Errp!m=N + �Errm!p=K (3.7)

The parameters (p,q,r,�, etc) are set empirically. This is the method used in the
context of Spectral Modeling Synthesis (SMS) [24] including some improve-
ments, as having pitch dependent analysis window, a selection of spectral peaks
to be used, and an optimization in the search for fundamental frequency candi-
dates.

Another harmonic matching method is the one described in [36], based on a
maximum likelihood for the fundamental frequency. After detecting the maxima
of the spectrum, the probability that a maximum corresponds to a partial rather
than to a noise is computed for each detected peak. To find the optimal solution,
it proceeds in two steps: first, it computes the interval that contains the opti-
mal solution, and then it obtains the precise optimal value for the fundamental
frequency within this interval.

To determine which interval contains the optimal solution, the value of likelihood
is computed for each of the selected intervals of the frequency axis. Then, more
precise optimal values are obtained using a regression on the frequencies of the
signal partials that are matched with the harmonic partials.

� Wavelet based algorithms: the wavelet transform (WT) is a multi-resolution,
multi-scale analysis that has been shown to be very well suited for music pro-
cessing because of its similarity to how the human ear processes sound. In con-
trast to the short-time Fourier transform, which uses a single analysis window,
WT uses short windows at high frequencies and long windows for low frequen-

cies. This is the spirit of the constantQ
�
�f

fc

�
frequency analysis. Some wavelet

based fundamental frequency algorithms have been proposed for speech analy-
sis. They can be adapted to music analysis, as the one proposed by [56] for voice
signals. The idea is to filter the signal using a wavelet with derivative properties.
The output of this filter will have maxima where GCI (Glottal Closure Instant)
or zero crossings happens in the input signal. After detection of these maxima,
the fundamental frequency will be estimated as the distance between consecu-
tive maxima. This filtering function will combine the bandwidth properties of
the wavelet transform at different scales.
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� Bandwise processing algorithm: following with the idea of the constant Q fre-
quency analysis, Klapuri [60] has proposed an algorithm for periodicity analysis
that calculates independent fundamental frequencies estimates at separate fre-
quency bands. Then, these values are combined to yield a global estimate. This
solves several problems, one of which is inharmonicity. In inharmonic sounds,
as stretched strings, the higher harmonics may deviate from their expected spec-
tral positions, and even the intervals between them are not constant. However,
we can assume the spectral intervals to be piece-wise constant at narrow enough
bands. Thus we utilize spectral intervals to calculate pitch likelihoods at sepa-
rate frequency bands, and then combine the results in a manner that takes the
inharmonicity into account. Another advantage of bandwise processing is that
it provides robustness in the case of badly corrupted signals, where only a frag-
ment of the whole frequency range is good enough to be used. A single fast
Fourier transform is needed, after which local regions of the spectrum are sep-
arately processed. The equalized spectrum is processed in 18 logarithmically
distributed bands that extend from 50Hz to 6000Hz. Each band comprises a 2/3-
octave wide region of the spectrum that is subject to weighting with a triangular
frequency response. Overlap between adjacent bands is 50%, which makes the
overall response sum to unity. Fundamental frequency likelihoods are calculated
at each band, and the values are combined taking into account that fundamen-
tal frequency can increase as a function of the band center frequency for string
instruments. Some improvements were made to provide robustness in interfer-
ence, where pitch is observable only at a limited band, and to adapt to signals
containing a mixture of several harmonic sounds.

In Table 3.1 we can find a summary of the listed algorithms. The information about the
performances has been extracted from different sources as [60, 99] or from the authors’
related work.

Pitched/unpitched decision

Fundamental frequency detection algorithms suppose that a fundamental frequency is
present, and it is not always the case. We could have segments where no pitch can be
found, as for instance at silences, percussion solos or noise segments. A segmentation
process should distinguish between voiced and unvoiced periods, so that the fundamen-
tal frequency detection will be only performed for pitched parts of the signal.

However, most of the techniques used for pitched/unpitched segmentation already
use the estimated fundamental frequency to decide whether this information is valid
or corresponds to an unpitched signal, in addition to other features computed from the
signal.

One example appears in the SMS context (see [24]), where the portions of a sound
that cannot be well represented with the harmonic model are considered as noise. There
is a strict segmentation in time with routines that used the error measure of the TWM
procedure along with other measures that are easily computed as part of the SMS anal-
ysis: zero crossing, energy, noisiness and harmonic distortion.

Preprocessing methods

The main task of a preprocessor is to suppress noise and to enhance the features that
are useful for fundamental frequency estimation. The fundamental frequency signal
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Method Domain Spectral
Place/
Interval

Simplicity Noise Inharmonicity Spectral
Pecu-
liarities

ZCR Time SP Very
simple

ACF Both SP Simple Relatively
immune

Sensitive

EP Time SI Simple
Rabiner Time SP Relatively

simple
Cepstrum Frequency SP Simple Poor

Perfor-
mance

Relatively
immune

Spectrum
AC

Frequency SI Simple

Harmonic
Matching
Method

Frequency both Quite
complex

Relatively
immune

Relatively
immune

Wavelet
based
method

Frequency
(WT)

Quite
complex

Immune

Bandwise
EP

Time both Quite
complex

Rather
immune

Relatively
immune

Relatively
immune

Bandwise
Klapuri

Frequency both Quite
complex

Relatively
immune

Relatively
immune

Relatively
immune

Table 3.1: Summary table of the different methods for fundamental frequency estima-
tion

from a physical vibrator is usually first filtered by passing through resonance structures
and the environment, and then linearly superpositioned with other co-occurring sounds
and noise. The first type of interference can be called convolutive noise, and the latter
type additive noise. Both should be removed to reveal the underlying fundamental
frequency.

Convolutive noise suppression is usually called spectral whitening, since it aims at
normalizing away all spectral peculiarities of the sound source and the environment,
but leaving the spectral fine structure (fundamental frequency) intact. Inverse linear
predictive filtering is a common way of performing this task. Suppression of additive
noise is usually done by subtracting an estimate of the noise spectrum in power spectral
domain. Additive noise spectrum can be estimated e.g. by calculating the median of
filter bank output levels over time.

Some of the preprocessing methods used in speech processing are detailed in [52],
as isolation of the first partial, moderate low-pass filtering to remove the influence of
higher formants, inverse filtering to approximate to the excitation part, comb filtering
to enhance harmonic structures, application of a filter bank, non linear processing in the
spectral domain, center clipping (that destroys the formant structure without destroying
the periodic structures of the signal), signal distortion by an even nonlinear function,
envelope detection, instantaneous-envelop detection, and algorithmic temporal struc-
ture investigation. These algorithms can also be used for fundamental frequency detec-
tion of music signals.

Some preprocessing methods have been defined for musical signals. The method
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proposed by Klapuri applies the principles of RASTA spectral processing [61, 50] in
removing both additive and convolutive noise simultaneously. After obtaining the sig-
nal spectrum, a non-linear transformation is applied to the spectrum X(k) to yield
X 0

(k) = ln [1 + J �X(k)]. With a proper scaling of the spectrum, additive noise goes
through a linear-like transform, whereas spectral peaks, affected by convolutive noise,
go through a logarithmic-like transform. By subtracting a moving average over a Bark-
scale spectrum from X 0

(k), both convolutive and additive noise are suppressed in a
single operation.

Post-processing methods

The fundamental frequency contour that is the output of the different algorithms is
normally noisy and sometimes badly affected with isolated errors, so different methods
for correcting them have been defined.

The most usual way to smooth a function is the convolution of the input signal with
the impulse response of a low-pass filter. Since the smoothing function (window) usu-
ally is of very short length, this convolution can be reduced to the weighted addition
of few samples. Since the convolution is linear, we speak of linear smoothing. As it
is presented in [52], the application of low pass filters removes much of the local jitter
and noise, but it does not remove local gross measurements errors, and, in addition,
it smears the intended discontinuities at the voiced-unvoiced transitions. Hence, some
kind of non-linear smoothing might be more appropriate. In a paper by [93], median
smoothing is proposed as a non-linear method. They recommended the use of a com-
bination of median and linear smoothing in that order, because median removes short
errors, and the linear smoothing removes jitter and noise.

Another approach is described in [68]. The procedure consists of storing several
possible values for the fundamental frequency for each analysis frame, assigning them
a score (for example, the value of the normalized autocorrelation or the TWM error)
that represents the estimation goodness. The goal is to find a "track" that, following
one of the estimations for each frame, will have the best score. The total score is
computed using the score of the estimations considering penalizations if, for example,
an abrupt fundamental change is produced. This optimal "track" can be obtained us-
ing dynamic programming techniques or using some Hidden Markov Models (as in the
method proposed by Doval and Rodet). This approach minimizes the abrupt fundamen-
tal frequency changes (octave errors, for example) and gives good results in general.
Its main disadvantage is that there is a delay in the estimation, as we use past and future
fundamental frequency values.

Other post-processing methods are dependent on the algorithm used for sound anal-
ysis and fundamental frequency detection. One example is the approach used by SMS.
Fundamental frequency is estimated using spectral peak information. Spectral peaks
are computed frame by frame using windowing and FFT analysis. In the windowing
procedure, window size is updated depending on the fundamental frequency. If an es-
timation error is produced, then the window size for the following frames will not be
correctly chosen. In order to correct this type of errors, a reanalysis is made over a
group of frames beginning at the last one and finishing at the first one.

Fundamental frequency history and future frames are also used to choose between
candidates with the same TWM error (see [24]), having a smooth evolution with neigh-
bor frames. The phase of the peaks can finally be useful to modify the search among
fundamental frequencies candidates.
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In this case, the pitch contour is smoothed according to sound properties, in oppo-
sition to median techniques.

Fundamental frequency tracking using other knowledge sources

In this section, we discuss the use of available meta-data for guiding the fundamental
frequency detection and tracking process. In this point, we study the applicability of
using content information for refining the process of monophonic fundamental track-
ing.

Content information has been used in the form of internal sound source models
[57]. Martin [80] also used musical rules to transcribe four-voice polyphonic piano
pieces. When some assumption about the type of signal is made or when the algo-
rithm is adapted to some of the signal properties, we are also taking advantage of some
information that can be considered as context information.

� Timbre: We have seen that the different algorithms work better for different
sound sources in different conditions. If the algorithm chosen depends on the
instrument, we could consider that some timbre (meta-data) information may be
used. Also some preprocessing methods can be dependent on the instrument
played. Goto discriminates melody and bass lines using different band-pass fil-
ters [46, 45].

Another possibility could be to adapt some of the parameters of an algorithm (for
example, the TWM algorithm presented in [78]) to the played instrument (e.g.
considering the inharmonicity of the piano or the particularity of the spectra of
some instruments). Some of these ideas are the basis of some of the multitimbre
pitch detectors [46, 45, 12].

� Rhythm: Rhythm information has not been considered in any fundamental fre-
quency detector. One idea could be to use information about rhythm as note
duration for detecting pitch changes, provided rhythmic information could be
computed first and independently.

� Melody: Melody description is made mostly using pitch information, so melodic
information as a pitch sequence should not be available for fundamental fre-
quency detection tracking. However, if some higher-level melodic information
is present (as for example melodic profile, scale, key, etc), this could be used for
fundamental tracking. For instance, key or scale information could be used to
give a higher expectancy to fundamental frequency values that match the scale.

� Genre: Some knowledge about the genre of music that is being played or some
musical knowledge could also be used. For example, "atonal" changes should
not be found in most of genres, certain styles use only a restricted set of scales,
etc.

3.1.2 Multipitch Estimation

It is generally admitted that single-pitch estimation methods are not appropriate as such
for multipitch estimation [60], although some of the algorithms used in monophonic
pitch detection can be adapted to simple polyphonic situations. In [12], it is described
how some of the methods applied to monophonic fundamental frequency estimation
can be adapted to polyphony. Also, the TWM procedure can be extended to duet
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separation, as explained in [78], trying to find two fundamental frequencies that best
explain the measured spectral peaks.

Multipitch estimation is oriented toward auditory scene analysis and sound sepa-
ration: if an algorithm can find the pitch of a sound and not get confused by other
co-occurring sounds, the pitch information can be used to separate the partials of the
sound from the mixture. Indeed, the most successful multipitch estimation methods
have applied the principles known from human auditory organization.

Kashino et al. implemented these principles in a Bayesian probability network,
where bottom-up signal analysis could be integrated with temporal and musical pre-
dictions [57]. A recent example following the same principles is that of Wamsley &
Godsill [119], who use the Bayesian probabilistic framework in estimating the har-
monic model parameters jointly for a certain number of frames. Godsmark and Brown
have developed a model that is able to resolve melodic lines from polyphonic mu-
sic through the integration of diverse knowledge [43]. The system proposed by Goto
[46, 45] is more application-oriented, and is able to detect melody and bass lines in
real-world polyphonic recordings by making the assumption that these two are placed
in different frequency regions.

Other methods are listed in [60], and a system is described following an iterative
method with a separation approach. This algorithm operates reasonably accurately for
polyphonies at a wide fundamental frequency range and for a variety of sound sources.

The state-of-the-art multipitch estimators operate reasonably accurately for clean
signals, the frame-level error rates progressively increasing from two percent in two-
voice signals up to about twenty percent error rates in five-voice polyphonies. However,
the performance decreases significantly in the presence of noise, and the number of
concurrent voices is often underestimated. Also, reliable multipitch estimation requires
significantly longer time frames (around 100 ms) than single-pitch estimation [60].

3.2 Note Segmentation

Once the fundamental frequency has been estimated, we need to delimitate the note
boundaries, in order to extract a sequence of notes and the descriptors associated to
note segments.

There are several methods that have been designed to perform note segmentation.
If we consider that the fundamental frequency has been correctly estimated and post-
processed to eliminate isolated errors, the simplest approach is to use this information
to estimate the note limits. The audio excerpt is then segmented according to the fun-
damental frequency variations. One limitation of this method is the difficulty to dif-
ferenciate two consecutive notes with the same pitch. The use of energy, in addition
to fundamental frequency, solves this problem. These two low-level features has been
used for note segmentation by McNab et al. in [82].

An important issue to consider when segmenting notes is the presence of amplitude
and fundamental frequency modulations. When using fundamental frequency, we have
to take into account the presence of vibrato, in order to distinguish note transitions
from frequency modulations. Rossignol, in [100] chapter 1, proposes to eliminate vi-
brato from the fundamental frequency trajectory as a preprocessing step before note
segmentation. He defines a set of observation functions related to fundamental fre-
quency, energy, voicing coefficient and spectral “flux” (related to the variation on the
spectrum magnitude between two consecutive analysis frames). A decision function
is defined for each of these observation functions, by detecting the peaks correspond-
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ing to note transitions. Finally, an overall decision function is defined, based on the
individual ones.

As a forward step, some techniques have evolved toward bandwise processing, that
is, the use of features computed in different frequency bands. One relevant example is
the system proposed by Klapuri [59] for detecting onsets. The results of the different
frequency bands are combined using a psychoacustical model of intensity coding. This
seems to be more adapted to the human auditory system.

The methods mentioned above belong are considered as feature-based segmenta-
tion techniques, according to the classification made in [51] pp. 3. We refer to this
document for a complete review of audio segmentation techniques.

3.3 Extracting Melody from Note Sequences

Considering melody as a pitch sequence, several cases make the automatic extraction
of melody very difficult [88]:

� A single line played by a single instrument or voice may be formed by movement
between two or more melodic or accompaniment strands.

� Two or more contrapuntal lines may have equal claim as "the melody".

� The melodic line may move from one voice to another, possibly with overlap.

� There may be passages of figuration not properly considered as melody.

This problematic also appears in [103] section 1.1.3.
We have presented above several methods that aimed at tracking pitches. As output,

the algorithms provided pitch sequences. In this part, we will present some approaches,
which attempt to identify the notes of the pitch sequences that are likely to correspond
to the main melody.This task can be considered not only for polyphonic sounds, but
also for monophonic sounds. Indeed, monophony could have notes that do not belong
to the melody (as for example grace notes, passing notes or the case that we had several
interleaved voices in a monophony).

In a first step, in order to simplify the issue, one should try to detect note groupings.
This would provide heuristics that could be taken as hypothesis in the melody extrac-
tion task. For instance, experiments have been done on the way the listener achieves
melodic groupings in order to separate the different voices (see [102] p.131 and [81]).

Other approaches can also simplify the melody extraction task by making assump-
tions and restrictions on the type of music which is analyzed. Indeed, melody extraction
depends not only on the melody definition, but also on the type of music from which
we want to extract the melody. For instance, methods can be different according to
the complexity of the music (monophonic or polyphonic music), the genre (classical
with melodic ornamentations, jazz with singing voice, etc) or the representation of the
music (audio, midi etc).

Uitdenbogerd [117] has worked on MIDI files containing channels information.
She has evaluated some algorithms that extract from a MIDI file a sequence of notes
that could be called the melody. The first algorithm considers the top notes of the
sequence as the melody. The others combine both entropy information and structure of
the MIDI file. However, the first algorithm gives the best results.

According to Uitdenbogerd [117], "there does not appear to have been much re-
search on the problem of extracting a melody from a piece of music". Indeed, it appears
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that very few researches focus on this area in comparison to the interest that is granted
to other tasks such as melody matching and pattern induction.

3.4 Melodic Segmentation

The goal of melodic segmentation techniques is to establish a temporal structure on a
sequence of notes. This structure is specified by a set of pair of boundaries that divides
the audio excerpt in a serie of audio segments. It may involve different levels of hier-
archy, as those defined by Lerdahl and Jackendoff [73], and may include overlapping
segments and unclassified areas that do not belong to any segment.

