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Abstract

The doubly-circular inter-relation of the major and minor keys on all twelve pitch classes can
be depicted in toroidal models of inter-key relations (TOMIR). We demonstrate convergence
of derivations on the explanatory levels of a) an experiment in music psychology, b) geomet-
rical considerations in music theory, and c) computer implementation of musical listening
scenarios.

Generalizing Shepard [1964] to full overtone spectra, circular perception of relative pitch
is experimentally verified and mathematically modeled as the spectrum of pitch differences,
derived from virtual pitch [Terhardt, 1998]. Musical examples of circular pitch, tempo, and
loudness are analyzed.

For each pitch class calculating the intensity in a musical recording, our constant quo-
tient (CQ-) profile method is a) consistent with psychological probe tone ratings, b) highly
efficient, c) computable in real-time, d) stable with respect to sound quality, e) applicable
to transposition, f) free of musical presupposition, except approximately equal temperament,
and g) sensitive to substantial musical features (style, composer, tendency towards chromati-
cism, and major/minor alteration) in a highly compact reduction. In Bach, Chopin, Alkan,
Scriabin, Hindemith, and Shostakovich, the latter features are extracted from overall CQ-
profiles by classification (support vector machine [SVM], regularized discriminant analysis)
and clustering. Their inter-relations are visualized by a technique called Isomap.

Leman [1995] models acquisition of inter-key relations. Artificial cadences are preprocessed
through modeling the auditory periphery. Then, in the toroidal self organizing feature map
(SOM) a TOMIR is arrived at. We extend this approach by a) using a great many actual
performances of music as input, and/or b) not presupposing toroidal topology a priori. Visu-
alizing CQ-profiles from Bach’s WTC by correspondence analysis (CA) and Isomap reveals
the circle of fifths. TOMIRs evolve from a) average CQ-profiles of Chopin’s Préludes and
toroidal SOMs, b) overall annotated duration profiles of Bach’s WTC I from score and CA,
and c) formalization of music theoretical derivation from Weber [1817]’s key chart by the
topographic ordering map introduced here. These results are consistent with Krumhansl and
Kessler [1982]’s visualization of music psychology ratings.

As auxiliary results, we discuss fuzzy distance, spatial and systematized synesthetic vi-
sualization in conjunction with beat weight detection on multiple time scales and suggested
applications to automatic tone center tracking. Furthermore, statistics on the key preference of
various composers are collected. Based on the latter, CA visualizes composer inter-relations.

This thesis substantially contributes to content retrieval (MPEG-7), automated analysis,
interactive audio-based computer music, and musicology.
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Introduction – Is Music Reducible to

Numbers, Brain States, and

Mechanics?

Inspired by the Pythagorean identification of musical harmony and geometrical
beauty, musical notions like pitch and key are depicted by geometrical objects such
as lines, circles, and toroids. Circular structures are motivated by the desire of the
musician to ascend in one musical parameter beyond any limit. This is approxi-
mated in the sawtooth pattern of slow rise, sudden fall, slow rise and so forth. The
helix [Drobisch, 1855] is a stark description of the most striking musical “paradox”,
a scale endlessly ascending in pitch [Shepard, 1964]. The helix decomposes pitch
into the linear component of brightness and the circular component of pitch class. It
proves to be fruitful to represent music in the highly compressed form of a profile of
pitch classes. Such a profile is a 12-dimensional vector, each component referring to
a pitch class. For each component the frequency of occurrence or the accumulated
intensity of that pitch class is given. This pitch class representation not only reveals
much information about style and composer, but also about mode and key. In a
natural way the circle of fifths and a toroidal model of inter-key relations (TOMIR)
emerge from pieces of music given in the pitch class profile representation.

A Machinist Intruding Musicology As expressed in Die Automate [Hoffmann,
1821], it is common to distinguish between, on the one hand, science and engineering
and arts and humanities, especially music:

Der größte Vorwurf, den man dem Musiker macht, ist, daß er ohne Aus-
druck spiele, da er dadurch eben dem eigentlichen Wesen der Musik
schadet, oder vielmehr in der Musik die Musik vernichtet, und doch
wird der geist- und empfindungsloseste Spieler noch immer mehr leis-
ten als die vollkommenste Maschine, da es nicht denkbar ist, daß nicht
irgend einmal eine augenblickliche Anregung aus dem Innern auf sein
Spiel wirken sollte, welches natürlicherweise bei der Maschine nie der
Fall sein kann. 1

1The harshest criticism against a musician is that he plays without feeling, since thereby he harms
the very nature of music, or rather destroys music by playing the music, and even the most
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Introduction

Abandoning Hoffman for now, let us show that the machine can play a role in
music.

In the traditional study of literature, problems like authorship, dating, and inter-
relations between literary works require high scholarship encompassing not only
a very refined sense for the aura of each word and the nuances of the language,
but also knowledge of the writer’s biography, their historical circumstances, and
philosophy. However, a paper appears, entitled: A Mechanical Solution of a

Literary Problem (Mendenhall [1901], cf. also Farey [2004]). Mendenhall merely
counts how often each word length occurs in a literary work. For each work he ob-
tains a histogram displaying the average frequencies of occurrence of all found word
lengths. He then discovers that the word length profiles for Christopher Marlowe
and William Shakespeare are almost identical. The similarity of these numerical
profiles supports the – heavily debated – hypothesis that Christopher Marlowe and
William Shakespeare are the same person. Even though the Shakespeare identity
problem cannot be answered definitively, it views literature and linguistics from an
– at that time – unorthodox perspective. It indicates the effectiveness of, taking
a minimum of domain specific knowledge into consideration, mere counting and
calculation in the analysis of a literary work.

Profiles of Pitch Classes from Theory, Score, and Sound In the simplest case,
binary twelve-dimensional vectors, like in Figure 0.1, are employed to represent
chords and keys, e.g. a C–major scale is represented by a “1” in the 1st (c), 3rd (d),
5th (e), 6th ( f ), 8th (g), 10th (a), and 12th (b) component and a “0” for all other pitch
classes. Such twelve-dimensional binary vectors can be considered pitch class sets,
interpreting each entry in the twelve-dimensional vector as a membership function,
“1” indicating that the specified pitch class is contained in the pitch class set and
“0” otherwise. So far, we make the same abstraction as in musical set theory [Forte,
1973], before branching out. Instead of only using “0” and “1” for each pitch class,
we can further refine the resolution of the profile, e.g. by using integer or real num-
bers. Instead of merely indicating whether a pitch class is contained in a particular
set or not, we can assign a degree of prominence to it. We could say, for exam-
ple, that the tonic (1st component) is most prominent, followed by the dominant
(8th component), followed by the major third, and so forth. In the context of a
given key, Krumhansl and Kessler [1982] derive such a prominence profile from a
psychophysical protocol, the probe tone experiment, yielding a so called probe tone
rating. For a piece in that key, mere counting of the occurrences of pitch classes
results in the profile of frequency of occurrence, highly consistent with the probe tone
ratings. In place of mere occurrences we can also add up the annotated durations
for each pitch class throughout the entire score, yielding the profile of overall annotated
durations. It would be worthwhile to retrieve pitch class information directly from

soulless and insensitive player will still perform better than the most perfect machine, since it is
unthinkable that even a transient passion from inside would never affect his play, which, naturally,
can never be the case for the machine.
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Figure 0.1: For each key a binary pitch class vector indicates if a pitch class
is included in the scale (> 0) or not (= 0). Pitch class profiles are shown for
C–major and for melodic and harmonic C–minor. The green circles highlight
the substituted tones for harmonic (b for b♭) and melodic minor (b for b♭ and
a for a♭).

a recorded performance without the necessity of having a symbolic representation,
e.g. a score, on-hand. For several tasks this could usefully work around the generally
unsolved, hard problem of automatic polyphonic pitch tracking and transcription.
A straight forward approach is to use a more or less neuromimetic pitch analysis
technique, e.g. some spectral representation, preferably one with equal resolution in
the logarithmic frequency domain. It would be desirable to have a method available
that is highly efficient, robust, real-time operable, and validated by a psychologi-
cal experiment as a reference. A fast method would enable the implementation in
low cost sound chips. High robustness especially could cope with historical record-
ings of poor sound quality. Operability of the algorithm with no look-ahead would
make the method suitable for responding to a performance in real-time, e.g. as an
analysis module for monitoring and further (semi-)automatic sound transformation
such as sound control and machine accompaniment. Reference to psychological data
would emphasize the perceptual relevance of the method. For this reason, in Sec-
tion 3.3.1, we develop the constant Q (CQ- ) profile method that exactly meets all of
these requirements. A constant Q profile is calculated with the highly efficient, ro-
bust, real-time constant Q transform [Brown and Puckette, 1992; Izmirli and Bilgen,
1996]. CQ-profiles closely match with probe tone ratings if spectral information of
the playing instrument is taken into consideration. Fujishima [1999] calculates pitch
class profiles 2 to represent chords, without using the efficient constant Q transform.
Sheh and Ellis [2003] extend his work. We can also consider more special pitch

2Sometimes they are also called “chroma profiles”.
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class profiles, e.g. by counting only pitch classes occurring on certain beat weight
positions. It is also possible to consider seven-dimensional diatonic profiles, only
indicating the scale degree intensities. Norming the pitch class profile with respect
to the keynote yields the normalized constant Q (NCQ-) profile. In the NCQ-profile,
the first component always refers to the keynote.

