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Abstract

In this thesis we address a fundamental aspect of the computational analysis of Indian

art music, the automatic identification of the tonic of the lead performer. We propose

two approaches for tonic identification in Indian art music, which take advantage of the

characteristic feature of this music tradition by performing a multi-pitch analysis.

We provide a short introduction to Indian art music, explaining the concept of tonic

in the context of this music tradition. We review the main audio features, techniques and

works relevant to the computational analysis of the tonal aspect of music and present a

critique of previous approaches to tonic identification in Indian art music.

A detailed description and the implementation steps for both the proposed meth-

ods are presented. The audio signal is transformed using a multi-pitch representation,

which is then used to construct the pitch histograms. The tonic is identified using the

prominent peaks of a pitch histogram. Following a classification based approach the

system automatically learns the best set of rules to select the peak of the histogram that

represents the tonic. In addition to the multi-pitch representation, the second method

also analyzes the predominant melody pitches to estimate the tonic octave. Further,

we also present a proposal for a complete iterative system for tonic identification which

aims to use both audio and metadata.

The methods are evaluated on a sizable diverse database of Indian art music, com-

piled as a part of the CompMusic1 project. The obtained results are good and demon-

strate the advantage of using a multi-pitch approach. A detailed error analysis is per-

formed and the plausible reasons for errors are discussed. The thesis is concluded with

a summary of the work, highlighting the main conclusions and and the contributions

made.

1http://compmusic.upf.edu/

http://compmusic.upf.edu/
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Chapter 1

Introduction

This thesis addresses a fundamental aspect of the computational analysis of Indian

art music, the automatic identification of the tonic. Automatic tonic identifica-

tion is a crucial first step for a more detailed tonal and melodic analysis of this

music tradition, such as intonation analysis, motivic analysis and automatic rāg

identification. Tonic identification therefore is a fundamental research problem for

the computational analysis of Indian art music, that calls for a cultural specific

approach which exploits the specificities present in this music tradition.

Subsequent sections in this chapter provide a brief introduction to the Indian

art music, describing the meaning of the tonic in the context of this music tradition

and highlighting the importance and precise goal of this research work.

1.1 Indian Art Music Traditions

In this work, Indian art music refers to both the art music traditions of the Indian

subcontinent: Hindustani1 (also known as North Indian) music (Bor, Delvoye,

Harvey, & Nijenhuis, 2010; Danielou, 2010), prominent in the northern regions

of India, Pakistan, Nepal, Afghanistan and Bangladesh; and Carnatic2 music,

widespread in the southern regions of the peninsular (Singh, 1995; Viswanathan

& Allen, 2004). In this thesis we use the word “Art” instead of “Classical” to refer

1http://en.wikipedia.org/wiki/Hindustani classical music
2http://en.wikipedia.org/wiki/Carnatic music
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to these music traditions. Raja presents interesting arguments emphasizing the

appropriateness of such a terminology (Raja, 2012, Page 1).

The roots of the Indian art music can be traced back to Sāmved34, which is

one of the four Vedas5 (ancient core Hindu scriptures) that describes music at

length (Trivedi, 2008; Singh, 1995). The Sāmved dates back to around 1000 BC,

consists of a collection of religious hymns (taken from R. gved6, the oldest ved), to

be sung using specifically indicated melodies called as Sāmagān7 (Griffith, 2004).

However, the contemporary form of Indian art music is a confluence resulting from

the cultural interactions between the Persian, Greek, Arabic, Iranian and Indian

people (Kaul, 2007; Saraf, 2011; Singh, 1995).

In both Hindustani and Carnatic music, the rāg8 (Bagchee, 1998; Danielou,

2010; Viswanathan & Allen, 2004) is the fundamental melodic framework around

which the whole music is built upon and the tāl9 (Clayton, 2000; Sen, 2008) pro-

vides the rhythmic framework. Though the Hindustani and Carnatic music tradi-

tions share the fundamental musical concepts, the music is significantly different

in each tradition (see (Narmada, 2001) for a comparative study of rāgs). Each

tradition imbibes its own cultural specificities and has a different approach to

music. Moreover, there are several sub-forms (sub-genres), within each tradition,

classified based on the different singing styles and instrumentation (Viswanathan

& Allen, 2004; Bor et al., 2010).

The seven solfege symbols (Sa, Re, Ga, Ma, Pa, Dha and Nı̄ in short-form)

used in Indian art music are termed as svaras10 (Danielou, 2010; Bagchee, 1998).

Except ‘Sa’ and ‘Pa’ (the fifth with respect to Sa), every other svar has two or

three variations, where each of them has a specific function in a given rāg rendition

(Viswanathan & Allen, 2004).

Over the centuries these music traditions have been orally transmitted from

one generation to the next, following a hierarchical model of music education such

3http://en.wikipedia.org/wiki/Samaveda
4http://www.sacred-texts.com/hin/sv.htm
5http://en.wikipedia.org/wiki/Vedas
6http://en.wikipedia.org/wiki/Rigveda
7http://en.wikipedia.org/wiki/Samagana
8http://en.wikipedia.org/wiki/Raga
9http://en.wikipedia.org/wiki/Tala (music)

10http://en.wikipedia.org/wiki/Swaras
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as gharānā 11 in Hindustani music (Saraf, 2011; Mehta, 2008). Each gharānā or

school of music has its own ideology and characteristic style of music performance

(Deshpande, 1989).

Indian art music is essentially heterophonic12 with a main melody being sung

or played by the lead artist (Bagchee, 1998). Many times an instrument pro-

vides a melodic accompaniment and follows the lead performer like a shadow

(Viswanathan & Allen, 2004). A typical arrangement in a performance of In-

dian art music consists of a lead performer (occasionally a duo), a rhythm accom-

paniment generally provided by tablā13 in Hindustani music and mr.dangaṁ14 in

Carnatic music, a constantly sounding drone in the background and frequently a

melodic accompaniment using harmonium15 in Hindustani and violin in Carnatic

music. The drone sound which is mainly produced by the tānpūrā16 is the only

component that adds a harmonic element to the performance (Bagchee, 1998).

Generally there are different sets of instruments used in Carnatic and Hindustani

music, with an exception of the tānpūrā.

1.2 Tonic in Indian Art music

Tonic is one of the basic concepts in any tonal music across the world (Stevens,

2004; Castellano, Bharucha, & Krumhansl, 1984). Broadly, it refers to a particular

tone that acts as a focus around which the other tones are organized. However, its

precise meaning, function and significance might vary a lot and therefore it should

be understood within a given cultural context. This section highlights these issues

from the perspective of Indian art music.

Tonic is the foundation of melodic structures in both Hindustani and Carnatic

music (Viswanathan & Allen, 2004; Danielou, 2010). It is the base pitch of a

performer, carefully chosen in order to explore the full pitch range effectively in a

given rāg rendition. The tonic acts a reference and the foundation for the melodic

11http://en.wikipedia.org/wiki/Gharana
12http://en.wikipedia.org/wiki/Heterophony
13http://en.wikipedia.org/wiki/Tabla
14http://en.wikipedia.org/wiki/Mridangam
15http://en.wikipedia.org/wiki/Harmonium
16http://en.wikipedia.org/wiki/Tambura
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integration throughout the performance (Deva, 1980). That is, all the tones in the

musical progression are constantly referred and related to the tonic pitch. All the

accompanying instruments such as tablā, violin and tānpūrā are tuned using the

tonic of the lead performer. It should be carefully noted that tonic in Indian art

music refers to a particular pitch value not to a pitch-class. The frequency range of

the tonic pitch for male and female singers spans more than one octave (roughly

110-260 Hz) (Sengupta, Dey, Nag, Datta, & Mukerjee, 2005). Specific cases17

where the singer has the tonic pitch at the extremes are, M D Ramanathan18

(tonic around 105 Hz) and Veena Sahasrabuddhe19 having the tonic pitch around

238 Hz.

In any performance of Indian art music (in both Hindustani and Carnatic), the

tonic is the Sa (also referred as S. ad. ja) svar around which the whole rāg is built

upon (Danielou, 2010; Bagchee, 1998). Other set of svaras used in the performance

derive their meaning and purpose in relation to this reference and to the specific

tonal context established by the given rāg (Deva, 1980). The importance of the

tonic in Indian art music means identifying the tonic is crucial for many other

types of tonal analyses such as intonation analysis (Serrà, Koduri, Miron, & Serra,

2011; Koduri, Serrà, & Serra, 2012), motif analysis (Ross, Vinutha, & Rao, 2012)

and rāg recognition (Chordia & Rae, 2007; Koduri, Gulati, & Serra, in press).

Both the performer and the audience need to hear the tonic pitch throughout

the concert. This is accomplished by a constantly sounding drone instrument in the

background of the performance, which reinforces the tonic. Along with tonic, the

drone also emphasises other notes like the fifth, fourth or sometimes the seventh,

depending on the choice of the rāg. Essentially, the drone is the reference sound

that establishes all the harmonic and melodic relationships between the pitches

used during a given performance. Typically the drone is produced by either the

tānpūrā20, electronic tānpūrā21 or śruti box22 for the case of vocal music and by the

17The cases which we have encountered in music collection of CompMusic project, there might
be other cases with more extreme tonic values.

18http://musicbrainz.org/release/7dda9bb7-81f6-45c4-888e-b924b23613cc
19http://musicbrainz.org/recording/22e45ddb-9b88-406e-996a-2136730d72d4
20http://en.wikipedia.org/wiki/Tambura
21http://en.wikipedia.org/wiki/Electronic tanpura
22http://en.wikipedia.org/wiki/Shruti box
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sympathetic strings of instruments such as sitār23, sāranḡı24 and v̄ın. ā
25 for the case

of instrumental performances. A detailed description of the different tunings used

in the tānpūrā (the most commonly used drone instrument) and a brief discussion

on its acoustical properties is provided in Section 2.3.

1.3 Tonic in Western music

In the current work there is no intention of comparing the concept of tonic in

Indian art music against the concept of tonic in Western music. However, to

better appreciate the differences, it is worthwhile to briefly go over the definitions

of the musical concepts related to the tonic in Western music.

In the context of Western music the tonic is associated with the idea of key

and tonality. These two terms are often used synonymously but are different as

is mentioned in The New GROVE Dictionary of Music and Musicians (Grove &

Stanley, 1980). These two concepts are defined as follows:

Key: The quality of a musical composition or passage that causes it to be

sensed as gravitating towards a particular note, called the key note or the tonic.

One therefore speaks of a piece as being in the key of C major or minor, etc. The

key of a movement commonly changes during its course through the process of

modulation, returning to the home key before the end (Grove & Stanley, 1980,

Vol. 10)

Tonality: While the word key is linked with the idea of a diatonic scale in which

the notes, intervals and chords are contained, a tonality reaches further than the

note content of a major or minor scale, through chromaticism, passing reference to

other key areas, or wholesale modulation: the decisive factor in the tonal effect is

the functional association with the tonic chord (emphasized by functional theory),

not the link with a scale (which is regarded as the basic determinant of key in

theory of fundamental progressions). A tonality is thus an expanded key (Grove

& Stanley, 1980, Vol. 19)

Without going deep into a musicological discussion, we see that at a surface

23http://en.wikipedia.org/wiki/Sitar
24http://en.wikipedia.org/wiki/Sarangi
25http://en.wikipedia.org/wiki/Saraswati veena
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level the tonic in Indian art music is more of an attribute of the lead performer,

whereas in Western music it is related to a musical piece. Also, in the former case

it refers to a specific pitch value and in the later to a pitch class.

1.4 Motivation and Goals

Advancements in the information technologies has significantly changed the way

we interact with the music, be it generation, distribution, storage, browsing &

discovery or listening to it. Considering the enormous volume of available music

collections, automatic description of musical material becomes a pre-requisite in

many situations for developing intelligent systems to be able to perform the afore-

mentioned tasks. Moreover, a thorough understanding of the musical concepts

within a given cultural context is the first step towards developing automatic de-

scription systems.

Over the past couple of decades the Music Information Retrieval (MIR) com-

munity has made significant advancements in the automatic description of music.

However, the main focus of the research in MIR has been centered around West-

ern popular music. The technologies developed for this music type do not always

respond well to the multicultural reality of the diverse world musics (Serra, 2011).

Methodologies developed are not always directly applicable to the other rich music

traditions of the world, such as Indian art music, Makam music in Turkey or Chi-

nese Han music. In fact, the research problems themselves are different for each

of these music traditions.

These factors create a need for identifying the research problems and developing

methodologies which are specific to music cultures (Serra, 2011). This would

make our understanding of the musical concepts more universal and should help

in bridging the semantic gap (Wiggins, 2009). In this thesis, we present our work

on Indian art music, which as described in section 1.1 is a rich old tradition with

profound literature and musicological studies.

We focus on the identification of the tonic of the lead performer as this infor-

mation is fundamental to the description of Indian art music, needed for many

melodic analyses such as intonation analysis, motivic analysis and automatic rāg

recognition. Our main goals can be summarized as:

11



• Devise an approach for the automatic labelling of large databases of Indian

art music with the tonic pitch for vocal music and tonic pitch-class for in-

strumental music.

• Utilize culture specific characteristics of Indian art music for automatic iden-

tification of the tonic.

• Evaluate proposed approach on a sizable database.

• Review relevant past work and highlight the scientific background of similar

tasks to identify meaningful audio features.

Note that we make a distinction between the identification of the tonic pitch (for

vocal music) and the tonic pitch-class (for instrumental music). For many melodic

analyses such as intonation analysis, the information regarding the tonic octave

becomes crucial. This is because the precise intonation and timbral characteristics

of a particular svar might be different in different octaves. We found that for the

vocalists the concept of tonic pitch is well defined (pitch of the middle register

Sa), whereas, for the instrumentalists it is not very clear. Therefore, for the

instrumental music we only aim to identify the tonic pitch-class.

12



Chapter 2

Scientific Background and

Related Work

This chapter presents a review of the main audio features, techniques and works

relevant to the task of tonic identification. As very little work has been done on

tonic identification for Indian art music in the past, the review primarily focuses

on the tonal features and signal representations that could be useful for this work.

A detailed summary of the tonal structure of the tānpūrā is also presented (section

2.3), followed by a summary of the existing work on tonic identification in Indian

art music (section 2.4).

2.1 Feature Extraction

In this section we present some of the relevant audio features and signal repre-

sentations that have been used for the tonal analysis in tasks similar to the tonic

identification. Feature extraction is typically the first crucial step in automated

analysis of a real-world data. It involves extracting features (sometimes called

as descriptors) which are numeric values representing a specific characteristic or

attribute of the data. In our given context of the automatic tonal analysis, these

features are extracted from the audio data. Essentially the idea is to transform the

raw audio data so that the information (perceptual in nature) crucial to a specific

task is easily and reliably available. This often results in a drastic reduction in the

13



overall amount of data.

We review literature on F0-estimation (Section 2.1.1), multi-pitch analysis (Sec-

tion 2.1.2), predominant melody extraction (Section 2.1.3) and pitch-class distri-

bution features (Section 2.1.4). The following paragraphs describe each of them.

2.1.1 Fundamental Frequency Estimation

The most basic low-level feature that relates to the tonal aspect of a sound is the

frequency and its perceptual analog pitch. It is one of the fundamental dimensions

of the sound, other dimensions being loudness, duration, and timbre. Most of the

real-world pitched sounds can be represented as a superposition of complex sinu-

soids, meaning that they consist of many sinusoids. These sinusoids are referred

as partials or harmonics, as they are in harmonic relationship with the lowest fre-

quency sinusoid, which is called the fundamental frequency (F0). The pitch of

a complex tone is generally related to its fundamental frequency. Therefore the

problem of fundamental frequency estimation is also sometimes referred as pitch

estimation (however, the differences should be kept in mind). Sometimes, despite

the fundamental frequency component being absent from the complex tone, the

perceived pitch still remains as the fundamental frequency. This phenomenon is

referred as missing fundamental (Schmuckler, 2004).

Due to the importance of the pitch information in the speech and music domain,

there exists a wide body of research on this topic. However, we notice that many

of the proposed algorithms deal only with monophonic audio data, i.e. they can

only reliably estimate the pitch of a single sound source and it must be the only

sound source present in the audio signal. There are many ways in which the pitch

estimation algorithms are classified in the literature. A common way is to divide

them into those working in the time domain and those working in the frequency

domain, though some algorithms can be expressed in both. A comprehensive

discussion on these algorithms is beyond the scope of this thesis. Here, we provide

a short overview of the most commonly used algorithms, and refer the readers to

the appropriate source for more detailed information.

The fundamental frequency estimation process is typically divided into three

sub-processes; pre-processing, F0-extraction and the post-processing as shown in
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Figure 2.1: Steps of the fundamental frequency estimation process

Figure 2.1 (McKinney, cited in (Hess, 1984)). The goal of the pre-processing

step is to apply transformations to the signal which will improve the accuracy of

the F0-extraction in the following step. This is typically achieved by performing

de-noising, normalization or spectral whitening. The main F0-extraction process

generates a sequence of fundamental frequency estimates, computed from overlap-

ping chunks of the input data (frames). Finally, the post-processing block tries

to detect errors in the F0-estimation (exploiting continuity constraints) and sub-

sequently performs a correction or smoothing of the obtained pitch contour. In

subsequent paragraphs we review only the algorithms for performing the main F0-

estimation. For other processes, we refer the reader to (Klapuri, 2003a; Gómez,

2006; V. Rao & Rao, 2010).

The algorithms which have been used most frequently belong to the time do-

main (lag-based) category. The Auto-correlation function (ACF) based method,

which was originally proposed by Rabiner for pitch detection has been one of the

key algorithms (Rabiner, 1977). Later, modifications in the ACF based method

proposed by Boersma improved the performance, and made this approach robust

to additive noise and strong formants (Boersma, 1993). Issues related to the reso-

lution of the pitch estimate due to the finite sampling rate and analysis window size

have been addressed by Medan et al. (Medan & Yair, 1991). Another key method

for F0-estimation that closely relates to the ACF based methods uses the aver-

age mean difference function (AMDF). Proposed by Cheveigné et al. (YIN), this

algorithm significantly reduces the error rates found in the ACF based methods

(De Cheveigné & Kawahara, 2002).

Besides the time domain algorithms, methods based on spectrum auto-correlation

(Lahat & Niederjohn, 1987), subharmonic summation (Hermes, 1988) and har-

monic matching (Maher & Beauchamp, 1994) are often used in the music anal-

yses. Some of these algorithms are also applied to obtain the F0-estimation in
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polyphonic music scenarios, i.e. when multiple pitched sources are present in

the audio. Two-way mismatch criterion (TWM) (Maher & Beauchamp, 1994),

which is the foundation of harmonic matching algorithms, has proven to be robust

against the sparse tonal interferences in polyphonic music (V. Rao & Rao, 2010).

An attempt to combine the advantages of different periodicity estimation algo-

rithms (both from time and spectral domain) was made by A. Klapuri(Klapuri,

2000). The author computes the periodicity function for different frequency bands

and then combine them later, making the method robust to inharmonicities and

corrupted frequency bands.

For a detailed review of fundamental frequency estimation methods, the reader

may refer to (Gómez, 2006; Klapuri, 2003a; V. Rao & Rao, 2010).

2.1.2 Multi-pitch Analysis

Most of the fundamental frequency estimation algorithms mentioned above are

designed to work on monophonic audio (section 2.1.1). It is not appropriate to use

them in the polyphonic or heterophonic music scenario. First, because they are

affected by the presence of other tonal components in the audio, which could lead

to erroneous results. And second, we might be interested in extracting more than

one pitch value, as there are multiple pitched sources present in the music. In few

cases the approaches proposed for F0-estimation in monophonic audio signals are

applied to polyphonic audio as well. For example, the TWM procedure mentioned

above is extended to extract multi pitch information (Maher & Beauchamp, 1994;

V. Rao & Rao, 2010).

(Klapuri, 2003b) proposes an iterative approach based on the concept of source

separation (Benaroya, Bimbot, & Gribonval, 2006). In every iteration the pitch of

the most prominent sound component is estimated and that source is subtracted

from the signal. This algorithm works reasonably well for a wide range of funda-

mental frequencies and for different kinds of sources. A brief discussion on some

of the existing multi-pitch extraction algorithms can be found in (Klapuri, 2003a).

In the subsequent paragraphs we describe the generic structure of the multi-

pitch analysis systems proposed recently (Salamon & Gómez, 2012; V. Rao & Rao,

2010; Klapuri, 2006). Typically, the multi-pitch analysis part of these systems have
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three main modules; 1) Signal representation, 2) Salience function computation, 3)

F0-candidate extraction. Following paragraphs describe these modules, presenting

commonly used state-of-the-art approaches for each of these tasks.

The signal representation module transforms the audio signal to a sparse repre-

sentation, typically comprising of sinusoids with their respective amplitudes. Some

of the challenges at this step include; extracting sinusoids as accurately as possible

(both in terms of their frequency and amplitude), filtering out the true sinusoids

from the sidelobes of the applied window and handling the non-stationarity of the

audio signal. Many techniques have been proposed to handle these issues. Using

the parabolic interpolation or the phase vocoder based methods to accurately esti-

mate the frequency and amplitude of the sinusoids (Dressler, 2006), techniques like

mainlobe matching to filter out side-lobes of the window (Griffin & Lim, 1988),

using variable length windows or a multi-resolution FFT to improve the frequency

resolution are some techniques frequently found in the literature (Klapuri, 2000).

Once the sinusoids are extracted, a salience function is constructed using them,

which represents the salience of different pitch values over time. A frequently used

approach for the salience function computation is harmonic summation (Klapuri,

2006). In this method the salience of a given frequency is computed as the weighted

summation of the energies of all the sinusoids which are found at integral multi-

ples of the given frequency (i.e. at its harmonic locations). A two-way-mismatch

(TWM) method as mentioned previously has also been used for the computation

of the salience function (Maher & Beauchamp, 1994). In (Goto, 2004), M. Goto es-

timates the relative predominance of every possible F0 candidate (represented as a

probability density function) by using maximum a posteriori probability estimation

and F0 temporal continuity criteria. A comparative study of these approaches can

be found in (Poliner, Ellis, & Ehmann, 2007; Salamon, Gómez, & Bonada, 2011;

V. Rao & Rao, 2010)

Finally, reliable F0 candidates are extracted from the salience function, either

by selecting the peaks of this function or by applying some heuristic techniques to

enhance the selection of the candidates belonging to a particular source, as done in

(V. Rao & Rao, 2010). The precise approach to select F0 candidates depends upon

the end task, whether it is the multi-F0 trajectory extraction or the predominant

melody extraction. The later is discussed in the upcoming paragraphs.
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2.1.3 Predominant Melody Extraction

As the name suggests, this task aims at estimating the main or predominant

melody line from a polyphonic or heterophonic audio music recording. By this,

we mean a scenario where multiple pitched sources or multiple melody lines exist

simultaneously at a given point in time. Here the predominant melody is consid-

ered as the time varying pitch trajectory of the lead or dominant musical source.

In (Poliner et al., 2007), the authors roughly define it as “the melody is the single

(monophonic) pitch sequence that a listener might reproduce if asked to whistle or

hum a piece of polyphonic music, and that a listener would recognize as being the

‘essence’ of that music when heard in comparison”. However, providing a strict

definition of the melody is not an easy task, as the concept of melody is based on

the judgement of human listeners and should be defined within a given cultural

context.

A large amount of algorithms proposed for this task can be grouped as “salience

based” methods as described in (Salamon & Gómez, 2012). These are also re-

ferred to as ‘understanding without separation’ paradigm as described by Scheirer

(Scheirer, Vercoe, Benton, & Scheirer, 2000). Here, a pitch salience function is

computed from the audio signal (as described in previous paragraphs). Using

this pitch salience function, potential F0 candidates are extracted based on their

prominence in the salience function. Later, applying tracking rules the system

identifies the F0 trajectory that best represents the melody line. One of the mo-

tivations behind performing this kind of task was to track both the prominent

melody and bass-line, which could later be used for applications like music tran-

scription (Ryynänen & Klapuri, 2008) or music scene description (Goto, 2004).

Perceptually motivated approaches combining heuristic rules and melodic charac-

teristics are also proposed to identify the melodic contours which belong to the

main melody and the ones that do not (Salamon & Gómez, 2012; Paiva, Mendes,

& Cardoso, 2006). The concept of main and secondary melody is culture specific,

which from an Indian music perspective is well described and discussed by V. Rao

(V. M. Rao, 2011).

Another approach to predominant melody extraction could be first separating

the predominant melodic source from polyphonic or heterophonic audio and subse-
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quently applying F0-estimation techniques designed to handle monophonic audio

scenarios. In (Lagrange, Martins, Murdoch, & Tzanetakis, 2008), the authors pro-

pose a method to extract the predominant melodic source (frequently the singing

voice) inspired from computational auditory scene analysis (CASA).

For a detailed review of the state-of-the-art in predominant melody extraction

we refer to (Poliner et al., 2007; Salamon & Gómez, 2012; V. M. Rao, 2011).

2.1.4 Pitch Class Distribution Features

One of the most common sets of descriptors used for analyzing the tonal content

of a music material (tonality) are frequently referred to as pitch-class distribu-

tions (PCD), pitch-class profiles (PCP), Harmonic pitch-class profiles (HPCP) or

chroma features in general. Though these features are used within similar context

(tonal analysis of music), they rely on very different implementations; essentially a

vector of features describing the salience of the different tones or pitches present in

an audio signal. Typically a 12 dimensional vector (also referred to as bins) with

values indicating the amount of energy present in the audio corresponding to each

of the 12 semitones. Many applications often demand a finer analysis, in which

each semitone is further divided into 2-3 bins, leading to a 24 or 36 bin PCD.

According to Gómez (Gómez, 2006) well computed pitch class distribution

features should fulfill these requirements:

1. Represent the pitch class distribution of both monophonic and polyphonic

signals.

2. Consider the presence of harmonic frequencies.

3. Robustness to noise that sound at the same time: ambient noise (e.g. live

recordings), percussive sounds, etc.

4. Independence of timbre and played instrument, so that the same piece played

with different instruments has the same tonal description.

5. Independence of loudness and dynamics.
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6. Independence of tuning, so that the reference frequency can be different from

the standard A 440 Hz.

These properties make HPCPs an ideal candidate for the features to be used

in tasks like cover song identification (Gómez & Herrera, 2006; Ellis & Poliner,

2007; Serra & Gomez, 2008), chord recognition and tonality analysis (Peeters,

2006; Gómez, 2006) and audio matching (Muller, Kurth, & Clausen, 2005).