One relevant method proposed by Cambouropoulos [19] and refined in [21] is
the Local Boundary Detection Model (LBDM). This model computes the transition
strength of each interval of a melodic surface according to local discontinuities. The
peaks of this function, which gives a measure of the transition probability, are con-
sidered as segment boundaries. This method is based on two rules: the Change Rule
(hence CR) and the Proximity Rule (hence PR). The CR is proportional to the de-
gree of change between two consecutive intervals, that is, for an idential succession
of intervals the boundary strength is zero. This rule can be implemented by a degree-
of-change function. Regarding the PR, if two consecutive intervals are different, the
boundary introduced on the larger interval is proportionally stronger. This means that
each boundary is weighted according to the size of its absolute interval, so that segment
boundaries are located at larger intervals. This rule can be implemented by multiplying
the degree-of-change function with the absolute value of the interval.

In [21], Cambouropoulos uses not only pitch, but also temporal (inter-onset inter-
vals) and rest intervals (between current onset and previous offset). He compared this
algorithm with the punctuation rules defined by Friberg et al. from KTH [9], getting
coherent results. The LBDM has beeen used by Melucci and Orio [86, 85] for content-
based retrieval of melodies.

Another approach is found in the Grouper 1 module of the Melisma music ana-
lyzer, implemented by Temperley and Sleator (see section 4.2). This module uses three
criteria to select the note boundaries. The first one considers the gap score for each
pair of notes, that is, the sum of the inter-onset interval (or IOI) and the offset-to-onset
interval (OOI), that corresponds to the rest parameters of the LBDM. Phrases receive
a weight proportional to the gap score between the notes at the boundary. The second
one considers an optimal phrase length in number of notes. The third one is related to
the metrical position of the phrase beginnig, relative to the metrical position of the pre-
vious phrase’s beginning. Metrical position is defined as the number of beats between
the previous level 3 beat and the beat of the phrase beginning.

Spevak et al. [108, 113] have compared several algorithms for melodic segmen-
tation: maintly the LBDM, the Melisma Grouper, and a memory-based approach, the
Data-Oriented Parsing (DOP) from Bod [16]. They also describe other approaches to
melodic segmentation. According to Spevak et al. [108, 113], melodic segmentation
is an ambiguous affair. For a given melody, it is typically not possible to determine
one ‘correct’ segmentation, because the process is influenced by a rich and varied set
of context, where local structure (gestalt principles), higher-level structure (e.g. re-
curring motives, harmony, melodic parallelism) and style-dependent norms and the
breaking of these norms all impact what is perceived as salient. To explore this issue,

1http://www.link.cs.cmu.edu/music-analysis/grouper.html
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they have compared manual segmentation of different melodic excerpts, where partic-
ipants were asked to markup these scores, identifying between which pairs of notes
they thought that a phrase and/or subphrase boundary occurred. In [108], results from
manual segmentation and the different algorithms are compared in four experiments.
Many aspects have to be taken into account, as the algorithm stability, its flexibility, the
ambigüity of the segmentation task (related to the agreement between experts), and the
algorithm parameters. We refer to [108] for a detalied comparison according to these
different aspects.

Melodic segmentation is very much connected to pattern extraction. An overview
of approaches is made below, in section 3.5.

3.5 Melody Pattern Extraction

This section addresses a very general issue that is encountered in any application ma-
nipulating data sequences (music, text, video, data coding, etc). It consists in com-
paring and measuring the similarity between two different sequences of events. In the
following sections, we will associate the concept of melody matching to the notion
of pattern induction (or extraction). Indeed, comparing two melodies and extracting
a musical pattern from a sequence have common aspects: in both tasks, one needs to
perform similarity measurements.

We will propose some approaches that could be particularly interesting in the con-
text of melody analysis.

Non music-oriented approaches

Several non music-oriented disciplines deal with pattern induction (extraction) or pat-
tern matching. However, most of the algorithms that are employed cannot be directly
used in a musical context. Indeed, musical patterns must be determined considering
various musical dimensions, for example temporal, cognitive, and contextual ones.

For instance, we can consider a data compression algorithm, the Lempel-Ziv algo-
rithm [122], which has already proved to have musical applications [69]. The Lempel-
Ziv algorithm proceeds as follows: a sequence of elements is read from the beginning
to the end element by element. At each step, the current element, if different from
the previous ones, is placed in a database. If the element is already in the database,
then the pattern constituted by the element and its following is considered, etc. The
method seems interesting as it filters some patterns among all the possible patterns.
The question is: are the detected patterns linked with a musical structure?

One could answer that the motivic and melodic structures are not preserved. In-
deed, once a pattern is detected, it cannot be changed by the new information given by
the following elements of the sequence, so the positions of the patterns in the sequence
are arbitrarily determined by the order in which the sequence is analyzed. Moreover,
possible hierarchical relations between the patterns are not taken into account, which
seems contradictory with the musical organization of motives. However, one advantage
is that the method is incremental and analyzes each event of the sequence by consider-
ing the only already analyzed ones, which may be linked with the conditions in which
we listen to music.

This illustrates the fact that the specifics of music (temporal aspect, polyphonic
aspect, hierarchical aspect, etc.) must be considered before adapting any algorithm
to a musical purpose. Several studies have been done on this subject. For instance,
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Cambouropoulos [20] discusses some of the issues relative to the application of string
processing techniques on musical sequences, paying special attention to pattern extrac-
tion.

Music-oriented approaches

According to [101], p. 168, "Music is composed, to an important degree, of patterns
that are repeated and transformed. Patterns occur in all of music’s constituent elements,
including melody, rhythm, harmony and texture". Pattern induction means learning to
recognize sequential structures from repeated exposures, followed by matching new
input against the learned sequences [101].

Melodic pattern matching has several uses in interactive music systems and in mu-
sic content analysis. For instance, Cope has used patterns to define the stylistic char-
acteristics of a particular composer, and to reproduce algorithmic compositions that
resemble the works of a certain composer [30]. Cope employs the term signature, used
to refer to melodic and rhythmic patterns found repeatedly in a composer’s body of
work. Rolland and Ganascia have also used pattern induction to analyze the jazz im-
provisations of Charlie Parker [97]. In their system, patterns in a musical corpus are
clustered according to similarity, and each cluster is associated with one prototypical
pattern.

In automatic music transcription or musical interaction, the predictive power of
recognized musical patterns as originators of expectations would be highly valuable.

The basic problem in musical pattern induction is that the patterns most often ap-
pear in varying and transformed forms. In music, it is natural that a melody may be
transposed to a different pitch register, or played with slightly different tempo. Also,
members of the melodic sequence may be deleted, inserted, substituted, or rhythmi-
cally displaced. Several elements may be replaced for a single one (consolidation), or
vice versa (fragmentation).

Matching varied patterns calls for a proper definition of similarity. The trivial as-
sumption that two patterns are similar if they have identical pitches is usually not ap-
propriate. Relaxation of this assumption can be approached by allowing some differ-
ent notes to appear in the sequences, or by requiring only that the profiles of the two
melodies are similar. Most often it is important to consider the note durations along
with the pitch values. Sometimes, other features such as dynamics, timbre or note
density can also play a role in the recognition of similarities. More complex features
such as harmony or structural features (for instance, how are the motives of the melody
organized in time) should also be taken into account. Some studies have attempted to
distinguish the features that are more relevant in our perception of similarity.

Lamont et al. [67] suggest that complex features and more simple features such
as pitches or dynamics play different roles in the similarity judgments of listeners.
[34] insists on the fact that a training phase plays an important role for listeners in the
recognizing of similarities between motives.

Before defining what is similar, a first step consists on selecting note sequences
that could be possible patterns. For this task, a brute force matching of all patterns
of all lengths would be too computationally demanding. [96] proposes a dynamic
programming-based approach using structural, local and global descriptors for rep-
resenting melodies. The algorithm first builds a graph of similarity from the musical
sequences and then extracts patterns from the graph. Another approach consists in fil-
tering all the possible patterns of notes by considering musically advised grouping of
melodic streams into phrases.
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Cooper and Meyer [29] have proposed a set of rhythmic note grouping rules that
could be used for this task. The rules are based on harmonic, dynamic, or melodic
features (for instance, two pitches belonging to the same harmony or having the same
frequency or duration will often be grouped). In the psychoacoustics area, McAdams
[81] has performed experiments that aimed at showing that notes could be perceptually
grouped together according to various criteria see also [17] and [104] for literature on
perceptual grouping). Other methods propose to optimize pattern finding. For instance,
[54], locate patterns using a correlative matrix approach. To make the process of finding
repeating patterns more efficient, a matrix is used to keep the intermediate results of
substring matching.

Once patterns have been located, similarity between patterns has to be quantified.
We can find two different approaches when trying to measure similarity.

One elegant way to solve this problem is to describe the patterns in a way that
musical pattern matching will turn into a generic (not music specific) pattern matching
problem. Musical similarity is in that case implicitly coded into the melody representa-
tion (example with pitch contour is given below). Doing this, the musical specificities
of the considered features will not have to be taken into account in the execution of the
similarity measuring algorithms, and we will be able to use generic algorithms found
in other scientific areas.

Transform to a representation
(that codes musical similarity)

Measure similarity using
generic algorithms

Measure similarity using
music specific algorithms

Musical Sequences
(pitch, duration, etc)

Similarity
Measure

Figure 3.4: Two approaches for measuring similarity

For instance, if the similarity is based on the pitch contour, then the pitch contour
representation should be used to code the melody. This representation will then be
treated as a numeric sequence and not as a musical sequence. If the similarity is based
on the rhythm (which is invariant by scaling), then proportional representation should
be used. One can also represent rhythm using a relative time base through the use of
duration ratios instead of absolute time values [109, 1]. Duration ratios are calculated
by dividing the duration of a note by the duration of the previous one. If the similarity
is based on the invariance by transposition, inversion or melodic ornamentation, then a
new representation format could be defined.
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A problem with the intervalic representation is that substituting one pitch value for
another affects the intervals on both sides. Similarly, rhythmic disposition of one note
destroys two duration ratios. This can be solved by calculating a cumulative sum over
the intervalic representations in the course of the comparison. In this case, substitution
or displacement of a single note affects only one interval [101].

Assuming that the feature representations can be considered as numerical sequences
abstracted from their musical context, usual similarity measuring algorithms can be
used. The fact is that many algorithms that perform similarity measure can be found in
other information retrieval areas than music, such as speech recognition (for instance
the algorithm proposed in [87]). Other areas such as mathematics and particularly
statistics could provide interesting algorithms. Some algorithms used in pattern recog-
nition could also be used. Proposed algorithms in the MPEG-7 format should also
be considered, as for instance algorithms that compare sounds from a SoundModel-
Type description and algorithms that calculate similarity metric. Uitdenbogerd [117]
has tested several techniques for measuring the similarity: local alignment, longest
common subsequence, an n-gram counting technique that include the frequency of oc-
currence of each n-gram, and the Ukkonen n-gram measure. The conclusion was that
local alignment gives the best results, but is a quite slow technique, thus faster n-gram
based techniques were investigated. Results can be found in [118].

Suppose now that we consider not only one feature, but several. This poses the
problem of how to evaluate the interaction of the dimensions on the similarity measure.

A solution could be to consider the dimensions separately, and then the global sim-
ilarity could be calculated as a mean of the several measures. However, the dimensions
should sometimes be considered simultaneously. For instance, two musical sequences
could have a common melodic pattern on a defined period, alternatively with a rhyth-
mic one the rest of the time. Considering the two dimensions (pitch and rhythm) sep-
arately, the similarity would be quite low between the two sequences. Considering the
two dimensions simultaneously, the similarity measure would be higher.

Considering several features simultaneously, Li proposes to constitute a database
of audio segment classes that will be used as reference for the similarity measure [75].
Each class can be seen as a generalization of its components. Then, an input melody
will be divided in segments that will be compared to the various classes of the database
using the NFL (nearest feature line) algorithm. Li also evaluates the confidence in the
similarity measure. In that way, all the features are considered simultaneously. How-
ever, specific high-level musical considerations, as invariance by contour, by scaling or
by inversion, are not taken into account neither in the features representation by classes
nor in the NFL algorithm. However, it could be interesting to apply the methodology
to high-level musical representations.

Another approach to solve the problem of measuring similarity is to define specific
algorithms adapted to musical specificities (for instance, an algorithm which states that
two melodies, apparently different, are similar because they have the same structure
ababa, can be said to be adapted to the structural specificity of music). If musically
advised representations, which would turn musical pattern matching into a generic
pattern-matching problem, are not used, the musical similarity information must be
encoded to the matching algorithms.

There are some examples of this approach. Buteau and Mazzola propose a distance
measure algorithm that takes into account a set of mathematical transformations on
melodic patterns, as inversion or symmetric transformations [18]. Clausen et al. [28]
and [31] propose algorithms to measure the similarity between melodies containing
note gaps. Cambouropoulos [22, 20] and Rolland [96] also propose algorithms being
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Data fusion

Measure similarity

Multidimensional
 representation

Measure similarity for each of
the features

Similarity
Measure

Musical Sequences
(for the different features)

Data Fusion to
obtain a global

similarity measure

Figure 3.5: Two approaches for measuring similarity between music sequences taking
into account several features

sensitive to approximate musical repetitions.
Damerau [32] and Levenshtein [74] have proposed an algorithm that measures a

metric distance between two strings. It is based on several editing rules that transform
one melody to the other. A cost can be associated to the transformations in order to give
preference to some of them. Orpen and Huron [90] notice that this algorithm is an ap-
proach to characterize the quantitative similarity for non-quantitative data (data which
is not represented by numerical sequence, for instance a string-sequence). He has per-
formed several experimentations of the algorithm (implemented at the simil command
of the Humdrum Toolkit [55]), and he has concluded that it provides a promising way
of characterizing the quantitative similarity between musical passages.

Dynamic programming has been successfully used to handle the cases of insertion,
deletion, and substitution in melodic fragments. Dannenberg was among the first to
apply dynamic programming to music. Together with Bloch, they later designed a pro-
gram for real-time accompaniment of keyboard performances [15]. Computer accom-
paniment is closely related to score following that, in turn, requires pattern matching.
The approach was later significantly developed by Stammen and Pennycook [109] who
included durational values for rhythm, dynamic time warping with global constraints,
automatic segmentation into phrases through the implementation of the grouping rules
proposed by Lerdahl and Jackendoff in [73]. Subsequent improvements have included
a real-time pattern induction and recognition approach of [101] and inclusion of metri-
cal stress and temporal weighting [79].
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3.6 Mid and High-level Melodic Features

In section 2.2, we divided the melodic features into different levels of abstraction and
a list of related descriptors was attached to each level of description. These descriptors
have been used in the literature in different application contexts.

Inside the features that take into account musical knowledge, tonality characteri-
zation has been a very important subject of study. Krumhansl defines a key-finding
algorithm based on tonal hierarchies [65]. The idea of this algorithm is that the tonal
hierarchies function as a kind of template against which the tones of the musical se-
lection are matched. This algorithm with some modifications is used by the Melisma
music analyzer (see 4.2).

We refer to section 2.2 for formulas of computation of some statistical-level fea-
tures.

Other higher-level description features are:

� Harmonic features: Several features related to harmony can provide informa-
tion on the melody as the key, the scale, and the position of the cadences. How-
ever, the automatic extraction of these features is a very difficult task that requires
musical knowledge and presents some ambiguities. For example, in order to de-
tect the scale, we first need to identify which notes belong to the scale and which
ones are out of it. Then, there can be more than one possible harmony (key, scale,
etc) for the same set of pitches. Some work on harmony analysis and references
can be found in [13].

� Rhythmic features: Rhythm is an important descriptor for melody. The rhythm
extraction issue has been addressed in several papers (references can be found in
[35, 102, 47]).

� Expressivity features: in section 2.2, we listed the descriptors that are currently
used to characterize expressivity in music. They are mainly related to tempo and
timing, dynamics and articulation. Its automatic extraction is linked to the tech-
niques explained below, as they belong to different abstraction levels (see section
2.2). There are also some systems that construct models to characterize perfor-
mances using Artificial Intelligence techniques. One example is found in Wid-
mer et al. [120, 121], that apply machine learning and data mining techniques to
study expressive music performance. Using these techniques, they build formal
models of expressive performance from real performances by human musicians.

3.7 Melodic Transformations

Once we have a melody description scheme, we can define some transformations based
on these melodic features. The needed transformations depend on the application.

In [11] a set of operations for sound transformation is described, as well as a review
of some approaches coming from the artificial intelligence area. High-level music
transformations can be sorted in different groups:

� Harmonic transformations:

– Modulation: It consists on changing the tonality of the melody, and it re-
quires the knowledge of key and scale information.
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– Reduction: It consists on simplifying the harmonic sequence (therefore the
melody) by cutting some harmonies, which do not play an important role
in the sequence. For instance, one would keep the cadences and the modu-
lations.

– Harmonization: the goal is to associate a chord sequence with a melody.
Several chord sequences can be associated to a melody, which then appears
each time differently.

Depending on the melody, the last two tasks can be very difficult to be performed
automatically at the signal level.

� Melodic (horizontal) transformations:

– Transposition (or pitch shifting): This consists on augmenting or dimin-
ishing the pitch values of the melody by a given interval. In a given key,
this could be done with the constraint to preserve the scale and, of course,
relevant properties as timbre and rhythm.

– Symmetries: It consists on performing axial or central symmetries on the
melody. Musical terms are inversion, retrograde or contrary movement.

– Ornamentation/reduction: It consists on adding/deleting notes to the melody
without changing its structure.

� Rhythmic transformations:

– Time compression and dilatation (time stretch): It consists on changing
segment durations without modifying the rhythmic structure. Although it
cannot be considered as a rhythmic transformation (as it does not transform
the rhythmic features), it is related to the temporal domain.

– Various symmetries: It consists in performing axial or central symmetries
on the rhythmic sequence.