Which features of the musical content of a piece can be retrieved, based on the
noisy and very compressed information contained in the normalized constant Q pro-
file? Can the composer be determined, with nothing but a normalized constant Q
profile at hand? What can it tell us about the stylistic relations between pieces? How
does a composer discriminate between major and minor? These are the questions
we scrutinize in Section 3.4, covering results presented in Purwins et al. [2004a]. Reg-
ularized discriminant analysis and support vector machines with radial basis func-
tions can discriminate between composers quite well using no other feature than the
normalized constant Q profile. These methods outperform (regularized) linear dis-
criminant analysis and k-nearest neighbors. By means of t-test and the sparse linear
programming machine, in Section 3.4.2, we derive how composers use pitch class
intensities to discriminate between major and minor. Section 3.4.3 discloses how the
mode of a piece is the most salient property, emerging in the data using k-means
clustering. The position of the piece relative to the cluster centers reveals its “ma-
jorness”. Positions in between the cluster centers for major and minor can indicate
three phenomena: 1) chromaticism, 2) a modulation to the parallel major/minor key
in the middle section, or 3) a wide range of tone centers on the circle of fifths that
are visited during the piece. In Section 3.4.4, from visualization by Isomap it can be
seen how certain pieces either group together or distinguish from each other due
to their chromaticism, switch to parallel major/minor, range of modulations, and
ambiguous or extended tonality. Statistical analysis of inter style relations based on
counting pitch class occurrences in the score are done by Fucks and Lauter [1965]
and Beran [2003], the latter using principal component analysis, linear discriminant
analysis, hierarchical clustering, and various other visualization techniques.

How can we group or separate composers solely based on their preference for a
particular key and avoidance of another one? Statistics on key preference in com-
posers yields a composer & key co-occurrence matrix. A stylescape is a planar or
spatial arrangement of composers and schools of composition, displaying their in-
terrelations. In Section 3.6, stylescapes are generated by correspondence analysis.
Overlaying the map of composers and the map of keys, the biplotting technique
links stylistic characteristics to favored keys. Interdependence of composers and
schools is meaningfully visualized according to their key preferences.

Inter-Key Relations How can we arrange keys on a manifold so that walking on
the surface of this manifold corresponds to a smooth transition from one key to a
musically adjacent other key?

We will see that from key kinships and charts of tone centers the circle of fifths
and TOMIRs emerge in a couple of different setups under varying epistemologi-
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cal assumptions: 3 1) in a purely speculative music theory framework that can be
modeled by an algorithm, 2) in hand-made analysis of music literature, 3) in music
psychology experiments, and 4) in various cognitive models operating on score as
well as audio data. A cognitive model can process a piece of music in audio or
symbolic representation. Such a model consists of preprocessing, modeling the au-
ditory periphery, and a schema,4 implemented as a machine learning technique with
some allusion to cognitive learning mechanisms. Several cognitive approaches share
two properties: First, analysis is based on text-book like simple cadences composed
of Shepard tones. Second, toroidal SOMs are used. To use musical examples syn-
thesized with Shepard tones is, in general, a drastic simplification of the acoustical
reality. The claim of some authors to use the acoustical signal instead of a symbolic
representation, as e.g. given in a score [Leman, 1995], cannot be fully met by using
textbook like cadences made of Shepard tones, since in Shepard tones all compo-
nents have the same pitch class, with no noise or transient components. Therefore,
they are so simple that they can almost be considered explicitly annotated pitch
classes. We can refer to Shepard tones as a quasi symbolic representation.

In Western music of the major-minor tonality period, roughly from Bach’s birth
(1685) to Wagner’s Tristan (1857), inter-key relations are determined by the tonic-
dominant relations and the major-minor duality, i.e. parallel and relative relations.
In search for an explanation, Weber [1817] remarks that for dominant, subdominant,
and relative keys the scales differ from the tonic scale only in one tone. The tonic and
its parallel scale share the same principal scale degrees, i.e. I, IV, and V. Werts [1983]’s
analysis of modulations in a large corpus of music reveals that modulations to dom-
inant, subdominant, parallel and relative keys are most common (Section 1.2.7). The
outcome of iterative application of these key kinships can be visualized by Weber
[1817]’s grid-like chart of tone centers, later echoed by Schönberg [1969]. Within
this chart, the identification of enharmonically different spellings yields the circle of
fifths.

The circle of fifths traces back to the circular display of keys in Figure 1.13 by
Heinichen [1728]. 5 Fed with musical data sets, the circle of fifths emerges in various
setups of cognitive models. Petroni and Tricarico [1997] apply a simplified version
of Terhardt [1998]’s virtual pitch model (Section 2.2.2) in conjunction with a non-
toroidal SOM. The data consists of major and minor triads, and dominant seventh
chords, composed of Shepard tones. After training on the SOM, the major triads
arrange along the circle of fifths. When training the SOM with probe tone ratings of
all keys, instead of chords, the SOM projects the major triads, not used in training,
along the circle of fifths as well. 6 In a different experiment, correspondence analysis

3TOMIR related research in this thesis has been also published in Blankertz et al. [1999a]; Purwins
et al. [2000a, 2001b, 2004b, 2006]

4Definition on p. 42.
5For a detailed account on the history of the circle of fifths cf. Werts [1983].
6Petroni and Tricarico [1997], p. 171. Using the same data fed to a toroidal SOM (Leman [1995],

p. 90–92) fragments of the circle of fifths emerge. In Leman and Carreras [1997], preprocessing by
an auditory model [Immerseel and Martens, 1992] in conjunction with a toroidal SOM is applied
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serves as a schema. This schema can be used to process the profiles of frequency
of occurrence of pitch classes. Specific results are shown for profiles extracted from
digitized scores of fugues in Bach’s WTC (Section 3.8.4). There is exactly one profile
for each key. Correspondence analysis then projects keys, expressed by the frequency
profile, on a planar keyscape. 7 Vice versa, pitch classes can be viewed as profiles
of frequency of occurrence in a specific key, indicating how often this pitch class
is used in pieces of the various keys. Vice versa to the process applied to keys,
pitch classes can be projected to a space (pitchscapes) spanned by the keys. In both
scenarios, a homogeneous circle of fifths emerges in the scapes. (Section 3.5.2) In
the correspondence analysis of CQ-profiles of Bach’s WTC II (fugues) the circle of
fifths evolves also. If an Isomap is used as a schema and the Isomap is provided
with all CQ-profiles in WTC the circle of fifths evolves as well. The two latter results
from correspondence analysis and from Isomap are more far-reaching than the above
mentioned experiments, since they are based on digitized music recordings, do not
require averaging or normalization of the data, and circularity is not included as an
inherent feature of the model.

In Weber [1817]’s chart of tone centers, we can identify multiple occurrences of
the same or enharmonically equivalent tone. In addition to the circle of fifths, we
observe a circular parallel and relative relation, resulting in a torus, referred to specif-
ically as a TOMIR. 8 This genesis can be mathematized using a relative of the SOM
referred to as the topographic ordering map. The input is a set of key pairs that
are assumed to be closely related. The algorithm aims at finding a spatial config-
uration which respects stipulated constraints. Presupposing fifth, parallel, and rel-
ative key relationships as “close”, a simulation with the topographic ordering map
yields a TOMIR, very similar to the familiar one derived from Weber [1817]. Fur-
thermore, this doubly circular representation is consistent with music psychology
experiments. The intrinsic doubly circular inter-relation of the probe tone ratings
becomes apparent after down-scaling them to a four-dimensional Euclidean space
by multidimensional scaling. 9 Closer inspection reveals that the scaled points which
correspond to the major and minor keys lie approximately on a sub-manifold formed
by the crossproduct of two cycles (cf. Figure 1.20). Similar to processes previously
described, this sub-manifold can be mapped to a TOMIR.

Werts [1983]’s analysis of modulations in Schubert supports the significance of the
toroidal representation of inter-key relations. (cf. Section 3.5.1) In cognitive models,
provided with musical data, it is studied whether, in addition to the circle of fifths, a

to the preludes of Bach’s WTC I. Then the preprocessed cadential Shepard chord progressions
in all keys are mapped by the trained SOM. The configuration of mapped major keys is, to a
low degree, reminiscent of the circle of fifths. In Leman [1995], the display of Figure 6 on p. 156
apparently aims at resembling images produced in optical recording in brain imaging.

7By “keyscape” and “pitchscape” we mean a low, usually two- or three-, dimensional arrangement
of keys or pitch classes respectively. The notion keyscape has been introduced by Sapp [2001].

8Cf. Werts [1983], p. 18, Figure 47. For a detailed history of TOMIRs cf. Hyer [1995]; Cohn [1997];
Douthett and Steinbach [1998].

9Cf. Krumhansl and Kessler [1982]; Section 1.2.9 and Figure 1.19.
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TOMIR might emerge as well. A toroidal SOM, preceded by a model of the early au-
ditory pathway, is fed by cadential chord progressions played on a piano: a TOMIR
clearly emerges.10 (Section 3.8.2) In another experiment, instead of a very realistic au-
ditory model, average constant Q profiles are calculated in the preprocessing stage,
preceding the toroidal SOM. A recording of Chopin’s Préludes, formated as audio
data, constitutes the analyzed corpus. Fed by the profiles a TOMIR evolves in the
SOM. 11 (Section 3.8.3) In this setup, only octave equivalence and the chromatic scale
– a minimal amount of knowledge of music in the tonal period – is employed. Again
we apply correspondence analysis to the pitch class profiles of frequency of occur-
rence of Bach’s WTC I. We employ biplots to embed keys and pitch classes in the
keyscape to visualize their interdependence. After a change of co-ordinates, the four-
dimensional biplots can be interpreted as a configuration on a torus (Section 3.8.4),
closely resembling results from music theory and experiments in listener models. In
summary, the eminent role of the TOMIR is emphasized in various experiments and
epistemological settings. Also colors may be employed to depict inter-key relations.
In Section 3.7.1, synesthetic key-color codes are developed and classified.

Listeners are able to trace modulations from key to key, even if they cannot ex-
plicitly name them. Can a machine capture modulations as well? In the last four
decades, several approaches for tone center tracking have been published. Early
attempts mostly explicitly implement rule systems suggested by harmonics text-
books. [Simon, 1968; Winograd, 1968; Longuet-Higgins and Steedman, 1970; Holtz-
mann, 1977] Many approaches [Krumhansl, 1990; Huron and Parncutt, 1993] are
based on representing key as a pitch class profile of frequency of occurrence [Krum-
hansl and Kessler, 1982], or as a matrix of pitch class interval occurrences [Butler,
1989]. Bharucha and Todd [1989] and Leman [1990] model music cognition. For
Leman [1990], the tonal reference for tone center analysis is provided by idiomatic
Shepard tone cadences, preprocessed by an auditory model, subsequently treated by
a multi time scale attractor model, as an allusion to retrospective tonal re-evaluation.
Gang and Berger [1999]’s system accepts music in MIDI format. Their recurrent net
learns to predict harmonic development, by learning metrical-harmonic inter depen-
dence. Griffith [1994] conducts tone center tracking on binary pitch class profiles and
second-order pitch class transition tables [Browne, 1981], employing various models
of memory and a modular architectures of artificial neural nets (ART-2, SOM, and
feed-forward network; Haykin [1999]). Izmirli and Bilgen [1996] use the constant Q
transformation (Brown [1991], cf. Section 2.1) for tone center analysis in combination
with a refined frequency estimation, observing phase changes [Brown and Puckette,
1993]. Context is integrated adaptively based on chord changes. But in their model,
by canceling out harmonics of a detected fundamental, fundamentals of other tones
are possibly canceled out also. Sapp [2001] suggests multi-time scale visualizations
of tone center analysis for MIDI. Temperley [2001] uses Bayesian inference for auto-
matic tone center analysis of MIDI. Pardo and Birmingham [2002] delineate a har-

10The experimental setup is adapted from Leman [1994].
11The material has been presented also in Purwins et al. [2000b] and Purwins et al. [2001a].
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monic chord-by-chord analysis of MIDI. Sheh and Ellis [2003] use hidden Markov
models based on previous chord segmentation. In Section 3.9 an outlook of appli-
cations of CQ-profiles in the domain of tone-center tracking is presented [Purwins
et al., 2002], including new features, an appropriate dissimilarity measure, various
visualization methods, and multi time scale analysis.

Infinity – Construction of Acoustical “Paradoxes” Is it possible to perceive pitch
as (monotonically) increasing, while returning the physical parameter to its starting
point? With respect to other acoustical parameter domains the question would be: Is
it possible to infinitely accelerate the beat of a piece? How about loudness? Can we
modulate to remote keys keeping one direction on the circle of fifths and nonetheless
reach the initial key? We will present examples in the domain of pitch and tempo
and similar phenomena for loudness and harmonic modulation. The idea of these
“paradoxes” is the following. The everyday experience of this perception obeys a lin-
ear order (greater/smaller relation), not a circular one. That implies, if we proceed
in one perceptual quality in one direction (higher, faster, louder, farther away from
tonal center), it appears “paradoxical” to us, if we reach the starting point again at
some point. Sections 3.1 and 3.2 contain results published in Normann et al. [2001a,b]
and Purwins et al. [2005]. From the sawtooth culmination pattern we derive the pitch
and tempo “paradoxes”. In an experiment, we demonstrate that the phenomenon of
circular pitch perception also holds for sequences of a much larger class of harmonic
complex tones [Normann, 2000; Normann et al., 2001b]. Calling a phenomenon an
illusion or a paradox usually means that it is not consistent with particular com-
mon assumptions. In the case of circular pitch perception such a common implicit
assumption is the equalization of psychoacoustic and basic physical entities. We
can dissolve the “paradox” of circular pitch by discarding this inadequate premise.
Then circular culmination, e.g. in pitch, does not appear as a paradox anymore. Due
to just noticeable differences, perception quantizes analog signals. Thereby small
differences turn into equalities, eventually producing artifacts. At some point, the
accumulation of small differences exceeds the perceptual threshold, whereas their
quantized percepts add up to zero. In addition, in the pitch “paradox” we can see
the gestalt principle of proximity at work, searching for the shortest path on the
pitch class circle. As a mathematization of these principles we will introduce an
equation, the spectrum of pitch differences, that extends the virtual pitch algorithm
[Terhardt, 1998] to pitch intervals. Compared to artificial sounding Shepard tones,
the spectra of the investigated harmonic complex tones are in general much closer to
the stationary part of sounds of acoustical instruments. This explains the potential
of employing circular pitch perception in pieces of music for acoustical instruments
(e.g. by Berg, Ligeti, Stahnke, Reutter, cf. Section 3.2.6), even though their spectra do
not merely consist of octave components.
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Interdisciplinary Perspectives on Music

We will now discuss our approach with respect to various musicological traditions,
mathematics, brain science, machine learning, psychoacoustics, and music psychol-
ogy.

Surface Level or Underlying Deep Structure? There are two main views on music:
first the description and analysis of musical works on the surface level and second
the investigation of the musical mind, the deep structure that comprises the cognitive
mechanisms at work in the creation and perception of music. According to the
latter concept, a piece of music is considered merely an epiphenomenon of the deep
structure. Looking at the deep structure in music means searching for the universal
basis of musical intelligence, beyond a particular musical style. Let us investigate
how far various theories proceed in this direction.

Traditional music theory [Rameau, 1722; Riemann, 1877; Schenker, 1935] tries to
find universal laws beyond the surface level. But when applied to various styles of
music the limitations of these theories become apparent. Each theoretic approach is
more or less adapted to the musical style it describes best. Generalization to mu-
sic not belonging to that particular style creates a lot of theoretical problems. E.g.
Salzer [1962]’s extension of Schenkerian theory to twelve-tone music is not as smooth
as, e.g., Schenker’s own analysis of Beethoven’s Piano Sonatas, since Schenkerian
theory implies tonality. In some respects, functional harmony [Riemann, 1877] is
inconsistent. It cannot adequately cope with music that is based on patterns like
stereotype fifth fall sequences. It assigns a harmonic function to each chord, rather
than treating the sequence as an idiomatic mechanism. The assignment of chords to
functions is ambiguous, since e.g. the mediant can have tonic or dominant function.
(cf. p. 52) Functional harmony reaches its limits in extended tonality (Richard Wag-
ner’s Tristan and later). However, traditional music theory is useful as a reference,
since for complex phenomena in music often no other approach, e.g. neuroscience
or music psychology yield results that could serve as a reference.

Yet other approaches that do not generally lead to the deep structure are the scru-
tinizing of the historical genesis of concepts and the etymologic derivation of the
terminology, demanding authority. However, for showing convergence of distinct
levels of explanation, we follow this understanding in the exposure of the histori-
cal development of the circle of fifths and the TOMIR in Section 1.2, although the
exploration of a musical notion by etymologic derivation, common in traditional
humanities, is more misleading than clarifying if the actual usage and meaning of
a word deviates too much from its historical roots. Although descriptive on the
surface level, another direction of research gives insight into the deep structure.

Ethnomusicology provides a therapy for Eurocentric attempts towards universalism
by delivering counter-examples contradicting music theories that are mainly devel-
oped from the historically biased perspective of classical Western European compo-
sition styles especially from 17th to 19th century. On the other hand, there is such a
diversity of music cultures on the world that for an arbitrary surface level hypothe-
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sis on music almost always two music examples can be found, one to support and
another one to contradict the hypothesis.

Other music theories consider acoustics to be a stable ground to build upon. The
overtone series is thoroughly studied by Helmholtz [1863], who relates it to conso-
nance and dissonance. 12 Upon that Oettingen [1866] builds his major/minor duality
theory. But Dahlhaus [1967] points out that this theory cannot consistently build on
the symmetry of major (major third - minor third) and minor (minor third - major
third).

As a consequence to these problems, Lévy [2004] critically discusses and questions
science methods in musicology and the possibility of universal laws in general. But
thereby he questions his own scientific effort. However, some theorists abandon the
search for deep structure and universal laws. Instead they restrict themselves to the
mere description of a style in a particular musical epoch, composer, or score [de la
Motte, 1980; Schneider, 1987].

How can mathematics help to investigate the deep structure of music?

Sister Sciences Mathematics and Music The earliest surviving fragments of orig-
inal writings of a philosopher later assigned to the Pythagorean school are by Philo-
laus (470 – 385 B. C.). He emphasizes the eminent epistemological role of the num-
ber: kaÈ p�nta ga m�n t� gignwskómena �rijmän êqonti· 13

As an example, he gives the intervals of the so-called Pythagorean diatonic scale,
defined by the intervals 8:9, 8:9, 8:9, 243:256, 8:9, 8:9, and 243:256. Plato adopts this
scale in the construction of the world soul (Timaeus: 36a-b, cited in Huffman [2005]).
In his famous image of the cave, Plato divides between the world of thought and the
world of sense-perception (Republic: 514a). Giving the world of thought higher pri-
ority, “Plato is calling for the study of numbers in itself” (Huffman [2005] Section 2.2).
Plato (Republic: 531c) criticizes Archytas for not ascending to generalized problems
[Huffman, 2005]. But Archytas uses numbers just to describe the musical scales in
use in his days. He gives “an account of individual things in the phenomenal world
in terms of numbers” (Huffman [2005], 3.1):per� te d� tã tw̃n �strwn taqutãto kaÈ âpitolãnkaÈ dus�wn parèdwkan �mĩn safh̃ di�gnwsin kaÈ perÈ gametr�akaÈ �rijmw̃n kaÈ sfairikã ka� oÎq ¡kista peri mwsikã.taũta g�r tà maj mata dokoũnti �men �delfe�· 14

12Due to the constrained length of this thesis, we cannot address this popular topic here. It is
frequently and thoroughly discussed elsewhere (cf. Palisca and Moore [2004]).

13Fragment 4 in Diels [1903], p. 408: “And indeed all things that can be known have number.”
14Fragment 1 in Diels [1903], p. 432: “They [the mathematicians] reported to us a clear insight into

the speed of celestial bodies, their rise and set and about geometry, numbers, and the (astronomic)
study of spheres, and at any rate into music, because these sciences seem to be sisters.”
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For Archytas, music and numbers are united by the superior role of mathematics.
“In reviewing the accounts of music that have characterized musical and intellectual
history, it is clear that the Pythagoreans are reborn from age to age.” [Epperson,
2003] Twenty centuries later, the “harmony of the spheres” reappears in Kepler’s
Harmonice Munde (1619). For Leibniz [1734] "musica est exercitium arithmeticae
occultum nescientis se numerare animi". 15 The cosmological concept is still pre-
served, e.g. in the New Age work Nada Brahma: The World is Sound [Behrendt,
1983] and Karlheinz Stockhausen: “I know . . . that I have come from Sirius, myself.”
[Felder, 1977] Maintaining close ties between mathematics and music, mathematical
music theory [Mazzola, 1990, 2002] 16 reformulates concepts in musicology in more
precise mathematical language. Thereby the vagueness of natural language is re-
moved, thereby providing the basis for scientific work in musicology. Distinct music
theory schools can be related to each other and possibly unified or extended to new
theories. With this formalism at hand, (digitized) scores can be precisely and ob-
jectively investigated. This is one step towards operationalization17 called for by
Laske [1987] and Seifert [1993]. So far, mathematical music theory has delivered
some strong results in music theory, e.g. for counterpoint (Mazzola [1990], p. 241-
260). However, complying with Plato, it focuses on beautiful mathematics beyond
the music more than its manifestation in actual pieces of music. Aspects of the
related phenomenon are considered even less, such as the sensitive appearance of
music, that is the acoustical reality of the sound signal, its auditory perception, and
its particular sociocultural context. As for any applied mathematics, the relevance of
mathematical music theory for music understanding depends on two critical transi-
tions: the transfer of a musical event into a mathematical formalism and – vice versa
– the retranslation of the mathematical result into musical meaning. When translat-
ing music into mathematics sometimes inadequately complex formalism is used, not
complying with one of the basic principles of mathematics, the precedence of sim-
plicity. 18 E.g. algebraic geometry [Mazzola, 1990] is used to explain the significance
of the diminished seventh chord in the Hammerklavier-Sonate (cf. p. 68), pseudo-
Riemannian geometry to discuss harmony and the problem of enharmonic spelling
[Noll, 2002], and group theory to derive the twelve pitch classes (cf. p. 55). From
music theory, Mazzola ascends further to a meta theory, he calls “encyclospace”,
mathematical music theory itself appearing as a special case thereof. With respect
to the translation from music into mathematics, for chord classification by means
of affine-linear mappings the psychoacoustic relevance of the theory is not clear (cf.
p. 53). As a consequence, for subsequent mathematical conclusions the retranslation
into music is not clear either. Motivic similarity is formulated mathematically in

15Music is the hidden mathematical endeavor of a soul unconscious it is calculating.
16Independently, Lewin [1987] and his school develop a similar approach.
17Operationalism is “the attempt to define all scientific concepts in terms of specifically described

operations of measurement and observation.” [Britannica, 2004]
18Ockham: “Pluralitas non est ponenda sine necessitate; ‘Plurality should not be posited without

necessity. The principle gives precedence to simplicity; of two competing theories, the simplest
explanation of an entity is to be preferred.”’ [Britannica, 2003b]
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terms of subsets of tones [Buteau, 1997] or the counterpoint group [Nestke, 2004].
But it is equivocal whether their definitions of melodic similarity are consistent with
psychological findings. [Muellensiefen and Frieler, 2004] As a consequence, the mu-
sical relevance of the mathematical conclusions is equivocal as well. The translation
of the mathematical conclusions back into general musical terms in Buteau [1997]
and Nestke [2004], if meaningful at all, is not given yet. In the analysis of modu-
lations, a test-bed has been developed [Noll and Brand, 2004], but, so far, no work
has been devoted to numerically handle the problem of harmonic path finding. In
metric analysis (cf. p. 170, Fleischer [2002]), mathematics is retranslated to Brahms’
music in score format. However, it could be further extended to music in which the
distinct simultaneous meters are handled in a more elaborate way, such as the mu-
sic of the Aka pygmies, classical music of North India, and Nancarrow. Additional
future work could comprise the translation into music in audio format. In general,
mathematical music theory settles in a terrain that is difficult of access to music theo-
rists not trained as mathematicians. Therefore for them it is very hard to adequately
evaluate mathematical music theory. A pitfall – committed also by much writing in
traditional musicology – is the relating of theories to special cases, singular hand-
picked musical examples, instead of a representative sample with well-defined error
estimates.

In our research we follow Archytas rather than Plato. In contrast to mathematical
music theory, we employ only very simple mathematical description, such as pitch
class profiles, which we derive from empirical data, various recordings in audio data
format. We use models in auditory neuroscience, cognition and learning, to the ex-
tent they are available. For analysis we employ statistics and machine learning with
quantifiable significance. In addition, we refer to psychological experiments. How-
ever, in some instances we have to refer to traditional music theory (cf. Section 3.9.2),
especially for complex music phenomena, since for the latter, music psychology of-
ten does not provide enough results yet.

The Brain Comprehended? Cognitive science is an “interdisciplinary study that
attempts to explain the cognitive processes of humans and some higher animals
in terms of the manipulation of symbols using computational rules” [Britannica,
2004]. “Cognitive musicology is that branch of cognitive science which investigates
musical thinking.” 19 Lerdahl and Jackendoff [1983] 20 emphasize the criterion of
operationalism in cognitive musicology. This implies stating hypotheses, subject to
experimental validation, based on statistical significance, rather than on few partic-
ularly chosen examples. However, early accounts on cognitive musicology [Laske,
1987; Seifert, 1993] point out the necessity of operationalism rather than actually de-
velop operational theories. “Apart from the cultural background and the individual
experience of the beholder”, Leman [1995] points out the role of the percept and
its context. This is in contrast to considering music as a construction of building

19Boldface by the author, Lischka [1987], p. 191, cited in Seifert [1993], p. 39.
20p. 332, cited in Seifert [1993], p. 39.
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blocks in the world of thought, e.g. notes, chords, and bars in traditional Western
European music notation. Instead of dividing between the world of thought and
the world of sense perception, cognitive musicology assumes a “correspondence be-
tween mental representations of perceived phenomena and brain states or cortical
representations.” [Leman and Carreras, 1997] Seifert [1993] (p. 39) thinks that in cog-
nitive musicology psychology, auditory neuroscience, and artificial neural networks
“converge” and lead to the crucial representations and processes at work in mu-
sic cognition. Auditory images and schemata (Leman [1995], cf. Section 1.1.7) are
considered more appropriate building blocks than notes, chords, etc. . An auditory
image

is assumed to contain a state or snapshot of the neural activity in a brain
region during a short time interval. It is modeled as an ordered array
of numbers (a vector), where each number represents the probability of
neural firing of a group of neurons during a short time interval. (Leman
[1995], p. 38)

But to what extent can neural correlates of mental processes be empirically identi-
fied? Auditory processing in the auditory periphery including the hair cell is well
known and successfully applied in music compression, sound analysis, and music
cognition modeling [Leman, 1995; Rosenthal and Okuno, 1998]. Hair cells are thor-
oughly investigated. [Meddis, 1988] Therefore the auditory image of the hair cell
is biologically plausible. However, the knowledge about music processing in the
auditory pathway subsequent to the hair cell, especially in the cortex, is sparse at
this stage of research (Leman [1995], p. 172). All subsequent auditory images used
in Leman [1995]’s model, including correlogram, tone context image, and semantic
image, lack biological evidence at the current stage of auditory neuroscience. The
correlogram is the autocorrelation vector (cf. Section 2.2.2, Equation 2.21) calculated
from the hair cell output. But biological evidence for a process like autocorrelation is
doubted (cf. Section 2.2 and citation p. 83). In consequence, the biological plausibility
of the correlogram (Leman [1995], p. 56) is not clear. A semantic image assumes char-
acteristic groups of neurons that respond most strongly to particular keys. (Leman
[1995], p. 18-19) However this image is not supported by neurobiological evidence
either. 21

Euphemistically called “invasive” animal experiments are the principle source of
knowledge about neural correlates of hearing. But can they be employed for the
investigation of music cognition as well? The relevance of animal experiments for
music cognition research is limited by the extent, up to which we think of an animal
having musical abilities as well. That leads to ethical problems. For the investigation
of certain questions, species of a high degree of organization and close kinship to
humans are required. But according to a generally accepted compromise between

21Cf. the discussion of Janata et al. [2002] on p. 168 of this thesis.
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anthropocentrism22 and biocentrism23, those species require relatively high protec-
tion. For animal experiments in an ethical evaluation often the solidarity principle
is cited in wide interpretation as a counterbalance to the value of animal life. The
solidarity principle comprises the obligation to help others that suffer from illness
or diseases, e.g. by conducting medical research involving animal experiments in
order to develop effective treatment. We would like to assume that the main moti-
vation in research is curiosity, and the solidarity principle mostly is just used as a
vehicle in the train of arguments. However, in music it cannot be easily employed
convincingly.

How far can brain imaging in humans help the understanding of music cogni-
tion? Sometimes diagnosis of epilepsy in humans indicates the need of electrode
implantation in the patient for localizing the center of the epileptic seizure. Some-
times this gives the opportunity of undertaking delimited invasive music cognition
experiments. We can imagine the brain as a clew of approximately 1011 neurons
(Kandel et al. [1991], p. 18), each often having a complex topology and synaptically
connecting to up to as much as 150 000 other neurons. 24 Hence, in general it is
impossible to localize electric current flow in individual neurons by measuring elec-
tricity in electrodes positioned around the skull, like in the electroencephalogram
(EEG). Other non-invasive methods, such as functional magnetic resonance imaging
(fMRI) or positron emission tomography (PET), have better spacial but worse tem-
poral resolution. Different musical activities and the processing of different musical
styles can be vaguely localized in the cortex [Petsche, 1994; Marin and Perry, 1999].
The fMRI study of Janata et al. [2002] gives some evidence to the localization of tone
center tracking activity in the brain (cf. p. 168).

Machine “learning” Artificial neural networks are a formalization of neural activity
based on a computational model called the connectionist neuron. From the current
viewpoint of research, the connectionist neuron presents a simplified, not entirely
accurate view on the neuron, since it excludes certain ways of information coding
like time and inter spike interval coding (cf. Section 2.2.1). In the mid 1980s, artificial
neural networks demand great attention, being presented as an adaptive, flexible
“learning” method opposed to rule based artificial intelligence, immoderately over-
whelmingly suggesting a quick solution to hard problems like automatic translation
before a disappointing exposure revealed a déjà vu of similar optimism praising ar-
tificial intelligence some twenty-five years before. Furthermore, in artificial neural
networks the employment of a terminology borrowed from brain science supports

22“The defining feature of anthropocentrism is that it considers the moral obligations humans have ...
to each other and, less crucially, to future generations of humans rather than from any obligation
to other living things or to the environment as a whole.” [Elliott, 2003]

23“In contrast to anthropocentrism, biocentrism claims that nature has an intrinsic moral worth that
does not depend on its usefulness to human beings, and it is this intrinsic worth that gives rise
directly to obligations to the environment. Humans are therefore morally bound to protect the
environment, as well as individual creatures and species, for their own sake.” [Elliott, 2003]

24Purkinje cell in the cerebellum (Kandel et al. [1991], p. 22).
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this hype, suggesting that such an algorithm, a black box, would autonomously
“learn” complex behavior without explicit provision of domain specific knowledge,
just like humans do. In practice, domain specific knowledge is often required but
hidden in preprocessing and laborious tuning of various parameters. Nonetheless,
artificial neural networks are often even outperformed by classical methods based
on heuristics. But this is not surprising, since a closer look reveals that many of the
seductive terms denote rediscoveries of methods known for a long time in numeri-
cal mathematics and statistics (cf. Ripley [1996]). The first popular “neural net”, the
“multi layer perceptron” is nothing but a concatenation of linear and sigmoid func-
tions. The term “learning”, in effect, means “finding zeros of the first derivative of
such a function”. The methods are now rather labeled machine learning and treated
as special cases in mathematics and statistics (e.g. Vapnik [1998]).

The self-organizing feature map (SOM,Kohonen [1982]) is frequently presented as
a model of cortical organization [Obermayer et al., 1990]. Its backbone is the winner-
takes-all step (Equation 2.30), requiring a global comparison between all neurons.
Due to the high number of neurons in the cortex, such a step is biologically implau-
sible. Although we know little about the cortex, the SOM is used as a rough, yet
inaccurate implementation of instances of the schema concept [Leman, 1995]. Le-
man describes how musical meaning of pitch, e.g. its functional role as a leading
tone, tonic etc., is partly defined by its context, e.g. the key, whereas vice versa this
context, the key, is defined by the pitches. We will see that the employment of cor-
respondence analysis (Sections 2.3.2, 2.3.4, and 3.8.4) as a schema is especially suited
to model this duality.

Due to the incompleteness of knowledge in auditory neuroscience, the potential
of insights from experiments with neuromimetic models is limited. In general, psy-
choacoustics and music psychology experiments give a far more precise and reliable
reference. Machine learning methods should be thought of as heuristics with oc-
casional allusions to neurobiological phenomena. Therefore, usually a compromise
has to be made between a neuromimetic model of high explanatory value and an
efficient practical application that is rather based on heuristics. Even though the
bottom-up approach from auditory neuroscience does not lead so far, by machine
learning we can tentatively fill the gap up to the top down line of attack reached by
psychoacoustics and music psychology.

Ground Truth through Inquiry of the Listener In general it can be observed that
musical qualities are psychoacoustic qualities more than physical ones (Section 1.1).
Referring to Chomsky [1988], the deep structure of music cannot be a formalized
rule system extracted solely from a corpus of music. The major reference is the
musician or naive music listener, who can be accessed in a psychological experiment,
such as the one on circular perception of pitch in Section 3.2.2 and the probe tone
experiment in Section 1.2.9. In addition, various dissimilarities, as an implementa-
tion of the gestalt principle of proximity, provide theories and models of circular
perception of pitch (cf. Section 3.2.3) and of inter-key relations (cf. Sections 1.2.5 and
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1.2.7). But also in music psychology the surface level could be falsely taken for
the deep structure: 1) The “role that anthropological field-workers [musicologists
in our context] play in shaping, rather than merely describing, the situations they
report on.” [Britannica, 2003a] E.g. music students are coined by musicologist’s
concepts that dominate the curriculum. In some cases, such as the music psychol-
ogy experiments with probe tones, Section 1.2.9, or circular pitch, Section 3.2.2, the
judgments of the musically educated subjects reflect identified explicit music theory
concepts rather than some deep structure. Likewise, awareness of a regularity or a
pattern in music provokes composers to break it, in order to eschew a cliché. 2) In
our global musical monoculture, it is difficult to find unbiased naive subjects that
have never heard main stream music before. However, so far music psychology has
predominantly studied simple musical attributes such as pitch, tempo, or rhythm.
Lacking music psychology data, for more complex musical attributes we need to
refer to traditional music theory.

We do not claim that the methods we apply comprehensively explain music. On
the contrary, by sorting out the minority of explicable aspects, we wish to focus the
attention to the residuum, the (yet) inexplicable marrow of striking music experi-
ence.

Organization of Thesis Chapter 1 covers the background. We view music from two
contrary perspectives. We refer to the more Platonic perspective including mathe-
matical music theory and geometrical models. The other, reductionist, viewpoint
is the discussion of neural correlates of musical notions. Section 1.1 prepares the
ground for the definition of pitch as a psychoacoustic notion, introducing gestalt
principles, especially for grouping sound features, virtual pitch, and the circular
perception of relative pitch [Shepard, 1964]. In Section 1.2, we develop the TOMIR
from geometrical concepts in music theory. Starting from the tonnetz [Euler, 1774],
we show how equal temperament supports the identification of tones that are sepa-
rated by commata 25. Enharmonic identification (e.g. d♯ ∼ e♭) and abstraction from
brightness leads to pitch classes. Chords, harmony, cadences, and modulations are
introduced defining the sense of key. Key transposability is discussed as a matter of
key character. Finally, geometrical models of inter-relations between tones, chords,
and keys are presented.

Chapter 2 introduces methods relevant to this thesis. We explain the constant Q
transform derived from the fast Fourier transform [Gauss, 1866] 26. In Section 2.2, we
see to what extent we can use knowledge from auditory neuroscience to construct
a functional neuromimetic model. As an example, we discuss autocorrelation as an
implementation of virtual fundamental detection in Section 2.2.2. We demonstrate

25To give an example, the Pythagorean comma is the difference between seven just octaves and twelve
just fifths.

26Gauss used the algorithm 1805 to interpolate the trajectories of the asteroids Pallas and Juno,
published posthumously. [Heideman et al., 1984]
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that for the purpose of pitch detection in our context, harmonic complex tones and
pitch class intensities accumulated across time, the impact of most of the features
of the neuromimetic model are irrelevant. Finally, machine learning (supervised
and unsupervised learning, clustering, and embedding/visualization algorithms)
provides an implementation of schemata with loose neurophysiological allusions.
Correspondence analysis especially is suited to capture inter-relations between pairs
of musical features that mutually constitute each other’s meaning by defining the
context. In particular this is true for key and pitch. A key is coined by the fre-
quency of occurrence of pitch classes. Vice versa, pitch class can be defined by its
prominence in various keys.

Chapter 3 presents the results on circular pitch, pitch class profiles from audio, the
circle of fifths, the toroidal models of inter-key relations, and tone center tracking.
A comprehensive summary follows. In the end, appendices include a discussion of
the binding problem, auxiliary pitch class profile data, and similarities as the basis
for classification and visualization.
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1 Background – From Pitch

Criticism to Geometry of Tone

Center Inter-Relations

In this chapter, we challenge the linear notion of pitch through a psychoacoustic
investigation of its (traditional) definitions. Furthermore, at the level of geometric
considerations in music theory, various visualizations of tone, pitch class, triad, key,
and their inter-relations are described.

Parts of this chapter are adopted from other publications: Sections 1.1.1, 1.1.2, 1.2.3
[Purwins et al., 2005], Section 1.1.6 [Normann, 2000], Section 1.1.7 [Purwins et al.,
2000a], and Section 1.2.9 [Purwins et al., 2006].

1.1 Fuzzy Foundations of Pitch

Pitch is an attribute which is distinct from, and more general than physical fre-
quency. Two sinusoids can evoke the perception of several pitches, combination
tones, and virtual pitch. From another perspective, due to grouping effects, several
sinusoids can fuse to a tone of a single pitch.

1.1.1 The Psychoacoustic Nature of Pitch

Even though for an acoustical signal, frequency and pitch are usually closely related,
it is not generally possible to reduce pitch perception to the physically measurable
attribute of frequency. Neglecting transient and noise components, if they exist,
we can treat natural tones as approximately periodic signals. These tones are not
exactly periodic in the mathematical sense of the definition, since, e.g. for vibrato,
the cyclic duration varies and the wave form slightly changes. This evokes questions
addressed to the psychology of perception. What is the minimal duration of an ideal
acoustical signal, so that a pitch still can be assigned to it? To what extent may a
signal deviate from the exact repetition of its wave form? (Terhardt [1998], p. 245)
Already at this stage, it is apparent that the mere physical analysis of the signal
does not suffice. Furthermore, we rely on psychoacoustics to adequately describe
pitch. But even with a roughly periodic stimulus, a simple example of generally
aperiodic signals, at hand we will have to employ the psychology of perception to
seek an explanation for pitch perception. American National Standards Institute
(ANSI,1973) defines pitch as
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. . . that attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from high to low.

According to this definition, pitch is not clearly distinguished from loudness. Fur-
thermore, we will see in the sequel, e.g. in Section 1.2.2, that the assumption made
in this definition, pitches can be ordered, is not generally valid.

1.1.2 Sums of Sine Tones – Natural Sounds

The sine tone plays a special role in the investigation of pitch perception:

On it we can base a reasonable operational definition of pitch. We can
assume a specific pitch existing in an arbitrary sound signal, if it is pos-
sible to adjust the frequency of a sine tone with sufficient reproducibility
in a listening test so that both pitches coincide. (translated from Terhardt
[1998])

Exploring pitch cannot be restricted to a single sine tone or to narrow-band noise.
Leaving aside any discussion of transients and noise and focusing on the sustain
phase of an acoustic signal, in psychoacoustic investigations we often consider
periodic signals, as a rough approximation of natural sounds like those of mu-
sical instruments. Complex tones are finite sums s(t) = ∑

N
k=1 sk(t) of sine tones

sk(t) = αk sin(2π fkt + θk) of different amplitudes αk. If for a frequency f0 : fk = k ∗ f0
for 1 ≤ k ≤ N, s(t) is called harmonic complex tone1. f0 is its fundamental, fk is the
k-th partial2. The preeminent role of harmonic complex tones is evidenced by several
arguments that we can only briefly summarize here:

1. Internal physical model of vocalized speech signals: These signals are har-
monic. An internal model of these sounds greatly helps human communica-
tion.

2. The activation pattern on the basilar membrane evoked by a sine tone displays
a spot with maximal excitation and, in addition, a couple of narrower local
maxima, aural harmonics, at membrane locations relating to integer multiples
of the sine tone frequency [Stevens and Newman, 1936].

3. Coincidence neurons: For lower frequencies the hair cells synchronize with the
positive phase of the bandpass filtered sound signal (phase locking). Special
coincidence neurons detect synchronous maxima of spike frequency, referring
to signals with cycle durations expressible by integer fractions [Langner, 1997].

1Also called “harmonic overtone series”.
2Also called “k-th harmonic” or “k−1st overtone”. Please note that in our terminology the funda-

mental f0 equals the first partial f1.
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It is not astonishing, therefore, that many music theorists use the overtone series as
a reference to ground their theories. A few examples are Euler [1739]’s gradus suavi-
tatis, Helmholtz [1863]’s dissonance model based on beating, and Barlow [1995]’s
harmonicity function. The emphasis on overtone series, on the other hand, propels
the composer’s interest in inharmonic complex tones (cf. Section 3.2.1).

f ′k = f0/k is named the k-th subharmonic of f0. A residual series is a harmonic
complex tone so that the first n partials vanish (αk = 0 for 1 ≤ k ≤ n). The missing
fundamental is then called the residual. Sometimes we may wish to shift the overtone
series by a frequency difference ∆: fk −→ fk + ∆. We can also stretch the overtone
series by a factor s: fk −→ s fk.

1.1.3 Frequency Scaling

The Weber-Fechner law quantifies a perceptual entity B, expressed by a physical entity
A, relative to a reference value A0, with scaling factor s:

B = s log(
A

A0
). (1.1)

In the inner ear, incoming sound waves cause a traveling wave on the basilar mem-
brane, to which are attached hair cells. The latter transduce mechanical vibrations
into electrical activity. (Cf. Figure 2.1 and p. 72 for more details.) Due to the vary-
ing stiffness of the basilar membrane and the adjusted stiffness, size, and electrical
resonance of the hair cells, spots along the basilar membrane are tuned to specific
frequencies (Kandel et al. [1991], p. 487 f.). Frequencies below 500 Hz are mapped
approximately linearly. In the range of 500 Hz to 8 kHz the mapping is approxi-
mately logarithmic (cf. Figure 3.49). This is in agreement with the Weber-Fechner
perceptual law, Equation 1.1.

This particular mapping has strong implications on pitch perception. Lower
500 Hz and higher than 8 kHz, relative pitch (measured in mel) deviates from strictly
logarithmic scaling. The musical understanding of pitch class (cf. p. 48) as octave
equivalence is based on uniform spacing of the corresponding resonance frequencies
on the basilar membrane. The common time/log-frequency representation in stave
notation can be linked to the logarithmic resonating range, since this range contains
a significant portion of overtones of common musical instruments. Apart from cor-
relograms (see Section 2.2.2), the time log-frequency representation is widely used
to start with higher level analysis, e.g. such as receptive fields for trajectories in the
time frequency domain [Todd, 1999; Weber, 2000].

A model of the basilar membrane may be implemented as a filter bank. The
spacing and the shape of the filters have to be determined. A first approach is the
discrete Fourier transform, which is very quick, but gives equal resolution in the
linear (i.e. non-log) frequency domain. For analysis tasks that do not rely on the
detection of very low frequencies the constant Q transform (Brown [1991]; Brown
and Puckette [1992], cf. Section 2.1) is an appropriate method. Equal logarithmic
resolution can be achieved also by the continuous wavelet transformation (CWT,
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Strang and Nguyen [1997]). For frequency f (in kHz), a more exact modeling of
the basilar membrane is supplied by a filter spacing according to the equivalent
rectangular bandwidth (ERB, Moore and Glasberg [1983], p. 751)

∆ERB = 6.23 f 2 + 93.39 f + 28.52 (1.2)

or the critical bandwidth units (Bark, Zwicker and Fastl [1990], p. 147)

∆Bark = 25 + 75(1 + 1.4 f 2)0.69. (1.3)

A linear approximation for ERB is given in Glasberg and Moore [1990], p. 114.
Especially in the range of center frequencies below 500 Hz, ERB is more suitable to
describe the result of the notched noise experiment. (Moore and Glasberg [1983],
cf. Figure 3.49 for a comparison of filter banks.) Depending on its center frequency,
the critical bandwidth is associated with a qualitative change in perception, e.g. of
accumulation of loudness, sensation of roughness, frequency masking, tone fusion,
and just noticeable frequency difference. 3 The critical band-rate is a frequency scal-
ing based on critical bandwidth units (Bark). Twenty-five Bark cover the audible
frequency range.

Establishing the ground for calculating pitch in Equation 3.2, we need to investi-
gate the loudness of frequency components and of complex tones.

1.1.4 Loudness Summation of Frequency Components

Loudness perception obeys the Weber-Fechner law. The sound pressure level (SPL) L
is measured in dB:

L = 20 ∗ log10(
Prms

P0
) (1.4)

with Prms being the root-mean-square pressure level (Unit: N/m2) and P0 =

0.00002 N/m2, e.g. Prms
∼= 1√

2
for a sinusoid with amplitude 1.

The hearing threshold (in quiet) is the sound pressure level of a sine tone that can
be just heard. The hearing threshold depends on the frequency (cf. Figure 1.1). We
observe that it undergoes a qualitative change at approximately 500 Hz. Below this
value in the log-frequency / dB domain the curve shows rather linear characteristic,
whereas above it has a polynomial shape. From Terhardt [1998] (p. 243 Equation
(9.15)) we cite an analytical expression, describing the hearing threshold LT (in dB)
for frequency f (in kH):

LT = 3.64 f−0.8 − 6.5e−0.6( f−3.3)2
+ 10−3 f 4. (1.5)

Other mathematical formulations rather focus on numerical efficiency and treat the
regions below and above 500 Hz separately.

3Zwicker and Fastl [1990], p. 134–141, Terhardt [1998], p. 261.
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Figure 1.1: Hearing threshold in quiet (dashed line) depending on fre-
quency. The ear is most sensitive in the frequency region between 2 kHz
and 5 kHz. Masked thresholds (solid lines) induced by a masker, a 1 kHz
sinusoid of different, indicated, sound pressure levels. (from Zwicker and
Fastl [1990], p. 63, Figure 4.7.)

Fletcher and Munson [1933] derive equal loudness curves. For sine tones of different
frequencies these curves give the sound pressure levels that are necessary to produce
tones of equal perceived loudness. An approximation for these curves can be derived
from the hearing threshold (Equation 1.5). Within the frequency range from 500

Hz to the upper hearing limit and the dB range from 0 dB to 100 dB the equal
loudness curves can be roughly approximated by a log-linear shift of the polynomial
describing the hearing threshold. In Section 3.2.4, we will linearly interpolate the
specific loudness Nν from the equal loudness curves. 4

The presence of a tone (masker) may change the hearing threshold of another tone
heard at the same time. “The masked threshold is the sound pressure level of a test
sound . . . necessary to be just audible in the presence of a masker.” The masked
threshold mostly lies above threshold in quiet. “If the masker is increased steadily,
there is a continuous transition between an audible (unmasked) test tone and one
that is totally masked. This means that besides total masking, partial masking also
occurs. Partial masking reduces the loudness of a test tone but does not mask the
test tone completely” (Zwicker and Fastl [1990], p. 56, cf. Figure 1.1).

The perceived loudness of superposed sine tones with intensities Ii and random
phases crucially depends on their frequency difference. We distinguish the following
cases:

1. If all frequencies lie within a critical bandwidth, from the respective intensities
Ii, the perceived loudness L of the resulting complex tone yields (Roederer

4Note that we use a different approach than Zwicker and Fastl [1990], Section 8.7.1.
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[1995], p. 92 Equation (3.18)):

L = c 3

√

∑
i

Ii, (1.6)

where c is a constant.

2. If the frequency spread of the components exceeds a critical bandwidth but is
not too large the resulting subjective loudness tends towards the sum of the
individual loudnesses Li (Roederer [1995], p. 93 Equation (3.19)):

L = ∑
i

Li. (1.7)

If the Li differ considerably among each other masking occurs. The louder tone
deforms the hearing threshold of a softer tone by lifting the threshold up in a
sort of triangular shape centered at the frequency of the masker (cf. Figure 1.1
and Equations 1.8-1.12).

3. If the frequency difference of the signal tones is large the listeners “tend to
focus on only one of the component tones (e.g. the loudest, of that of the
highest pitch) and assign the sensation of total loudness to just that single
component” (Roederer [1995], p. 93 Equation (3.20)).

1.1.5 Singling Out Frequency Components

The frequency differences ∆ f of adjacent k partials be greater than the critical band-
width. Nν be their specific loudnesses and zν their frequencies. Then for the µ-th
partial incisiveness 5 LXµ is defined as:

LXµ = Nµ − 20 · log10(Aµ) dB (1.8)

with

Aµ =
µ−1

∑
ν=1

10
Lνr

20 dB +
k

∑
ν=µ+1

10
Lνl

20 dB . (1.9)

Sinusoidal masking is displayed in the Bark-Phon-plane:

Lνr = Nν − R(zµ − zν), (1.10)

Lνl = Nν − 27(zν − zµ)
dB

Bark
, (1.11)

R = (24 +
230
fν

− 0.2
Nν

dB
)

dB
Bark

. (1.12)

Equations 1.8-1.12 are adapted from (11.7)-(11.12) in Terhardt [1998] using specific
loudness instead of sound pressure level.

5“Prägnanz” in German.
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1.1.6 Few Frequencies – Several Tones

Beating, Roughness, and Combination Tones Depending on the frequency dif-
ference ∆ f = f2 − f1 of two sine tones, the phenomena of roughness, beating, dif-
ference, or combination tones are perceived (Figure 1.2). At high intensity levels
and sufficiently large ∆ f , pitches can be heard with frequencies not present in the
sound stimulus, the two sine tones in this example. Combination tones (Plomp [1965],

Figure 1.2: Schematic representation of the frequency (heavy lines) corre-
sponding to the tone sensations evoked by the superposition of two sine
tones of nearby frequencies f1 and f2 = f1 + ∆ f . A beating with beat fre-
quency ∆ f is heard for small ∆ f . For higher ∆ f still smaller than the critical
bandwidth ∆ fCB we hear roughness. The transition from beating to rough-
ness to the absence of roughness is smooth [Terhardt, 1998; Zwicker and
Fastl, 1990]. The just noticeable frequency difference ∆ fD lies within the
range of roughness. For ∆ f < ∆ fD both tones are perceived as one, having
a pitch equal to the average frequency f1+ f2

2 (from Roederer [1995], p. 33

Figure 2.12). For ∆ f > ∆ fCB, cf. Figure 1.3.
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Figure 1.3: Combination tones evoked by two frequencies f1 and f2. At
high intensity levels the combination tones fC1, fC2, fC3 can be heard out,
especially at the ranges marked by heavy lines. For f1 being very near to
f2, the hatched area is shown as a close-up in Figure 1.2. (from Roederer
[1995], p. 38 Figure 2.14)

cf. Figure 1.3) can be detected at frequencies fC = m f1 − n f2 with m, n = 1, 2, . . ..
The combination tone at frequency fC1 = f1 − f2 is easily detectable. Its strength
is almost independent from f2/ f1. Even at low intensity levels the combination
tones corresponding to the frequencies fC2 = 2 f1 − f2, the cubic difference tone, and
fC3 = 3 f1 − 2 f2 can be perceived. Mathematically, difference frequencies result from
non-linearities [Hartmann, 1997].

Virtual Pitch Under certain conditions (cf. Figure 1.4), residual series can evoke a
perceived pitch (virtual pitch6) that is lower than the frequency of the lowest partial.
Cf. Section 2.2.2, including Figure 2.3, for more detail. The phenomenon of virtual
pitch is also used in the design of musical instruments:

6Virtual pitch is also called “periodicity pitch”, “subjective pitch”, or “residue tone”.
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Actually, periodicity pitch has been used for many centuries. For in-
stance, since the end of the sixteenth century, many organs include a stop
composed of pipes sounding a pitch higher than the pitch of the writ-
ten note actually played. The purpose is to stimulate or reinforce the
bass one octave below the pitch of the written note. E.g. for the resultant
bass a pipe at an upper fifth is added to a pipe with a basic frequency.
[Roederer, 1995]

This results in a perceived pitch one octave lower than the basic frequency.
Virtual pitch is different from the phenomenon of combination tones. Both effects

can be observed in residual series, but the causes are different. Combination tones
are produced by non-linearities in the inner ear. 7 Virtual pitch cannot be explained
by non-linearities [Licklider, 1954]. An experiment [Houtsma and Goldstein, 1972]
indicates that virtual pitch is a neural process: virtual pitch can be perceived, when
neighboring partials are presented to separate ears.

7“Most scientists believe that the source of the cubic difference tone is in the inner ear; it probably
results either from nonlinear motion of the basilar membrane or from some nonlinearities that
exist when the hair cells stimulate the 8th nerve fibers” [Yost and Nielsen, 1989]. For a more
thorough investigation of the physiological reasons of the non-linear processes cf. Dallos [1992].

(a) (b)

Figure 1.4: Existence region of virtual pitch: Virtual pitch comes into play if
both fundamental frequency and the frequency of the lowest partial are in
the existence region (shaded area on the left). Virtual pitch is not observed,
if the frequency of the lowest partial is higher than 5 kHz or lower than
100 Hz. The fundamental frequency has to be in a range between 50 Hz
and 1 kHz (left, Schouten et al. [1962]; Ritsma [1962]; Plomp [1967]; Moore
[1973], from Zwicker and Fastl [1999], p. 121 Figure 5.10). For fundamen-
tal frequencies lower than 1 kHz, the virtual pitch of the harmonic residual
series lies slightly below the fundamental. If the fundamental has a fre-
quency higher than 1 kHz it equals the virtual pitch in frequency (right,
from Zwicker and Fastl [1999], p. 119 Figure 5.8).
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Figure 1.5: Virtual pitch of shifted residual series: harmonic residual series
are shifted, while maintaining the frequency distances between partials. The
matching virtual pitch increases slightly until the residual series is shifted
by half of a partial distance. For an even higher shift the matching virtual
pitch is smoothly transformed into a pitch slightly lower than the matching
pitch of the original residual series. (from Zwicker and Fastl [1999], p. 122

Figure 5.11)

A requirement for the perception of virtual pitch is that both the fundamental
and the lowest partial be in the existence region (cf. Figure 1.4). Not all partials are
equally significant in their contribution to virtual pitch. Dominance region for virtual
pitch is described by Ritsma [1970]: “. . . if pitch information is available along a large
part of the basilar membrane the ear uses only the information from a narrow band.
This band is positioned at 3-5 times the pitch value. Its precise position depends
somewhat on the subject” (also cf. [Dai, 2000]). The virtual pitch of shifted residual
series slightly increases until the shift amounts to half of the virtual pitch initially
perceived (cf. Figure 1.5).

1.1.7 Several Frequencies – One Tone

Certain sensory features, such as detected partials, may be grouped, forming a
gestalt, such as a tone, according to particular criteria. 8 The gestalt concept orig-
inates from Ehrenfels [1890] and Mach [1886]. They initially present musical ex-
amples. Subsequently visual perception is investigated. From the 1970s onward,
computer-supported sound synthesis and analysis enforce the application of gestalt
theory to auditory perception, exhaustively reviewed in Bregman [1990].

In the following, principles are introduced which aid binding in auditory percep-
tion (Figure 1.6, Bregman [1990]): The principle of proximity refers to distances be-
tween auditory features, e.g. onsets, pitch, and loudness. Features that are grouped
together have a small distance between each other, and a long distance to elements

8For a treatment of more general theoretical and practical aspects of the closely related binding
problem cf. Appendix A.
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1.1 Fuzzy Foundations of Pitch

of another group. Temporal and pitch proximity are competitive criteria. E.g. the
slow sequence of notes A-B-A-B... (Figure 1.6 A 1) which contains large pitch jumps,
is perceived as one stream. The same sequence of notes played very fast (Figure 1.6
A 2) produces two perceptual streams, one stream consisting of the As and another
one consisting of the Bs.

Similarity is very similar to proximity, but refers to properties of a sound, which
cannot be easily identified along a single dimension (Bregman [1990], p. 198). For
example, we speak of similar rather than of proximate timbres.

The principle of good continuation denotes smoothly varying frequency, loudness,
or spectra with a changing sound source. Abrupt changes indicate the appearance of
a new source. In Bregman and Dannenbring [1973] (Figure 1.6 B) high (H) and low
(L) tones alternate. If the notes are connected by frequency glides (Figure 1.6 B 1)
both tones are grouped to a single stream. If high and low notes remain unconnected
(Figure 1.6 B 2) Hs and Ts each group to a separate stream. “Good continuation” is
the continuous limit of “proximity”.

The principle of closure completes fragmented features, which already have a
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Figure 1.6: Psychoacoustic experiments demonstrating grouping principles
(cf. Section 1.1.7, Figure according to Bregman [1990]).
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“good gestalt”, e.g. ascending and descending frequency glides that are interrupted
by rests in a way depicted in Figure 1.6 C 2. Separated by rests, three frequency
glides are heard one after the other. Then noise is added during the rests, as shown
in Figure 1.6 C 1. This noise is so loud that it would mask the glide, even if it were
to continue without interruption. Surprisingly, the interrupted glides are perceived
as being continuous. They have “good gestalt”: They are proximate in frequency
and glide direction before and after the rests. So they can easily be completed by
a perceived good continuation. This completion can be understood as an auditory
compensation for masking (cf. p. 36).

The principle common fate groups frequency components together, when similar
changes occur synchronously, e.g. onsets, glides, or vibrato. Chowning [1980] (Fig-
ure 1.6 D) made the following experiment: First three sine tones are played. A chord
is heard, containing the three pitches. Then the full set of harmonics for three vowels
(“oh”, “ah”, and “eh”) is added, with the given frequencies as fundamental frequen-
cies, but without frequency fluctuations. This is not heard as a mixture of voices but
as a complex tone in which the three pitches are not clear. Finally, the three sets of
harmonics are differentiated from one another by their patterns of fluctuation. We
then hear three vocal sounds being sung at three different pitches.

Other important topics in auditory perception are attention and learning. In a
cocktail party environment, we can focus on one speaker. Our attention selects this
stream. Also, whenever some aspect of a sound changes, while the rest remains
relatively steady, then that aspect is drawn to the listener’s attention (“figure ground
phenomenon”). Let us give an example for learning: The perceived illusory continu-
ity (cf. Figure 1.6 C) of a tune through an interrupting noise is even stronger, when
the tune is more familiar (Bregman [1990]: p. 401). Whereas auditory grouping
principles perform a sort of low level processing, a schema is

an organization (in a person’s brain) of information pertaining to some
regularity in his or her environment. Sometimes it is conceptualized as
an active structure analogous to a computer program, sometimes as sim-
ilar to a complex organization of “memory” records in a computer. In all
cases it is abstract enough to be able to fit a range of environmental situ-
ations. Schemas are conceived of as being at different levels of generality.
(Bregman [1990], p. 734)

Attention and learning favor either of two opposing auditory strategies. In analytic
listening particular components, e.g. partials, are singled out. Synthetic listening gives
rise to holistic perception, e.g. of a tone. In musical composition often both strate-
gies are supported. E.g. in Webern’s orchestration of the Ricercar in Bach’s Das

Musikalische Opfer a competition of gestalt principles takes place in the domains
pitch and timbre. Focusing on pitch as a cue, the melody is heard. Focusing on
timbre the main line decomposes into small phrases. Bregman [1990], p. 470 points
out the visual analog in Giuseppe Arcimboldo’s paintings (cf. Figure 1.7).

In computational auditory scene analysis gestalt principles are translated into numer-
ical algorithms. Two questions are of particular importance: Which is the domain in
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1.2 Musical Landscapes

Figure 1.7: In Giuseppe Arcimboldo’s L’automne, an analytical perspec-
tive shows various fruits. By the help of gestalt principles, in the synthetic
perspective the face becomes apparent.

which the principles are applied (e.g. spectral domain or contour space, cf. p. 103)?
Provided an appropriate representation is given, how can we translate the principles
into numerical equations? E.g. for the principle of proximity the question reduces
to: What kind of dissimilarity or (more specific) metric shall we employ to measure
proximity? (cf. Appendix C) In Sections 3.5 and 3.8 we implement a schema of inter-
key relations by visualization algorithms, such as the self-organizing feature map,
correspondence analysis, and Isomap.

In the evolution of the auditory system, gestalt principles serve as a means of
identification of sound sources. But in music there is not a one-to-one correspon-
dence between tones and sound sources. A single instrument can play several tones
simultaneously. On the other hand one tone can be produced by several instruments
in chordal streams.

1.2 Musical Landscapes of Tones, