
Improved Topological Fiducial Tracking in the reacTIVision System

Ross Bencina, Martin Kaltenbrunner and Sergi Jordà
Music Technology Group, Audiovisual Institute

Universitat Pompeu Fabra, Barcelona, Spain
{rbencina,mkalten,sjorda}@iua.upf.es

Abstract

This paper describes reacTIVision: a camera based two di-
mensional fiducial (marker) tracking system developed for
the reacTable*, a table based tangible musical instrument.
Key features of reacTIVision include: (1) the ability to track
a large number of fiducials with faster than real-time per-
formance and (2) fiducial size may be varied depending on
the number of distinct fiducial identities required. We de-
scribe recent advances in our implementation of topology-
based fiducial recognition, including a generalised method
for accurately computing fiducial location and orientation.
A method of graph naming known as left heavy depth se-
quences is applied to the identification of topologically dis-
tinct fiducials. Also discussed is our approach to generating
fiducial images for the system, in which we employ evolu-
tionary computation to produce compact fiducials with spe-
cific geometric properties.

1. Introduction
ReacTIVision is an open source system for tracking the lo-
cation and orientation of fiducials (markers) in a real-time
video stream. The system was developed for the reacTable*
tangible user interface [1, 2] after initial prototyping with
Costanza and Robinson’s d-touch system [3]. The decision
to develop a new tracking system stemmed primarily from
the relatively low frame rates achieved with d-touch. We
sought to support frame rates which exceeded the capabili-
ties of our 640×480 60 Hz image sensors, while maintain-
ing the overall robustness and accuracy of d-touch. Later,
additional requirements emerged such as reducing the size
of the fiducials and increasing the number of uniquely iden-
tifiable fiducials. We were able to address these require-
ments during the development of the reacTIVision system.

This paper is structured as follows: We begin in section 2
by outlining the reacTable* project – the context in which
reacTIVision was developed1, followed in section 3 by a re-
view of related work in table based musical instruments and
optical marker tracking systems. In section 4 we explain

1For further information about the reacTable* and its software compo-
nents see http://www.iua.upf.es/mtg/reacTable/

projection mirror

projector

camera mirror

camera

Figure 1: Musicians playing the reacTable*. Objects on the table’s
surface are tagged with fiducials which are tracked by a camera
beneath the table.

the topological region adjacency based fiducial recognition
approach, and the properties of the fiducials which we de-
signed for the system. Section 5 gives an overview of the
reacTIVision software architecture and describes important
modules of the system in more detail. Section 6 presents
data demonstrating improvements over the d-touch system.

2. Context
The reacTable* (shown in figure 1) is a tangible user inter-
face where physical objects represent the components of a
software sound synthesizer. Fiducials are attached to the
underside of objects placed on a translucent table. A cam-
era beneath the table captures images which are processed
by reacTIVision to recognise the location, orientation and
identity of the fiducials. This information is sent to other
components of the reacTable* software via a network socket

1

Figure 2: ReacTIVision’s role in the reacTable* system. Solid
lines indicate physical connections, dashed lines show Open
Sound Control message paths.

using the TUIO protocol [4], a protocol layered on top of
Open Sound Control [5] (see figure 2). Physically, the ta-
ble is illuminated from below with infrared light. Optical
filters isolate infrared image capture from projected visual
feedback.

The reacTable* can be characterised as a synchronous
real-time musical instrument. Manipulating objects on the
table’s surface provides a direct and immediate method of
articulating nuanced musical gestures [2]. For example,
rotating one class of objects effects their pitch, much like
moving a finger placed on a violin string. This type of in-
teraction requires accurate, low-latency tracking with suffi-
cient temporal resolution to capture fast gestures.

Each tangible reacTable* object is associated with a spe-
cific behavior, such as making a particular sound, or trans-
forming sounds in a certain way. This requires each object
to be uniquely identifiable. At the time of writing the re-
acTable* used around forty unique fiducials, although some
proposed scenarios suggest the use of thousands.

The reacTable* project imposes the following require-
ments on the system: (1) the system should be able to
process all available video frames, since the video frame
rate is typically lower than what is generally considered ad-
equate for musical control; (2) that the system make effi-
cient use of CPU resources so that other components of the
reacTable* system such as the real-time sound synthesis en-
gine can operate in parallel on the same machine; (3) that
the system should maximise potential table area for a given
camera resolution by simultaneously tracking many small
fiducials; and (4) that the system should be scalable in the
number of uniquely identifiable fiducials supported.