These transformations are usually performed on a midi-like music sequence, so
that we assume that at least pitch and rhythm information are available. Some
literature on musical transformation can be found in [49]. Hofmann-Engl [53]
also formulates general melodic transformations as transposition and inversion
using reflection and translation matrices, in order to measure melodic similarity
based on these transformations.
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Chapter 4

Software and Application
Contexts

The goal of this chapter is to review the different application contexts in which melodic
analysis and representation is used. This chapter is not thought to be an exhaustive
list of software packages and systems because this would go out of the limits of this
research project. We will try to give an idea of the different fields where all the reviewed
techniques are useful, giving examples of some implemented systems.

In the last section, we will focus on the Sound Palette tool, that has been the appli-
cation context in which this research work has been carried out.

4.1 Content-based Navigation

4.1.1 Query by humming

The general block diagram for a Query by Humming system is presented in Figure 4.1.
In this type of systems, a hummed input is described, and then compared to the de-
scriptions on a database in order to find the most similar one, that is, to identify the
sung query.

This application context is one of the most important ones. Here, we will present
some of the already implemented systems that perform query by humming.

MELDEX: New Zealand Digital Library MElody inDEX.

Author: Rodger J. McNab, Lloyd A. Smith, David Bainbridge and Ian H. Witten, De-
partment of Computer Science, University of Waikato [82].

Description: MELDEX is a query by humming system accessible through a web
page. It allows to find tunes in a database using a combination of an uploaded sung
sample and text query. The test database is a collection of 9.400 international folk
tunes. In Figure 4.2 we can see the demonstration page, where searchers can be per-
formed either at the beginning or anywhere in a tune. Figure 4.3 shows an example of
the results of a melodic query.

web address: See http://www.dlib.org/dlib/may97/meldex/05witten.html for a com-
plete description of the system. A demonstration page is found in
http://nzdl2.cs.waikato.ac.nz/cgi-bin/gwmm?mt=music&c=meldex&a=page&p=query&aq=0.
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Description
Extraction

Database

Query Engine

Hummed Query

Melodic Description of the query

Ranked list of similar melodies

Figure 4.1: Query by humming system architecture

QBH Client

Author: developed by Wei Chai, MIT Media Lab;
Description: QBH Client is a query by humming client that tracks the pitch contour

and timing information of the user’s query. Then, it sends the query to the Query
By Humming (QBH) server via CGI, receives the result and playback. It runs under
windows 98/2000, and it is freely distributed. There are some configurable options.
See Figure 4.4 for an example of query results.

web address: http://web.media.mit.edu/ chaiwei/qbhweb/

ECHO: A WWW-Melody Retrieval System

Author: Tomonari Sonoda, Masataka Goto and Yoichi Murakoa, from Waseda Univer-
sity.

Description: query by humming software that represents the audio query using dif-
ferent contours (not only an up/down representation) and also includes rhythm contour
[107]. The system records the user’s voice (see Figure 4.5 a)) and send it to the server,
that performs the query. The query results are then presented to the user (see Figure 4.5
b)).

web address: http://www.sonoda.net/echo/index.html

Melodiscov

Author: Pierre Yves Rolland, Gailius Raskini and Jean-Gabriel Ganascia, Paris VI
University.

Description: query by humming software [98], following the principle What you
hum is what you get. The search is performed in two phases: first, we get a sym-
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Figure 4.2: MELDEX Demonstration web page

bolic representation of the hummed phrase, and then a pattern matching algorithm is
performed. In this system, the audio query is transcribed also when singing lyrics.

To represent a musical phrase, they use the MVEM (Multidescription valued edit
mode) Model (see section 2.2 for details in this model).

Lemström and Laine

Author: Kjell Lemström and Pauli Laine, from the University of Finland.
Description: query by humming software [72], focusing on the retrieval process.

They derive a representation for musical data, the inner representation, converted and
established from MIDI files. A two-dimensional relative code, derived from the inner
representation, was used for the matching and was independent from the original key.
This representation was composed of interval and duration sequences. An efficient
indexing structure, the suffix-tree, was used for the matching phase.
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Figure 4.3: MELDEX query results example

Figure 4.4: QBH client query results example
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a) Voice recording b) Query result

Figure 4.5: ECHO user interface
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4.1.2 Melody retrieval

Query by humming systems can be considered as a subclass of melody retrieval systems
where the user interacts with the system by a hummed query. Some of the implemented
systems can be accessed either through querying by humming or by some features as
pitch classes, contour, etc. In this case, they can be considered as melody retrieval
systems.

MAMI: Musical Audio-Mining

Author: developed by different research laboratories of the Ghent University.
Description: This approach is based on the Query by Humming paradigm. It is a

data-mining project for audio recognition that investigates ways of searching an audio
archive in a database. It focuses on audio signals, including all musical styles. This
project tries to develop an integrated system for audio description using different levels
of representation, trying to be compliant with the MPEG-7 standard (see section 2.2
for details on the different levels of description that they consider). More information
about this project is also found in [70, 71].

web address: http://www.ipem.rug.ac.be/mami

Query by Pitch Dynamics (QPD)

Author: melody retrieval system developed by the Link Group, Carnegie-Mellon Uni-
versity.

Description: QPD is a software for melody retrieval. As said in [14], they include
more than just a tool to retrieve a MIDI file that contains a musical query. They also
wanted to provide similarity measures between songs and extent it to automatic clus-
tering and navigation through similar songs.

They represent a musical score by removing pitches that are not used. Each of
the used pitches is then given a rank. R-trees are used for storage and retrieval of
representations. The web interface also supported searches by artist or title and by
MIDI instrument content.

Catfind

Author: developed by Yip Chi Lap, from the University of Hong Kong.
Description: Software for melody retrieval that performs textual searches by melodic

contour or by melodic interval sequences at the web, using the melody contour as fea-
ture.

web address: http://zodiac.csis.hku.hk:8192/catfind/Music/ContentSearch.htmlLast
update: 1999/10/13

MARSYAS

Author: Georges Tzanetakis, from Princeton University.
Description: MusicAl Research SYstem for Analysis and Synthesis or Manipula-

tion Analysis, and Retrieval SYstems for Audio and Signals. In this PhD Thesis [116]
of Princeton University, Georges Tzanetakis develops a set of tools for the analysis,
manipulation and retrieval of audio signals. All the proposed algorithms and inter-
faces are integrated in a free software tool designed for rapid prototyping of computer
audition research.
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There are other relevant systems for melody retrieval. Some of them are described
in [14]: the MusiFind project, developed by Stephen Downie, MUSIR, developed by
Salosaari and Jarvelin, the system proposed by Ghias et al., Themefinder (web address
http://densmore.themefinder.org), developed by Kornstadt from Stanford University,
Tuneserver, by Lutz Prechelt and Rainer Typke from the University of Karlsruhe (web
address http://name-this-tune.com, http://tuneserver.de), and Vega, designed by Liu and
Chen for both video and music. We also cite the MiDiLiB project by the University of
Bonn (http://www-mmdb.iai.uni-bonn.de/ forschungprojekte/ midilib/english).

When trying to evaluate and compare performances of different music retrieval
systems, it is important to have access to a standarized test collection, task and evalua-
tion metric. The definition of a formal framework for meaningful evaluation of Music
Information Retrieval (from now MIR) systems is one of the main objectives of the
MIR initiative 1 research community. This initiative has started the Music Information
Retrieval (MIR) and Music Digital Library (MDL) Evaluation Project2 to handle this
problem.

4.2 Music Analysis

In this section, we include the software used for different purposes inside Music Re-
search: melodic classification, comparative analysis, musical analysis, etc.

Humdrum

Author: David Huron 3

Description: Humdrum is a software developed to support Music Research in gen-
eral. This software has been used by musicologists to answer a wide variety of ques-
tions, some of them related to comparative analysis by pattern and motivic analysis.
Free distribution.

web address: http://www.music-cog.ohio-state.edu/Humdrum/index.html
There are two different tools:
Humdrum Syntax: grammar for music representation: symbolic textual representa-

tion of content. pitch, duration, key.
Humdrum Toolkit: software manipulating humdrum syntax: pattern location (pat-

tern), interval computation (mint), transpose (trans), estimate the key (key). These
commands will generate a transformed humdrum representation.

The Melisma Music Analyzer

Authors: Daniel Sleator and Davy Temperley, from the School of Computer Science,
Carnegie Mellon University.

Description: The Melisma Music Analyzer is a tool for analyzing music. It takes a
MIDI like representation of a musical piece (as an "event list"–a list of notes, with pitch,
on-time, and off-time), and it extracts information about meter, phrase structure, con-
trapuntal structure (the grouping of notes into melodic lines), harmony, pitch-spelling,
and key.

It works under LINUX, it is open source and it is freely distributed.

1http://music-ir.org
2http://music-ir.org/evaluation
3http://www.music-cog.ohio-state.edu/Huron/Huron.html
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web address: http://www.link.cs.cmu.edu/music-analysis/

Department of Music, University of Jyväskylä

Authors: Petri Toiviainen, Tuomas Eerola, Jukka Luoivuori et al. from the Department
of music, University of Jyväskylä.

Description: They have worked with statistical parameters in order to perform an
automatic classification of folk melodies [114] and to perform similarity measure [38].

Music composition system using genetic algorithm

Authors: Michael Towsey, Andrew Brown, Susan Wright and Joachim Diederich, from
Queensland University of Technology.

Description: Melodic continuation system that uses genetic algorithms (GA) [115].
They use 21 melodic features as the bases for a GA fitness function and for mutation
procedures.

4.3 Expressivity Analysis

Director Musices

Authors: researchers of the KTH Music Acoustics Group.
Description: This research group have defined some rules for music performance

in order to generate and analyze expressive performances (see 2.2 for explanation of
the performance rules). Most of them are implemented in this program. Its manual
has references to the relevant papers for each rule. It works under both Macintosh and
Windows.

web page: http://www.speech.kth.se/music/performance
http://www.speech.kth.se/music/performance/download

There are other researchers that have worked on expressivity and performance anal-
ysis (see section 2.2 for details).

EyesWeb

Authors: InfoMus - Laboratorio di Informatica Musicale, University of Genova.
Description: EyesWeb is an open software platform for the development of real-

time music and multimedia applications. It includes a hardware and software platform
to support the user (i) in the development and experimenting of computational models
of expressive content communication and of gesture mapping strategies, (ii) in fast
development and experiment cycles of interactive performance setups. An intuitive
visual programming language allows to map at different levels movement and audio
into integrated music, visual, and mobile scenery. EyesWeb has been designed with
a special focus on the analysis of expressive content in movement, midi, audio, and
music signals.

web page: http://musart.dist.unige.it/Eywindex.html

4.4 Automatic Transcription Systems

Music transcription is the act of converting an audio excerpt into its music notation.
Music transcription systems take a sound signal as its input and attempts to recognize
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onset, duration and pitch of notes. That is, it tries to find the symbolic representation
of this audio excerpt. In this section, we will include also Wave to MIDI software.
The difference between Automatic Transcription Systems and Wave to MIDI software
is that in automatic transcription, we do not attempt to reproduce a perceptually close
"copy" of the original performance. In this sense, automatic music transcription is
similar to the task of speech recognition. Automatic music transcription still remains
an unsolved scientific problem, mainly for polyphonic sounds.

There are several automatic transcription systems that have been developed in dif-
ferent context: instrument, conditions, monophony/polyphony, etc.

Signal Processing Laboratory, Tampere University of Technology

Author: Anssi Klapuri and other researchers from the Signal Processing Laboratory of
the Tampere University of Technology.

Description: One example of Automatic Transcription System, is the system de-
veloped by Anssi Klapuri and other researchers from the Signal Processing Laboratory
of the Tampere University of Technology [61]. Transients are first detected, followed
by a multipitch estimation algorithm. Bandwise processing is applied.

Recognisoft

Description: Wave to MIDI software and music notation software for Windows. It
achieves high accuracy in extracting sequences of notes out of the audio records of solo
performances. A screen-shot is presented in Figure 4.6. It can not handle polyphonic
performances.

web address: http://www.recognisoft.com

Figure 4.6: Recognisoft screen-shot

A list of wave to MIDI software in the Internet is listed on the Recognisoft web
page 4.

4http://www.recognisoft.com/links.htm
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4.5 Transformation Tools

Melodyne

Description: Commercial software from Celemony. It performs Melody analysis and
transformation: pitch shifting, formant correction. Change in intonation is possible
by an increase or decrease in phrasing or vibrato. Time stretching is also possible.
Finally, for monophonic sounds, it is also provided a beat estimator. See Figure 4.7 for
screen-shot.

web address: http://www.celemony.com/melodyne/

Figure 4.7: Melodyne screen-shot

Pitch & Time

Description: Commercial software by Serato, pitch shift and time stretch system. Ser-
ato Pitch ’n Time offers time compression and expansion from a ratio of half speed up
to double speed independent of pitch, and pitch shifting of up to 12 semitones indepen-
dent of tempo. See Figure 4.8 for screen-shot.

web address: http://www.serato.com/products/pnt/

4.6 The Sound Palette

The Sound Palette application has been thought as an editing, processing and mixing
tool for sound designer and professional musicians. The difference between the Sound
Palette and other similar tools is that it provides a way to interact with the content of
the audio, by offering audio sample management, editing and transformation features
based on sound content description.

Two versions of the Sound Palette are being developed in parallel: an “online”
and an “offline” version. We concentrate on the second one, which is restricted to the
management of samples on the user’s PC and includes sound edition and transforma-
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Figure 4.8: Serato Pitch ’n Time screen-shot

tion funcionalities. This tool generates content descriptions of sound files, so thatthe
following functionalities can be provided related to this content description:

� Content edition

� Content-based navigation and retrieval among the database of sounds described
previously with this tool.

� Content-based transformations

The Sound Palette works with monophonic sounds, drum loops, and mixtures, only
if they have been created using this tool. Two versions are being developed, one stand-
alone (the Sound Palette off-line) and other on-line.

It mainly consists of the following modules:

� Content editor: the content editor is a tool that generates content description
of sound files. For a new file, the content editor automatically describes the au-
dio file and stores this description on a database. If the sound file has already
been described, the editor reads the description. Once the description is read, it
graphically shows the information to the user. The main descriptors categories
are related to melody, rhythm and instrument. The user can refine these descrip-
tions.

� Instrument assistant: the instrument assistant is a tool for content-based orga-
nization and management of sound libraries. It will automatically classify the
“samples” available to the user and will search for enhancing the current sound
palette. It will retrieve sounds using similarity criteria, and it will graphically
show the position of sounds in relevant perceptual or feature spaces. It will also
allow the user to build a self-defined labelling system. Descriptors to be used

Emilia Gómez Gutiérrez 58 Research Work, UPF



CHAPTER 4. SOFTWARE AND APPLICATION CONTEXTS

Figure 4.9: Melodic content editing and transformation section of the Offline Sound
Palette

are not only the perceptual ones but also of other kind (for allowing user-defined
descriptors, among other reasons).

� Transformation assistant: It is a tool for content-based transformation and syn-
thesis of sounds. It will transform an original recording using content descrip-
tors, and it will allow the generation of new tracks by transforming the existing
ones. The Transformation Assistant will take inputs from the other assistants
(Instrument and Mixer Assistant) in order to generate the desired result.

� Mixing assistant: It is a tool for preparing rough mixes using content informa-
tion.
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Figure 4.10: Browsing and retrieval section of the Offline Sound Palette
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Chapter 5

Selected Approach and
Conclusions

In previous chapters, we have reviewed the different ways of representing melodic
features of an audio excerpt and the techniques used to automatically extract these
melodic descriptors.

As a continuation of this overview, we explain the work that is currently being
carried out on the development of some of these techniques. First of all, we study
the performance of two different approaches for fundamental frequency estimation, a
harmonic matching model and a bandwise processing approach. As a forward step,
once note limits are known, we obtain a basic melodic description by a sequence of
notes. This approach is oriented toward automatic transcription, without quantization
of durations and pitches.

In this chapter, we first see the implementation work that is being carried out. Then,
we arrive to some conclusions after the overview and the implementation. Finally, the
objectives of the future research are explained, which at the same time, work as the
conclusion of this research work.

All the techniques seen in this chapter have been developed in the context of the
Sound Palette application, explained in section 4.6.

5.1 System Architecture

Figure 5.3 presents the overall structure of the system that is implemented inside this
application context. The audio files are analyzed and described, and their descriptions
are stored in a database. XML format is used for communication between the database
and the description modules.

The system provides some retrieval functionalities, so that the user can search for
sounds according to their content features.

Finally, the system also supplies some transformation capabilities to the user, that
transform the sound according to the extracted and stored features.

Three categories of sounds have been identified: samples (or isolated notes), mono-
phonic pitched audio phrases and drum loops. In the case of drum loops, melodic
description is not provided.

The present work is limited to the description extraction block and centered on
melodic features. Its input is an audio file, and its output is a melodic description
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stored in XML format. A complementary work is being performed for rhythm and
instrument description.

Description 
Extraction

  Description  
DatabaseAudio File

Search facilities

Transformations Content 
Transformation

 facilities

Figure 5.1: Overall system architecture

5.2 Melodic Description scheme

In this section, we detail the melodic aspects of the description scheme that has been
used, keeping in mind the MPEG-7 standard. We only go into details on the melodic
aspects of this description scheme, although other description axes (rhythm and instru-
ment) are also represented (see [41] in appendix for details on rhythmic and instrument
description scheme).

For the first implementation of the description scheme, the objective has been to
store as much descriptors as possible. Nevertheless, we will define different levels of
data simplification, according to a temporal structure of the audio excerpt (e.g. funda-
mental frequency values assigned to a frame or a note have different meanings).

On MPEG-7 descriptions

MPEG-7, as shown in section 2.3, is a worthy effort to define an all-purpose melody
description scheme. As we already saw, this scheme provides two levels of melodic
description:

� a melody contour

or

� an expanded melodic descriptor,

as well as some information about lyric, scale and meter that is arranged around
these core descriptors. We refer to Figure 2.3 on page 26 for a detailed schema.

All these features are included in the mpeg7:Melody description scheme (DS). Ac-
cording to Lindsay and Herre [77], the Melody Contour DS has been defined as a com-
pact representation for melodic information, and has been thought for efficient melodic
similarity matching, as for example, in query by humming. For applications requir-
ing greater descriptive precision or reconstruction, the mpeg7:Melody DS supports an
expanded descriptor set and high precision of interval encoding. For our purposes,
we also have found some limitations when using this expanded descriptor that we will
explain below.
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Comparing to a MIDI-like representation, we can find that some needed informa-
tion is simplified or left out the standard. Regarding the mpeg7:Note representation,
included in the mpeg7:Melody DS, can not store some relevant signal-related features
as intensity, intra-note segments articulation or vibrato, that are also important to char-
acterize an audio phrase. The Note type includes only quantized note pitch and note
relative duration information. It does not store fundamental frequency and exact dura-
tion information, that are important, for example, for expressivity characterization or
performance analysis. It does neither take into account silences, which play an essen-
tial role for melodic perception. Some of these features are already coded by the MIDI
representation.

MPEG-7 also includes some optional descriptors related to key, scale and meter.
These unary descriptors are associated to an audio segment, and they have been found
to be difficult to compute automatically. We also need to store other unary descriptors
computed automatically from the low-level descriptors (see 2.2) and attached to the
audio excerpt.

Description Scheme Specification

In this first implementation, the idea has been to define different type of segments,
according to the temporal structure of the audio signal. Each of the segment types
accounts for different description schemes. At this moment, we have distinguished two
type of segments:

� Segment: this general segment type represents the whole audio excerpt, e.g.
composed by a sequence of notes, that in principle can be either monophonic or
polyphonic. This segment has its associated descriptors and description schemes
and can be decomposed in other segment (for example, a polyphonic segment
could be decomposed in a collection of monophonic segments) and in a sequence
of Note segments. This segment type has an associated description scheme dif-
fering from that of the Note, as well as the low-level descriptors (hence LLDs),
associated to analysis frames.

� Note: this segment type represents a note event. The note has an associated de-
scription scheme, accounting for melodic, rhythmic and instrument descriptors.

The Frame is a storage entity that has been defined on the context of the Spectral
Modeling System (hence SMS) [10]. It is associated to the spectral analysis frame
and it is used to represent an event in time. The frame corresponds to the minimal
unit of signal that is used for spectral analysis. The frame duration and the hop time
between frames are parameters of the analysis algorithm. Each frame has attached a
set of low-level spectral descriptors that corresponds to the MPEG-7 LLDs, and a set
of descriptors associated to the SMS analysis system. An array of frames is attached to
the segment that represents the audio excerpt.

The fact that justifies the definition of two different segment types is that a note has
different melodic, rhythmic and instrumental features than a musical phrase or general
audio excerpt, and there are some attributes that do not have any sense associated to
a note (for example, the mpeg7:Melody descriptor). Nevertheless, a Note is in fact a
segment with some specific descriptors.

We will now specify which set of features describes each of the segment types.

� Description Scheme associated to Note:
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The melodic descriptors associated to a note segment are:

– Temporal location: the exact temporal location of a note is described by
two descriptors: Begin and End. These two descriptors specify a point in
the time axe. We have also added a note duration descriptor.

– The quantization of the duration information defines a Symbolic Duration
(quarter of note, etc). This descriptor has been introduced in order to allow
also the encoding of score representations, as well as audio.

– Fundamental frequency: this feature is defined as the representative note
fundamental frequency computed without quantization (see Section 5.3.2
for details on computation).

– Pitch Note: quantized value of the fundamental frequency. It can be ex-
pressed either as a couple of pitch and octave values (as mpeg7: degreeNote-
Type) or using the MIDI-Note representation, establishing a direct mapping
between melodic description and MIDI representation.

– Intensity: this features represents the note dynamic, and is defined by a
floating point value indicating its intensity. This descriptor is necessary
to analyze phrasing and expressivity (crescendo, diminuendo, etc) of a
melodic phrase, and it can be linked to the energy low-level descriptor.

– Vibrato: vibrato is also important when trying to characterize how the mu-
sical phrase has been performed, it is defined by the vibrato frequency and
amplitude.

– Intra-note segments features: as explained in previous sections, it is impor-
tant for some applications to characterize articulation. Intra-note related
features, as attack or release characteristics, are related to articulation. We
have chosen to use some descriptors indicating the duration and type of the
intra-note segments (attack, sustain and release). The definition of these
descriptors are under study.

� Description Scheme associated to Segment:

The melodic descriptors associated to a general segment that we are currently
using are:

– Temporal Location: as well as for the Note, the exact temporal location is
coded by two descriptors: Begin and End. These two descriptors specify a
point in the time axe.

– Note Array: array of Note segments. In order to remain compatible with the
standard, the array of Note should be attached to the Melody DS. Neverthe-
less, we are also considering the possibility of having it directly attached to
the segment, by using a segment decomposition structure.

– Contour: this descriptor is designed as an extension of the mpeg7:Contour
type, where the contour values are not restricted to the range [�2;+2]. We
are currently testing different levels of interval quantization, beginning by
the simplest Up/Down/Repeat contour (see Section 5.3.3).

– Unary Descriptors: we have incorporated some "unary" descriptors, de-
rived from the low-level descriptors, duration, and pitch sequences, that
model some aspects as tessitura, melodic density or interval distribution.
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These features provide a way to characterize a melody without explic-
itly giving the pitch sequence and should be included in this description
scheme. This is an open data container to which more descriptors can be
easily added.

We have grouped these descriptors into a general container for Melodic descrip-
tors, the Melody description scheme, as also found in the standard.

This description scheme has been implemented by a set of C++ classes designed to
store the descriptor values. The low-level descriptors are already included in the CLAM
C++ development framework 1 used in the development of most of the techniques
that have been implemented within this research work. The rest of them has been
implemented and added to this library. An UML diagram of the description scheme is
shown in Figure 5.2.
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Figure 5.2: Class diagram of melodic descriptors

5.3 Work in progress on melodic description extraction
techniques

In this section we describe the algorithms in which we are currently working to obtain
melodic features of an audio excerpt. We begin with the lower level melodic descrip-
tion, that is the frame-based fundamental frequency, followed by a Note description,
up to melodic descriptors associated to the whole audio file.

Figure 5.3 represents the steps that are performed to obtain a melodic description
from audio. First, the audio signal is divided into analysis frames, and the set of low-
level descriptors are computed for each analysis frame. These low-level descriptors

1http://www.iua.upf.es/mtg/clam
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are used by the note segmentation algorithm, as well as in a preprocessing step of the
fundamental frequency algorithm.

Fundamental
Frequency 
Estimator

Note 
Segmentator

Note 
Descriptor

Mid-level 
Features 

Computator

Audio File

Note
Array

XML
Melody

     Description    

Low-level descriptors
 computation

Figure 5.3: Block diagram of the melody descriptor

The fundamental frequency detector outputs an estimates for each analysis frame.
Using these values and the low-level descriptors, the note segmentator block detects
the note boundaries. Once the note boundaries are known, the note descriptors are
computed from the low-level and the fundamental frequency values.

Finally, note and low-level descriptors are combined to compute the global descrip-
tors, associated to the whole music segment.

Al these descriptors are stored into an XML document according to this descrip-
tion scheme. An example of the structure of a XML description for a monophonic
saxophone phrase is presented below.

<AudioSegment>
<BeginTime>0</BeginTime>
<EndTime>10.658</EndTime>
<FramesArray>

<Frame>
<CenterTime>0.01161</CenterTime>
<Duration>0.02322</Duration>
<Spectrum>

<Scale>Log</Scale>
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<SpectralRange>22050</SpectralRange>
<prSize>1025</prSize>
<MagBuffer>-82.2844 -83.0799 ... </MagBuffer>
<PhaseBuffer>0 -0.224169 ... </PhaseBuffer>
...
<Descriptors>

<Energy>4.02654e-08</Energy>
<Centroid>264.543</Centroid>
<Kurtosis>61.4152</Kurtosis>
<MFCC>-32.3263 -0.462856 ... </MFCC>
<MaxMagFreq>0</MaxMagFreq>
<LowFreqEnergyRelation>0.393396</LowFreqEnergyRelation>
<Skewness>6.6301</Skewness>
<Rolloff>0</Rolloff>

</Descriptors>
</Spectrum>
<SpectralPeakArray>

<Scale>Log</Scale>
<nPeaks>10</nPeaks>
<nMaxPeaks>100</nMaxPeaks>
<MagBuffer> ... </MagBuffer>
<FreqBuffer> ... </FreqBuffer>
<PhaseBuffer> ... </PhaseBuffer>
<BinPosBuffer> ... </BinPosBuffer>
<BinWidthBuffer> ... </BinWidthBuffer>

</SpectralPeakArray>
<Fundamental>

<nMaxCandidates>1</nMaxCandidates>
<nCandidates>1</nCandidates>
<CandidatesFreq>25</CandidatesFreq>
<CandidatesErr>100</CandidatesErr>

</Fundamental>
</Frame>
<Frame>
...
</Frame>
...

<Descriptors>
<Melody>
<NoteArray>
<Note>
<Time>

<Begin>0.325</Begin>
<End>2.449</End>

</Time>
<PitchNote>

<Pitch>D</Pitch>
<Octave>5</Octave>

</PitchNote>
<MIDINote>74</MIDINote>
<FundFreq>591.693</FundFreq>
<Energy>0.0337453</Energy>

</Note>
<Note>
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<Time>
<Begin>2.542</Begin>
<End>2.67</End>

</Time>
<PitchNote>

<Pitch>C</Pitch>
<Octave>5</Octave>

</PitchNote>
<MIDINote>72</MIDINote>
<FundFreq>527.423</FundFreq>
<Energy>0.0101042</Energy>

</Note>
...

</NoteArray>
<NumberOfNotes>16</NumberOfNotes>
<Tessitura>14000</Tessitura>
<Contour>-1 -1 1 1 1 0 0 0 0 1 -1 -1 1 -1 -1</Contour>
...

</Melody>
</Descriptors>

</AudioSegment>

5.3.1 Fundamental frequency estimation

In the fundamental frequency estimation block, two different approaches are being
tested, improved and compared. The first one implements a harmonic-matching tech-
nique, and the other one estimates the predominant fundamental frequency by dividing
the spectrum in different frequency band (i.e. performing a bandwise processing). This
predominant fundamental frequency estimator is also thought to work for polyphonic
sounds. We are also testing it with simple polyphonies and inharmonic sounds.

The first algorithm is used in the SMS context [10]), and it computes a fundamental
frequency estimate from a set of spectral peaks. This algorithm does not take into
account inharmonicities, that are present in some type of sounds. This is supposed
to be an advantage of the use of a bandwise processing, that is the resistance against
inharmonicity and the robustness against band distortions.

In this application context, there are a list of properties that the fundamental fre-
quency algorithm should verify:

� Generality: the algorithm should work well for different instrument types, there-
fore for sounds with varied spectral shapes and spectral peak distributions.

� Robustness to noise: this is not a main requirement, because we are working with
sounds recorded in studio, but the algorithm should also work when some noise
is present.

� Robustness to inharmonicity: but the algorithm should also work for sounds pre-
senting a small inharmonicity coefficient.

� Predominant estimation for polyphonic sounds: the algorithm ought to behave
well for monophonic sounds, although we will also consider simple polyphonies
as a more complex problem that noisy monophonies. We only consider mono-
timbral sounds or solo parts, where there is a clear predominant pitch in the
spectrum.
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Harmonic Matching model approach

Figure 5.4 shows the block diagram for the fundamental frequency estimator following
a harmonic-matching approach. This algorithm is based on the one proposed in [78],
and is detailed in section 3.1.1.

Begin

Spectral Analysis

Peak Detection

Peak Selection

Fundamental Frequency
Candidates Selection

Weight of candidates

Choose the candidates with
smallest weight

End

Analysis parameters

Peak threshold

Fundamental
boundaries

Figure 5.4: Flow diagram of the TWM algorithm

First of all, we perform a spectral analysis of a portion of sound, called analysis
frame, whose size is a parameter of the algorithm. This spectral analysis lies in multi-
plying the audio frame with an appropriate analysis window and performing a Discrete
Fourier Transform (DFT) to obtain its spectrum.

Secondly, the prominent spectral peaks of the spectrum are detected from the spec-
trum magnitude. These spectral peaks of the spectrum are defined as the local maxima
of the spectrum which magnitude is greater than a threshold. This magnitude threshold
is also a parameter of the algorithm.

These spectral peaks are compared to a harmonic series and an two-way mismatch
(TWM) error is computed for each fundamental frequency candidates. The candidate
with the minimum error is chosen to be the fundamental frequency estimate.

The implementation of this algorithm has been made in C++.
After a first test of this implementation, we identified some situations where the

spectrum is not exactly harmonic:

� High frequency sounds: for sounds with a high fundamental frequency, there
are some spectral peaks that appears before the maximum magnitude peak and
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between the harmonics. We also can find doubled harmonic peaks, as e.g. for
violin high frequency samples.

� Inharmonicity: for string instruments, we also remark that the harmonics are not
equally spaced, i.e, the spectrum presents some inharmonicities.

� Noise: noise peaks can have strong amplitudes and cause errors in the funda-
mental frequency estimation.

� Transitions: there were some estimation errors in isolated corrupted spectrums,
that are frames where the sound is not harmonic usually located at transitions or
silence parts.

Some improvements to the original algorithm proposed in [78] are under test to
deal with these situations:

� Peak selection: after locating the spectral peaks, a peak selection routine has
been added in order to eliminate spectral peaks corresponding to noise. The
peak selection is done according to a masking threshold around each of the max-
imum magnitude peaks. The form of the masking threshold depends on the peak
amplitude, and uses there different slopes depending on the frequency distance
to the peak frequency.

� Context awareness: we have introduced the notion of context awareness to take
into account previous values of the fundamental frequency estimation (history)
and instrument dependencies to fix the algorithm parameters and to obtain a more
adapted result.

� Previous classification: in order to adapt the algorithm to different types of sig-
nals, a rough classification using low-level signal descriptors is being tested.

� Noise gate: in the preprocessing step, a noise gate based on some low-level signal
descriptor is applied to detect silences, so that the estimation is only performed
in non-silences segments of the sound.

Some evaluation work is done for the fundamental frequency estimator module,
using a rather regulated subset of samples from the IRCAM Sound On Line database 2.

The main difficulty in this application context is that the algorithm has to work
well for any instrument source, so that it has to be flexible enough, and at the same
time it should work in a non-supervised way (that is, its parameters must be fixed).
The previous classification step, which uses low-level signal descriptors, can work as a
preprocessing step to fix some of these analysis parameters.

Bandwise processing approach

This seconds approach splits the signal spectrum into different frequency bands. A
fundamental frequency estimate is computed for each of the frequency band, and then
the results for all the bands are combined to yield a global fundamental frequency
estimate. We have adapted a techniques that was proposed by Anssi Klapuri. Details
about this algorithm are found in section 3.1.1.

2http://www.ircam.fr/produits/technologies/sol
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A block diagram of this approach is shown in Figure 5.5. First, we perform a
spectral analysis to the audio signal, that consists in windowing the audio frame and
perform a Fast Fourier Transform (FFT) to obtain its spectrum. As a preprocessing
step before fundamental frequency estimation, an equalization block is designed. This
equalization block is intended to eliminate both additive and convolutive noise. Then,
we divide the spectrum into 21 constant-Q bands:

Q =
centralfrequency

bandwidth
(5.1)

Spectral
Analysis

Equalization

Barkbands
decomposition

Likelihood
computation

Likelihood
computation

Likelihood
computation

Input sound

Likelihood
combination

Fundamental Frequency
Estimate (s)

...

Figure 5.5: Flow diagram of the bandwise approach

To do so, we construct a filter bank using triangular windows for each frequency
band, as can be seen in Figure 5.6. We are also testing with other window types in order
to evaluate the influence of the window shape for fundamental frequency estimation
and choose the optimal one.

For the output of each bandpass filter, we compute a predominant vector. This
predominant vector represents, for each frequency value, its probability of being the
fundamental frequency when taking into account only the filter’s frequency band. the
peaks of the predominant vectors are then the most probable fundamental frequency
candidates when considering this frequency band. Each of the fundamental frequency
candidates can be assigned a weight determined by the normalized value of the pre-
dominant vector for this frequency.

In the last step of the algorithm, the results of the 21 bands are combined to compute
a global fundamental frequency estimate.
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Figure 5.6: Filterbank used for bandwise processing

This algorithm was implemented using C++ classes and MATLAB code.

Qualitative comparison between algorithms

We look at the output of both algorithms in order to decide if the correct pitch has been
detected, in stable part of notes. We are working with sounds of different natures:

� Pseudo-harmonic sounds, as e.g., wind instruments (saxophone, trumpet, clar-
inet, etc).

� Sounds presenting inharmonicities, i.e., sounds whose harmonics are not equally
spaced.

� Noisy sounds, which let us test the algorithm performance against noise.

� Spectra where a frequency band is corrupted, so that we can remark the differ-
ences of using a bandwise robustness.

� Simple polyphony: we will only deal with a set of simple polyphonies and solo
parts, considered as a most complex problem than noisy spectral where there
is always a predominant fundamental frequency that presents the clearest har-
monicity. The advantages of using a bandwise processing are evaluated when
dealing with this type of sounds, because the predominant frequency may be
clear only in a small frequency band.

