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ABSTRACT

Query-by-Humming (QBH) systems base their operation
on aligning the melody sung/hummed by a user with a set
of candidate melodies retrieved from polyphonic songs.
While MIDI-based QBH builds on the premise of exist-
ing annotated transcriptions for any candidate song, audio-
based research makes use of melody estimation algorithms
for the songs. In both cases, a melody abstraction process
is required for solving issues commonly found in queries
such as key transpositions or tempo deviations. Full au-
tomatic music processes are commonly used for this, but
due to the reported limitations in state-of-the-art methods
for real-world queries, other possibilities should be consid-
ered. In this work we explore three different melody repre-
sentations, ranging from a general time-series one to more
musical abstractions, which avoid full automatic transcrip-
tion, in the context of an audio-based QBH system. Results
show that this abstraction process plays a key role in the
overall accuracy of the system, obtaining the best scores
when temporal segmentation is dynamically performed in
terms of pitch change events in the melodic contour.

1. INTRODUCTION

Query-by-Humming systems constitute a particular case of
content-based music similarity search schemes in which
the input query is a sung, hummed or whistled section of a
song, usually its main melody [1, 2], and the output is the
target song. Such a music retrieval paradigm stands as an
interesting alternative to classic text-based retrieval frame-
works (for instance, tag-based search) for its simple usage
complemented by the fact that no musical knowledge from
the user is required [3].

Research in QBH mainly focuses on addressing the in-
accuracies found when producing the queries: on the one
hand, tuning issues have to be considered as users may
sing out of tune and/or in a different key [4]; on the other
hand, tempo deviations among queries and candidates may
also occur [4, 5]. For overcoming them, a melody abstrac-
tion process, which may range from general time-series
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codifications to more sophisticated music-based ones, fol-
lowed by a melody comparison stage are performed for es-
timating the dissimilarity between the query and the candi-
dates [6].

The process for obtaining the set of candidate melodies is
not trivial [2, 5, 7]: main fundamental frequency (f0) esti-
mation for queries and candidates cannot be assumed as an
accurate process, especially when dealing with polyphonic
songs [8]. While this estimation process is inevitable for
the queries as they constitute the user audio input to the
system, this issue has been typically avoided for the candi-
date songs by assuming the existence and availability of
high-level annotated representations (for instance, MIDI
files) of these melodies.

Due to the limitations the previous assumption implies,
mostly in terms of practical systems, some QBH schemes
try to estimate this melody algorithmically from audio. Al-
though more realistic, this adds more complexity to the
system since no melody estimation algorithm is error-free.

As aforementioned, melodic contours require of an ab-
straction process. For taking advantage of the large amount
of research carried in the symbolic melodic similarity field,
melodies estimated from audio sources are coded into high-
level music representations [9], usually with full automatic
music transcription systems. However, given the limita-
tions current state-of-the-art transcription algorithms ex-
hibit [10], it seems interesting to study alternative abstrac-
tions to such high-level representations.

In this paper we present a study of the influence of dif-
ferent melody abstraction processes which avoid the com-
plexity of full automatic music transcription in the con-
text of QBH. Particularly, we assess the influence of pitch
quantization and note segmentation in singing voice align-
ment for QBH. For that, we take as starting point the scheme
in Figure 1 and we evaluate three different melodic contour
representations: the first one makes use of the time-series
encoding algorithm Symbolic Aggregate Approximation
(SAX) [11], which is based on a fixed-duration tempo-
ral segmentation and statistical encoding; the second one
modifies the original SAX algorithm so that the encoding
is performed using a semitone-band representation; finally,
as a third method we propose to segment the melody using
the pitch change events in the melodic contour.

To ensure the scalability of the system we use the melody
estimation algorithm MELODIA [12]. This method esti-
mates the predominant pitch from both monophonic and
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polyphonic music signals. In terms of the contour compar-
ison, we apply two sequence alignment algorithms: Smith-
Waterman [13], originally meant for DNA sequences but
with large application in the time series field, and Subse-
quence Dynamic Time Warping [14].