The physical setup of the reacTable* offers a number of
opportunities for optimisation compared to free space 3D

marker tracking systems such as the ARToolKit [6]. These
include: (1) relatively controlled lighting conditions, (2)
only 2D location and orientation information is required,
and (3) because the fiducials are constrained to the plane of
the table surface they are not subject to significant perspec-
tive distortion or variations in scale.

3. Related Work
In this section we consider related work in two separate ar-
eas: We give context to the reacTable* project by discussing
table based tangible musical instruments, following which
we review some other optical marker tracking systems.

3.1. Table-based tangible musical instruments
Most table-based tangible musical instruments use pre-
existing optical marker tracking systems, while others
utilise passive electromagnetic tags [7]. Unlike the re-
acTable*, which aims to be an expressive synchronous real-
time musical instrument, the instruments surveyed below
usually attempt to overcome speed and robustness limita-
tions of existing visual tracking systems by employing an
asynchronous musical scheme, such as a spatial representa-
tion of musical sequences scanned at a relatively low rate.

The Music Table [8] is a musical systems which utilises
the full augmented reality capabilities of the ARToolKit [6].
The Music Table uses specially marked cards onto which it
superimposes virtual 3D objects. Arranging the cards on the
table surface allows the specification of simple melodic or
rhythmic patterns. Other musical examples using the AR-
ToolKit as a sensor component are the Music Blocks spatial
sound installation [9], and the Augmented Groove dance
music performance system [10].

Using their original d-touch system, which will be dis-
cussed in greater detail below, Costanza et al. created a se-
ries of three tangible musical toys called audio d-touch [11],
which can all be classified as tangible sequencers. Audio
d-touch consists of a standard USB web-cam mounted on
a table lamp, which tracks fiducial-tagged wooden blocks
from above. Each block represents a musical event whose
properties are determined by its position. In one application
melodies can be constructed by placing blocks on a sheet
marked with a musical stave. In another, blocks are placed
on a grid to control the timing and choice of sounds played
by a drum machine.

Non-musical interactive surfaces incorporating optical
marker systems include: The Magic Table, an augmented
whiteboard which combines coloured marker based interac-
tion techniques with projected video feedback [12]; and the
ZOOMlab at the Vienna Childrens Museum which incor-
porates tangible interaction using the Assembly Table [13]
interface based on the proprietary Marker XtracT system
developed at Fraunhofer Institute.

2

3.2. Optical marker tracking systems
The present work stemmed from our experience with d-
touch, a system developed specifically for tangible user in-
terfaces [3]. D-touch makes use of a topological recognition
approach which we have not encountered elsewhere. Below
we review some other systems and approaches.

Within our field we observe that the ARToolKit [6] is
the most commonly employed optical marker tracking sys-
tem. ARToolKit markers can be arbitrary images framed in
a black square. Markers are recognised with a simplified
template matching algorithm. The use of arbitrary images
offers a significant benefit to many applications as the mark-
ers can be made readable by users. In addition to marker
tracking ARToolKit provides tools for overlaying aligned
computer graphics on a real-time video stream. We note
that the success of ARToolKit is not necessarily due to the
quality or speed of its marker tracking subsystem. Recent
projects such as ARTag [14] have specifically aimed to ad-
dress shortcomings in ARToolKit’s marker tracking.

Zhang et al. [15] evaluated the strengths and weaknesses
of four publicly available square-shaped marker tracking
systems including ARToolKit. They considered criteria of
usability, efficiency, accuracy, and reliability. They also
provide an insightful discussion of the diversity of require-
ments placed on such systems in different application areas.

A range of other marker recognition techniques have
been explored in the literature, including: projective in-
variant line pencils [16], circular bar codes [17], Discrete
Cosine Transform basis functions [18], and non-symmetric
patterns of equally spaced dots [19].

4. Topology Based Fiducials
This section introduces the representations and data struc-
tures used by reacTIVision to recognise fiducials in binary
images. First the topological region adjacency graph is in-
troduced. Following subsections discuss the application of
this representation in d-touch and reacTIVision. We then
describe our approach to determining the location and ori-
entation of fiducials. Next we outline the method used
to generate the topology and geometry of individual reac-
TIVision fiducials. A final subsection introduces left heavy
depth sequences, a method for computing canonical names
for unordered trees which we use to recognise subgraphs
corresponding to fiducials.

4.1. Topological Recognition
ReacTIVision employs the topological fiducial recognition
approach introduced by Costanza and Robinson in the d-
touch system [3]. In this approach, a region adjacency graph
is derived from a binary image of the scene through the
process ofsegmentation. The graph can be understood as

a b c

Figure 3: Some simple topologies and their corresponding region
adjacency graphs.

Figure 4: A d-touch fiducial and its region adjacency graph.

a tree representing the containership hierarchy of the im-
age, that is, which black regions are contained inside which
white regions and vice-versa. Regions of the image con-
taining no other regions (unbroken blobs for example) ap-
pear as leaf nodes in the region adjacency graph. Figure 3
illustrates some simple images and their corresponding re-
gion adjacency graphs. Observe that figures 3b and 3c have
identical region adjacency representations even though their
geometries are different.

One important property of region adjacency graphs de-
rived from binary images is that they belong to a class of
graphs known as rooted trees [20]. Since the children of
any node in the graph are not ordered the graphs are more
specifically known as unordered rooted trees.

4.2. D-touch Fiducials
D-touch employs a single topology for all fiducials in a set.
Figure 4 shows a d-touch fiducial and its region adjacency
graph. The fiducial belongs to a set with a black grid con-
taining six white regions each of which contains a different
number of black regions from one to six. The set contains
120 unique fiducials which are differentiated using a permu-
tational code expressed by the number of black leaf regions
contained within the spatially ordered set of white regions.
For example: reading clockwise, the code in Figure 4 is
(1,2,3,6,5,4).

We identified a number of aspects of the d-touch ap-
proach which offered opportunities for improvement in our
context: Firstly, d-touch binds geometric extraction of the
permutational code to specific fiducial sets. Secondly, the
original d-touch publication does not prescribe a specific
method for computing location and orientation, leaving
some steps to traditional computer vision techniques. Fi-
nally, the simple geometries of d-touch fiducials (which in-
cidentally have the advantage of being easily drawable by
hand) were not designed to minimise fiducial size.

3

a b c d

Figure 5: (a) a reacTIVision fiducial (b) black and white leafs and
their average centroid (c) black leafs and their average centroid,
and (d) the vector used to compute the orientation of the fiducial.

4.3. ReacTIVision Fiducials
Following our evaluation and re-implementation of a d-
touch fiducial recogniser, we set out to produce smaller fidu-
cials, and eventually arrived at a scalable technique which
allows us to vary the size of the fiducials depending on the
number of unique fiducials required. We also aimed to ex-
plore whether we could accurately compute the location
and orientation of fiducials without resorting to additional
image processing techniques such as corner or edge detec-
tion. Given that the region adjacency graph already existed
and was relatively expensive to compute, it seemed wise to
make maximum use of it.

ReacTIVision fiducials are identified purely by their
topological structure. Each fiducial in a set has a unique
topology. In addition to expressing the correct topology,
the geometry of each fiducial is constrained by the method
used to compute its location and orientation. In the next
subsection we describe the method used to compute the lo-
cation and orientation of fiducials; after that we discuss the
generation of trees describing the topology of each fiducial;
following which we give an overview of how we generate
geometries which conform to the requirements of our loca-
tion and orientation calculation method while minimising
size. Note that the separation of this discussion is some-
what artificial as the methods were co-designed, with the
requirements of each effecting the design of the others to
some extent.

4.4. Fiducial Location and Orientation
Our method for computing fiducial location and orientation
was influenced significantly by the design of our segmen-
tation algorithm, which only retains axis aligned bounding
boxes for each region. The center of a region’s axis aligned
bounding box provides a good approximation for the center
of the region if the region is square, circular, and/or rela-
tively small. We reasoned that as leaf regions will always
be the smallest regions in a rendering of a tree, their centers
are likely to be the most accurate spatial information we
have about a fiducial. Consequently we choose to compute
a fiducial’s location and orientation as a combination of the
bounding box centers of its leaf nodes.