� Sounds of a wide frequency range are used for the tests, to verify the performance
for very low and very high fundamental frequency samples.
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Some qualitative preliminary results are the following ones:

� For harmonic sounds, the performance of both algorithms are quite similar. Nev-
ertheless, the TWM procedure achieves a better frequency resolution, due to the
frequency interpolation that is made in the spectral peak picking and in the search
of the minimum of the Two-Way error function.

� For sounds presenting inharmonicities, some differences are found. The band-
wise algorithm takes into account inharmonicity and performs an estimation of
the inharmonicity factor, so that some estimation errors are corrected.

� For noisy sounds, it appears that the bandwise processing is much more effi-
cient, that is because of a preprocessing step that is applied in order to reduce
noise (see [50] for details). This preprocessing efficiently cleans the spectrum.
Fundamental frequency is thus tracked nearly as long as the note is heardable in
the original signal.

� Polyphonic sounds allow a comparison of the algorithm performance in another
kind of noisy environment, that is the presence of other sounds. In this kind of
environment, the Two-Way Mismatch proved to be weaker than the bandwise
processing.

More details on the tests and examples of performances are presented in appendix
A [37]. Figure 5.7 shows an example of visualization of some of the computed low-
level descriptors, frame fundamental frequency, energy and spectral centroid, for a
saxophone phrase.

Figure 5.7: Class diagram of melodic descriptors
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5.3.2 Note features computation

Once we have estimated a fundamental frequency value for each analysis frame, and
we know the note boundaries, we compute note descriptors using this estimation and
the low-level descriptors values.

The low-level descriptors associated to a note segment (as e.g. energy, centroid,
spectral flatness, etc) are computed by averaging the frame values within this note
segment.

Pitch histograms have been used to compute the pitch note and the fundamental
frequency that represents each note segment, as found in [82]. This is done to avoid
taking into account mistaken frames in the fundamental frequency mean computation.
The procedure to assign a pitch and fundamental frequency value to a note segment is
the following one, used by [82].

First, frequency values are converted into cents, by the following formula:

c = 1200 �

log (
f

fref
)

log2
(5.2)

where fref = 8:176.
Then, we define histograms with bins of 100 cents and hop size of 5 cents and we

compute the maximum of the histogram to identify the note pitch. Finally, we compute
the frequency mean for all the points that belong to the histogram. The MIDI pitch and
the “textual” pitch note (pitch value and octave) is computed by quantization of this
fundamental frequency mean.

No quantization is being performed neither in the fundamental frequency value nor
in the temporal note information for melodic description.

Figure 5.8 shows an example of visualization of some note descriptors for a saxo-
phone audio phrase.

5.3.3 Features derived from a note array

Some descriptors related to whole audio excerpt (represented by a Segment) are now
under test. Our first goal is to verify its utility for simple melodic search and retrieval
and for simple melodic characterization on the context of melodic transformations, and
see how statistical descriptors can be linked to musical or descriptive concepts. We are
using mid-level descriptors based on mathematical and statistical computations of the
pitch and duration sequences and on the fundamental frequency values of each frame.
Some of them are:

� Number of notes, number of notes per second and number of distinct notes per
second: these descriptors are related to melodic density and variation of the audio
excerpt.

� Tessitura or fundamental frequency range: lowest and highest pitches and pitch
range.

� Melody Contour: Parson Code: this is the most used melodic descriptor in
the literature for search and retrieval purposes. We first simplify to the sim-
pler up/down/constant (U D R) contour defined by Denys Parsons in 1975 [39],
where each interval is represented by a value i=i 2 f+1; 0;�1g if the interval is
ascendant, descendant or constant.
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Figure 5.8: Class diagram of melodic descriptors

� Interval Distribution : type of intervals used on the melody. For the moment, we
are using an histogram that represents which type of intervals are used.

� Fundamental frequency histograms: some ideas of pitch histograms from Tzane-
takis (see section 2.2 and [116]) are also under test.

5.4 Database issues

For the test of fundamental frequency estimation techniques, we can easily find sounds
from different sources. We mainly use samples (i.e. isolated notes) from different
instruments found at the IRCAM Sound On Line database (see footnote 2). The tests
are being performed with 342 samples of the following instruments in different play
modes, represented in Table 5.1.

When testing the overall features representing the whole audio excerpt, one of the
main encountered problems was to build a database of melodies. It has been difficult
to find monophonic melodies from different instruments. In the author’s opinion, the
availability of MIDI melody databases in the Internet may be one of the reasons why
a lot of research is performed using symbolic data. We have collected the following
melodic phrases (a total of 146 phrases with different lengths and number of notes)
recorded from different instruments. Some of them are arpeggios and scales, being
also useful for testing purposes.
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Instrument Number of samples

Accordion 21
Bassoon 12

Double bass 33
Clarinet 10

French Horn 14
Flute 14
Guitar 28
Harp 17
Oboe 18
Sax 11

Trombone 21
Trumpet 21

Tuba 13
Cello 36
Violin 35
Viola 39

Table 5.1: Monophonic samples used for testing the fundamental frequency algorithms
(source: see footnote 2)
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Instrument Number of samples
Accordion 2

Banjo 1
Bass 12

Bassoon 3
Celesta 1
Cello 8

Clarinet 9
Contrabasson 1
Double bass 3
Electronic 1

Flute 8
Glockenspiel 1

Guitar 9
Harp 2

Harpsichord 1
Horn 8

Mandolin 1
Oboe 6
Piano 5

Piccolo 2
Sax 20

Trombone 2
Trumpet 8

Tuba 7
Vibraphone 1

Viola 5
Violin 11
Voice 8

Table 5.2: Monophonic phrases used for testing the melodic descriptors
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5.5 Discussion

The main objectives of the present research work have been the following ones: first of
all, to establish a taxonomy of the different aspects and levels of melodic description
that are used in the literature; secondly, to review the approaches that are being used for
the automatic extraction of these descriptors; and finally, to see in which application
contexts melodic description is needed.

We have discovered that it is a wide topic, where there is a lot of research that
is being made and many methods are under study aiming at describing and processing
audio according to its melodic features. In a broad melody processing system, different
stages can be distinguished. The extraction of a melody description from the audio
signal is one of the most important ones. We have reviewed some of the methods used
to describe melodic features of an audio excerpt.

We can divide the different approaches in two tendencies:

� Automatic transcription systems, that are those whose goal is to perform a
PCM to MIDI conversion, with or without quantization, of the audio excerpt. In
this type of systems, we find the difficulty to perform accurate pitch tracking and
precise note segmentation even for monophonic sounds. Many methods have
been reviewed at section 3.1 that deal with different type of sounds in different
contexts. The use of context information as

– Instrument type or spectral features of sound

– Number of concurrent voices

– Recording Conditions (noise, reverb, etc)

– Location of the stable part of the note

to adapt the tracking algorithm has helped to solve this problem for monophonic
sounds. In the author’s opinion, it still remains difficult to find a fundamental
frequency algorithm that works well for any frequency range, instrument and
conditions.

If we consider polyphony, some attempts at melody transcription have been
made, but we are still far away from having a polyphonic transcriptor working
for real audio recordings (i.e. what we call “real sounds” or songs).

� Some statistical or model-based techniques and procedures do not aim at com-
puting the musical score or the MIDI transcription, but they extract model-based
parameters (see 2.2) to describe sound in an abstract, that is not musical, way.
They are usually used for search, retrieval and identification purposes. In this
group of approaches, description is connected to identification (see [25, 26] for
a general introduction to audio recognition techniques).

If we think of sharing descriptions and communicating between applications and
systems, it is necessary to define a common melody description scheme. This scheme
ought to be valid for any application in any usage situation, which is a very hard re-
quirement. It might be more practical to try to devise a set of specific application
contexts and define a description scheme open enough to be easily adapted to each
of these target applications. An attempt to such a description scheme is the MPEG-7
standard (see section 2.3 and 5.2).
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In the author’s opinion, when this description scheme will be used and adapted to
the different usage scenario’s needs, some improvements will be thought according to
these different application contexts. We have to work toward multi-layered descriptions
which treat musical information on a number of levels and regarding different aspects,
as described in section 2.2.

The fact that justifies the definition of multiple levels of description is that each
application context focuses on a different aspect of melody. For example, melody
retrieval systems do not need exact accuracy and description of the audio material. It
could be enough to have some rough features or low-level parameters that will give a
measure of similarity between melodies. These features would not necessarily have a
musical or structural meaning.

On the other hand, comparative analysis or composition tools need to introduce
musical knowledge to the description. It is also necessary to have a very accurate
transcription of the audio excerpt when comparing performances of the same excerpt
and when describing expressivity.

Finally, once we have a melody description at different levels, another important
issue is to transform the audio following these melodic attributes. Techniques intended
to transform the audio following content information are now under research, and these
techniques will give the possibility to transform the content by using attributes at dif-
ferent levels: according to signal attributes, to musical attributes, textual attributes, etc.

We have seen that there are many fields to consider when trying to represent melodic
features of audio. The reason is that the concept of “melody” is a complex concept that
is related to different aspects of sound as perception, musical knowledge or structural
hierarchy.

5.6 Future research

This section is devoted to the definition of the PhD objectives and goals. Here we will
define the main axes of research that will be followed during the PhD thesis.

First, we have to delimit the type of sounds we are going to address. We have
focused the state of the art in monophonic audio phrases (one instrument, without ac-
companiment). Nevertheless, we will continue keeping in mind polyphonies, and we
will also try to test the implemented algorithms with polyphonic sounds.

Our first objective is to extract automatically a set of low and mid-level objective
descriptors related to melodic attributes from monophonic audio phrases.

We also need to decide what to do with these melodic descriptors. One possibility
is to use them for melodic retrieval and content-based navigation, or use them to per-
form content-based transformations. In this PhD thesis, we will CONCENTRATE ON

DESCRIPTION, although keeping in mind these two uses, covered by the Sound Palette
tool.

For both application contexts, it would be desirable to EXTENT THIS SET OF DE-
SCRIPTORS WITH SOME HIGH-LEVEL CONCEPTS. This idea appears in [70]. The
important question here is how subjective concepts are defined and how they can be
connected to objective descriptors.

One important issue is to concentrate in a specific user profile. We concentrate on
home users, neither musical experts nor people familiar with this field of research. The
problem is restricted then to know how a home user describes a monophonic melody
using textual labels, and validate that these labels can be linked to low and mid-level
descriptors computed automatically from audio signals.

Emilia Gómez Gutiérrez 79 Research Work, UPF



CHAPTER 5. SELECTED APPROACH AND CONCLUSIONS

The goal of the PhD thesis will be to PERFORM A BOTTOM-UP DERIVATION OF

SUBJECTIVE DESCRIPTORS FOR MELODIC PHRASES, BRIDGING THE GAP BETWEEN

THE DIFFERENT LEVELS OF MELODIC DESCRIPTION. This problem can be divided
into different tasks:

� Description Scheme specification: to specify a flexible structure or melodic de-
scription scheme including these different aspects of melodic description: objec-
tive (automatically computed) and subjective (textual labels) descriptors.

� Database construction: to construct a test database of monophonic melodies.
This database must be representative of the different melodic features that we
want to analyze. All the samples of the database should be of the same instru-
ment in order to eliminate the influence of timbre.

� Descriptor extraction: to complete the implementation and testing of the meth-
ods to automatically extract the low and mid-level descriptors from audio. Test
the algorithms with the database and with the set of sounds that we have used for
the first tests, in order to get accurate algorithms.

� High-level descriptors definition: to delimit the set of labels or textual descrip-
tors that we want to connect with the descriptors that are extracted automatically
from the audio signal. We will take into account previous research on melodic
characterization (some examples are shown in section 2.2).

� Users: to define a group of home users that will manually attach each of the
audio phrases to labels.

� Test the validity of this labels and define a strategy to connect the extracted low
and mid-level descriptors with the high-level labels.

� Validate the connection rules.
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Abstract 
 

In this paper, two methods for fundamental frequency estimation are compared in order to study 
the advantages of using a bandwise processing for periodicity analysis.  The first one is a harmonic 
matching algorithm that tries to match the peaks of the magnitude spectrum to a harmonic series. 
The second one splits the signal in separate frequency bands and computes an estimate for each 
band. Finally, the result is combined to obtain a global estimate. 

 
 

1  Introduction 
 

Pitch detection has always been an important field of 
research in the scope of speech and audio processing. 
There are a hundred of different methods that have 
been proposed and that work well for different types 
of sounds in different conditions. 

 
The goal of this paper is to study the advantages of 
using a bandwise processing in a fundamental 
frequency estimator.  

 
To do so, two algorithms for fundamental frequency 
estimation will be compared. The first one is a 
harmonic matching method that deals with a single 
band, and the second one processes separately 
different frequency bands.  

 

2  Harmonic Matching Method 
 

The Two-Way mismatch algorithm is a method that 
tries to find the harmonic series that best corresponds 
to the spectral peaks. This algorithm is presented at 
[5] and has been adapted to the SMS context (see 
[1]).  

 
Once the peaks of the magnitude spectrum are 
identified, they can be compared to the predicted 
harmonics for each of the possible candidate note 
frequencies, and a measure to fit can be developed. A 
particular fitness measure is described in [5] as a 
Two-Way Mismatch procedure.  

 
For each fundamental frequency candidate, 
mismatches between the harmonics generated and the 
measured partials frequencies are averaged over a 

fixed subset of the available partials. A weighting 
scheme is used to make the procedure robust to the 
presence of noise or absence of certain partials in the 
spectral data. The discrepancy between the measured 
and predicted sequences of harmonic partials is 
referred as the mismatch error. The harmonics and 
partials would “live up” for fundamental frequencies 
that are one or more octaves above and below the 
actual fundamental; thus even in the ideal case, some 
ambiguity occurs. In real situations, where noise and 
measurement uncertainty are present, the mismatch 
error will never be exactly zero.  

 
The solution presented is to employ two mismatch 
error calculations. The first one is based on the 
frequency difference between each partial in the 
measured sequence and its nearest neighbor in the 
predicted sequence (see figure 1). The second is 
based on the mismatch between each harmonic in the 
predicted sequence and its nearest partial neighbor in 
the measured sequence.  

 
This two-way mismatch helps avoid octave errors by 
applying a penalty for partials that are present in the 
measured data but are not predicted, and also for 
partials whose presence in the measured data is 
predicted but do not actually appear in the measured 
sequence. The TWM procedure has also the benefit 
that the effect of any spurious components or partial 
missing from the measurement can be counteracted by 
the presence of uncorrupted partials in the same 
frame.  
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Figure 1: TWM procedure 

 
The two error measurements are computed as 
following: 

 
• Predicted-to-measured mismatch error 
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where nn fa ,  correspond to the amplitude and 

frequency of the predicted partial number n, Amax is 
the maximum amplitude, and nf∆  is the difference 

between the frequency of the predicted partial and its 
closest measured partial. 

 
• Measured-to-predicted mismatch error 
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where kk fa ,  correspond to the amplitude and 

frequency of the measured partial number k, Amax is 
the maximum amplitude, and kf∆  is the difference 

between the frequency of the measured partial and its 
closest predicted partial. 

 
The total error for the predicted fundamental 
frequency is then given by a combination of both 
errors: 

 

KErrNErrErr pmmptotal // →→ ⋅+= ρ  (3) 

 
The different parameters of the algorithm are set 
empirically.   

 
This is the method used in the context of SMS (see 
[1]) including some improvements, as having pitch 
dependent analysis window, a selection of spectral 
peaks to be used, and an optimisation in the search for 
fundamental frequency candidates. In this algorithm 
the whole spectrum is processed at the same time, 
having as an input of the algorithm the collection of 
detected peaks from the magnitude spectrum. 

 

3  Bandwise processing algorithm 
 

Klapuri [3] proposed an algorithm for periodicity 
analysis that calculates independent fundamental 
frequencies estimates at separate frequency bands. 
Then, these values are combined to yield a global 
estimate. This solves several problems, one of which 
is inharmonicity. In inharmonic sounds, as stretched 
strings, the higher harmonics may deviate from their 
expected spectral positions, and even the intervals 
between them are not constant. However, according 
to the equation (4), we can assume the spectral 
intervals to be piece-wise constant at narrow enough 
bands, and increasing function of the center of the 
considered band. 

 
2

0 1 nnff n β+=  (4) 

 
where β is the inharmonicity factor, which value 
β∈ [0,0.0008]. 

 
Thus we utilize spectral intervals to calculate pitch 
likelihoods at separate frequency bands, and then 
combine the results in a manner that takes the 
inharmonicity into account. Another advantage of 
bandwise processing is that it provides robustness in 
the case of badly corrupted signals, where only a 
fragment of the whole frequency range is good 
enough to be used. 

 
A single fast Fourier transform is needed, after which 
local regions of the spectrum are separately 
processed. Before the bandwise processing, the 
spectrum is equalized in order to remove both 
additive and convolutive noise simultaneously as 
explained at [3] and seen at equation (5). This method 
is based on the RASTA spectral processing [2].  
 
First, a transformation is applied to the magnitude 
spectrum. This transformation makes additive noise 
go through a linear-like transformation while the 
harmonic spectrum go through a log-like transform. 



Then, a moving average is subtracted in order to 
eliminate convolutive noise. 
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The equalized spectrum is processed in 18 
logarithmically distributed bands that extend from 
50Hz to 6000Hz. Each band comprises a 2/3-octave 
wide region of the spectrum that is subject to 
weighting with a triangular window. Overlap between 
adjacent bands is 50%, which makes them sum unity 
when the windowing gets into account. Fundamental 
frequency prominence vectors are calculated at each 
band as explained at [4] according to the following 
equation: 
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Finally, the likelihood values are combined getting 
into account that fundamental frequency can increase 
as a function of the band center frequency for string 
instruments. Some improvements were made to 
provide robustness in interference, where pitch is 
observable only at a limited band, and to adapt the 
algorithm to signals containing a mixture of several 
harmonic sounds. 