The rest of the paper is structured as it follows: Section 2
briefly reviews similar research proposals; Section 3 and
Section 4 present the melody extraction algorithm MELO-
DIA and the local alignment algorithms considered respec-
tively; Section 5 introduces the assessed contour represen-
tations; Section 6 presents the evaluation methodology;
Section 7 presents and discusses the results obtained; fi-
nally, Section 8 outlines the conclusions obtained and pro-
poses possible future work.

2. RELATED WORK

One of the first proposed QBH systems was the one by
Ghias et al. [15] in which queries were transcribed using
autocorrelation for pitch tracking, the candidate elements
were MIDI files and the search was performed using a
fuzzy string matching algorithm. Although many similar
systems based on some kind of full automatic music tran-
scription have been proposed since then, the work by Dan-
nenberg et al. [3] with the MUSART Testbed, a framework
for the assessment of this type of QBH systems, stands as
a relevant example.

In terms of systems not based on full automatic music
transcription, a relevant example is the one by Duda et
al. [1] in which a series of audio descriptors (Mel-Frequency
Cepstrum Coefficients, Power, Fundamental frequency con-
tour, Voice Formants and Chroma) are extracted from the
audio files and are then encoded using SAX [11]; similarity
is performed using Edit distance [17].

Another example can be found in the system by Ito et
al. [5]. In this case, instead of obtaining a single melodic
contour for the candidate elements, multiple fundamental
frequency candidates are retrieved, using a variation of the
PreFEst algorithm [18], for comparison to the query con-
tour using a basic scoring function. Salamon et al. [2] pro-
posed a system in which melodies are quantized into semi-
tones and mapped into one octave. Similarity is performed
using the Qmax algorithm [19].

In terms of the automatic extraction of melodies, some
explored techniques use fundamental frequency extraction
algorithms [5, 16], main singing voice extraction [1, 7] or
the use of predominant melody estimation algorithms [2].

All approaches are summarized in Table 1.

3. MELODY ESTIMATION

Melodies from both queries and candidate songs are ob-
tained using the predominant melody estimation algorithm
MELODIA [12] 1 . For a given music piece, the algorithm
estimates the fundamental frequency of the predominant
melodic line in the song. This particular algorithm outper-
formed all other state-of-the-art methods in the 2011 Mu-
sic Information Retrieval Evaluation eXchange (MIREX)

1 http://mtg.upf.edu/technologies/melodia

campaign 2 in the Audio Melody Extraction task.
In a more detailed analysis, results in [12] report its ro-

bustness in terms of octave errors (properly tracking pitch
values in the correct octave) and voiced frame detection
(frames belonging to the predominant melody). However,
it must be also pointed out that the algorithm tends to con-
fuse unvoiced elements as voiced, thus lowering the overall
performance.

Finally, we provide a brief explanation to the four stages
MELODIA comprises: an initial Sinusoid extraction step
estimates the predominant frequency values at each instant
in the signal; then, a Salience function based on a harmonic
series is derived; after that, a series of Pitch contours are
created using a set of rules based on Auditory Scene Anal-
ysis (ASA) for finally selecting the predominant melody
in the Melody selection stage. In this experimentation,
MELODIA has been configured to its default analysis rate
(∆tMEL = 2.9 ms).

Sinusoid extractionAudio signal

Salience function

Spectral peaks

Contour creation

Salience representation

Melody selection

Pitch contoursM
E
L
O
D
IA

Melody

Figure 2. Block diagram of the MELODIA algorithm.

4. MELODY ALIGNMENT

In this work, similarity between the query and the candi-
date melodies is estimated by means of sequence align-
ment methods. This premise suits the QBH task as queries
may contain tempo deviations with respect to the corre-
sponding melodies of the actual song to be retrieved. The
two algorithms considered are now introduced.

4.1 Smith-Waterman

The Smith-Waterman (SW) method [13] is an alignment
algorithm formerly proposed for DNA sequences. This
algorithm performs a search for the most similar regions
between a pair of sequences, coded as strings, in a time-
warped scenario. Smith-Waterman requires a series of costs
to be defined: a reward for symbol matches (CMATCH), a
penalty for mismatches (CMISMATCH) and two costs for time
warps (CINSERTION and CDELETION). Table 2 shows the differ-
ent configurations considered.

4.2 Subsequence Dynamic Time Warping

Subsequence Dynamic Time Warping (S-DTW) constitutes
a modification on Dynamic Time Warping (DTW) pro-
posed by Müller in [14]. While DTW forces a global align-
ment between two sequences, S-DTW eliminates that re-
striction for allowing local matches between the sequences.
The modification makes it suitable for query-by-example

2 http://www.music-ir.org/mirex/wiki/MIREX HOME
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Figure 1. Scheme of the QBH system proposed. Main melodies are estimated from the audio files (query and candidate
songs) using the melody estimation algorithm MELODIA, being then encoded using a certain contour representation; local
alignment between the query and each element in the database is then performed and the results are eventually ranked.

First Author Feature(s) Feature extraction Abstraction SimilarityQuery Music collection

Ghias [15]

Strings representing
Main F0 Pitch tracking MIDI changes in contour: Fuzzy string
contour (autocorrelation) files U (up), D (down) matching

and S (same)

Dannenberg [3]

Note Interval,
Main F0 Pitch tracking MIDI IOI + Relative pitch, N-gram,
contour (autocorrelation) files Fixed-Time Segmentation + Contour Matching,

Relative pitch HMM Matching,
CubyHum Matcher

Duda [1]

MFCC, Audio Power,

No extraction

Stereo pan
F0, Voice Formants, removal to SAX

Chroma + derivatives retrieve lead coefficients Edit distance
(1st and 2nd order) singing voice

Jeon [16]
Main F0 Constant-Q Constant-Q Wavelet Coefficient’s
contour Transform + Transform + coefficients comparison

heuristics heuristics

Ito [5]

Tempo Scoring function
Multiple F0 PreFEst PreFEst normalization + (absorbs key

contours variation variation logarithm of differences)
frequencies values

Salamon [2] MELODIA MELODIA

Semitone-band

Qmax
Main F0 based chromagrams
contour with fixed-time

segmentation

Rocamora [7]
Lead singing YIN + energy-based Singing voice Pitch and

Edit distancevoice segmentation detection and duration ratios
and extraction (+ query process) (relative encoding)

Table 1. Summary of related QBH approaches.

CMATCH CMISMATCH CINSERTION CDELETION

T1 1 -0.5 -0.5 -0.5
T2 1 -1 -0.5 -0.5
T3 1 -1 -1 -1
T4 1 -0.5 -1 -1

Table 2. Weights of the four tested configurations for the
Smith-Waterman alignment algorithm.

applications [20] as queries usually constitute an excerpt
of the element to be retrieved. The cost function used in
this paper has been the Edit distance (ED) [17].

5. MELODY ABSTRACTIONS

We now describe the three considered melody abstractions
for encoding the estimated melodic pitch contours.

5.1 Symbolic Aggregate Approximation (SAX)

SAX, introduced by Lin et al. [11] in 2007, is a sym-
bolic representation for time series (sequences encoded as
strings) able to cope with two major drawbacks usually
found in other methods: the need for both a dimensionality
reduction and a lower bound in the distance computations.
Although reported as a fast and competitive algorithm for
similarity search, SAX has not been widely used in Music
Information Retrieval (MIR). Some of the few examples in
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Figure 3. Diagram depicting the different stages the three proposed abstractions comprise.

this field can be found in the study of guitar articulations
[21], Beijing opera singing similarity [22] or in QBH [1].

SAX comprises three steps for coding any sequence:

5.1.1 Time-series normalization

Given a time series C = {c1, c2, ..., cn} of length n, this
abstraction performs an initial normalization process:

c′i =
ci − µ
σ

1 ≤ i ≤ n (1)

were ci represents each element of the initial time series
(the f0 contour in cents 3 retrieved by MELODIA) and µ
and σ the mean and the standard deviation respectively.