Fine grained pitch class distributions have been used in tonal analysis of makam

music, specifically for the problem of tonic and makam recognition (Ioannidis, 2010;

Bozkurt, 2008; Gedik & Bozkurt, 2010).

Figure 2.2: General block diagram for methods for pitch class distribution com-
putation from audio. Figure extracted from [(Gómez, 2006)] with the permission
of the author.

Gómez also outlines the generic schema for approaches computing an instan-

taneous evolution of pitch class distributions (Gómez, 2006) (Figure 2.2). Every
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module in this diagram is carefully adapted to suit the application and the context

in which these features are used. A variety of different implementations for the

Chroma features is studied by Muller et al. in (Muller, Ewert, & Kreuzer, 2009;

Muller & Ewert, 2010). For a comprehensive review of various approaches to PCD

computation and tonality analysis, we refer to (Gómez, 2006).

2.2 Key Estimation in Western Music

In the last decade, key estimation and tonality modeling in western music has

been one of the comprehensively studied topic in the MIR community. At the

same time, the problem is also studied by researchers from musicological, music

cognition & psychology domain. The sheer amount of undergoing research in this

direction reflects the complexities involved in this task of key perception by human

beings. In this subsection we review some of the relevant work done in Western

music.

Two basic ways of modeling human key perception have been proposed by

Brown H., namely, the structural and functional approach (Brown, 1988). Both

these approaches have received empirical support and they are often regarded as

complementary. According to the distinction made by Brown, the structural ap-

proach to tonality considers that the listeners derive the key perception or tonal

centers by using aggregated pitch content of a musical piece and by deciding which

key profile best correlates with the distribution of pitch classes. In this approach,

the prevalence of a pitch class primarily depends upon its cumulative duration.

However there are secondary factors affecting the perceptual salience of a pitch

class, like its repetition, or metrical position. Structural approach pays relatively

less importance to the local ordering of the pitch values. On the other hand, the

functional approach is quite complementary to this approach. It pays less impor-

tance to the pitch class material and more emphasis on the sequential intervallic

implications.

One of the seminal approaches for automatic key estimation is the key pro-

file method proposed by Krumhansl and Kessler (Krumhansl & Kessler, 1982;

Krumhansl, 1990). The approach is based on the correlation of the established

tonal hierarchies that are experimentally determined using the probe-tone method
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with the pitch class distribution (PCD) of the musical material. Pitch saliences in

PCD are affected by the pitch repetition and their relative duration in a musical

piece. Many recent approaches to key estimation are motivated by this methodol-

ogy and use these experimentally determined key profiles to match with the PCDs

extracted from the audio (Peeters, 2006). In these methods, the pitch class dis-

tributions derived from the audio are correlated with each of these templates (12

for major and 12 for minor scale), and the one resulting in the highest correlation

is selected as the correct key note and the mode. However the extraction of the

PCDs from the audio is not a trivial task. Some of the challenges involved are

the presence of the multiple pitch sources in the audio and their corresponding

harmonics (Gómez, 2006). One of the methods to tackle this difficulty is proposed

by Gómez (Gómez, 2006). In her approach instead of the pitch class profile a

harmonic pitch class profile is built directly from the audio taking appropriate

contributions from all the harmonics. A quite comprehensive overview of the main

studies pertaining to tonality and key estimation in western music can be found

in her dissertation (Gómez, 2006).

An alternate model to represent the tonality in Western music is the spiral

model, proposed by Chew. (Chew, 2002). In this model the pitches are represented

in a three-dimensional space (3D spiral), and every key has its particular place in

that space.

2.3 Tonal Structure of the Tānpūrā

The presence of the drone in the background is a characteristic feature of Indian

art music and plays a very crucial role. The emergence of this concept dates

back to AD 1600 (Bagchee, 1998). The drone acts as a reference of the music to

a tonal background, reinforcing all the harmonic and melodic relationships. The

presence of the drone brings out the issues of intonation and consonance more than

it otherwise would have been. As described by Deva (Deva, 1980) without a drone

the intonation and the tonality of the music are governed by the tonal memory (a

matter of retrospect and post relation of tones). But with the employment of the

drone, a musician is forced to constantly refer his tones to this tonal background

both for the intonation and consonance resolution.
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The tonal structure of the drone is thus a very important aspect of this music

tradition. The current section briefly describes the tonal structure of the tānpūrā,

which is the main drone instrument used to accompany the lead performer. In

particular, we discuss the different types of tuning, its timbral characteristics,

different playing styles and finally highlight the characteristic feature of this in-

strument, i.e. the rounded (buzzing) sound created by the special configuration of

the bridge.

Tānpūrā is a long-necked plucked lute, which comes in different sizes that

corresponds to the different pitch ranges it can produce. The largest one is for

the male singers, a smaller size for the female singers and the smallest one to

accompany the instrumentalists. It usually has 4 strings (5 or 6 in rare cases)

which are plucked serially in a regular pattern to create a rounded resonant sound.

Figure 2.3 shows a 4 string tānpūrā with its important body parts duly labelled

and the frequently used tuning configurations listed on the side. The pegs corre-

sponding to 4 strings are marked with the numbers 1, 2, 3 and 4 respectively. The

two middle strings of the tānpūrā (corresponding to pegs 2 and 3) are tuned to

the tonic pitch of the lead performer (Sa), while the fourth string (corresponding

to peg 4) is tuned an octave below the tonic pitch (sa). In addition to reinforcing

the tonic pitch, tānpūrā also produces secondary pitch classes. The first string of

the tānpūrā (attached to peg 1) is frequently tuned to the fifth (pa) with respect

to the tonic pitch, in the lower octave, resulting in pa-Sa-Sa-sa type of tuning. For

rāgs which omit pa (fifth), the first string is tuned to the natural fourth (ma) as

ma-Sa-Sa-sa. Furthermore, for some rāgs it is desirable to tune the first string to

seventh (n̄ı) as n̄ı-Sa-Sa-sa, where ‘n̄ı’ is one semitone below the tonic pitch (Sa).

The tānpūrā sound is composed of rich overtones, with the higher harmonics

adding energy to various pitch classes. Deva presents a detailed analysis of the

spectral characteristics of the tānpūrā sound (Deva, 1980). The author also pro-

vides an interesting historical perspective on the emergence of the tānpūrā and

its significance in Indian art music. Figure 2.4 & 2.5 show the spectrogram and

spectrum of a short audio excerpt taken from a solo tānpūrā field recording 1. We

notice from these figures that the tānpūrā sound is quite bright with a low spectral

roll-off and has a dense spectrum.

1http://www.freesound.org/people/sankalp/sounds/153263/

23

http://www.freesound.org/people/sankalp/sounds/153263/


Peg box 
Pegs 

Aad or meru 
(upper bridge) 

Dand (fingerboard) 

Strings 

Ghuruch 
(bridge) 

Manaka 
(fine tuner) Langot 

(tailpiece) 

Tumba 
(resonator) 

Gulu (neck joint) 

1 

3 
2 

4 

Common tunings  
1– pa, ma or ni 
2– Sa 
3– Sa 
4– sa 
 

Figure 2.3: Image of a tānpūrā with all its important body components duly
labelled. Common tuning configurations are also shown.

time (s)

F
re

q
u
en

cy
 (

H
z)

5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

Figure 2.4: Spectrogram of a section of solo tānpūrā field recording.
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Figure 2.5: Spectrum of a tānpūrā recording.

Bridge Neck side Tail side 

String 

Javari 
(thread) 

Figure 2.6: Diagram showing cross-section view of tānpūrā bridge, marking the
position of javār̄ı (thread) between the bridge and the strings.

The tānpūrā strings are gently plucked by the fingers to avoid discreet tran-

sients. The fingers are repeatedly rolled over the strings to create a constant slow

rhythmic pattern (which bear no relation with the speed of the song). The play-

ing style slightly differs in Hindustani and Carnatic music. In Carnatic music one

complete cycle of the rhythm pattern consists of 6 matrās (beats for simplicity),

whereas in Hindustani music it contains 5 matrās.

The unique resonant sound of the tānpūrā is due to the special type of the

bridge, and because of the javār̄ı (special thread) that is inserted between the

bridge and the strings at a specific point. Raman studied this Phenomenon in

depth; describing how the javār̄ı makes the vibration modes in strings violate the

helmholtz law (Raman, 1921). Detailed explanations of the conducted experiments

to observe this effect are summarized in (Bagchee, 1998). Figure 2.6 shows a cross

section view of the bridge, indicating the position of the javār̄ı (thread) between

the bridge and the strings.

Several recorded samples of the acoustic and electronic tānpūrā with different
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tuning settings and tonic values can be obtained from the Freesound website 2 3 .

2.4 Tonic Identification in Indian Art Music

Despite the importance of automatic tonic identification in the description of var-

ious aspects of Indian art music, the problem has not received much attention in

the past. This section describes briefly the approaches found in the literature and

summarizes their shortcomings.

One of the first approaches for tonic identification was proposed by Sengupta

et al. which uses only the ālāp4 (opening section of a typical performance of

Indian art music) sections of 118 solo vocal recordings to get the clean pitch tracks

(Sengupta et al., 2005). The author considers only the stable regions ( 60 ms) in

the pitch envelope for the analysis. The proposed approach is quite brute force

and begins by considering a large number of frequency values as the candidates

for the tonic pitch. The candidate that best represents the distribution of stable

pitch regions according to a defined error minimization criterion is selected as the

tonic. In addition to the audio data, information regarding the gender of the singer

(male or female) is also used to restrict the tonic pitch range. The range of the

tonic pitch considered for the male singers is 95-175 Hz and for the female singers

it is 185-255 Hz. The evaluation methodology used by the author is somewhat

problematic. For instance, the final results are provided in terms of the average

error in tonic frequency in Hz. First, it does not reflect for how many files the

tonic was correctly identified. And second, as the error is reported in terms of

the frequency, it is perceptually not very meaningful. The perceptual error (error

in cent scale) for the same frequency error will be different for different tonic

frequencies.

The approach proposed by Ranjini et al. takes advantage of the peculiarities

found in the melodies of Carnatic music (Ranjani, Arthi, & Sreenivas, 2011). This

method is also based on prominent pitch extraction and uses the pitch distribution

of the predominant melody as a representation for the tonal structure. In Carnatic

2http://www.freesound.org/people/sankalp/packs/9600/
3http://www.freesound.org/people/sankalp/packs/9571/
4http://en.wikipedia.org/wiki/Alap
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music the extent of gamak 5 (the amount of deviation from the central frequency)

on the Sa and Pa svar of the rāg is minimal and so the histogram peaks corre-

sponding to these svaras are expected to be narrower (more peaky) as compared to

the other svaras. These narrow peaks are identified by analysing the parameters

of fitted semi-continuous GMMs. The authors only mention that the Praat soft-

ware is used for the pitch extraction, without describing in detail the parameters

used or indicating its performance accuracy on the chosen dataset. These chosen

parameters can make a lot of difference in the pitch extraction task. Also, Praat’s

pitch extraction algorithm is designed to work in the monophonic case, but it has

been used for a polyphonic case (that has lots of harmonic content as tānpūrā is

usually present along with the voice) in this work. The database used to evaluate

this approach is confined only to the performances of the sampūrn. a rāg (specific

category of rāgs comprising of all the seven svaras). Moreover, the size of the

database is also quite small, comprising only 55 ālāpnās.

The research in the area of automatic tonic identification for Indian art music

is still in the nascent stages. Some of the shortcomings in the existing approaches

can be summarised as:

1. Approaches are solely based on the analysis of the predominant melody. No

efforts have been made to exploit the presence of the drone sound in the

background, which is an important cue for the identification of the tonic.

2. Researchers have used monophonic pitch trackers, whereas the music ma-

terial under investigation has polyphonic elements (i.e. multiple pitched

sources present in the audio).

3. The approaches are evaluated on a limited database, both in terms of the

number of recordings and the diversity present in the selected musical ma-

terial.

4. All the previous approaches aim to identify the Sa (S. ad. ja), which is the

tonic pitch-class. It lacks the information about the correct tonic octave

that might be crucial in tasks such as intonation analysis.

5http://en.wikipedia.org/wiki/Gamaka (music)
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As we see, there is a wide scope for improvement in these approaches and in

devising new methods that explore the cultural specificities present in Indian art

music.
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Chapter 3

Multi-pitch Approach to Tonic

Identification

This chapter describes in detail the proposed approach for tonic identification us-

ing multi-pitch analysis of the audio excerpts. We present two different methods

for tonic identification, to be able to work on both vocal and instrumental music.

Section 3.1 gives an overview of the proposed methods and presents the motiva-

tion and scope of application for both of them. Sections 3.2 and 3.3 explain the

implementation steps for the methods (Method 1 and Method 2), describing each

step in detail and the evaluation methodology is presented in Section 3.5.

In addition to the proposed methods, a proposal for a complete iterative system

for tonic identification in Indian art music is presented in Section 3.4. The system

aims to incrementally utilize all the available data (audio data and metadata) to

identify the tonic and also estimate a confidence measure for each output.