As illustrated in figure 5, we compute the center point of

the fiducial by taking a weighted average of all leaf cen-
ters. The vector from this centroid to a point given by
the weighted average of all black (or white) leaf centers is
used to compute the orientation of the fiducial. Each leaf is
weighted by a function of its depth in the tree to account for
the total area it consumes.

We selected this method because it can be applied to any
fiducial with at least one black and one white leaf region.
Thus allowing us to vary the topological structure of fidu-
cials without changing the method used to track them. In
practice we found that a minimum of four black and four
white leaf nodes was necessary to achieve the tracking sta-
bility which we previously achieved with our d-touch fidu-
cial tracker.

4.5. Fiducial Tree Generation
Before generating the geometry for a set of fiducials we
generate a set of unique trees. Given a set size it is possible
to calculate the number of tree nodes required to accom-
modate the set, however other constraints are also impor-
tant such as ensuring a certain number of black and white
leaf nodes. The number of nodes in a tree and its depth
also impacts the minimum size of the geometry which can
be generated for a tree. Additionally, smaller trees are less
unique, leading to a greater potential for encountering false
detections when trying to recognise them in a scene.

Rather than enumerating all possible trees (which is pos-
sible, see [21]), we randomly generate trees with the de-
sired number of nodes and select those which fulfill criteria
including maximum depth and number of black and white
leaves. The generation process slows when many of the
candidates have been found in the search space. By observ-
ing this slowing we experimentally reduce the number of
nodes to the minimum required to generate a set fulfilling
our criteria.

4.6. Fiducial Geometry Generation
Given a tree representing a fiducial’s topology we cre-
ate a compact geometry which conforms to the constraints
implied by the location and orientation method described
above: that the computed centroid of the fiducial is the same
as, or lies very close to the real center of the fiducial and that
the centroid of all black leaves is sufficiently distant from
the centroid of all leaves to allow the fiducial’s orientation
to be computed with reasonable accuracy.

Each tree can be drawn in a huge number of ways mak-
ing an exhaustive search for ‘optimally’ rendered fiducials
impractical. We chose to employ a genetic algorithm to op-
timise parameters such as fiducial area, aspect ratio, sym-
metry and centroid locations for black and white leaves. We
experimented with many combinations of these parameters
before achieving satisfactory results.

4

The method used to draw a single fiducial involves ag-
gregating circular leafs at angles relative to a fixed starting
point while maintaining a fixed spacing between regions. A
list of these angles forms the genotype for the genetic algo-
rithm. Circles are easy to pack together at arbitrary angles,
which we consider important to optimise the location of the
centroids used to compute location and orientation.

We implemented a simple but effective distributed com-
puting system which allows us to compute a number of dif-
ferent versions of a fiducial set within a reasonable period
of time. When producing the currently used set of 128 fidu-
cials with 19 tree nodes with a maximum depth of 3, we
obtained usable results after 12 hours of computation time
on a cluster of 11 dual processor 1Ghz Pentium 3 machines.
In this time we computed 20 pools of 500 fiducials for each
of 128 trees and selected the best result for each tree accord-
ing to size and orientation vector length.

4.7. Left Heavy Depth Sequences

In order to recognise subgraphs representing fiducials in the
region adjacency graph of the whole scene it is useful to be
able to compute a canonical name for any subgraph. This
name can then be compared against a dictionary of recog-
nisable fiducial names2. One canonical form for unordered
rooted trees is the left heavy depth sequence discussed by
Nakano and Uno [21] and Asai et al. [22] which we de-
scribe below.

Thedepth sequenceof a graph is defined as the sequence
of node depth values encountered in a preorder (depth first)
traversal, where the root has depth 0 and the depth of any
other node is the number of edges between it and the root.
Depth sequences can be used to uniquely describe ordered
trees, however some unordered trees can be described by
multiple depth sequences, depending on the order in which
children are visited. For example, the depth sequences
(0,1,2,3,3,2,3) and (0,1,2,3,2,3,3) are both possible for the
tree in figure 3c. To resolve this ambiguity we can order
traversal according to the ‘weight’ of the depth sequence of
each child, where heavier sequences are those which com-
pare as lexically greater. Following from this, theleft heavy
depth sequencecan be understood recursively as the con-
catenation of the left heavy depth sequences of the children
of a node in lexically decreasing order, where the depth se-
quence of a leaf is simply its depth.

Figure 6 shows a fiducial and its corresponding region
adjacency graph annotated with the left heavy depth se-
quence of each node. As in the reacTIVision system, the
outermost black region (the top node in the graph) serves
only to provide a boundary for the white region it contains.

2In practice we first identify candidate subgraphs using simple metrics
such as their depth and number of descendants. Only then is the canonical
name of the subgraph considered.

122

2

0

1

2

depth

2

122 12

2 2 2

12

2

0122122121211111111

1 1 1 1 1 1 1 1

Figure 6: A fiducial and its left heavy depth sequence.

Figure 7: reacTIVision system diagram

5. Implementation

Figure 7 shows the module level design of the reacTIVision
system, which aggregates three open source libraries: (1)
PortVideo, a cross-platform real-time video acquisition and
previewing library; (2) oscpack, a library for packing and
unpacking Open Sound Control messages; and (3) libfid-
track, a library implementing the fiducial recognition algo-
rithms described in this paper. The system communicates
with clients using the TUIO protocol [4]. Glue code con-
nects the libraries and handles fiducial object lifetime track-
ing, error correction and formatting of TUIO messages.

Figure 7 also illustrates the flow of data between mod-
ules: PortVideo acquires grayscale video frames from the
operating system and passes them to libfidtrack. A thresh-
olding algorithm produces a binary image which is fed to
the segmentation module to construct a region adjacency
graph. This graph is passed to the fiducial recognition mod-
ule which recognises subgraphs whose topology matches
those in a dictionary loaded from a fiducial tree description
file. The recognised fiducial identifiers along with their lo-
cation and orientation are then passed to a module which
tracks fiducials as they become visible and disappear. This
module also calculates second order information such as
velocity and acceleration vectors. Finally this information
is formatted into Open Sound Control packets conforming
to the TUIO protocol and passed to clients via a network
socket.

5

5.1. Thresholding
As noted by Pintaric [23], thresholding (binarisation) is an
important and sometimes poorly handled step in optical
marker tracking systems. Some earlier systems simply used
a global threshold, while more recently, locally adaptive
thresholding has been employed [23, 3]. Although the light-
ing conditions in the reacTable* are not as unpredictable as
in some augmented reality applications, we found an adap-
tive scheme to be useful.

Unlike many applications where quality is of greatest
importance, we were equally concerned with speed. One
property of our system which allowed us to select an ef-
ficient algorithm was that correct thresholding is only re-
quired on image areas containing clean, well lit fiducial im-
ages within a known scale range. The segmentation process
tends to take time proportional to the number of black and
white regions in the image, so ideally our thresholder should
output non-fiducial areas in a single colour. Having exper-
imented with a variety of schemes based on locally com-
puted statistics we currently employ a tile-based variation of
Berensen’s method [24]. This method computes the thresh-
old for each tile (e.g. 32×32 pixels) as the mean of the
minimum and maximum intensities in a larger surrounding
tile. Areas of low dynamic range are clamped to black.

5.2. Segmentation
Segmentation constructs a region adjacency graph from
the binary image produced by thresholding. This section
presents some aspects of the technique used to build the
graph. A key feature of our approach is that in general we
construct anincompleteregion adjacency graph.

The main data structure is the Region which represents a
node in the graph. An axis aligned bounding box for each
Region is stored for later use by the fiducial recogniser. Dur-
ing segmentation, the auxiliary RegionReference structure
provides an additional level of indirection to support effi-
cient region merging. Large pre-allocated arrays of Regions
and RegionReferences are reused for each frame. Individual
structures are allocated by taking the next free block from
the end of the appropriate array. This mechanism is efficient
and allows Regions to be enumerated by stepping through
the array.
struct Region{

int flags;
short left, top, right, bottom;
...
int adjacent_regions_count;
Region * adjacent_regions[MAX_ADJACENT];

};

struct RegionReference{
RegionReference * redirect;
Region * region;

};

During segmentation, arrays of pointers to RegionRef-
erences corresponding to pixels in the current and previous

scan line are maintained. The algorithm proceeds through
the source image line-by-line, extending existing Regions
from the previous line and allocating new Regions when
necessary. Adjacent Regions are linked together as dis-
cussed below. Some inputs require Regions to be merged.
During merging the redirect pointer of one of the corre-
sponding RegionReferences is set to point to the other Re-
gionReference. This allows pointers to merged RegionRef-
erences to be resolved lazily rather than requiring all point-
ers to be updated after every merge operation.