5.1.2 Piecewise Aggregate Approximation (PAA)

This second stage takes the normalized time series C ′ of
length n and maps it in an M-dimensional (modifiable pa-
rameter) vector C̄ = {c̄1, c̄2, ..., c̄M} of equally-sized seg-
ments:

c̄i =
M

n
·

⌊
n
M

⌋
i∑

j=
⌊

n
M

⌋
(i−1)+1

c′j 1 ≤ i ≤M (2)

Given the different length of the f0 sequences to encode,
fixing a global M value would produce each segment to
represent a different temporal duration in each sequence.
Instead, we fix a frame temporal duration τt for all se-
quences. Since each c′i represents ∆tMEL, the frame size
in samples can be obtained as τs = τt/∆tMEL. Thus, M
is given by M = n/τs. As an initial experiment, τt values
considered are 0.3, 0.5, 0.8, 1 and 2 seconds.

5.1.3 Symbolic representation

The last stage maps C̄ to a series of a (adjustable param-
eter) discrete symbols. To assure equiprobability of ap-
pearance for all symbols, a regions are defined based on a
statistical distribution, typically Gaussian [11]. The group
of breakpoints B = (β1, β2, ..., βa−1) for delimiting such
regions accomplish that the area under aN (0, 1) Gaussian
curve from βj to βj+1 equals 1/a. In addition, β0 = −∞
and βa = +∞.

3 The reference frequency is 55 Hz as it represents the minimum fre-
quency value retrieved by MELODIA.

Each interval [βj−1, βj) represents a certain symbol αj .
Therefore, M-length vector C̄ = {c̄1, c̄2, ..., c̄M} is mapped
into the M-length vector Ĉ = (ĉ1, ĉ2, ..., ĉM ):

ĉi = αj if c̄i ∈ [βj−1, βj)
1 ≤i ≤M
1 ≤j ≤ a

(3)

As an exploratory study, the a tested values have been 3,
4, 6, 8, 12, 16 and 20.
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Figure 4. Example of the SAX abstraction process with
a = 5 and τs = 0.3 s: (a) Initial time series in cents;
(b) Normalized time series (solid) and PAA codification
(dashed); (c) PAA codification (solid) and SAX encoding
breakpoints (dotted).

5.2 PAA temporal segmentation with semitone
quantization (PAA–ST)

The first proposed SAX modification revises the Symbolic
representation stage: instead of using a statistical distri-
bution approach for the vertical quantization, a fixed grid
with semitone divisions is established. The minimum con-
sidered frequency value is 55 Hz given it is the minimum f0
retrieved by MELODIA. The normalization stage is omit-
ted as it modifies the pitch range. Folding the contour to a
single octave as in [2] was discarded as preliminary non-
exhaustive experimentation did not report improvements.

Finally, relative pitch encoding is applied (storing inter-
vals between segments) to provide transposition invariance.
In this abstraction, the assessed time durations for the PAA
segments have been the same as in the SAX abstraction.
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Figure 5. Example of the PAA–ST abstraction process
with τs = 0.3 s: (a) Initial time series in cents (solid);
(b) Initial time series in cents (solid) and PAA codification
(dashed); (c) PAA codification (solid) and semitone grid
breakpoints (dotted).

5.3 Pitch change segmentation with semitone
quantization (PC–ST)

This second modification builds on the previous one but
avoids PAA and dynamically segments the melodic con-
tour when there is a pitch change event. Vertical quantiza-
tion using a semitone grid is maintained. In order to avoid
false segments due to artifacts and fast pitch changes the
pitch contour may contain, a softening process is applied.

The softening process comprises two steps: (a) an initial
signal smoothing using an average filter of τSM duration
with sliding window (applied before the semitone quanti-
zation process) and (b) a glitch removal step by applying
a median filter of τGR with sliding window for removing
segments shorter than a certain duration (applied after the
semitone quantization step).

We have studied four different filter durations: 25, 50, 75
and 100 pitch samples. Given the MELODIA analysis rate,
these values correspond to filter durations τSM and τGR of
70, 140, 218 and 290 milliseconds respectively.
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Figure 6. Example of the PC–ST abstraction process with
τSM = 70 ms and τGR = 140 ms: (a) Initial time se-
ries in cents (solid), smoothed contour after the first filter
(dashed) and semitone grid (dotted); (b) absolute semitone
encoding; (c) absolute semitone encoding after the second
filter, the cross symbol (×) points out each new temporal
segment.

6. EVALUATION METHODOLOGY

6.1 Dataset

The evaluation data is the same as in [2] and it comprises
a query corpus and a music collection.

The music collection, or candidate songs, contains 2125
commercial songs [19] distributed in 523 groups (each one
being a group of covers of the same song). Song lengths
range from 0.5 to 8 minutes with an average duration of
3.6 minutes. Following the evaluation strategy in [2], the
collection is divided into two subsets: a first one containing
only canonical songs 4 from the corpus (481 elements) and
a second one comprising the entire music collection (2125
elements).

The freely-available query corpus set 5 comprises a to-
tal of 118 queries recorded by 17 users (9 female and 8
male) whose musical knowledge ranged from none to am-
ateur musician, with an average of 6.8 queries per user (1
as a minimum and 11 as a maximum). As reference songs,
users chose among the 481 canonical subset of the music
collection. Queries range from 11 to 98 seconds, with an
average length of 28.6 seconds.

6.2 Measures

Generally, a QBH system is assessed using rank metrics as
its output is a sorted list of the similarity scores between
the query and each candidate melody. In these terms, the
two most common evaluation measures are the Mean Re-
ciprocal Rank (MRR) and the Top-X Hit Rate.

6.2.1 Mean Reciprocal Rank (MRR)

For a given user query Q, corresponding to a target song
A, the system returns sorted list in which song A is located
at position (or rank) r. The Reciprocal Rank (RR) for A is
defined as 1/r. Generalizing for a series of n queries, the
Mean Reciprocal Rank (MRR) is defined as:

MRR =
1

N
·

N∑
i=1

1

r (Qi)
(4)

Scores obtained fall in the range 0 ≤ MRR ≤ 1, where 0
stands for the worst case and 1 for the best.

For any of the evaluation sets considered, r is assumed to
be highest-ranked version matching query Q.

6.2.2 Top-X Hit Rate

Given the resulting rank, this measure checks whether the
position r of the matching element of Q is among the first
X positions of the list, i.e. r (Qi) ≤ X. This estimates the
frequency of retrieving the correct result among the first X
positions [2].

As in the previous case, the highest-ranked version which
matches query Q is considered as r.

4 The songs as published by the band who composed/played it.
5 http://mtg.upf.edu/download/datasets/MTG-QBH.
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7. RESULTS AND DISCUSSION

7.1 Results

Results obtained for the abstractions and alignment algo-
rithms considered are presented in Table 3. Due to space
requirements, only best result obtained for each configu-
ration is reported. In order to consistently assess these re-
sults, a baseline configuration has been added: for each
query, the candidates’ rank is randomly sorted (without
performing any similarity measure) and the evaluation fig-
ures are then obtained; the results shown for this configu-
ration constitute the average of 10,000 repetitions. Results
from [2] are also included for a comparative assessment.

We note that all the proposed configurations significantly
outperform the MRR figure of 0.014 obtained with the con-
sidered baseline. However, the results are still consider-
ably lower than the ones obtained in [2]. Nevertheless, the
differences in performance among the different configura-
tions allow us to make some interesting observations.

We see that the combination of SAX with the Smith-
Waterman alignment obtains an MRR of 0.05 when evalu-
ated against the canonical (481 songs) test set. The semi-
tone quantization step, which constitutes the only differ-
ence with the SAX abstraction process, does not signifi-
cantly affect the results with respect to the SAX ones (MRR
score is now around 0.04). This is a point to be remarked
since, although the abstraction is more related to an ac-
tual music representation, the accuracy scores obtained are
similar to the ones obtained with SAX.