 
This filter bench is much alike to the human hearing 
system’s filtering properties. Ear acts like an analyzer 
composed of a set of “continuous” band pass filters. 
The bandwidth of a noise affects the loudness of the 
sound, allowing the definition of a critical bandwidth, 
function of the band center. Critical bandwidth is 
usually between 1/6 and 1/3 octave.  

 
We use here a discrete bench of 18 triangular filters 
whose efficient bandwidth is 1/3 octave, covering the 
50Hz – 6400 Hz range (see figure 2). Furthermore, 
we normalize the filters in energy, so that the filter 
bench remains coherent when applied to a power 
spectrum. 

 

Figure 2: Bark bands triangular filter bench 
 

 

4  Algorithm comparison 
 

For isolated notes, we look at the output of both 
algorithms in order to decide if the correct pitch has 
been detected. As the fundamental frequency 
estimation is performed frame by frame, the algorithm 
performance at transitions tracking is not relevant. 

 
For polyphonic sounds, we can in the same way judge 
if the predominant pitch has been correctly found. 

 
We dealt with sounds of different natures: 

 
• Quasi-harmonic sounds as wind instruments 

(saxophone, trumpet, clarinet, etc). 
 

• Sounds whose harmonics are not equally spaced, 
presenting a small inharmonicity factor as string 
instruments (piano, guitar). 
 

• Sounds with a strong inharmonicity as bells 
notes. 
 

• Noisy sounds, in order to analyze the behavior 
against noise. 
 

• Spectrums where a frequency band is filtered in 
order to measure the bandwise robustness. 
 

• Polyphonic sounds: in this case, we try to extract 
the predominant fundamental frequency, i.e., the 
frequency that presents the clearest harmonics. 
The advantages of using a band-wise processing 
are also evaluated when dealing with polyphonic 
sounds, because the predominant frequency may 
be clear only in a small frequency band.  

 
In order to study the behavior for a wide frequency 
range, sounds of low and high pitch have been used. 

 



5  Results 
 

For harmonic sounds, both algorithms performances 
are similar, as can be seen at the following figure.  

 

 
Figure 3: Detected fundamental frequency for saxophone D4 

Note 

 
The main difference between both methods is the 
frequency resolution. The TWM algorithm gets a 
better spectral resolution by interpolation of the 
magnitude spectrum when detecting spectral peaks. 
The spectral resolution could be also decreased using 
zero-padding.  

 
For sounds whose harmonics are not equally spaced, 
some differences are found. First, the bandwise 
algorithm gets into account inharmonicity, which 
avoids a number of false pitch estimations, 
particularly if a part of the spectrum is damaged 
(overnoised or erased). And the algorithm estimates 
the inharmonicity factor, which is useful for 
multipitch detection. 

 
 

 
Figure 4: Detected fundamental frequency for piano A3 

 
For noisy sounds, it appears that the bandwise 
algorithm is much more efficient, but this is mainly 

thanks to RASTA preprocessing which efficiently 
cleans the spectrums. Fundamental frequency is thus 
tracked nearly as long as the isolated note is clearly 
hearable in the original signal. 

 

 
Figure 5: Detected fundamental frequency for noisy piano A3 

note 

 
Polyphonic sounds allow a comparison of the 
algorithms performance in another kind of noisy 
environment (mix containing many instruments). In 
this kind of environment, the TWM algorithm proved 
weaker than the bandwise processing. 
 
Furthermore, bandwise processing aims towards 
multipitch estimation (MPE) explained at [4]. For 
each frame, the general model we use extracts one 
fundamental frequency and its associated 
inharmonicity coefficient at a time. This coefficient 
contains information about the locations of 
harmonics, making the building of a one-note 
spectrum more reliable. Before subtracting it to the 
equalized spectrum, we apply to the harmonics 
heights a smoothing (“smooth+min”) in order to leave 
a part of the partials coinciding with other notes’. 
 
After subtraction, the pitch detection algorithm may 
look for a new pitch in the same frame. The efficiency 
in  MPE depends mainly on this one-note spectrum 
subtraction process. Therefore, it proved working 
well with mixtures of isolated notes whose harmonics 
are clear enough (violin, for example).  
 

6  Conclusions and perspectives 
 

The advantages of using bandwise processing for 
periodicity analysis have been tested. The main 
differences between both algorithms performances 
can be observed when the harmonicity is found in a 
particular frequency band, as for example filtered and 
polyphonic sounds.  

 



It has also been proved that the equalization 
performed by the bandwise processing algorithm 
make this method more robust to the influence of 
noise.  
 
As a perspective, we could try to test if the 
equalization is also valid as a general preprocessing 
method for the TWM algorithm, and we could think 
of applying some kind of post-processing to eliminate 
isolated errors and abrupt transitions between 
consecutive frames. 

 
Another possibility is to apply a harmonic matching 
method to separated frequency bands, instead of 
computing frequency likelihoods or prominence 
vectors for each single frequency. This would imply 
an optimization of the computation charge of the 
algorithm. 

 
Further developments may be done to improve 
multipitch estimation. In fact, we observed that, 
although it is a good modelisation, the use of the 
inharmonicity factor is not always precise enough to 
locate rightly the harmonics of a note. We actually 
tried to cross the detection methods. As RASTA 
preprocessing leads us to working on “denoised” 
spectrums, it is efficient to pick the peaks in the 
spectrum (like in TWM algorithm) and match them 
with the predicted sequence of harmonics to obtain an 
efficient reconstitution of a one-note spectrum before 
subtraction.  
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Abstract 
 

The aim of this work is to study how a pitch detection algorithm can help in the task of locating 
solos in a musical excerpt. Output parameters of the pitch detection algorithm are studied, and 
enhancements for the task of solo location are proposed.  A solo is defined as a section of a piece 
where an instrument is in foreground compared to the other instrument and to other section of the 
piece. 
 

 

1  Introduction 
 
Music browsing is a manifold activity that 
comprehends behavior as diverse as retrieving songs  
by different musical criteria, creating play lists that 
follow subjective criteria, selecting special excerpts, 
visualizing rhythmic or harmonic structures, etc. 
Recent advances and research projects on music 
content processing [1, 2, 3] give way to think that 
some of those activities will be performed soon in an 
automatic user-configurable way. 
 
Instrumental solos are interesting and characteristic 
parts of a musical piece with a special status not only 
for a musicologist but even for a home-listener. A 
music browser should then provide with some 
functionalities in order to allow the user: 
 
• to spot and fast browse solos inside music works; 
• to visualize relevant music information of the 

solo (i.e. the score); 
• to compile a list of solos by a given performer, or 

by a given instrument from the available music 
database; provided an adequate constraint 
satisfaction system, this mega-solo play list could 
follow some subjective and musical directions 
[4]. 

 
Besides the mentioned practical motivations, solo 
location has a research-related interest as a type of 
pre-processing intended to be useful for deriving 
instrumentation descriptions of complex music 
mixtures.  
 
As far as we have been able to trace, there is no 
specific literature on automatic solo location. 
Therefore we have started our study with a 

conceptual analysis of the possible acoustic 
differences between what we may consider a �solo� 
and what we may consider an �ensemble� 
performance. 
 
In this paper, a solo is defined as a section of a piece 
where an instrument is in foreground compared to the 
other instruments and to other sections of the piece. 
In physical terms, this means that spectra of solo 
sections should be dominated by one instrument. It is 
clear that the previous definition is highly debatable 
from the musicological point of view, but it should be 
accepted as a reasonable starting point from where 
some refinements can be done after careful study and 
testing. For a more formal definition of what can be 
considered a musical solo, the reader might consult 
the Grove Dictionary of Music [5]. 
 
One of the first approaches to getting some 
discriminative data for solo sections is looking at 
some spectral complexity measure. We assume that in 
audio segments where ensemble performance is 
predominant, the spectrum is more complex  (i.e. 
with larger variability of spectral peaks location and 
amplitudes). Given that in the context of music 
browsing some pitch information is required, we 
thought that the above-mentioned measurements 
could be obtained as a �side-effect� of a pitch 
extraction process (hence without increasing the 
computational load of a system). We argued that in 
solo sections, pitch could be reasonably tracked by a 
common monophonic pitch detection algorithm, the 
Two-Way Mismatch [6], and therefore the pitch error 
indexes to be found in solo sections would be smaller 
than those to be found in �ensemble� sections. As we 
will see, the error indexes did not show enough 
discriminative power, and further enhancements were 
attempted. 



2  TWM algorithm description 
 
The used pitch estimation algorithm is described at 
[6]. This algorithm tries to extract a fundamental 
frequency from a set of spectral maximum of the 
magnitude spectrum of the signal. These peaks can be 
compared to the predicted harmonics for each of the 
possible candidate note frequencies. A particular 
fitness measure is described in [6] as a �Two-Way 
Mismatch� procedure. For each candidate, 
mismatches between the harmonics generated and the 
measured partials frequencies are averaged over a 
fixed subset of the available partials. The discrepancy 
between the measured and predicted sequences of 
harmonic partials is referred as the mismatch error. 
The solution presented on [6] is to employ two 
mismatch error calculations.  
 
The first one is based on the frequency difference 
between each partial in the measured sequence and its 
nearest neighbor in the predicted sequence. The 
second is based on the mismatch between each 
harmonic in the predicted sequence and its nearest 
partial neighbor in the measured sequence.  
 
 

Illustration 0: TWM procedure 
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 The two error measurements are computed as 
following: 
 
o Predicted-to-measured mismatch error: 
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where  correspond to the amplitude and 
frequency of the predicted partial number n, A

nn fa ,
max is 

the maximum amplitude, and is the difference 
between the frequency of the predicted partial and its 
closest measured partial. 
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o Measured-to-predicted mismatch error: 
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where  correspond to the amplitude and 
frequency of the measured partial number k, A

kk fa ,
max is 

the maximum amplitude, and is the difference 
between the frequency of the measured partial and its 
closest predicted partial. 
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The total error for the predicted fundamental 
frequency is then given by: 
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The parameters p, m, r and ρ are set empirically and 
vary for each instrument.  

3  TWM Output Errors Behavior 

2.1  Errors 
 
The three errors are crucial for pitch detection. 
However, from its definition, the PM error will be of 
first interest for our purpose. Indeed, the PM matches 
a set of predicted peaks with the set of measured 
spectral peaks. Its values are therefore usually lower 
and less erratic than that of the MP error, which tries 
to match a great number of measured peaks with the 
predicted peaks. The total error, which is a weighted 
combination of both errors, does not need precise 
description. We will therefore focus our attention to 
the study of the PM error. 

2.2  PM Error Behavior 
 
The optimal parameters input to the pitch detection 
algorithm are set carrying out tests on monophonic 
recordings of the instrument considered. If the 
parameters are optimally set for this instrument, the 
algorithm estimates the pitch correctly and the PM 
error is usually minimal. Using the algorithm on 
polyphonic sounds does not enable good pitch 



estimation but leads to interesting output errors 
behavior. 
  
For example, if the parameters are set optimally for a 
saxophone, good pitch estimation occurs if the 
saxophone plays on its own. The PM error is at its 
lowest as there is an evident match between the 
predicted peaks and the peaks present in the 
spectrum. In the presence of other instruments, the 
error is high (due to the addition of spectral peaks 
that belong to different harmonic series and 
instruments) and pitch estimation is usually 
corrupted. But if the saxophone �dominates� enough, 
some of the pitch can still be estimated. In the 
spectrum, some of the harmonic peaks of the 
saxophone are detectable and sensible matching is 
possible.  The PM error in this case will be higher 
than in the monophonic case, but lower than when no 
instruments are in foreground. Moreover, the 
parameters being optimized for a given instrument - 
for example the saxophone-, it should give a lower 
error if the saxophone is in foreground than if an 
instrument with very different spectral characteristics 
is in foreground. 
 
Figure 1 below shows the PM error output to the 
analysis of an extract of a piece by a Miles Davis 
ensemble. In this extract, the background (piano, 
drum and bass) is very quiet, and the saxophone 
plays clear and relatively loud notes, making the 
example visually explicit (note that it is not always 
the case). 
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Figure 1: PM error against time for an extract of a piece by 
a jazz ensemble. The thick lines under the curve show the 
saxophone notes. Clear decreases can be observed when the 
saxophone plays. 

 
The PM error behavior described above can be 
observed. The PM error, high for the ensemble mode, 
decreases a lot when the saxophone presence is 
dominant. 
 

4  Solo Location 
 
This behavior of the PM error, which in turn gets 
reflected in the Total error, can be used as a sign of 
spectral complexity, and therefore help in the task of 
solo location. Theoretically, the discrimination 
between �ensemble� and �solo� mode should be 
possible by detecting long-term changes in the mean 
of, say the PM error �high values representing 
�ensemble� mode and low values, solos. 
  
From the statistical analysis of frame by frame data, it 
is clear that frames corresponding to solos have 
different average error values than frames 
corresponding to ensemble sections, and that both 
data distributions might have different origins (t-
student -for means- and Kolmogorov-Smirnov -for 
distribution- tests results are omitted for 
convenience). Notwithstanding, an attempt to use a 
linear classifier (PDA) with the three features as 
predictors of category (solo/ensemble) yielded a mere 
56% of success, after cross validation with a 
Jackknifed procedure. This was a disappointing result 
that could not be improved even using a quadratic 
classifier.  
 
It seems clear, then, that solo location using the error 
parameters for the discrimination cannot be made on 
a frame by frame basis, as the variability of the error 
is large compared to the change in the mean we want 
to detect. Also, the change in the mean is neither very 
large nor neat at the solo boundaries. Using the TWM 
output PM and Total error alone, does not enable 
proper solo location. 
 
A proposed way to tackle this problem was to use 
segmentation techniques such as Foote�s similarity 
matrix [7] prior to the discrimination. Using such a 
technique with appropriate descriptors should enable 
to locate the boundaries of the different �parts� of the 
piece. The ensemble/solo discrimination using the 
long-term PM error level changes can then be done 
on these pre-located segments. 
 
Studies were carried out in order to find relevant 
descriptors for locating these specific boundaries. 
Three ones were found to be particularly useful for 
this purpose: the spectral centroid, the skewness and 
the kurtosis. Adding the PM and Total error in the 
feature vector enabled better boundary location in a 
few cases where the spectral parameters were not 
sufficient for a good segmentation. However it 
sometimes misleads the segmentation result more 
than it helps. On 15 tests, adding these parameters 
helped 5 times (3 of which enabling segmentation 
when it was not previously possible), and corrupted 
the results importantly on only one occasion.  
 
 



A summary of the procedure is given below: 
 
1. The TWM input parameters, that are empirically 
set, are adapted to the solo instrument in order to 
improve the fundamental frequency estimation. In 
this step, monophonic sounds have been used.  
 
2. The algorithm is applied to polyphonic sounds and 
the spectral features are calculated (Spectral 
Centroid, Skewness, Kurtosis). The analysis is done 
by frames of 0.0161s (512 samples at 44.1 kHz). This 
short frame length is necessary for a good 
performance of the pitch detection algorithm. The 
PM error, Total error and the three spectral 
parameters are extracted. 
 
3. The features, averaged over segments of 50 
frames, are input to the Foote�s segmentation 
algorithm, and the candidates for Ensembles-Solos 
boundaries are automatically located according to the 
value of a �novelty score� (see figure 2) (the 
parameters for this step have to empirically set, 
although in the future the algorithm could adapt to 
the data). 
 
4. The PM error is averaged over these pre-located 
segments and a decision taken for Solo or Ensemble 
mode. 

5  A Case Study 
 
As our initial database for testing is still rather small 
(15 songs), no significant and robust numerical data 
can be provided. Anyway, a case study will illustrate 
some specificities, pros, and cons of the procedure.  
 
The following example illustrates the analysis for a 
piece by a John Coltrane ensemble. The ensemble is 
formed of alto saxophone, trumpet, piano, drum and 
bass. The piece starts with the ensemble until a 
saxophone solo starts around 37 seconds into the 
piece. The following parameters were input to the 
algorithm: 
 
TWM input parameters (Optimal saxophone 
parameters): 
 
• Window length of 0.0161 s (512 samples at 

sampling rate of 44100 Hz); 
• Pitch range: the pitch detection analysis was 

carried out  between 1000 and 3000 Hz; 
• TWM parameters: p=0.5, q=1.4, r=0.5 in 

Equations (1) and (2), ρ=0.33 in Equation (3). 
 

Segmentation parameters: 
 
• Features were averaged over segments of 50 

samples; 

• Mahalanobis distances were calculated between 
feature vectors; 

• Size of kernel: 30 averaged segments; 
• Threshold for peak picking in Novelty Score 

curve: 3000 (empirically set). 
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Figure 2: Novelty Score against time, with automatically 
found segments and corresponding PM error levels for an 
extract of �Blue Train� by John Coltrane. The transition 
form the theme to the solo was accurately found, and the 
error levels enable good discrimination. 

 
The analysis of this piece showed to be particularly 
successful. The theme/solo boundary, located at 37 
seconds into the piece was automatically found at 
37.2 s, and the change in the mean of the PM error 
goes from 8.8 during the theme to 11.2 during the 
solo, enabling good discrimination. It can be noted 
that the good performance of the algorithm is very 
dependent on the piece, and that this piece is 
particularly suited for this purpose. There is a clear 
spectral change from the theme to the solo enabling a 
good boundary location. The solo is clear and 
continuous against a quite background giving easy 
ensemble/solo discrimination. This is not the case for 
all pieces.  

6  Discussion and further work 
 
First of all, problems with the TWM algorithm 
performance were encountered when dealing with 
instruments whose spectra do not show clear 
harmonic behavior. For example, very good results 
were obtained with quite harmonic solo instruments 
as saxophone, trumpet and violin, but with guitar and 
piano, the TWM could not give reliable results. A 
solution proposed to this problem is to use pre-
processing techniques, such as the �noise 
suppression� technique (to remove additive and 
convolutive noise) proposed by A. Klapuri [8]. This 
technique enables to boost the spectral peaks, 
possibly enhancing the TWM performance. Including 



an inharmonicity factor to correct for the stretched 
harmonics of the piano could also be beneficial.  
 
Another problem resides in the automatic 
segmentation, whose input parameters vary from 
pieces to pieces (i.e. threshold for peak detection in 
novelty score curve, size of kernel, etc.). Studies have 
to be carried out in order to find ways to adapt the 
algorithm to the data. Also, more features should be 
added to the segmentation algorithm in order to get 
more robust boundaries location. Measures of 
spectral peak variability and amplitude modulation 
patterns (in order to detect beatings) are under current 
scrutiny. 
 
Finally, the main problem resides in the concept we 
want to extract. This algorithm is basic and uses low-
level descriptors to extract a rather abstract concept. 
This causes a number of inconsistencies and limits 
the robustness of the algorithm. First of all, the 
location is done from low-level features, which 
enables to locate solos with respect to these features 
only. That is, in order for a solo to be detected as 
such, it has to be: 
 
• 

• 

clear: relatively loud solo instrument compared 
to the background; 
continuous: if the solo consists of solo 
instrument lines with short ensemble intervention 
in between each solo lines, the level of the PM 
error will be raised considerably and the 
discrimination might be corrupted; 

 
The ensemble mode parts have to be very 
characteristic as well: for example, either if the theme 
is played by one single instrument or by two 
instruments at unison, it might be considered as a 
solo.  
 
This raises the problem of extracting a musical 
concept with low-level descriptors. It shows to work 
well in a lot of cases, but in reality, what is extracted 
is a �physical� concept of a solo (an instrument 
dominating the spectra) rather than a solo in a 
musical sense of the term. The variability of the 
abstract concept is too high for low-level physical 
features to describe it in its entirety. Higher-level 
descriptors and more powerful classification 
techniques could be used to take into account musical 
knowledge on solo location. For example, we know 
that it is statically more robust to detect ensembles 
than solos. Post-processing techniques could be used 
to correct the uncertain chunks of data with respect to 
these observations. Finally, recent studies were made 
on spectral flatness and the associated coefficient of 
tonality [9]. First tests showed this feature to be 
potentially useful in the task of locating solos [10], 
especially in the discrimination step. It could be 

added to the PM error feature in order to increase the 
discrimination robustness.   
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Abstract: The aim of this paper is to review and discuss possible ways of describing the content of musical files in 
the context of a specific software application (a tool for content-based management and edition of samples and 
short audio phrases). Available or feasible descriptors and description schemes for different musical layers 
(melodic, rhythmic and instrumental) are examined, and its relationship with the existing standard for multimedia 
content description MPEG-7 is discussed.  
 
Keywords: - music description, MPEG-7, standard, melody, rhythm, instrument. 

1. Introduction  
Describing the musical content of audio files has 
been a pervasive goal in the computer music and 
music processing research communities. Though it 
has been frequently equated to the problem of 
“transcription”, describing music content usually 
implies an applied context that has a “home-” or 
“non-scholar” user in the final end of the chain. 
Therefore, it is usually the case that “conventional” 
music data types are not the perfect ones nor the final 
structures for storing content descriptions that are 
going to be managed by people with different 
backgrounds and interests (probably quite different 
from the purely musicological). This approach to 
music content description has also been that of the 
standardizing initiative carried out since 1998 by the 
ISO workforce that has been known as MPEG-7. 
MPEG-7 is a standard for multimedia content 
description that was officially approved in 2001 and 
is currently being further expanded. It provides 
descriptors (hence D’s) and description schemes 
(hence DS’s) for different audio-related needs such 
as speech transcription, sound effects classification, 
and melodic or timbral-based retrieval.  
The CUIDADO project (Content-based Unified 
Interfaces and Descriptors for Audio/music 
Databases available Online) is also committed with 
“applied” music description in the context of two 
different software prototypes, the so-called Music 
Browser and Sound Palette. The former is intended 
to be a tool for navigation in a collection of popular 
music files, whereas the latter is intended to be a tool 
for music creation based on short excerpts of audio 
(samples, music phrases, rhythm loops…). More 

details on these prototypes can be found in [25]. The 
development of the Sound Palette calls for a 
structured set of description schemes covering from 
signal-related or low-level descriptors up to user-
centered or high-level descriptors.   

2. Melody description 
In this section, we will review how melody has been 
described and represented in the literature. There has 
been an important contribution in the context of 
Query by Humming systems, where it is necessary to 
represent data in a efficient manner so that it can be 
matched against a database of melodies. In this 
context, [16] identifies the properties that a melody 
representation scheme should have: compactness (so 
that the representation can be easily stored), 
expressiveness (or the ability to retain the expressive 
qualities of the singing voice) and portability (the 
representation must be adaptable to many types of 
inputs and objects it seeks to match).  
Melody has been mainly described using pitch 
information. As a forward step, pitch contour has 
also been used in several applications such as query 
by humming, similarity matching or melodic 
classification, because it has been found to be more 
significant to listeners in determining melodic 
similarity. The earliest approaches disregarded 
timing information completely, but more recent 
studies showed that durational values facilitates 
melody recognition (see [10] for review).  
Other information besides pitch and duration can 
also be taken into account. One example appears in 
the MPEG-7 standard, where key and scale 
information are also coded. This description scheme 
can be found at [1] and [2], and is explained in [17].  



MPEG-7 proposes two levels of melodic description 
by the mpeg7:MelodySequence and the 
mpeg7:MelodyContour descriptors, plus some 
information about scale, meter, beat and key (see 
figure 1). The melodic contour uses a 5-step contour 
(from –2 to +2) in which intervals are quantized, and 
also represents basic rhythm information by storing 
the number of the nearest whole beat of each note, 
which can drastically increase the accuracy of 
matches to a query. However, this contour has been 
found to be inadequate for some applications, as 
melodies of very different nature can be represented 
by identical contours. One example is the case of 
having a descendant chromatic melody and a 
descendant diatonic one. Both of them have the same 
contour although their melodic features are very 
unlike.  
For applications requiring greater descriptive 
precision or reconstruction of a given melody, the 
Melody DS supports an expanded descriptor set and 
higher precision of interval encoding 
(mpeg7:MelodySequence). Rather than quantizing to 
one of five levels, the precise pitch interval (with 
cent or greater precision) between notes is kept. 
Timing information is stored in a more precise 
manner by encoding the relative duration of notes 
defined as the logarithm of the ratio between the 
differential onsets. In addition to these core 
descriptors, MPEG-7 define a series of optional 
support descriptors such as lyrics, key, meter, and 
starting note, to be used as desired for an application.  

Other features based on pitch information have been 
used for melody description. They can be classified 
in four different categories when considering three 
different levels of analysis: 
1. Distributional and frequential features: 
features derived from a numerical or statistical 
analysis of pitch information. 
• Tessitura: or pitch range, that is the amplitude of 

the melodic contour [23]. 
• Interval distribution: types of intervals used [22]. 
• Pitch variety: measure of diversity of the pitch 

class set used in the melody [23]. 
• Repetitions: measure the number of repeated 

pitches [23], that represents a measure of the 
melodic movement. 

• Melodic profile: depending on the pitch contour 
we could define several types of pitch profiles: 
ascending, descending, constant, etc. [8,23]. 

• Melodic density: or degree of melodic activity, 
which can be defined in relation with the 
rhythmic distribution of notes. 

• Contour features: some features derived from an 
analysis of the contour information are proposed 
in [23]: 
• Contour direction: overall tendency of the 

melody to rise or fall.   
• Contour stability: the proportion of intervals 

for which the following interval is in the 

Figure 1:  MPEG-7 Melody DS 



same direction gives an idea of stability in 
melodic direction.   

• Movement by step: proportion of intervals 
that are diatonic steps. A high score indicates 
a smooth melodic curve with few large leaps. 

• Leap returns: proportion of large (leap) 
intervals NOT followed by a return interval. 
A large leap is greater than or equal to 8 
semitones (minor 6th). The returning interval 
must be at least 1 semitone but less than the 
leap interval preceding it. 

• Climax Strength: measured as the inverse of 
the number of times the climatic note is 
repeated in the melody. The highest value of 
1 for this feature occurs when the climatic 
note is used only once. More frequent use 
lessens the climatic impact. 

2. Tonality related features: these features require 
a musical analysis of the pitch data: 

• Key information [17]. 
• Scale information: scale and type of scale 

(diatonic, chromatic, pentatonic, etc) [17]. 
• Key centered: defined in [23] as the proportion 

of quanta (being quantum equal to the shortest 
duration of a note) where the pitch is primary, 
that is either tonic or dominant. This feature is 
an indication of how strongly the melody has a 
sense of the key. 

• Non-scale notes:  indication of how strongly 
tonal the melody is by measuring the number of 
quanta that does not belong to the scale [23]. 

• Dissonant intervals: measure of the fraction of 
dissonant intervals [23]. 

• Cadence information: which types of cadences 
are used. 

3. Features derived from a structural analysis: it 
is necessary to analyze the structure of the pitch 
sequence. 

• Motives and patterns: analyze which are the 
melodic patterns or motives that are used. Some 
references can be found in [10] section 5. 

• Phrase description: some features can be derived 
from phrase segmentation (also including 
musical knowledge). 

The introduced features corresponding to these three 
categories have been successfully used for different 
applications in different contexts (e.g. algorithmic 
composition [23], comparative analysis [22] or music 
information retrieval [8]). However, if we want to 

share descriptions between different systems, these 
existing features have to be assembled into a 
common multi-level description scheme, which is a 
very hard task to carry on.  
4. Emotional descriptors:  Some meaningful and 

interesting higher-level features (as for example 
emotional descriptors) may be derived from the 
ones introduced above. For example: an 
ascending profile and a medium-large density 
could be related with a certain subjective 
category. Perceptual or subjective features will be 
treated as secondary in this article, but it should 
be interesting to consider them in a future work. 
Some emotional/textual melodic descriptors 
could be defined, as for example sad, happy, or 
charming. One interesting approach more related 
to the concept of expressivity is the one of the 
Department of Speech, Music and Hearing of the 
Royal Institute of Technology at Stockholm1. 
They define some context dependent rules 
characterizing a music performance. These rules 
affect duration, pitch, vibrato and intensity of 
notes, and can create crescendos, diminuendos, 
change the tempo or insert pauses between tones. 
They can be classified into three groups: 
differentiation rules, grouping rules and ensemble 
rules, and combinations of these rules define 
different emotional qualities (fear, anger, 
happiness, sadness, tenderness, and solemnity). 
We could also proceed in the opposite direction if 
we analyze the performance to get duration, 
pitch, vibrato and intensity features and we try to 
apply these rules to obtain some emotional 
descriptors of this performance. 

3. Rhythm description 
Considering the word ‘rhythm’ in a broad sense, one 
can wish to characterize the rhythm of a single note, 
of a pattern or of an entire musical movement, either 
monophonic or polyphonic. Moreover, rhythmic 
descriptors may be relevant in different types of 
applications, ranging e.g. from performance 
investigations to song comparisons. The literature 
concerning automatic extraction of rhythmic features 
from audio or symbolic data is indeed wide (see e.g. 
[12] for a review), let us give a few pointers here.  
In the context of audio signal classifiers, [20] and 
[24] propose low-level rhythmic features 
characterizing in some way the rhythmic strength of 
the signal. The rate at which one taps his feet to the 
music (i.e. the Beat) is a more common rhythmic 
                                                                 
1 http://www.speech.kth.se/music/performance 



concept that has been addressed widely from both 
computational and perceptual points of view (see e.g. 
[19]). Other periodicities that the perceptually most 
important one have also been proposed. For instance, 
among others, [3], [21] and [11] focus on the concept 
of “tatum” (smaller rhythmic pulse). Some propose 
to consider jointly the beat tracking and rhythm 
parsing issues, i.e. the variation of a musical piece’s 
pace and the quantization of note timings (see [7] 
and [18]). Going to a higher level of abstraction, 
some (although much less numerous than those 
focusing on the Beat) seek Meter and rhythmic 
pattern recognition (see e.g. [4], [9]). Finally, many 
address the notion of expressive timing, and focus on 
features like tempo changes, deviations, or event-
shifts (see e.g. [3]). An insightful discussion 
regarding the intertwining of expressive timing, 
metrical structure and pace of a musical signal is 
given in [14]. 
Current elements of the MPEG-7 standard that 
convey a rhythmic meaning are the following: 

- The Beat (mpeg7:BeatType) 
- The Meter (mpeg7:MeterType) 
- The note relative duration  

The Beat and note relative duration are embedded in 
the melody description. The Meter, also illustrated in 
[1] in the description of a melody, might be used as a 
descriptor for any audio segment. 
Here, the Beat refers to the pulse indicated in the 
feature Meter (which doesn’t necessarily corresponds 
to the notion of perceptually most prominent pulse). 
The BeatType is a series of numbers representing the 
quantized positions of the notes, with respect to the 
first note of the excerpt (the positions are expressed 
as integers, multiples of the measure divisor, the 
value of which is given in the denominator of the 
meter). The note relative duration is the “logarithmic 
ratio of the differential onsets for the notes in the 
series” [1]. The MeterType carries in its denominator 
a reference value for the expression of the beat 
series. The numerator serves, in conjunction to the 
denominator, to refer somehow to pre-determined 
templates of weighting of the events. (It is assumed 
that to a given meter corresponds a defined “strong-
weak” structure for the events. For instance, in a 4/4 
meter, the first and third beats are assumed to be 
strong, the second and the fourth weak. In a 3/4 
meter, the first beat is assumed to be strong, and the 
two others weak.) 
As for melodic attributes, the organization of 
rhythmic attributes in a coherent description scheme 

seems a necessary step for sharing descriptions 
between different systems and addressing different 
applications.  

4. Instrument description 
When dealing with multi-timbral polyphonies, or 
when working with sound samples, a need for 
instrument labeling of segments arises. In the first 
case, we assume the labeling to be done manually, as 
the current state of the art does not provided 
satisfactory tools for doing source separation in an 
automatic and reliable way; in the second case, a 
situation that arises in the context of the above 
mentioned Sound Palette, automatic modeling and 
labeling of instrument classes can be done with high 
success rates by means of building statistical models 
of the classes that exploit the information conveyed 
by the so-called low-level descriptors (e.g. spectral 
centroid, log-attack time, etc.). This model-based 
approach is also useful when the complexity of audio 
mixtures is low, as it is the case in “drum loops”, 
another type of audio material that is managed by the 
Sound Palette. 
A convenient way for achieving automatic labeling 
of monophonic samples or phrases in terms of 
instrumentation (i.e. piano, kick+hihat, etc.) consists 
of deriving, by means of using a training procedure 
with a large set of sound files, a model that 
characterizes the spectro-temporal distinctive 
features for each one of the classes to be learned. 
Models can be computed and stored using quite 
different techniques (see [13] for a comprehensive 
review). The appropriate association between models 
and classification schemes yields automatic labeling 
to sound files of the above-mentioned types (sound 
samples and rhythmic loops), and the existing labels 
can be organized into taxonomies. Taxonomies can 
be easily handled with MPEG-7 Description 
Schemes (specifically with the 
ClassificationScheme), but even though it provides a 
large set of Description Schemes for representing 
models, most of them have been included without 
considering audio modeling. The most audio-specific 
one, the AudioModel, relies specifically on Subspace 
Components Analysis [6], which is only one of the 
available techniques. Models describable with the 
Predictive Model Markup Language  (PMML)2, such 
as binary trees or neural networks would be an 
important addition to the standard.    
An interesting differentiation to be commented here 
is that of instrument description versus timbre 
                                                                 
2 http://www.dmg.org 



description. MPEG-7 provides descriptors and 
Description Schemes for timbre as a perceptual 
phenomenon. This set of D’s and DS’s are useful in 
the context of search by similarity in sound-samples 
databases, where perceptual distances are computed 
by means of weighted combinations of those 
descriptors (as for example, log attack time, 
harmonic spectral variation, spectral and temporal 
centroids, etc. Complementary to them, one could 
conceive the need for having D’s and DS’s suitable 
for performing categorical queries (in the same 
sound-samples databases), or for describing 
instrumentation if only in terms of culturally-biased 
instrument labels and taxonomies, as has been 
previously mentioned. 