3.1 Overview of the Methods

The proposed methods use a multi-pitch analysis of the audio signal to identify

the tonic in both Hindustani and Carnatic music. The motivation for adapting

a multi-pitch analysis is twofold: first, the music material under investigation is

non monophonic (includes many instruments playing simultaneously). Second, we

know that the tonic is continuously reinforced by the drone sound, an important
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Figure 3.1: Spectrogram of an excerpt of Hindustani music with two clearly visible
types of harmonic series, one belonging to the drone and the other to the lead voice.

cue that can not be exploited if we extract a single pitch value for each frame of the

audio recording. To illustrate this point in Figure 3.1 we display the spectrogram of

a short audio excerpt of Hindustani music. It clearly shows two types of harmonic

series; first consists of nearly flat lines and corresponds to the drone instrument

(playing Sa and Pa ). The second harmonic series (which start at around 1 second)

corresponds to the voice of the lead performer. If we only consider the pitch of the

lead performer (which is quite dominant) in our analysis, we loose the information

in the drone sound, which in this case is a important indicator of the tonic pitch.

In this thesis we propose two methods, namely, Method 1 and Method 2.

Method 1 is solely based on a multi-pitch analysis (Salamon, Gulati, & Serra,

2012) whereas Method 2 uses a multi-pitch analysis and predominant melody in-

formation to perform tonic identification. As the tonic pitch range of male and

female singers spans more than one octave (Section 1.2) and we require the tonic

octave information for many melodic analyses (Section 1.4), the method should not

only identify the tonic pitch-class but also the octave in which it lies (tonic pitch

identification covers both these tasks). Method 1 identifies the tonic pitch-class

and the tonic octave in a combined way, directly by performing a multi-pitch anal-

ysis of the audio signal. However, Method 2 divides this task into two stages; first,

identifying the tonic pitch-class by performing a multi-pitch analysis and second,

using the predominant melody pitches to establish the tonic octave. The Following
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points highlight the motivation and scope of application of these methods.

• Method 1: The two middle strings of the tānpūrā are tuned to the tonic of the

lead performer (Section 1.2 and 2.3) and the rest of the strings with respect

to the tonic. Therefore, the drone sound contains sufficient information to

extract the tonic pitch. Method 1 capitalizes on this logic and identifies the

tonic pitch directly by performing a multi-pitch analysis of the audio.

This method is designed to work for vocal music. Since we are interested

in identifying only the tonic pitch-class for instrumental music (Section 1.4)

and this method performs tonic pitch identification in a single stage, it is

not applicable to instrumental music. Instrumental music pieces are not

annotated with the tonic pitch (but with the tonic pitch-class), which is

required for training in Method 1.

• Method 2: The motivation behind proposing the second method is:

1. To enable the method to be used for both vocal and instrumental ex-

cerpts.

2. While annotating the excerpts with the tonic pitch it was observed that

the decision of the tonic octave is primarily based on the pitch range of

the sung melody.

3. We found that in few cases when musicians go on tour, they take the

liberty to use a smaller tānpūrā instead of a big one. In such situations,

the middle two strings of the tānpūrā generate a pitch sensation of

an octave above to the tonic. This argument got some support when

we carefully examined an electronic tānpūrā. We observed that the

range of the tonic frequencies which an electronic tānpūrā is capable of

producing is nearly one octave. Additionally, it has a knob to change

the equalization depending upon whether the singer is male or female.

However, we know that the combined tonic pitch range for male and

female singers spans more than one octave (110-260 Hz, Section 1.2).

Therefore, there is a chance that in some rare circumstances the singers

might be using the drone instrument as a support for only the tonic-

pitch class. Note that there is no consolidated evidence found for this
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Figure 3.2: Block diagram of the proposed methods. There are three main process-
ing units, indicated by the gray regions, namely, multi-pitch analysis, candidate
selection and tonic octave estimation.

argument. This possibility came up during our discussions with some

of the musicians.

These factors suggest that it might be beneficial to include the melody in-

formation in addition to the drone in the analysis. Therefore, Method 2

divides this process into two stages and identifies the tonic pitch-class by

performing a multi-pitch analysis and subsequently analyzes the predomi-

nant melody pitches to obtain the tonic octave. Thus, in addition to vocal

music, Method 2 is also applicable to instrumental music, where we only

identify the tonic pitch-class and omit the stage of the tonic octave estima-

tion.

Figure 3.2 shows a coarse block diagram of both the proposed methods, demon-

strating the differences and shared processing blocks between the two. As we see in

the figure, there are three main processing units (regions with gray background);

first, the multi-pitch analysis, which takes the audio signal as input and generates

tonic pitch (or pitch-class) candidates. This processing block is exactly the same
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for Method 1 and Method 2. Second, the candidate selection, which identifies

the correct tonic candidate using a learned template based on a classification ap-

proach (different for both the methods). And the third, tonic octave estimation

unit, which as the name suggests identifies the octave in which the tonic pitch lies.

This block is only included in Method 2.

Detailed implementation steps for both the methods are provided in the sub-

sequent sections. Section 3.2 describes Method 1 in detail, explaining each of the

individual processing blocks, the multi-pitch analysis (Section 3.2.1) and the can-

didate selection (Section 3.2.2). Section 3.3 describes Method 2, explaining both

the stages, the tonic pitch-class identification (Section 3.3.1) and the tonic octave

estimation (Section 3.3.2). Note that the multi-pitch analysis module is same for

both the methods and therefore it is explained only while describing Method 1.

3.2 Method 1

This method involves two main processing steps, the multi-pitch analysis and

the candidate selection (Figure 3.2) (Salamon et al., 2012). Both these steps are

explained below.

3.2.1 Multi-pitch Analysis

The multi-pitch analysis used in this thesis is taken from the first block of the

melody extraction algorithm proposed by Salamon and Gómez in (Salamon &

Gómez, 2012) (Sinusoid extraction and Salience function computation blocks).

The input to the multi-pitch analysis module is audio signal and it generates tonic

pitch candidates. Figure 3.3 shows a detailed block diagram of this module, high-

lighting various sub-tasks involved. Each of the constituent blocks is elaborated

below in subsequent sections, providing all the necessary implementation details.

Sinusoid Extraction

We start off by extracting the sinusoidal components of the audio signal, as done

in most of the tonal analysis. This process is divided into three parts (Figure 3.3);

spectral transform, peak picking and sinusoid frequency and amplitude correction.
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Figure 3.3: Detailed block diagram of multi-pitch analysis module

We use Short-Time Fourier Transform (STFT) to transform the audio signal

from a time domain to a time-frequency domain representation. STFT is given

by:

Xl(k) =
M−1∑
n=0

w(n) · x(n+ lH)e−j
2π
N
kn, (3.1)

l = 0, 1, . . . and k = 0, 1, . . . , N − 1

where x(n) is the time domain signal, w(n) the windowing function, l the frame

number, M the window length, N the FFT length and H the hop size. We use

the Hamming windowing function with a window size of 46.4 ms, a hop size of

11.6 ms and a ×4 zero padding factor, which for data sampled at fS = 44.1 kHz

gives M = 2048, N = 8192 and H = 512 (Salamon & Gómez, 2012). Given the

FFT of a single frame Xl(k), spectral peaks pi are selected by finding all the local

maxima ki of the magnitude spectrum |Xl(k)|.
Not all the spectral peaks correspond to valid sinusoids, there are many spuri-

ous peaks (relatively low energy) generated as a result of the windowing. Numer-

ous techniques are proposed to filter out this noise and to extract true sinusoids
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(mainlobe matching technique (Griffin & Lim, 1988) etc ). In the current im-

plementation, we apply simple energy threshold to discard the spurious spectral

peaks. The energy threshold (Ts) is the calculated as follows:

Ts = max(Tr, α),

Tr = Em + β
(3.2)

where Tr is the relative threshold w.r.t the maximum spectral peak (Em) for each

frame, α is the an absolute threshold and β is a relative threshold parameter. We

use α = −70 dB and β = −40 dB.

The frequency resolution in STFT is limited by the spectral resolution (bin

frequencies). So, the frequencies of the sinusoids extracted by performing spectral

peak picking will be quantized to the bin frequencies. A Simple way to improve

the resolution is to increase the FFT size at an expense of high computational cost.

Current implementation already has FFT size of 8192 points, which is reasonably

high. Alternatively, one could resort to techniques such as parabolic interpolation

or phase vocoder based methods to correct the frequency and amplitude of sinu-

soids. We apply three-point parabolic interpolation, given by following equation:

f =
α− γ

2(α− 2β + γ)
,

y = β − 1

4
(α− γ)f

(3.3)

where f and y are the interpolated frequency and amplitude values of the sinusoid,

α, β and γ are the amplitudes (in logarithmic domain, dB) of the three highest

samples around the spectral peak (β).

Pitch Salience Computation

The extracted sinusoids are used to compute a salience function, a time-frequency

representation indicating the salience of different pitches over time. In this work

we use a salience function proposed by Salamon and Gómez in (Salamon et al.,

2011). The method is based on harmonic summation (Klapuri, 2006). In short,

the salience of a given frequency is computed as a weighted summation of energy

found at all the integer multiples (harmonics) of that frequency. This brings out
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the fundamental frequency component of the complex sinusoidal mixture, as it

receives contributions from all its harmonics. The peaks of the salience function

at a given time instance represent the prominent pitches present in that frame.

Note that though the two concepts; pitch (which is perceptual) and fundamental

frequency (which is a physical measurement) are not identical, for simplicity we

use these two terms interchangeably.

The constructed salience function spans a pitch range of 5 octaves, starting

from 55 Hz to 1.76 kHz. To reduce the computational cost, the frequency values

are quantized into a total of 600 bins on a cent scale, such that the resolution of

each bin is 10 cents (sufficient for our analysis). The mapping between a given

frequency value fi in Hz to its corresponding bin index b(fi) is given by:

b(fi) = 1200
log2(fi/fr)

η
+ 1 (3.4)

where fr is the reference frequency, η is the bin resolution in cents. We use fr = 55

Hz and η = 10, which is sufficient for our analysis.

At each frame, the salience of a pitch S(j) (at jth bin) is computed using

Np number of extracted sinusoids with frequencies f̂i and magnitudes âi. The

computation is done as follows:

S(j) =

Nh∑
h=1

Np∑
i=1

g(j, h, f̂i) · (âi)β (3.5)

where Nh is the number of harmonics considered (a crucial parameter), β is a mag-

nitude compression factor and g(j, h, f̂i) is the function that defines the weighting

scheme. We use Nh = 20 and β = 1 in the current implementation.

Note that in (Salamon & Gómez, 2012), a relative magnitude threshold (e(âi))

is also applied at this step, to discard the low-energy sinusoids with respect to the

maximum energy sinusoid in each frame. In current implementation we perform

this operation during the sinusoid extraction step (section 3.2.1, equation 3.2).

Another critical component of the harmonic summation is the weighting function

(g(j, h, f̂i)), which defines the weight given to a sinusoid when it is considered as

the hth harmonic of the bin j. We use the weighting scheme as follows:
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g(j, h, f̂i) =

cos2(δ · π
2
) · αh−1 if|δ| ≤ 1

0 if|δ| > 1
(3.6)

where δ = |b(f̂i/h)−j|/10 is the distance in semitone between the folded frequency

f̂i/h and the center frequency of the bin j, and α is the harmonic weighting param-

eter (we use α = 0.8). The non zero values for |δ| < 1 means that each sinusoid

not just contributes to a single bin of the salience function (i.e. b(f̂i/h)) but also to

the neighboring bins with a cos2 weighting. Performing this smoothened weighting

avoids potential problems that may arise due to the quantization of salience func-

tion into bins and inharmonicities present in the audio. (Salamon & Gómez, 2012)

addresses the issue of finding the optimal values of the aforementioned parameters

for predominant melody extraction task.

To have a better understanding, we present an example showing the peaks of

the salience function (Figure 3.4) for the same audio excerpt whose spectrogram

is shown in Figure 3.1. We notice that the tonic pitch (Sa) and fifth (Pa) played

by the tānpūrā are clearly visible along with the peaks corresponding to the voice.

However, we observe that the salience of the pitch values corresponding to the voice

is much higher than the tānpūrā sound. It is because of the arrangement that the

drone always function in the background. We are interested in exploiting the drone

signal as much as possible and therefore the prominence of pitched content of the

lead performer needs to be normalized. This issue is handled in the next stage

while obtaining the tonic candidates from salience function.

Tonic Candidate Generation

We proceed to extract the potential tonic pitch candidates using the salience func-

tion computed in the previous step. Each candidate is represented by a frequency

and an amplitude value. The process of generating the tonic candidates includes

three sub-tasks (Figure 3.3); detecting peaks of the salience function, computing

a pitch histogram and extracting candidates as the peaks of this histogram.

Peaks of the salience function represent the prominent pitches of the lead in-

strument, voice and other predominant accompanying instruments present in the

audio recording at every point in time. A histogram of the pitch values corre-
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Figure 3.4: Peaks of the salience function for the same excerpt shown in Figure 3.1.
The top 10 peaks of the salience function are selected for each frame. Magnitude
of a peak is in logarithmic scale (dB)

sponding to the peaks in the salience function for the entire excerpt would indi-

cate which pitches are repeated most often throughout the excerpt. Though the

pitch histograms have been used previously for tonic identification (Ranjani et al.,

2011), they were constructed using only the predominant melody. Therefore, in

many cases the tonal information provided by the drone instrument is not taken

into consideration.

We start by selecting the peaks of the salience function at each frame. As the

frequency range of the tonic pitches chosen by the singers in Indian art music is

within a finite range, between 110-260 Hz (Figure 3.10), we can limit the range

from which the salient pitches are selected. We chose a lenient frequency range of

110-370 Hz to select the peaks from the salience function. This ensures that the

range of the tonic pitch for both male and female singers is covered. Moreover, the

range spans nearly 2 octaves, and therefore the system must be able to identify

not only the correct tonic pitch-class but also the octave in which it is played. For

each frame, we select the 10 most salient pitch values within the frequency range

of 110-370 Hz. The selected peaks are used to construct a multi-pitch histogram,

which represents the cumulative occurrences of different pitches at the level of the

whole audio excerpt.
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Figure 3.5: Histograms constructed using a) predominant melody (blue) and b)
multi-pitch salience function (black). The tonic pitch-class locations are indicated
by the red dotted lines.

However, We notice that generally the lead voice/instrument is much louder

than the drone sound (Figure 3.4). To normalize this bias towards the dominant

source, we drop the saliences of the peaks and consider only their frequency of

occurrence. This way a peak that corresponds to the voice has equal weight in the

histogram as the peak which corresponds to the drone.

Since we consider only the frequency of occurrence of pitches while construct-

ing the pitch histogram, the pitches produced by the drone instrument (tonic and

either Pa, Ma or Nı̄) have high saliences in the histogram, as the drone is con-

stantly playing in the background. In such cases the pitch distribution depends

heavily on the tuning of the drone instrument. This would not be the case if

we only considered the predominant melody for histogram computation, as the

pitch distribution then would depend on the specific rāg, making this task a joint

estimation of the tonic and the rāg, eventually adding more complexity to the

problem. To demonstrate this, Lets make a small comparison of the pitch distri-

butions computed using different methods. Figure 3.5 shows two pitch histograms
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computed using (a) predominant melody and (b) multi-pitch salience function.

These histograms are computed using a three minute long audio excerpt from our

database. The pitch axis is plotted in cents, and the histogram is normalised by

the magnitude of its highest peak. We see that in the pitch histogram computed

using predominant melody (a), the top three peaks correspond to svar Sa, Ga and

Re (prominent svaras of rāg Sindh Bhairav̄ı), whereas for the later case (b), the

top three peaks correspond to Sa (in two octaves) and Pa, which are the prominent

svaras produced by the drone instrument.

The tonic pitch will not always be the highest peak of the pitch histogram .

We therefore consider top 10 peaks of the histogram pi(i = 1 . . . 10), one of which

corresponds to the tonic pitch. We call them tonic pitch candidates and store both

frequency and amplitude of each of these candidates for every audio excerpt. The

next section describes the process of selecting the correct tonic candidate using a

template learned with a classification based method.

3.2.2 Candidate Selection

This section describes the process of selecting the correct tonic candidate, using

both frequency and amplitude of each of the 10 extracted candidates. We per-

form tonic candidate selection using an automatically learned set of rules (can be

treated as a template) based on classification. Extracting features from the pitch

histograms we train a classifier to predict the class of the instance, which is then

used to infer the correct tonic candidate. Here, a crucial part of the process is to

select the class labels appropriately, so that together with the peaks of the pitch

histograms (candidates), it can be used to select the candidate corresponding to

tonic pitch. Subsequent paragraphs describe this process in detail.

As seen in Figure 3.2, at this step, Method 1 and Method 2 differ from each

other. In Method 1 we aim to identify the true tonic pitch candidate whereas

in Method 2 the target is to select a candidate that corresponds to the tonic

pitch-class. This section explains the candidate selection procedure followed in

Method 1.

The pitches used in a musical piece are in relation to the tonic of the lead

performer. Taking this into account, we hypothesize that the tonic can be identified
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Figure 3.6: An example of multi-pitch histogram displaying five pitch-interval
features fi(i = 2 . . . 6) of the 10.

based on the relationship of the pitch intervals between the most dominant pitches

in the recording and their rate of occurrence. We propose a classification based

approach to automatically learn the best set of rules to select the correct tonic

candidate based on these relationships.

The first step is to encode the pitch intervals between the candidates in a mean-

ingful way such that it can be used as a feature set to train a classifier. We compute

the distance between every tonic candidate (pi) and the most salient candidate in

the histogram (p1). This gives us a set of features fi(i = 1 . . . 10) (pitch-interval

features), where fi is distance in semitone between pi and p1. Another set of fea-

tures ai(i = 1 . . . 10) (amplitude features) include the amplitude ratios of all the

candidates with respect to the highest candidate. To visualize the extracted fea-

tures for a better understanding, in Figure 3.6 we show the pitch-interval features

fi. Only five of the ten pitch-interval features are shown to keep the figure clean.

The other set of features ai(i = 1 . . . 10) are simply the amplitude values of the

peaks (pi) as the histogram is already normalized by the highest peak.

We annotate each audio excerpt with a class label (as explained below) and

use 20 features (fi, ai) to train a classifier in order to predict the class label. In

this way the system automatically learns the best set of rules that maximise the
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class prediction. The strategy for labelling an instance with a class should be such

that it allows us to uniquely associate the tonic pitch with it, given all the 10

candidates.

In this method the class label of an instance is assigned as the rank of the

tonic pitch in the ordered list of all the candidates, arranged in descending order

of their peak magnitude. For example, if the candidate corresponding to the tonic

pitch is the second highest peak of the histogram, we assign a label “Second”.

Theoretically it is a 10 class problem, as the allowed tonic rank can go as low as

tenth. But after analysing the training data we found that the lowest tonic rank

was fifth and hence only 5 classes are used in the experiment. Moreover, 96% of

the instances are labelled with one of the top three classes (first, second, third).

At this point we have each instance annotated with a class label and a set of 20

extracted features. Next, we proceed to select the relevant features for our specific

task. We use the WEKA data-mining software for all the classification related

steps (Hall et al., 2009). We perform attribute selection using the CfsSubsetEval

attribute evaluator and BestFirst search method (Hall, 1999) with a 10-fold cross

validation option set. We select the features which are used in at least 80% of the

folds.

Subsequently, a C4.5 (J48) decision tree is trained using WEKA to learn best

set of rules to reliably identify the correct tonic candidate (Quinlan, 1993). Note

that we also tried other classifiers, namely support vector machine (Sequential Min-

imal Optimization (SMO) with polynomial kernel) and an instance based classifier

K* (Witten, Frank, & Hall, 2011). However the accuracy obtained by the J48 de-

cision tree was considerably higher and so for the rest of the thesis we present our

results based on this classifier. Additionally, the advantage of using a decision tree

is that the resulting classification rules can be easily interpreted and visualized. It

is crucial to understand the classification rules, especially because in our proposed

approach it is a part of the methodology and not just used for the evaluation.

We noticed that the number of instances belonging to each class in our training

dataset was highly uneven. Training a classifier in this way might result into

a biased learning, favoring the class which has more number of instances. To

mitigate this effect due to uneven number of instances per class, we also performed

experiments with instance normalization by repeating the number of instances in
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minority class. We used the ‘supervised.instance.Resample’ filter in WEKA with

‘biastoUniformClass’ option set to 1 to normalize the number of instances per class

(Witten et al., 2011).

3.3 Method 2

This method divides the task of tonic identification into two stages, the tonic pitch-

class identification, performed using a multi-pitch analysis, similar to Method 1 and

the tonic octave identification using the predominant melody information (Figure

3.1). This enables Method 2 to be applicable to both vocal and instrumental

music. Recall that for the instrumental excerpts we only require the tonic pitch-

class (Section 1.4 and 3.1) and therefore, we omit the second stage of octave

estimation in such cases. The following paragraphs describe both these stages in

detail.

3.3.1 Tonic Pitch-class Identification

The tonic pitch-class identification in Method 2 is performed in a similar way as the

tonic pitch identification in Method 1. It involves two main processing steps, the

multi-pitch analysis and the candidate selection. The multi-pitch analysis module

used in this method is same as described for Method 1 (Section 3.2.1). Both these

methods differ at candidate selection step, which for Method 2 is described below.

Candidate Selection

The difference between the candidate selection module used in this method and in

Method 1 is in the class labelling strategy that is followed to train the classifier. In

this method, the class labels assigned to each instance while learning the model are

derived from the pitch histograms using the tonic pitch-class information. Recall

that in Method 1, labelling an instance with a class also requires the tonic octave

information in addition to the pitch-class, which is unavailable for instrumental

excerpts. Apart from this, the rest of the procedure followed for selecting the

correct tonic pitch-class candidate is same as the procedure described for tonic

candidate selection in Method 1 (Section 3.2.2).
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The class labels assigned to each instance in this method is the best rank of

the tonic pitch-class amongst all the candidates. Note that we use the term ‘best’

to highlight that we select the highest rank of all the candidates corresponding

to the tonic pitch-class and since we considered a frequency range of more than

one octave, we may have multiple peaks, representing the same pitch class but at

different octaves. This task is also theoretically a 10 class classification problem.

However, as we have relieved a constraint (peak as tonic pitch-class not an exact

pitch) there are greater number of instances (98.7%) labelled with one of the top

three classes (first, second, third) as compared to the Method 1.

Since in this method we use only the tonic pitch-class information to train the

classifier, it can be applied to instrumental music as well (we only have the tonic

pitch-class annotations for instrumental music).

3.3.2 Tonic Octave Estimation

The octave in which the tonic of the singer lies is an important information crucial

for many melodic analyses, as seen earlier (Section 1.4). This section describes the

process of estimating the tonic octave (i.e. the second stage of Method 2) using

the tonic pitch-class and extracted predominant melody contour.

The pitch range for the majority of singers lies within three octaves, where the

tonic chosen by them is the middle register Sa. The tonic is thus the lowest Sa

svar sung by the vocalist (with an exception of the madhyaṁ-́sruti case, which

is rarely witnessed (Section 4.2)). This motivates us to analyze the predominant

melody contour in order to automatically estimate the tonic octave.

The process of estimating the tonic octave is divided into three steps (see Figure

3.2), namely, predominant melody extraction, melody histogram computation and

finally octave estimation using the constructed histogram.

For the predominant melody extraction we use the algorithm proposed by Sala-

mon and Gómez (Salamon & Gómez, 2012), who kindly provided us with an im-

plementation. Their system is specifically designed to extract the pitch contour

of the dominant melodic source (lead performer in our case) in a situation where

multiple pitched components exist simultaneously in the audio signal. The key

ideas behind the system are; using multi-pitch analysis to handle polyphonic mu-
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Figure 3.7: An example of the predominant melody histogram extracted from a
song in our database. The red lines mark the tonic pitch-class locations

sic and exploiting the characteristics of the melodic contours to filter out erroneous

pitch contours. We use this system with the default parameter values, which we

found works quite well for our analysis. A Vamp plugin to use this method in the

SonicVisualizer 1 can be obtained from one of the authors website 2.

The extracted pitch contour is used to construct the melody histogram. The

histogram summarizes all the pitches used in the melody indicating their frequency

of usage. It thus becomes an ideal representation to be used for our analysis.

Before computing the histogram the pitch values are converted into a cent scale

and quantized into 600 bins with a resolution of 10 cents per bin (Equation 3.4).

An example of a melody histogram is shown in Figure 3.7. The red lines mark the

pitch values (in bins) corresponding to tonic pitch-class (Sa) in different octaves.

As can be seen, the tonic pitch corresponds to bin 166 which is the lowest Sa that

has non-zero salience in the histogram. We propose two different approaches to

select the tonic octave from the melody histogram; a rule-based approach (RB)

and classification-based approach (CB).

Rule-based Approach

In this approach the tonic octave is estimated by applying a simple rule on the

melody histogram. Ideally, the tonic pitch is the lowest tonic pitch-class used in

1http://www.sonicvisualiser.org
2http://www.justinsalamon.com/melody-extraction.html
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the melody. Therefore, it would be sufficient to select the lowest tonic pitch-class

in the melody histogram, which has a non-zero value. An example of the melody

histogram is shown in Figure 3.7, where all the bins corresponding to the tonic

pitch-class in different octaves are marked by the red lines. It can be seen from

the figure that the middle tonic pitch-class (middle Sa) is the lowest tonic pitch-

class which has a non-zero value. However, we observed in some rare cases that

the melody extraction algorithm makes octave errors and estimates pitches which

are sub-multiples of the true pitch values. This results into a non-zero value in

melody histogram at a sub-multiple of the bin corresponding to the tonic pitch,

which eventually leads to an error. A solution to this would be to take ratios of

histogram values at tonic pitch-class locations in adjacent octaves. As the octave

errors are very rare, this ratio would still be maximum at the tonic octave. We

calculate the ratio R(i) at every bin corresponding to the tonic pitch-class in

different octaves (i = 1, 2, ..N) as shown below:

R(i) =
h(ji)

h(ji−1) + ε
,

ji = mod(η, 120) + 120 · (i− 1), i = 1, 2, 3, 4, 5

(3.7)

where i is the octave index, h is the histogram value, ji is the bin index of the

tonic pitch-class in the octave i, η is the bin index of the tonic pitch-class (input

given by previous stage), ε is a very small number(minimum floating point value)

to avoid division by zero.

The correct tonic octave is given by the index i = I at which the Ratio R(i) is

maximum.

I = arg max
i
R(i) (3.8)

Classification Based Approach

We noticed certain cases where the rule-based method is bound to fail. An exam-

ple of such a case is the madhyaṁ-́sruti songs in which the singer may not sing

the tonic pitch at all (explained in Section 4.2). In such cases the natural fourth

(Ma) with respect to the tonic pitch is considered as the Sa svar of the rāg. There-

fore, analysing melody histograms at only the tonic pitch class locations won’t be

sufficient to estimate the tonic octave. Another problem is that many times low
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frequency pitches are not tracked by the melody extraction algorithm. In such

situations salience of the lowest tonic pitch-class used in the melody would be low

in the melody histogram, which leads to an error. A detailed discussion on the

challenges in the rule-based approach and analysis of erroneous cases is presented

in the discussion section 4.2.

To handle the specific cases mentioned above, we adapt a classification based

approach. The key idea here is not to rely on only the tonic pitch-class locations

in the melody histogram but to parametrize the whole histogram and model the

lowest octave of the sung melody. The system would automatically learn the

best set of rules and pitch classes in the melody histogram which are crucial for

identifying the tonic octave.

For every tonic pitch-class in different octaves we extract a set of 25 features.

These features are the values of melody histogram at 25 equidistant locations

spanning two octaves, centered around itself. Basically, these are sampled values

of melody histogram, 12 for each semitone below the tonic pitch class and 12

for each semitone above the pitch class and one itself. This gives us a set of 25

features hi(i = 1 . . . 25). An example is shown in Figure 3.7 for a tonic pitch-

class at bin number 166 which actually corresponds to correct tonic octave. The

sampled histogram at 25 equidistant locations centered around 166th bin is marked

by blue stars. Next, we assign a class label to each instance in our dataset, which

are essentially all the possible tonic pitch-classes in different octaves for all the

histograms. We assign a class ‘TonicOctave’ if the instance (tonic pitch-class) is

in the tonic octave, else ‘NonTonicOctave’. The ground-truth tonic annotations

are used for labelling the classes. We then train a classifier using the 25 extracted

features to learn the best set of rules in order to predict the class label for every

tonic pitch-class. By predicting the class (‘TonicOctave’ or ‘NonTonicOctave’) of

every possible tonic pitch-class in different octaves, we can identify the correct tonic

octave. We are also interested in knowing what features (essentially the histogram

samples at 25 equidistant points) are useful for this classification task, as these

features will reflect roughly which svaras in lower register are crucial factors in

deciding the tonic octave.

We use the WEKA data-mining software for this classification task too. We

perform the attribute selection in the same way as did before, using the Cfs-
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SubsetEval attribute evaluator and BestFirst search method with a 10-fold cross

validation option set (Hall, 1999; Witten et al., 2011). We select the features which

are used in at least 80% of the folds. Subsequently, a C4.5 (J48) decision tree is

trained using WEKA to learn the best set of rules to predict the class labels.

Note that for computing the melody histogram we have used the whole audio

file. This is justified, because if our aim is to find out the lowest tonic pitch-

class used by the singer in the melody, we need to listen to all of it. Otherwise,

we would have to incorporate the knowledge regarding the tonic pitch range for

male and female singers. We know that the tonic pitch range for male and female

singers is typically between 110-260 Hz (Section 1.2). Therefore, for the pitch

values which correspond to the pitch-classes between 130-220 Hz, there exists only

one possibility of the tonic pitch. In a such situation we do not even need to apply

any algorithm to estimate the tonic octave. Note that this holds true for majority

of the data in our database. We also conduct experiments to see the effect of

including the information regarding the possible tonic pitch range in the system.

Furthermore, if the gender of the singer is known, there is only one possibility of

the tonic pitch given the tonic pitch-class, as the individual tonic pitch ranges for

both male and female singers are contained within one octave. Therefore if the

gender of the singer is known this stage of tonic octave estimation can be omitted.

3.4 Tonic identification system

This section presents an overview of the proposed practical system for tonic iden-

tification which aims at recursively utilizing all the available data (audio and rele-

vant metadata) and obtaining results with maximum confidence. The motivations

behind such a system are:

1. Prevalent methodologies in MIR primarily focus on using only a single type

of data source (Barrington, Turnbull, & Yazdani, 2009). Most of the ap-

proaches either use the available audio data, music scores or the contextual

metadata to accomplish certain tasks. Recent efforts towards semantic mu-

sic discovery combine audio content analysis with social contextual data and

metadata (Barrington et al., 2009). However, there should be more attempts
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specifically in the area of automatic music description to explore the potential

of combining the complementary type of data, to achieve practical solutions

with better accuracies.

2. The concept of a confidence measure is rarely seen in the existing systems.

This issue particularly becomes important in situations where a method is

used as a building block in another system. In such situations, we might

want to compromise the overall accuracy of the method in exchange for a

high confidence value, to avoid error propagation. One might argue that the

overall accuracy of a method reflects its statistical confidence value, but at

the same time we should consider that the method could have been developed

for achieving an overall high accuracy, rather than obtaining results with a

high reliability. Moreover the concept of confidence measure can allow us

to iteratively utilize the available data, as will be described while explaining

the proposed system.

Motivated by the aforementioned ideas, the proposed system combines the

audio data and the available metadata for the identification of the tonic. Based

on the derived confidence measure, the system tries to combine these two data

sources to maximise the accuracy in an iterative manner. Figure 3.8 shows the

block diagram of the complete iterative system.

As we notice in the figure, all the available data is fed to a data selection

module, which decides what fraction of the data and which type of data is to be

supplied to the automatic tonic identification module in each iteration. The data

selection module has a predefined preferential order of the data to be fed into the

system. The order is such that the audio data is utilized fully before using the

metadata (as for Indian art music metadata in an organised and machine readable

form is harder to obtain than the audio). The system can be started with a fraction

of a minute of the audio data (the duration which is enough for a human listener

to identify tonic). Based on the derived confidence measure more and more audio

data would be pumped into the system. The iterative process will be terminated

when the confidence reaches a threshold for it to be safely considered as 100%

accurate estimation. In case we couldn’t reach the desired confidence value even

after utilizing the full audio data, metadata regarding the rāg, artist, gender of
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Figure 3.8: Block diagram of the iterative tonic identification system; both the au-
dio and the metadata is input to the system. The system returns a tonic frequency
along with the associated confidence value

the singer will be fed to the system; such that using the minimum amount of extra

information we achieve the desired confidence value while maximising the accuracy

at the same time.

3.5 Evaluation Methodology

3.5.1 Database

The music collection used to evaluate the proposed approaches is a subset of the

musical material compiled as part of CompMusic project (Serra, 2011). The core

database used in this work is comprised of 352 full length audio songs, containing

both vocal (237) and instrumental (115) musical pieces. However, for the evalua-

tion of specific methods/approaches at various stages, multiple short excerpts are

extracted from the full audio songs. In addition to the audio data we also possess

the relevant metadata corresponding to each song, uploaded to Musicbrainz3. Ev-

3http://musicbrainz.org/
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Figure 3.9: Visualization of the three datasets S1, S2 and S3 used in the evaluation
of proposed approaches.

Dataset Size Len. Hi.(%) Ca.(%) M(%) F(%) #Usong #Uartists
S1 237 full 27.4 72.6 75.2 24.8 237 34
S2 375 3 min 37 63 77.8 22.2 237 34
S3 540 3 min 36 64 NA NA 352 54

Table 3.1: Database description; summary in terms of different constituting com-
ponents; Hindustani (Hi), Carnatic (Ca), male (M), female (F), number of unique
songs (Usong), number of unique artists (Uartists)

ery song in our database is a part of the Hindustani and Carnatic music collections

in Musicbrainz.

Typically the length of the audio songs in Indian art music can vary from 3-4

minutes to more than 1 hour. The characteristics of the musical content (both in

terms of musical concepts and acoustical characteristics) may also vary a lot, from

slow and unmetered ālāp in one song to fast tān in another. Therefore, for the

evaluation of the methods in which only a few minutes of the audio data is used

(to show that only a small amount of data is sufficient to perform the task), it is

very important that multiple excerpts are extracted from different sections of the

song, to preserve the diversity. In the current work, the short excerpts which are

used for the evaluation are 3 minutes long and for the songs more than 12 minutes

in length, 3 such excerpts are extracted from the start, middle and the end of the

song. Otherwise, only one excerpt per song is extracted from the beginning.

We use 3 different datasets derived from our core-database. Figure 3.9 shows

these different sets (S1, S2 and S3) indicating the constituent musical material

(vocal or instrumental) and the amount of mutual overlap in them. To better
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Figure 3.10: Distribution of tonic frequency for male and female vocal perfor-
mances in our music collection.

understand the datasets, general statistics are provided in Table 3.1. In this table

Hi. stands for the number of songs belonging to Hindustani music (in percentage),

Ca. is for Carnatic music, M and F denotes the percentage of the songs sung

by male and female singers respectively, #Usong and #Uartist is the number of

unique songs and artists present in the database. In Figure 3.10 we display the

distribution of tonic frequencies in our music collection for both male and female

singers (only for vocal excerpts). This reflect another dimension of the diversity

present in the database.

3.5.2 Annotations

The tonic pitch (pitch-class for instrumental music) for each excerpt was manually

annotated by the author, which was later verified and corrected by a professional

Carnatic musician (the number of discrepancies was very small). To assist the tire-

some process of annotation, we used the candidate generation part of the proposed

approach. Using the multi-pitch histogram we extracted the top 10 candidate fre-

quencies for the tonic in the range of 110 to 300 Hz. Notice that the frequency

range of the tonic is kept quite lenient for doing annotations. To further accelerate

the process, we also designed a simple MATLAB® GUI. A screenshot of the GUI

can be seen in Figure 3.11.

Using this GUI the user can load at-once the list of files which are to be anno-
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Figure 3.11: Screenshot of the MATLAB GUI used for tonic annotations

tated. Selecting a file loads all the 10 tonic candidate frequencies along with the

corresponding audio. The annotator can then listen to the candidate frequencies

(tones) one by one together with the original audio in order to identify the tonic

frequency. This process was followed for the tonic annotations of all the songs in

our database.

3.5.3 Performance Evaluation

We introduced two methods, Method 1 (M1) and Method 2 (M2) for the tonic

identification task. M1 identifies the tonic pitch and is applicable to vocal music

pieces whereas M2 identifies the tonic pitch-class and caters to both the vocal and

instrumental excerpts. M2 also include another stage of tonic octave estimation

which is only required for the vocal excerpts and not for the instrumental pieces.
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The evaluation for vocal excerpts is done in terms of the percentage of the excerpts

for which the tonic pitch is correctly identified, whereas for the instrumental music

it is the tonic pitch-class. An output is considered as correct if it is within a bracket

of 25 cents from the ground-truth value.

For a detailed performance evaluation and deeper analysis of the approaches,

we evaluate both the methods at individual stages. M1 is evaluated for the tonic

pitch identification accuracy on the dataset S2, which contains only vocal excerpts.

The first stage of M2 is evaluated for the tonic pitch-class identification task on

the dataset S3 containing both vocal and instrumental excerpts. The second stage

of M2, for the tonic octave estimation is evaluated on dataset S1 containing full

vocal recordings. For the evaluation of the tonic octave estimation, we calculate

the accuracy in terms of the percentage of the excerpts for which tonic octave is

correctly identified. The annotated tonic frequencies by the author (section 3.5.2)

served as the ground-truth for calculating all the accuracies.
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Chapter 4

Results and Discussion

This chapter presents the results obtained from the performance evaluation of both

the proposed methods. We also present an analysis of the accuracies obtained for

different tasks and provide plausible explanations for the erroneous cases wherever

possible.

4.1 Results

In this section we present the evaluation results for our proposed approach for tonic

identification. Recall that the evaluation strategy used for calculating performance

accuracies was detailed in Section 3.5.3.

The performance accuracies for the tonic pitch identification task using Method 1

(M1) on the dataset S2 for both with and without normalization are summarized in

Table 4.1 and 4.2. These tables show the performance of M1 on the whole dataset

(‘full’), as well as the obtained accuracies as a function of different attributes such

as Hindustani and Carnatic music, for male and female singers. Note that even

when the results are shown for a particular attribute (such as Hindustani music),

the classifier is trained using the whole database. It also shows a breakdown of the

total errors made by the system in terms of different types of errors. The erroneous

cases can be classified into four categories; first, octave errors (Oct.Err) is when

the tonic pitch-class is correctly identified but not the tonic-octave. Second, the

‘Pa’ or fifth type errors (Pa Err.) is when instead of identifying the tonic pitch the
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Filter Accuracy(%) Oct. Err.(%) Pa Err.(%) Ma. Err(%) Others
Full 84.27 2.13 4 4 5.6

Hind. 88.49 2.16 4.32 1.44 13.6
Carn. 81.8 2.12 3.81 5.51 6.8
Male 87.67 1.37 2.73 2.39 15.82

Female 72.28 4.82 8.43 9.64 4.82

Table 4.1: Performance accuracy of M1 on dataset S2 with instance normalization.
Results shown for the full dataset and also a breakup of the performance is pre-
sented for the songs belonging to Hindustani (Hind.) & Carnatic (Carn.) music
and to male & female singers categories.

Filter Accuracy(%) Oct. Err.(%) Pa Err.(%) Ma. Err(%) Others
Full 93.05 1.3 2.7 1.87 1.1

Hind. 96.4 1.44 0 0.72 1.44
Carn. 91.1 1.27 4.24 2.54 0.85
Male 93.83 1.37 3.08 0.68 1.03

Female 90.36 1.20 1.2 6.02 1.20

Table 4.2: Performance accuracy of M1 on dataset S2 without instance normal-
ization. Results shown for the full dataset and also a breakup of the performance
is presented for the songs belonging to Hindustani (Hind.) & Carnatic (Carn.)
music and to male & female singers categories.

system picks its fifth (Pa) either on the higher or the lower octave. Similar to this

is the third category, the ‘Ma’ or fourth type errors (Ma Err.) when the selected

pitch is the fourth of the tonic pitch in any octave. All other kinds of errors belong

to the ‘Others’ category.

The performance accuracies for tonic pitch-class identification task using the

first stage of Method 2 on database S3 for both with and without instance normal-

ization are summarized in Table 4.3 and 4.4. These tables also show a break up of

total errors made by the system in terms of different types of errors, as explained

above.

The results for the tonic octave estimation using the second stage of Method 2

for both the approaches (rule-based and classification-based) are shown in Table

4.5 and 4.6. The evaluation is done both with and without imposing a constraint

on the tonic pitch range. In the former case, the allowed frequency range for the
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Filter Accuracy(%) Pa Err.(%) Ma. Err(%) Others
Full 76.67 10.37 6.29 6.67

Vocal 76.53 10.933 5.6 6.93
Inst. 76.96 9.09 7.88 6.06
Hind. 84.69 6.63 2.55 6.12
Carn. 72.1 12.5 8.43 6.97

Table 4.3: Performance accuracy of M2 (tonic pitch-class identification) on dataset
S3 with instance normalization. Results shown for the full dataset and also a
breakup of the performance is presented for the songs belonging to Hindustani
(Hind.) & Carnatic (Carn.) music and to vocal & instrumental (Inst.) music .

Filter Accuracy(%) Pa Err.(%) Ma. Err(%) Others
Full 92.96 2.59 2.96 1.48

Vocal 94.13 2.67 1.87 1.33
Inst. 90.3 2.42 5.45 1.82
Hind. 94.39 1.53 2.04 2
Carn. 92.15 3.2 3.49 1.16

Table 4.4: Performance accuracy of M2 (tonic pitch-class identification) on dataset
S3 without instance normalization. Results shown for the full dataset and also a
breakup of the performance is presented for the songs belonging to Hindustani
(Hind.) & Carnatic (Carn.) music and to vocal & instrumental (Inst.) music.

Filter Accuracy (no tonic-limit)(%) Accuracy (tonic-limit)(%)
Full 89.5 96.2
Male 89.32 95.5

Female 89.83 98.3
Hind. 96.92 98.46
Carn. 86.62 95.35

Table 4.5: Performance accuracy of M2 (tonic octave estimation) on dataset S1
for rule-based approach. Results shown for both the cases; without imposing any
limit on allowed tonic pitch range and constraining it to a limit of 110-260 Hz
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Filter Accuracy (no tonic-limit)(%) Accuracy (tonic-limit)(%)
Full 96.62 98.73
Male 98.88 100

Female 89.83 94.91
Hind. 92.31 95.38
Carn. 98.26 100

Table 4.6: Performance accuracy of M2 (tonic octave estimation) on dataset S1 for
classification based approach. Results shown for both the cases; without imposing
any limit on allowed tonic pitch range and constraining it to a limit of 110-260 Hz

tonic pitch was restricted to 110-260 Hz. Note that the results shown are only for

the tonic octave estimation stage, evaluated individually using the ground-truth

tonic pitch-class information.

4.2 Discussion

In this section we analyse the obtained results, comment on performance of the

proposed methods while scrutinizing the erroneous cases and providing plausible

explanations wherever possible. The discussion is organized on the basis of the

evaluated tasks, namely, tonic pitch identification, tonic pitch-class identification

and tonic octaves estimation.

Tonic pitch identification

We see in Table 4.2 that Method 1 obtains a good accuracy of 93.05% for the

tonic pitch identification task on the complete dataset S2 (without instance nor-

malization). More importantly, since the allowed frequency range for tonic pitch

was more than one octave (110-370 Hz), it means that the system is able to cor-

rectly identify not just the tonic pitch-class but also the corresponding octave.

This is already a significant advancement, as past approaches only targeted the

identification of the tonic pitch-class.

The method is evaluated for both cases of with and without performing in-

stance normalization while training the classifier. As can be seen, normalizing

the instances per class results in an inferior performance compared to leaving the

58



number of instances per class as in the original database. This can be attributed

to the fact that some classes contain a very small number of instances (in abso-

lute terms) and the normalization is performed by repeating the instances of the

minority class. After instance normalization the classifier predicts the minority

classes with better accuracy, but at the same time the prediction accuracy for

the majority classes drops down by a small amount. The increased accuracy for

predicting the minority classes does not improve the overall accuracy because a

slight decrease in prediction accuracy of the majority classes causes a greater drop

in the performance. It appears that if our goal is to achieve maximum overall

accuracy, it is better to ignore the specific rare cases than try to learn them. Be-

cause in an attempt to learn the rules for specific rare cases, the system starts

having more confusions in the prediction of majority classes. In the remaining

part of the discussion we present all the analysis for the case of without instance

normalization.

Analysing the obtained results as a function of musical style (Hindustani or

Carnatic) and gender of the singer (male or female) revealed interesting insights.

We observe that the performance for the excerpts belonging to Hindustani mu-

sic (96.4%) is better compared to the performance obtained for Carnatic music

(91.1%) (Table 4.2). Examining the data on a broad level, we noticed that in

many Carnatic excerpts the loudness level of the drone sound in relation to the

lead performer was quite low. Consequently, this results in frames where all the

prominent peaks in the salience function correspond to the lead voice (note that the

salience function contains many more peaks than the true F0 due to the harmonic

summation). This means that the peaks in the pitch histogram corresponding

to the drone sound have quite low magnitude, resulting in a low tonic rank and

eventually leading to incorrect tonic identification.

Considering the performance accuracy as a function of gender of the singer

(Table 4.2), we observe that the system works better for the excerpts performed

by male singers (93.83%) as compared to those sung by female singers (90.36%).

A plausible reason for this could be the uneven amount of male and female per-

formances in our dataset. Since the dataset is substantially populated by male

singer performances (77.8%, Table 3.1), the classification rules are better learned

for these excerpts. Also, we notice that the frequency range chosen for the con-

59



struction of the pitch histograms is well tuned for the tonic pitch range of male

singers. The frequency range for the computation of pitch histograms was selected

based on the overall high accuracy and therefore, for the same reasons (dominance

of male performances), the selected frequency range appears to be biased towards

male singers. An analysis of how the chosen frequency range during multi-pitch

analysis affects the accuracy of the system, particularly the performances of female

singers is provided in subsequent paragraphs.

Further analysing the results, we examined the type of errors commonly made

by the system. The most frequent error types were selecting the fifth (Pa) or the

fourth (Ma) as the tonic or identifying the tonic in another octave. These type of

errors are understandable, as Pa or Ma is the secondary pitch-class that is often

produced by the drone instrument in addition to the tonic. Moreover, for the male

singers the errors were selecting the higher Pa or Ma as tonic, whilst for female

singers it was selecting the lower Pa or Ma. This can be attributed jointly to the

differences in typical tonic frequencies for male and female singers, together with

the frequency range chosen for constructing the pitch histograms. Errors apart

from these three types, are quite rare. This error analysis together with a close

examination of the pitch histograms suggests that some of these errors could be

avoided if the secondary pitch-class produced by the drone instrument is known.

In these cases a fundamental cause for an error is the confusion between the Ma

and Pa tuning cases, which arises due to similar pattern of the histogram peaks.

As a result, the system applies rules which are learned for handling Pa tuning

cases onto Ma tuning cases and vice versa, leading to error.

Thus, if the tuning configuration of the drone instrument is known, then some

of these errors arising because of the Ma-Pa confusion can be avoided. As a matter

of fact, the tuning configuration of the drone instrument is related to the rāg, and

so, incorporating rāg information could lead to an improvement. This work is left

for future investigation.

The resulting decision tree exhibits musically meaningful relationships. An

example of a decision tree obtained for Method 1 is shown in Figure 4.1. We see

that the pitch intervals used by the tree to make the decisions correspond very

well to the typical intervals between the prominent pitches in the drone sound.

The distance between tonic Sa to lower Pa or tonic Sa to higher Ma is rounded
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Figure 4.1: An example of the decision tree obtained for Method 1

off to 5 semitones and between tonic Sa to lower Ma which is same as tonic Sa or

higher Pa is 7 semitones. The branch of the tree where the distances are 6 and 11

semitone contains very few instances.

Examining the rules of the same decision tree (Figure 4.1) in depth we observe

that one of the most useful pieces information is the relationship between the top

two peaks of the histogram (f2). Whenever the second highest peak is more than

5 semitones apart, the highest peak is chosen as the tonic. This condition always

corresponds to one of the two cases; either the second peak is Pa (in a Pa tuning)

leading to f2 = 7 or it is the higher Sa resulting in f2 = 12. In both these conditions

the first peak corresponds to the tonic Sa and is correctly identified every time. The

case of f2 = ∓12 is quite a common scenario, where both the peaks correspond

to Sa in different octaves. Branching left, the tree checks whether the highest

peak corresponds to Pa (7 semitone above the tonic, f2 = −7). To validate this

hypothesis it checks the relationship with the third peak. If third peak is found at

5 semitone above the highest peak (thus corresponding to Sa one octave above the

tonic), the system confirms that first peak is Pa and correctly selects the second

peak which corresponds to the tonic pitch. Otherwise the hypothesis is rejected,

and the pattern corresponds to a case of Ma tuning where the highest peak is Ma.

Similar interpretations can be made for all the rules.
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Figure 4.2: Demonstration of the effect of frequency range selected for the multi-
pitch analysis, showing a specific scenario where Ma tuning cases are confused
with Pa tuning cases, leading to errors.

As a final step in our analysis of the results obtained for the tonic pitch iden-

tification task, we investigate an interesting observation. In Table 4.2 we notice

that for the songs performed by female singers, the percentage of Ma type errors is

considerably high (6.02%) compared to the rest. Examining this specific scenario

exposed one of the effects of the frequency range selected for constructing pitch

histograms on the system’s performance. A highly common pattern observed in

the peaks of the pitch histograms is shown in Figure 4.2 (pattern-A). The third

highest peak can either be Ma or Pa, depending upon the tuning of the drone in-

strument. We consider the case of Ma tuning for this case-study. For this pattern

(A), the system easily identifies the true tonic pitch as the highest peak in the his-

togram. This can be easily deduced from the decision-tree shown in Figure 4.1, as

f2 = 12. A plausible reason for this pattern being very common is the fact that the

tonic pitch-class is reinforced much more than the secondary pitch-class produced
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by the drone instrument. For example, in tānpūrā, three strings are producing the

Sa, whereas only one string produces secondary pitch-class (Pa, Ma or Nı̄). So,

the magnitude of the peaks corresponding to the Sa pitch-class is typically higher.

The tonic frequencies chosen by female singers are considerably higher than

those by male singers (Figure 3.10). So, for the case of a female singer, the pitch-

histogram with the same pattern (A) of the peaks, as seen above, would look like

its transposed version as shown in Figure 4.2 (B). But, because the frequency range

which is used to construct the pitch histogram remains the same for both male and

female singers (110-370 Hz), the peak corresponding to the higher Sa is now outside

this range and will not be considered in the analysis. So effectively, in such a case,

the section of the pitch histogram which is within the frequency range exhibits

another type of pattern (B). This pattern (B) now resembles another pattern (C)

shown in the same figure, which is a typical pattern found in the excerpts where

the Pa tuning is used by the drone instrument and are sung by male singers. The

two patterns (B and C) look very similar but notice the relative location of the

tonic pitch with respect to the highest peak is different in both the patterns. This

implies that the system will apply the same set of rules to identify the tonic pitch in

both situations (as the patterns are identical) and would eventually select a wrong

tonic pitch in at least one of the cases. Because the excerpts with Pa tuning of

the drone instrument and sung by male singers are more common in the database

compared to excerpts with Ma tuning and sung by female singers, the learned

rules are such that they (rules) favor the former case of Pa tuning. As a result, we

select the lower Ma as the tonic pitch (in pattern B), applying the same logic used

when we identify the correct tonic pitch when the highest peak is Pa (in pattern

A). As we see here, the chosen frequency range for computing the pitch histograms

plays a crucial role and affects the performance of the system. We realize that the

chosen frequency range in our implementation is more suited for the performances

of male singers. This is understandable because the frequency range is selected on

the basis of the overall accuracy of the system and the male performances in our

database are significantly higher in numbers.
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Tonic pitch-class identification

The results obtained for the tonic pitch-class identification task using the first

stage of Method 2 for both with and without instance normalization are shown in

Table 4.3 and 4.4. The method performs well, achieving an accuracy of 92.96% on

dataset S3, without instance normalization. We see that this method works well

for not only the vocal excerpts but also for the instrumental excerpts .

When instance normalization is performed the obtained results are inferior

compared to the case when number of instances are not normalized. A possible

explanation for this is already discussed in the previous section 4.2. In the remain-

ing part of the discussion we present all the analysis for the case when the number

of instances are not normalized.

We also analyse the performance accuracy as a function of different attributes

such as for vocal, instrumental, Hindustani and Carnatic excerpts, similar to the

analysis performed in the previous section. Table 4.4 shows the obtained ac-

curacy for the whole database (92.96%), vocal excerpts (94.13%), instrumental

pieces (90.3%), excerpts belonging to Hindustani music (94.39%) and Carnatic

music (92.15%). We notice that the performance on the vocal excerpts is better

compared to the instrument excerpts. A plausible reason for this difference in

performance could be the presence of drone instrument as an accompaniment. For

vocal music, there is always a drone instrument accompanying the lead performer,

whereas for the instrumental songs a dedicated drone instrument might be absent

in some cases. In many Indian instruments such as sitār, v̄ın. ā and sāranḡı the

sympathetic strings of the instrument reinforce the tonic pitch and other impor-

tant pitch classes. Therefore in some instrumental performances an external drone

instrument is not used. However, the loudness level of the sound produced by

the sympathetic strings in relation to the sound produced by the main strings is

considerably low in many cases, leading to incorrect tonic identification.

Examining the type of errors made by the system, we noticed that the com-

monly made errors were of the type Ma or Pa. Moreover, we found that the reasons

behind these errors are similar to the ones which caused errors in tonic pitch es-

timation task in Method 1, as explained earlier. We see that both Method 1 and

Method 2 make identical errors, which is comprehensible as they share the core
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methodology.

Tonic octave estimation

Table 4.5 and 4.6 show the results obtained for the tonic octave estimation task

using rule-based and classification based approach of the second stage of Method 2

on dataset S1. The rule-based approach achieves an accuracy of 89.5%, whereas

the classification based approach yields 96.62% accuracy (without applying tonic-

range constraint). As we can see, the difference in the performance accuracy is

quite considerable.

Examining the erroneous cases for the rule-based approach, we found multiple

scenarios where this approach would fall short of estimating the correct tonic oc-

tave. However, these situations are not very common and occur only in few songs,

as is reflected from the obtained overall accuracy of 89.5%, which is reasonably

good. The two main reasons for the rule-based approach to select the wrong tonic

octave are as follow:

• In few songs the tonic pitch of the singer does not correspond to the Sa svar

of the rāg. For these songs the root svar or Sa of the rāg in the melody

corresponds to the higher fourth of the tonic pitch (Ma). This concept is

termed as madhyaṁ-́sruti. It appears in the performances of the rāgs where

the pitch range to render āroh and avroh (ascending and descending) is

truncated. As the pitch range used in the exposition of these rāgs is low as

compared to the other rāgs, the singer transposes the Sa of the rāg to fourth

of the tonic instead of choosing Sa to be the tonic pitch.

As we can imagine, in these situations our hypothesis that the lowest Sa

sung by the singer corresponds to the tonic pitch, i.e. in the correct octave

does not holds true. Consequently, applying the rule-based approach leads

to an octave error.

• For some excerpts sung by the male singers we noticed that the lower fre-

quencies are not well tracked by the melody extraction algorithm. This may

be due to the fact that we did not change any parameter of the melody

extraction algorithm. The parameters of this algorithm are tuned for the
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melodies in Western music, which generally do not span very low frequency

regions (100-140 Hz) as the melodies sung by the male singers in Indian

art music do. As a result, the salience of the lowest Sa in the melody his-

togram is either null or extremely low, leading to an octave error if we use

the rule-based approach.

Figure 4.3 shows section of three melody histograms computed from the ex-

cerpts belonging to cases mentioned above. The figure shows two octaves of each

histogram, centered around the tonic pitch. The case (a) is corresponding to a

song with madhyaṁ-́sruti, (b) a female vocalist of Hindustani music singing as low

as 600 cents below the tonic and (c) a male Carnatic singer with a tonic of 129

Hz, a case where F0-estimation algorithm did not track low pitch values in the

melody. The histograms in this figure give an idea about the limitations of the

rule-based approach in handling these specific cases.

As seen earlier, the classification based approach performs better with an ac-

curacy of 96.62% as compared to the rule-based method. This is because the later

is based on a simple rule, which only considers the value of the melody histogram

at the locations of tonic pitch-class, whereas the classification based approach uses

the sampled form of the whole melody histogram capturing much more informa-

tion. The classification based approach basically models the section of the melody

histogram which corresponds to the lower register of the singer.

We also evaluate both the approaches for tonic octave estimation incorporating

the knowledge of possible frequency range of tonic pitch. We apply a constraint

that the tonic pitch can only lie between 110-260 Hz. This considerably improves

the performance of the rule-based approach which now achieves an accuracy of

96.2%. The accuracy for the classification based approach also increases to 98.73%

but not as significantly as for the former case. We observe that the performance of

the classification based approach does not depend a lot on the selected frequency

range. Examining the errors for the classification based approach, we found that

some of the erroneous cases are the songs performed by the female singers in which

the artist sings up to 600 cents below the tonic (Figure 4.3, (b)). Singing that low

from the tonic pitch will make the lower octave of the melody histograms resemble

the lower octave of the histograms obtained from the madhyaṁ-́sruti cases, with
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Figure 4.3: Melody histogram of three excerpts, centered around the tonic pitch.
The case (a) is corresponding to a song with madhyaṁ-́sruti, (b) a female vocalist
of Hindustani music singing as low as 600 cents below the tonic and (c) a male
Carnatic singer with a tonic of 129 Hz, a case where F0-estimation algorithm did
not track low pitch values in the melody.

respect to the tonic pitch-class (Figure 4.3, (a)). As a result, the classifier treats

it like a madhyaṁ-́sruti case and selects the octave which is one below the true

octave. This is because in the madhayama-́sruti cases the lower octave of the

melody histogram lies above the tonic pitch (See Figure 4.3).

Another interesting observation is that the rule-based approach performs equally

good for the performances of male and female singers, and better for Hindustani

music compared to Carnatic music. However, the classification based approach

performs better for the performances of male singers compared to female singers

and for Carnatic music than the Hindustani music. This can be attributed to the

predominance of male singers and Carnatic music cases in our database (Table

3.1).
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Chapter 5

Conclusions and Future work

In the last chapter of this dissertation we provide an overview of the work car-

ried out and summarize the achievements. We also discuss issues which are still

unresolved and need further investigation, as well as present some suggestions for

future work.

5.1 Summary of the work

We started with an introduction of Indian art music and briefly presented an

overview of this music tradition, highlighting the important musical concepts that

define Indian art music. Later, we described the characteristics of this music ma-

terial to get an idea about the kind of music under investigation. Subsequently,

we explained the meaning of tonic in the context of Indian art music and under-

lined the importance of this concept. We also presented the definition of key and

tonality, two concepts that relate to tonic in Western music in order to stress on

the differences in the contexts in which the term tonic is used in both these music

traditions. Finally, we set forward clear goals for this research work and our moti-

vation for the computational analysis of Indian art music for the task of automatic

tonic identification.

We have reviewed main audio features, techniques and works relevant to the

computational analysis of the tonal aspect of music. We discussed state-of-the-art

approaches for F0-estimation, multi-F0 estimation, predominant melody extrac-
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tion and for the computation of pitch-class distributions. To have a little back-

ground on the methodologies adapted for tonal analyses in Western music, we

briefly presented commonly used techniques for the key estimation task. A review

of the relevant work done for tonic identification in Indian art music was presented,

which revealed that there is a wide scope for improvement in these approaches.

Later, we described the tonal structure of the tānpūrā, explaining different types

of tunings, its spectral characteristics and the reason for its unique sound texture.

We proposed and implemented two methods for the tonic identification in In-

dian art music based on multi-pitch analysis. We have given a detailed explanation

on both the methods in terms of the approach followed, motivation behind each

of the approaches and included all the necessary implementation details. We also

present a proposal for a complete iterative system for tonic identification in In-

dian art music. We evaluated both the methods on a sizable database and showed

that we achieve a good accuracy following this approach. We finally presented a

detailed analysis of the erroneous cases, examining closely each type of error that

the system made and gave plausible explanations for most of them.

5.2 Main conclusions

The problem of automatic tonic identification in Indian art music has not received

deserved attention from the MIR community in the past, even though it is one of

the fundamental problem in computational analysis of Indian art music. Moreover,

past approaches to this problem were confined to tonic pitch-class identification,

doing which we completely discard an important information of the tonic octave.

We proposed two methods to identify tonic of the lead artist in a performance

of Indian art music, which are capable of identifying not just the tonic pitch-class

but also the corresponding tonic octave. The methods are based on multi-pitch

analysis of the audio signal, in which multiple pitches present in the audio recording

at a given instance of time are used to construct a pitch histogram. The peaks of

the histogram represents the dominant pitches used in the excerpt. This analysis

enables us to take into account not just the pitches used by the lead performer but

also the ones produced by the drone instrument. Using the pitch histograms and

a classification based approach, we were able to learn optimal set of rules for the
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identification of the tonic. Additionally, the learned rules are easily to interpret

and are musically coherent.

We also analyze the predominant melody to obtain the tonic octave informa-

tion as a part of the second method. We used a rule-based and a classification

based approach to identify the tonic octave from the melody histogram. By using

a simple set of rules on melody histogram at tonic pitch-class locations, we were

able to identify the tonic octave quite reliably. Furthermore, using the melody

histogram values at each semitone and a classification base approach, the auto-

matically learned set of rules performed much better. Both the methods were

evaluated on a sizable collection of excerpts consisting of a wide variety of mu-

sic pieces, artists, arrangement and recording conditions. More importantly, the

approach adapted is suitable for both Hindustani and Carnatic music, male and

female performances, vocal and instrumental music and it uses only a short excerpt

excerpt of the full performance (exception being only the tonic octave estimation

task which requires full performance).

The work presented in this thesis is primarily from a computational perspective.

We plan to include more knowledge about the perception and cognition of a human

listener for identifying the tonic pitch in our future work.

5.3 Open issues and future work

While we achieve our set goals for this work, there are many issues which are still

unresolved and need further investigation. In this section we list out some of those

issues which we found are interesting and should be addressed in the future work.

• Source separation: We proved that the drone sound can be successfully

utilized using a multi-pitch approach to identify the tonic pitch in Indian art

music. However, there are cases where the approach fails to identify the cor-

rect tonic. Some of the reasons behind such mistakes are: the loudness level

of the drone sound in some excerpts is too low as compared to the lead per-

former. Also, we discarded the saliences of F0 candidates before constructing

pitch histogram (to normalize the bias towards lead performer). As a result

of this, the candidate corresponding to tonic pitch has equal weight in the
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histogram as compared to the one which corresponds to the secondary pitch

class of the drone instrument, even though the tonic pitch candidate is typ-

ically more salient. A solution to these problems can be performing source

separation upfront, to extract the signal component corresponding to the

drone sound and use only that component to identify the tonic pitch.

• Utilization of metadata : Our proposed approach make use of only the

audio data while not utilizing the available metadata corresponding to the

songs in our database. However, metadata can be a potential source of

information, particularly for some culture specific knowledge that can aid

the identification of tonic.

We observed that the type of errors commonly made by the system were

either the octave errors, fifth errors (Pa) or the fourth errors (Ma). In such

cases, information regarding the gender of the singer or the rāg correspond-

ing to the performance might help in resolving the confusions, leading to

improvement in the system.

A proposal for a complete system for tonic identification utilizing both the

audio data and relevant metadata is presented in Section 3.4.

• Perceptual and cognitive studies: Studies pertaining to how an human

listener identifies the tonic pitch in Indian art music and the duration of

the audio data sufficient for this task should be done. This might help

in improving the methodologies used by the automatic tonic identification

approaches and it also provides a baseline for the amount of audio data

needed to match the human performance. Furthermore, perceptual aspects

related to this task such as the appropriate pitch resolution that should be

considered in a computational analysis should also be studied in future.

• Cultural influence: An interesting study is be to analyse the effect of

cultural background of the human listener in the task of tonic identification.

We observed that for some melodies even a non-listener of Indian art music

was able to identify the tonic, whereas some melodies demanded a thorough

knowledge and understanding of the rāg.
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5.4 Contributions

This section summarizes the relevant contributions associated with the work done

in this thesis.

• Scientific background and review of relevant works and techniques pertaining

to tonic identification in Indian art music.

• A new approach to tonic identification in Indian art music based on multi-

pitch analysis of audio data.

• Compilation of Hindustani music collection 1 comprising of around 125 CD

releases, carried out as a part of CompMusic project 2 3. Uploading all the

metadata corresponding to the collection into Musicbrainz 4. Tonic annota-

tions for the songs used in the evaluation of the proposed approach.

• Compilation of solo recordings of both acoustic (#12) and electric (#20)

tānpūrā, with different tuning configurations and tonic pitches. Sounds up-

loaded with all the relevant details on Freesound 5 6.

• Code: An optimized C++ implementation for the computation of pitch

salience function using harmonic summation. The code can be obtained

from Github7.

• Relevant publications:

J. Salamon, S. Gulati and X. Serra, A Multipitch Approach to Tonic Identi-

fication in Indian Classial Music. In Proc. of ISMIR 2012, October, Porto,

Portugal.

S. Gulati, J. Salamon and X. Serra, A Two-stage Approach for Tonic Iden-

tification in Indian Art Music. 2nd CompMusic Workshop, Istanbul 2012

1http://musicbrainz.org/collection/5d9b5dc6-507b-4f1a-abc4-fefd14f5e84c
2http://musicbrainz.org/user/compmusic/collections
3http://compmusic.upf.edu/
4http://musicbrainz.org/
5http://www.freesound.org/people/sankalp/packs/9571/
6http://www.freesound.org/people/sankalp/packs/9600/
7https://github.com/sankalpg/HarmonicSummation.git
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