Bidirectional adjacency relations between Regions are
represented using fixed size arrays of pointers to facilitate
the allocation scheme mentioned earlier. This places an
upper bound on the number of adjacency relations which
can be maintained for a Region. When an adjacency array
becomes full, new adjacencies are discarded and the par-
ticipating Regions are marked assaturated(for the region
whose array is full) orfragmented(for the other region) us-
ing the flags field. As a result of this mechanism, the seg-
mentation algorithm may construct incomplete region adja-
cency graphs, however, note that subgraphs containing no
saturated or fragmented nodes are complete. These com-
plete subtrees are sufficient to perform fiducial recognition
provided that the capacity of each region adjacency array
is sufficient to represent the region adjacency graphs of the
target fiducials.

5.3. Fiducial Recognition
Fiducial recognition proceeds in two steps: First, candidate
subgraphs are identified in the incomplete region adjacency
graph produced by the segmenter. Candidates are selected
according to properties precomputed from the dictionary of
recognisable fiducials, including total node count and max-
imum child depth. Second, the left heavy depth sequence
of each candidate is computed according to the definition in
section 4.7 and used as a key against a dictionary of depth
sequences. If the sequence is found in the dictionary a fidu-
cial has been identified and we compute its location and ori-
entation according to the method described in section 4.4.

The incomplete region adjacency graph produced by the
segmenter precludes top down traversal. As the graph is
undirected, the parent of each node must be deduced during
traversal. We employ a progressive bottom up traversal in
which we iterate through each leaf attempting to traverse
upwards. A counter in each parent is used to ensure that
we only progress upwards once all of the children of the
parent have been visited. Upwards traversal is terminated
if a fragmented or saturated node is encountered, or if a
criterion for candidate selection such as descendant count is
exceeded.

Observe that in the worst case each node will be visited
three times: once during the iteration to find leaf nodes,
once during the upwards traversal to identify candidate sub-

6

Library CPU Usage Frame Rate
libfidtrack 18% 30 fps
libdtouch 82% 30 fps
dtouchold 100% 10 fps

Table 1: CPU utilisation and frame rate of d-touch and reacTIVi-
sion fiducial trackers tracking 12 fiducials in a 640×480 frame.

trees, and (assuming each node can be in at most one can-
didate subtree) once during the recursive calculation of the
left heavy depth sequence. Ignoring constant factors, and
assuming that depth sequence dictionary look-up is a con-
stant time operation, the time complexity for recognising
all fiducials in a scene is linear with respect to the num-
ber of nodes in the region adjacency graph. This is the
same time complexity offered by Costanza and Robinson’s
method [11]. While their method is constrained to three
level trees, our method works with trees of any depth, al-
lowing reacTIVision to recognise fiducials generated from
a larger class of trees.

6. Results
This section summarises improvements achieved by reac-
TIVision over the d-touch topological fiducial tracker in
three areas: performance, fiducial size, and scalability to
different fiducial topologies and set sizes.

Table 1 compares the CPU utilisation and frame rates3

obtained with reacTIVision (libfidtrack) and two ver-
sions of d-touch: a recent version available online (libd-
touch) [25] and the original version obtained from the au-
thor (dtouchold). The table indicates that the current re-
acTIVision implementation is over 4 times faster than the
current d-touch system, and over 16 times faster than the
version in use when development of reacTIVision began.
These gains arise from the techniques described in the im-
plementation section and are equally applicable to tracking
d-touch fiducials. In fact, reacTIVision can track the type
of d-touch fiducials shown in figure 4 with similar perfor-
mance to its native fiducials. We note that these results are
not comprehensive as other factors such as noise or non-
fiducial inputs may also effect performance in the field. We
also note that d-touch supports features not provided by re-
acTIVision, such as reporting the coordinates of the corners
of rectangular fiducials.

The d-touch fiducial shown in figure 4 is representative
of the set containing 120 unique fiducials. Decomposing
the fiducial on a grid of pixel-like squares, it has a size of
21×21 units (including the required outer white boundary).

3These results were obtained while tracking 12 fiducials filling a
640×480 frame. The system used was a 2.6 GHz Pentium IV with 512
Mb RAM running Fedora Linux 3, Kernel 2.6.11 with a fire-i camera in
grayscale mode.

Taking the diameter of the smallest circles on a reacTIVi-
sion fiducial (such as the one in figure 5) as an equivalent
unit, the maximum size of the reacTIVision fiducials gen-
erated for a unique set of 128 is 15×15, an almost 50%
reduction in area.

The generalised methods for recognising and tracking
fiducials described earlier allow the reacTIVision system to
support fiducial sets of varying sizes and topologies with-
out any code changes. We consider this a significant im-
provement over d-touch in our context, where we wish to
experiment with fewer smaller fiducials (at one extreme)
and a larger number of uniquely identifiable fiducials (at the
other).

7. Future Work
The current system partitions leaf nodes in the region adja-
cency graph into two classes based on their colour. The left
heavy depth sequence provides a partial ordering of nodes,
which could be used to construct alternate partitionings of
the graph. Alternate dual partitionings might create oppor-
tunities for more efficient spatial packing. Partitioning into
more than two classes could facilitate an implementation
of three dimensional tracking using a generalised method
similar to the one we currently use to compute location and
orientation.

Some recent marker tracking systems are able to recog-
nise markers which are partially occluded, by a finger for
example [16, 14]. ReacTIVision currently only recognises
fiducials if their topology has not been modified by occlu-
sion or thresholding errors. By using fiducials with suffi-
ciently complex topology it may be possible to apply the
method described by Lladós et al. [26] to implement occlu-
sion or error tolerant tracking.

8 Conclusion

In this paper we have described reacTIVision, a fiducial
tracking system for tangible user interfaces. We provided
an explanation of the topological technique used to recog-
nise fiducials, and presented advances beyond the earlier
work of Costanza and Robinson in the d-touch system.
Our enhancements include: the application of left heavy
depth sequences for fiducial recognition and identification;
a scheme for computing fiducial location and orientation
which is independent of the fiducial’s specific topology;
and an incomplete region adjacency graph representation
for efficient image segmentation. We also improved per-
formance by employing an efficient locally adaptive thresh-
olding scheme. In addition, we outlined our approach to
designing fiducials using evolutionary computation.

Our implementation techniques yielded a four-fold in-
crease in performance over the current d-touch system. Our

7

novel approach to geometry generation allowed us to gen-
erate a set of 128 unique fiducials each with an area almost
50% less than those in the set of 120 d-touch fiducials.

ReacTIVision is currently being used to track objects
on a translucent table surface in the reacTable* tangible
user interface. On our prototype platform, a dual processor
AMD Athlon 2000, we are able to track many objects at 60
frames per second with a 640×480 pixel camera. Tracking
is performed on one CPU and real-time audio is synthesised
on the other, yielding a responsive musical instrument.

Acknowledgments

Thanks to Enrico Costanza for his insightful suggestions,
to Bram de Jong for listening and for developing various
fiducial to pdf schemes, to Pedro Cano and the AudioClas
team for access to their computation cluster, and most of all
to Gabi and Dare Remai for enduring the Fiducial Madness.

References
[1] S. Jord̀a, “Sonigraphical instruments: From FMOL to the

reacTable*,” inProc. of the 3rd Conf. on New Interfaces for
Musical Expression (NIME), 2003, pp. 70–76.

[2] M. Kaltenbrunner, G. Geiger, and S. Jordà, “Dynamic
patches for live musical performance,” inProc. of the 4th
Conf. on New Interfaces for Musical Expression (NIME),
2004, pp. 19–22.

[3] E. Costanza and J. A. Robinson, “A region adjacency tree
approach to the detection and design of fiducials,” inVision,
Video and Graphics (VVG), 2003, pp. 63–70.

[4] M. Kaltenbrunner, T. Bovermann, R. Bencina, and
E. Costanza, “TUIO: A protocol for table-top tangible user
interfaces,” inProc. of the The 6th Int’l Workshop on Ges-
ture in Human-Computer Interaction and Simulation, 2005
(to appear).

[5] M. Wright, A. Freed, and A. Momeni, “Open sound control:
State of the art 2003,” inProc. of the New Interfaces for Mu-
sical Expression Conf. (NIME), 2003, pp. 153–159.

[6] H. Kato and M. Billinghurst, “Marker tracking and HMD
calibration for a video-based augmented reality conferencing
system,” inProc. of the 2nd IEEE and ACM Int’l Workshop
on Augmented Reality (IWAR), 1999, pp. 85–94.

[7] J. Patten, B. Recht, and H. Ishi, “Audiopad: A tag-based in-
terface for musical performance,” inProc. of the Conf. on
New Interfaces for Musical Expression (NIME), 2002.

[8] R. Berry, M. Makino, N. Hikawa, and M. Suzuki, “The aug-
mented composer project: The music table,” inThe IEEE
Int’l Symposium on Mixed and Augmented Reality 2003 (IS-
MAR), 2003, pp. 338–339.

[9] Audite. Audiocube installation description. [Online]. Avail-
able: http://www.audite.at/en/projectsaudiocube.html

[10] I. Poupyrev, “Augmented groove: Tangible augmented re-
ality instrument for electronic music,” inACM SIGGRAPH
2000, Conf. Abstracts and Applications, 2000, p. 77.

[11] E. Costanza, S. B. Shelley, and J. A. Robinson, “Introducing
audio d-touch: A tangible user interface for music compo-
sition and performance,” inProc. of the 6th Int’l Conf. on
Digital Audio Effects (DAFX), 2003, pp. 63–70.

[12] F. Bérard, “The magic table: Computer-vision based aug-
mentation of a whiteboard for creative meetings,” inIEEE
Workshop on Projector Camera Systems (PROCAM), 2003.

[13] Fraunhofer. ZOOMlab installation description. [Online].
Available: http://www.fit.fraunhofer.de/projekte/kiwi/

[14] M. Fiala, “ARTag revision 1, a fiducial marker system using
digital techniques,” National Research Council of Canada,
Tech. Rep. NRC 47419, 2004.

[15] X. Zhang, S. Fronz, and N. Navab, “Visual marker detection
and decoding in AR systems: A comparative study,” inIEEE
Int’l Symposium on Mixed and Augmented Reality 2002 (IS-
MAR), 2002, pp. 97–106.

[16] A. van Rhijn and J. D. Mulder, “Optical tracking using line
pencil fiducials,” inEurographics Symposium on Virtual En-
vironments, 2004, pp. 35–44.

[17] D. L. de Ipia, P. Mendona, and A. Hopper, “TRIP: a low-
cost vision-based location system for ubiquitous computing,”
Personal and Ubiquitous Computing journal, vol. 6, no. 3,
pp. 206–219, 2002.

[18] C. B. Owen, F. Xiao, and P. Middlin, “What is the best fidu-
cial?” in Proc. of the First IEEE Int’l Augmented Reality
Toolkit Workshop (ART02), 2002.

[19] J. Molineros and R. Sharma, “Real-time tracking of multi-
ple objects using fiducials for augmented reality,”Real-Time
Imaging, no. 7, pp. 495–506, 2001.

[20] E. Weisstein. Mathworld, entry for rooted trees. [Online].
Available: http://mathworld.wolfram.com/RootedTree.html

[21] S. Nakano and T. Uno, “Efficient generation of rooted trees,”
National Institute for Informatics (Japan), Tech. Rep. NII-
2003-005E, 2003.

[22] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano, “Discover-
ing frequent substructures in large unordered trees,” inProc.
of the 6th Int’l Conf. on Discovery Science, DS’03, vol. 2843.
LNCS, 2003, pp. 47–61.

[23] T. Pintaric, “An adaptive thresholding algorithm for the aug-
mented reality toolkit,” inProc. of the Second IEEE Int’l
Augmented Reality Toolkit Workshop (ART03), 2003.

[24] J. Bernsen, “Dynamic thresholding of grey-level images,” in
Proc. of the 8th Int’l Conf. on Pattern Recognition (ICPR),
1986, pp. 1251–1255.

[25] E. Costanza. libdtouch (version of April 8, 2005). [Online].
Available: http://sourceforge.net/projects/libdtouch/

[26] J. Llad́os, E. Mart́ı, and J. J. Villanueva, “Symbol recogni-
tion by error-tolerant subgraph matching between region ad-
jacency graphs,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 10, pp. 1137–1143, 2001.

8