PC–ST assesses the influence of note segmentation in the
process. Focusing on the canonical set and the Smith-
Waterman alignment, this particular encoding methodol-
ogy achieves an MRR score around 0.09, thus outperform-
ing the two other abstractions. This suggests that musically-
informed temporal segmentation of pitch sequences may
benefit the performance of the system.

As expected from [2], the inclusion of cover songs among
the candidates set enhances retrieval accuracy for our con-
figurations, except for the PAA–ST: while for both SAX
and the PC–ST there is an improvement of 0.05 in the
MRR measure, results in the PAA–ST do not significantly
vary in comparison with the canonical set.

Results obtained for the Top-X Hit Rate measure also
support our observation that a proper temporal segmen-
tation in the process is beneficial for the system. When
only considering the canonical set, the correct candidate
is retrieved on the first position around 3 % and 1 % of
the time for the SAX and the PAA–ST respectively while,
when considering the PC–ST, this figure goes close to 6 %.
This same conclusion can be observed with the rest of the
Hit Rates (3, 5 and 10) as well as with the inclusion of
covers among the candidates.

Focusing on the alignment algorithms, although the dif-
ferent proposed Smith-Waterman configurations show some
influence on the overall accuracy, there is no clear outper-
forming configuration for all the cases. Results obtained
with Subsequence Dynamic Time Warping show lower per-
formance than the other considered alignment algorithm.
This may be improved with the use of more complex cost

functions rather than the considered Edit distance.

7.2 Discussion

While the proposed SAX abstraction has been shown to
perform successfully for a variety of time-series tasks [11],
results in the experiments proposed suggest that this is not
the case for musical time-series data in the context of QBH.
The most likely reason for this to happen is the fact that
SAX does not consider any particularities the origin do-
main of the time series may have. Thus, in the case of
QBH, SAX may be abstracting away musically-related in-
formation from the melodic contours required for properly
performing the alignment. This idea is further supported
by the improvement in the results when using the PC–ST
abstraction as, although in a very naı̈ve way, it tries to seg-
ment the different musical notes present in the contour.

The results obtained in the two modifications proposed
support the relevance of using musically-informed tem-
poral segmentation of the contour. In this study, the use
of a basic temporal segmentation based on pitch change
events leads to accuracy improvements when compared to
the use of the PAA dimensionality reduction algorithm.
The most likely reason for this is again the fact that the
use of the PAA algorithm does not take into account the
musical nature of the data to encode, thus abstracting away
relevant information necessary for the alignment. In these
terms, the use of more sophisticated temporal segmenta-
tion techniques for music data, as for instance onset detec-
tion, could improve these results.

Although the abstractions studied in this paper are not
competitive in terms of a practical QBH system, evidence
from previous work (cf. [2]) shows non-transcription ab-
stractions may lead to successful results. These results
encourage the exploration of other abstractions to provide
competent alternatives to transcription-based QBH systems.

8. CONCLUSIONS

Query-by-Humming (QBH) systems constitute a particular
type of music search engine in which the query is a sung
or hummed excerpt of the main melody of a song. Most
often, these schemes rely on both existing music annota-
tions and fully-automated music transcription algorithms
for performing the melodic similarity. Although many ex-
amples of QBH systems have been proposed under this
premise, its limited scalability together with the fact that no
full automatic transcription algorithm is error-free clearly
limits their performance in practical situations.

In this work we assessed the influence of this particular
step in such systems by using of three melody encoding
alternatives which avoid full music transcription. More
precisely, starting from the general time-series encoding
method Symbolic Aggregate Approximation (SAX), we
modify this algorithm by incorporating music-based pitch
quantization and segmentation for evaluating their influ-
ence in the context of a QBH system. Results obtained
suggest that the time-series representation algorithm SAX
does not seem to be suitable for melody alignment in the
context of Query by Humming. In this sense, the main out-



Approach Evaluation Alignment Algorithm MRR Top-X Hit Rate (%)
subset algorithm configuration 1 3 5 10

SAX

Canonical SW

T1 0.0500 2.54 5.93 7.63 9.32
T2 0.0566 2.54 5.93 5.93 11.02
T3 0.0632 4.24 5.93 5.93 9.32
T4 0.0472 3.39 4.24 5.08 6.78

S-DTW ED 0.0333 1.69 3.39 3.39 8.47

Complete SW

T1 0.1117 7.63 11.86 12.71 17.80
T2 0.1155 7.63 11.86 12.71 17.80
T3 0.0962 5.08 10.17 11.86 14.41
T4 0.0849 5.08 8.47 11.02 12.71

S-DTW ED 0.0443 2.54 4.24 5.08 8.47

PAA–ST

Canonical SW

T1 0.0515 2.54 4.24 6.78 11.02
T2 0.0421 1.69 3.39 4.24 9.32
T3 0.0391 1.69 2.54 4.24 6.78
T4 0.0424 1.69 4.24 4.24 5.93

S-DTW ED 0.0346 1.69 2.54 3.39 5.93

Complete SW

T1 0.0396 1.69 2.54 5.93 9.32
T2 0.0424 1.69 3.39 4.24 8.47
T3 0.0406 1.69 3.39 5.08 8.47
T4 0.0558 3.39 5.08 5.93 9.32

S-DTW ED 0.0334 1.69 2.54 6.78 9.32

PC–ST

Canonical SW

T1 0.0894 5.93 9.32 10.17 12.71
T2 0.0967 6.78 11.86 12.71 15.25
T3 0.0957 6.78 8.47 12.71 14.41
T4 0.0772 5.08 6.78 8.47 12.71

S-DTW ED 0.0165 0.00 0.85 1.69 4.24

Complete SW

T1 0.1447 10.17 14.41 17.80 24.58
T2 0.1460 10.17 16.95 19.49 22.88
T3 0.1563 11.02 16.95 17.80 22.88
T4 0.1447 10.17 14.41 17.80 24.58

S-DTW ED 0.0181 0.00 0.85 0.85 3.39

Baseline Canonical Random 0.0140 0.21 0.62 1.03 2.06

Complete Random 0.0039 0.05 0.15 0.25 0.50

Salamon [2] Canonical Qmax 0.45 40.68 47.46 49.15 51.69

Complete Qmax 0.56 50.85 58.47 61.02 66.10

Table 3. MRR and Top-X Hit Rate results obtained for the proposed experimentation. Figures represent the best score
achieved in each particular abstraction configuration.

come of this study is that, given the complexity of Query
by Humming, musically-related abstractions should be con-
sidered for encoding the contours.

Future work will consider the incorporation of the con-
clusions obtained in this work to the abstraction proposed
in [2]: as the abstraction in the cited work performs a chro-
magram representation with a fixed-time temporal segmen-
tation, the incorporation of dynamically-based segmenta-
tion could improve the results obtained. Moreover, given
the relevance of the user in this particular task, interactive
pattern recognition paradigms for addressing the similarity
step could be considered: when a query is incorrectly an-

swered, the system could modify the dissimilarity measure
(metric learning) to incorporate the user’s feedback.
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[8] J. Salamon, E. Gómez, D. P. Ellis, and G. Richard,
“Melody Extraction from Polyphonic Music Signals:
Approaches, applications, and challenges,” IEEE Sig-
nal Processing Magazine, vol. 31, no. 2, pp. 118–134,
2014.

[9] R. Typke, “Music retrieval based on melodic simi-
larity,” Ph.D. dissertation, Utrecht University, Nether-
lands, February 2007.

[10] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff,
and A. Klapuri, “Automatic music transcription: chal-
lenges and future directions.” J. Intell. Inf. Syst.,
vol. 41, no. 3, pp. 407–434, 2013.

[11] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Expe-
riencing SAX: A Novel Symbolic Representation of
Time Series,” Data Mining and Knowledge Discovery,
vol. 15, no. 2, pp. 107–144, 2007.
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