5. Conclusions 
As we said in the introduction, we address the issue 
of musical description in a specific framework, that 
of the development of an application, a tool for 
content-based management, edition and 
transformation of sound samples, phrases and loops: 
the Sound Palette. We intended to cope with the 
description needs of this application, and therefore 
we have still left out issues of harmony, expressivity 
or emotional load descriptions, as they do not seem 
to be priorities for such a system.  
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Abstract : The aim of this paper is discussing possible ways of describing some music constructs in a dual context: 
that of a specific software application (a tool for content-based management and edition of samples and short 
audio phrases), and that of the current standard for multimedia content description (MPEG-7). Different musical 
layers, melodic, rhythmic and instrumental, are examined in terms of usable descriptors and description schemes. 
After discussing some MPEG-7 limitations regarding those specific layers (and given the needs of a specific 
application context), some proposals for overcoming them are presented. 
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1. Introduction  
Describing the musical content of audio files has 
been a pervasive goal in the computer music and 
music processing research communities. Though it 
has been frequently equated to the problem of 
“transcription”, describing music content usually 
implies an applied context that has a “home” or “non-
scholar” user in the final end of the chain. Therefore, 
it is usually the case that “conventional” music data 
types are not the perfect ones nor the final structures 
for storing content descriptions that are going to be 
managed by people with different backgrounds and 
interests (probably quite different from the purely 
musicological). This approach to music content 
description has also been that of the standardizing 
initiative carried out since 1998 by the ISO 
workforce that has been known as MPEG-7. MPEG-
7 is a standard for multimedia content description 
that was officially approved in 2001 and is currently 
being further expanded. It provides descriptors and 
description schemes for different audio-related needs 
such as speech transcription, sound effects 
classification, and melodic or timbral-based retrieval.  
The CUIDADO project (Content-based Unified 
Interfaces and Descriptors for Audio/music 
Databases available Online) is also committed with 
“applied” music description in the context of two 
different software prototypes, the so-called Music 
Browser and Sound Palette. The former is intended to 
be a tool for navigation in a collection of popular 
music files, whereas the latter is intended to be a tool 
for music creation based on short excerpts of audio 
(samples, music phrases, rhythm loops…). More 
details on these prototypes can be found in [10]. The 

development of the Sound Palette calls for a 
structured set of description schemes covering from 
signal-related or low-level descriptors up to user-
centered or high-level descriptors. Given our 
previous experience and involvement in the MPEG-7 
definition process ([6], [9]), we have developed a set 
of music description schemes according to the 
MPEG-7 Description Definition Language (hence 
DDL). Our goals have been manifold: first, coping 
with the description needs posed by a specific 
application (the Sound Palette); second, keeping 
compatibility with the standard; and third, evaluating 
the feasibility of these new Description Schemes 
(hence DSs) for being considered as possible 
enhancements to the current standard. We have then 
addressed very basic issues, some of them are yet 
present but underdeveloped in MPEG-7 (melody), 
some of them are practically absent (rhythm), and 
some of them seem to be present though using an 
exclusive procedure (instrument). Complex music 
description layers, as it is the case of harmony or 
expressivity descriptions, have been purposively left 
out from our discussion. 

2. MPEG-7 musical description  
2.1 Melody description 
In this section, we will briefly review the work that 
have been done inside the MPEG-7 standard to 
represent melodic features of an audio signal. The 
MPEG-7 DSs are explained in [1,2,8].  
MPEG-7 proposes two levels of melodic description: 
MelodySequence and MelodyContour values, plus 
some information about scale, meter, beat and key 
(see Figure 1). The melodic contour uses a 5-step 
contour (from –2 to +2) in which intervals are 
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Figure 1:  MPEG-7 Melody DS 

quantized, and also represents basic rhythm 
information by storing the number of the nearest 
whole beat of each note, which can drastically 
increase the accuracy of matches to a query. 
However, this contour has been found to be 
inadequate for some applications, as melodies of very 
different nature can be represented by identical 
contours. One example is the case of having a 
descendant chromatic melody and a descendant 
diatonic one. Both of them have the same contour 
although their melodic features are very unlike.  
For applications requiring greater descriptive 
precision or reconstruction of a given melody, the 
mpeg7:Melody DS supports an expanded descriptor 
set and higher precision of interval encoding, the 
mpeg7:MelodySequence. Rather than quantizing to 
one of five levels, the precise pitch interval (with cent 
or greater precision) between notes is kept. Timing 
information is stored in a more precise manner by 
encoding the relative duration of notes defined as the 
logarithm of the ratio between the differential onsets. 
In addition to these core descriptors, MPEG-7 define 
a series of optional support descriptors such as lyrics, 
key, meter, and starting note, to be used as desired for 
an application.  

2.2 Rhythm description 
Current elements of the MPEG-7 standard that 
convey a rhythmic meaning are the following: 

- The Beat (BeatType) 
- The Meter (MeterType) 
- The note relative duration  

The Beat and note relative duration are embedded in 
the melody description. The Meter, also illustrated in 
[1] in the description of a melody, might be used as a 
descriptor for any audio segment. 
Here, the Beat refers to the pulse indicated in the 
feature Meter (which doesn’t necessarily corresponds 
to the notion of perceptually most prominent pulse). 
The BeatType is a series of numbers representing the 
quantized positions of the notes, with respect to the 
first note of the excerpt (the positions are expressed 
as integers, multiples of the measure divisor, the 
value of which is given in the denominator of the 
meter). The note relative duration is the “logarithmic 
ratio of the differential onsets for the notes in the 
series” [1]. The MeterType carries in its denominator 
a reference value for the expression of the beat series. 
The numerator serves, in conjunction to the 
denominator, to refer somehow to pre-determined 
templates of weighting of the events. (It is assumed 
that to a given meter corresponds a defined “strong-
weak” structure for the events. For instance, in a 4/4 
meter, the first and third beats are assumed to be 
strong, the second and the fourth weak. In a 3/4 
meter, the first beat is assumed to be strong, and the 
two others weak.) 

2.3 Instrument description 
The MPEG-7 ClassificationScheme defines a scheme 
for classifying a subject area with a set of terms 
organized into a hierarchy. This feature can be used, 
for example, for defining taxonomies of instruments. 
A term in a classification scheme is referenced in a 
description with the TermUse datatype. A term 



represents one well-defined concept in the domain 
covered by the classification scheme. A term has an 
identifier that uniquely identifies it, a name that may 
be displayed or used as a search term in a target 
database, and a definition that describes the meaning 
of the term. Terms can be put in relationship with a 
TermRelation descriptor. It represents a relation 
between two terms in a classification scheme, such as 
synonymy, preferred term, broader-narrower term, 
and related term. When terms are organized this way, 
they form a classification hierarchy. This way, not 
only content providers but also individual users can 
develop their own classification hierarchies. 
An interesting differentiation to be commented here 
is that of instrument description versus timbre 
description. The current standard provides descriptors 
and Description Schemes for timbre as a perceptual 
phenomenon. This set of Ds and DSs are useful in the 
context of search by similarity in sound-samples 
databases. Complementary to them, one could 
conceive the need for having Ds and DSs suitable for 
performing categorical queries (in the same sound-
samples databases), or for describing instrumentation 
if only in terms of culturally-biased instrument labels 
and taxonomies. 

2.3.1 Classification Schemes for instruments 
A generic classification scheme for instruments along 
the popular Hornbostel-Sachs-Galpin taxonomy 
(cited by [7]), could have the schematic expression 
depicted below. More examples using the 
ClassificationSchemed DS can be found in [3]. 
<ClassificationScheme term=“0” scheme=“Horbonstel-Sachs Instrument 
Taxonomy”> 
<Label>”HSIT”</Label> 
<ClassificationSchemeRef scheme=“Cordohpones” /> 
<ClassificationSchemeRef scheme=“Idiophones” /> 
<ClassificationSchemeRef scheme=“Membranonphones” /> 
<ClassificationSchemeRef scheme=“Aerophones” /> 
<ClassificationSchemeRef scheme=“Electrophones” /> 
</ClassificationScheme> 
 
<ClassificationScheme term=“1” scheme=“Cordophones”> 
<Label>”Cordophones”</Label> 
<ClassificationSchemeRef scheme=“Bowed” /> 
<ClassificationSchemeRef scheme=“Plucked” /> 
<ClassificationSchemeRef scheme=“Struck” /> 
</ClassificationScheme> 
 
<ClassificationScheme term=“2” scheme=“Idiophones”> 
<Label>”Idiophones”</Label> 
<ClassificationSchemeRef scheme=“Struck” /> 
<ClassificationSchemeRef scheme=“Plucked” /> 
<ClassificationSchemeRef scheme=“Frictioned” /> 
<ClassificationSchemeRef scheme=“Shakened” /> 
</ClassificationScheme> 
 
<ClassificationScheme term=“3” scheme=“Membranophones”> 
… 
</ClassificationScheme> 

3. Use of the standard  
We have reviewed in last section the description 
schemes that the MPEG-7 provides for music 
description. In this section, we will see how we have 
used and adapted this description scheme in our 
specific application context. 

3.1 On MPEG-7 descriptions  
Regarding the mpeg7:Note representation, some 
important signal-related features like e.g. intensity, 
intra-note segments, articulation or vibrato are 
needed by the application. It should be noted that 
some of these features are already coded by the MIDI 
representation. This Note type, in the Melody DS, 
includes only note relative duration information, 
silences are not taken into account. Nevertheless, it 
would sometimes be necessary to know the exact 
note boundaries. Also, the note is always defined as a 
part of a descriptor scheme (the noteArray) in a 
context of a Melody. One could object that it could be 
defined as a segment, which, in turn, would have its 
own descriptors.  
Regarding melody description, MPEG-7 also 
includes some optional descriptors related to key, 
scale and meter. We need to include in the melodic 
representation some descriptors that are computed 
using the pitch and duration sequences. These 
descriptors will be used for retrieval and 
transformation purposes.  
Regarding rhythmic representation, some comments 
could be made regarding MPEG-7. First, there is no 
direct information regarding the tempo, nor to the 
speed at which pass pulses. Second, in the BeatType, 
when quantizing an event time occurrence, there is a 
rounding towards -∞, thus in the case where an event 
is slightly before the beat (as it can happen in 
expressive performance) it is attributed to the 
preceding beat. Third, this representation cannot 
serve for exploring fine deviations from the structure; 
furthermore as events are characterized by beat 
values, it is not accurate enough to represent already-
quantized music where sub-multiples are commonly 
found. Finally, it is extremely sensitive to the 
determination of the meter, which is still a difficult 
task for the state-of-the-art in rhythm computational 
models. 
Regarding instrument description capabilities, there 
is no problem for a content provider to offer 
exhaustive taxonomies of sounds. It could also be 
possible that a user would define her/his own devised 
taxonomies. But for getting some type of automatic 
labelling of samples or simple mixtures, there is a 
need for DSs capable of storing data defining class 
models. Fortunately, MPEG-7 provides description 



schemes for storing very different types of models: 
discrete or continuous probabilistic models, cluster 
models, or finite state models, to name a few. The 
problem arises in the connection between these 
generic-purpose tools and the audio part: it is 
assumed that the only way of modeling sound classes 
is through a very specific technique that computes a 
low-dimensional representation of the spectrum, the 
so-called spectrum basis [4] which de-correlates the 
information that is present in the spectrum. 

3.2 Extensions 
3.2.1 Audio segment derivation 
The first idea would be to derive two different types 
from mpeg7:AudioSegmentType. Each of the 
segments would cover a different scope of 
description and would logically account for different 
DSs. 
- NoteSegment: Segment representing a note. The 

note has an associated DS, accounting for melodic, 
rhythmic and instrument descriptors, as well as the 
low-level descriptors (LLDs) inherited from 
mpeg7:AudioSegmentType.   

- MusicSegment: Segment representing an audio 
excerpt, either monophonic or polyphonic. This 
segment will have its associated Ds and DSs and 
could be decomposed in other MusicSegments (for 
example, a polyphonic segment could be 
decomposed in a collection of monophonic 
segments, as illustrated in Figure 2) and in 
NoteSegments, by means of two fields whose types 
derive from 
mpeg7:AudioSegmentTemporalDecompositionType 
(see Figure 3). The MusicSegment has an associated 
DS differing from that of the note.  

The note has different melodic, rhythmic and 
instrumental features than a musical phrase or general 
audio excerpt, and there are some attributes that do 
not have any sense associated to a note (for example, 
mpeg7:Melody).  But a Note is an AudioSegment with 
some associated descriptors. 
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Figure 2: Audio segment decomposition 
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Figure 3: Class diagram of MPEG-7 AudioSegment and 

AudioSegmentTemporalDecomposition derivations 

3.2.2 Definition of Description Schemes: 
Description Scheme associated to NoteSegmentType: 
 

 
Figure 4: Note DS 

 

- The exact temporal location of a note is described 
by the mpeg7:MediaTime attribute inherited from the 
mpeg7:AudioSegment. 
- PitchNote: as defined in mpeg7: degreeNoteType. 
MIDI-Note could also be used as pitch descriptor, 
making a direct mapping between melodic 
description and MIDI representation. 
- As well, some symbolic time representation (quarter 
of note, etc) would be needed if we want to work 
with MIDI files. 
- Intensity: floating value indicating the intensity of 
the note. It is necessary when analyzing phrasing and 
expressivity (crescendo, diminuendo, etc) in a 
melodic phrase, although it could be represented by 
using the mpeg7:AudioPower low-level descriptor. 
- Vibrato: also important when trying to characterize 
how the musical phrase has been performed, it is 
defined by the vibrato frequency and amplitude. 
- Intra-note segments: as explained in last section, it 
is important for some applications to have 



information about articulation, as attack and release 
duration. It can be represented by some descriptors 
indicating the duration and type of the intra-note 
segments. In addition to intra-note segment durations, 
some more descriptors could be defined to 
characterize articulation. 
- Quantized instant: If one wishes to reach a high 
level of precision in a timing description, then the 
decomposition of the music segment into note 
segments is of interest. In addition to the handling of 
precise onsets and offsets of musical events, it 
permits to describe them in terms of position with 
respect to the metrical grids. In our quantized instant 
proposal, given a pulse reference that might be the 
Beat, the Tatum, etc., a note is attributed a rational 
number representing the number of pulses separating 
it from the previous one. This type can be seen as a 
generalization of the mpeg7:BeatType, improvements 
being the following: 
- One can choose the level of quantization (the 

reference pulse does not have to be the time 
signature denominator as in the BeatType). 

- Even when a reference pulse is set, one can 
account for (i.e. represent without rounding) 
durations that don’t rely on this pulse (as in the 
case of e.g. triplets in a quarter-note-based 
pattern). This feature is provided by the fact that 
the quantized instants are rational numbers and 
not integers. 

- The rounding (quantization) is done towards the 
closest beat (not towards -∞).  

In addition, the deviation of a note from its closest 
pulse can be stored. The deviation is expressed in 
percentage of a reference pulse, from –50 to +50. 
(Here, the reference pulse can be different than that 
used for quantizing, one might want to e.g. quantize 
at the Beat level and express deviations with respect 
to the Tatum.) This may useful for analyzing 
phrasing and expressivity. 
 
 
Description Scheme associated to 
MusicSegmentType: 

 
Figure 5: Music DS 

- The exact temporal location of the music segment is 
also described by the mpeg7:MediaTime attribute 
derived from the mpeg7:AudioSegment. 
- The mpeg7:Melody DS is used to describe contour 
and melody sequence attributes of the audio excerpt. 
- Melodic descriptors: se need to incorporate some 
“unary” descriptors derived from the pitch sequence 
information, modeling some aspects as tessitura, 
melodic density or interval distribution. These 
features provide a way to characterize a melody 
without explicitly giving the pitch sequence and 
should be included in the MusicSegment DS. 
- The Meter type is the same as MPEG-7’s. 
- Considering that several pulses, or metrical levels, 
coexist in a musical piece is ubiquitous in the 
literature. In this respect, our description of a music 
segment accounts for a decomposition in pulses, each 
pulse has a name, a beginning time index, a gap value 
and a rate (which is logically proportional to the 
inverse of the gap; some might prefer to apprehend a 
pulse in terms of occurrences per minute, some others 
in terms of e.g. milliseconds per occurrence). It is 
clear that in much music, pulses are not exactly 
regular, here resides some of the beauty of musical 
performance; therefore, the regular grid defined by 
the previous ‘beginning’ and ‘gap’ can be warped 
according to a time function representing tempo 
variations, the ‘pulseVar’. This function is stored in 
the music segment DS, a pulse can hold a reference 
to the pulseVar. Among the hierarchy of pulses, no 
pulse is by any mean as important as the tempo. In 
addition, the reference pulse for writing down the 
rhythm often coincides with the perceptual pulse. 
Therefore, it seemed important to provide a special 
handling of the tempo: the pulse decomposition 
type holds a mandatory pulse named tempo, in 



addition to it, several other pulses can optionally be 
defined. Additional pulses can be e.g., the Tatum, the 
Downbeat, etc. 
- Sequence type: A simple series of letters can be 
added to the description of a music segment. This 
permits to describe a signal in terms of recurrences of 
events, with respect to the melodic, rhythmic or 
instrumental structure that organizes musical signals. 
For instance, one may wish to categorize the 
succession of Tatums in terms of timbres –this would 
look e.g. like the string ‘abccacccabcd’–, and then 
look for patterns. Categorize segments of the audio 
“chopped up” with respect to the Beat grid might also 
reveal interesting properties of the signal. One might 
want to describe a signal in the context of several 
pulses; therefore several sequences can be 
instantiated.  
- Rather than restricting one’s time precision to that 
of a pulse grid, one might wish to categorize musical 
signals in terms of accurate time indexes of 
occurrences of particular instruments (e.g. the 
ubiquitous bass drums and snares). This, in order to 
post-process these series of occurrences so as to yield 
rhythmic descriptors. Here, the decomposition of a 
music segment in its constituent instrument streams is 
needed (see Figure 2). For instance, a music segment 
can be attributed to the occurrences of the snare, 
another one to those of the bass-drum; timing indexes 
lie in the mpeg7:TemporalMask, inherited from the 
mpeg7:AudioSegment, that permits to describe a 
single music segment as a collection of sub-regions 
disconnected and non-overlapping in time. 

4. Conclusions 
As mentioned above, we address the issue of musical 
description in a specific framework, that of the 
development of an application, a tool for content-
based management, edition and transformation of 
sound samples, phrases and loops: the Sound Palette. 
We intended to cope with the description needs of 
this application, and therefore we have still left out 
issues of harmony, expressivity or emotional load 
descriptions, as they do not seem to be priorities for 
such a system. We believe that adding higher-level 
descriptors to the current Ds and DSs (e.g. presence 
of rubato, swing, groove, mood, etc.), needs a solid 
grounding and testing on the existing descriptors, 
defining interdependency rules that currently cannot 
be easily devised. New descriptors and description 
schemes have been proposed keeping also in mind 

the need for compatibility with the current MPEG-7 
standard; they should be considered as the beginning 
of an open discussion regarding what we consider as 
the current shortcomings of the standard. 
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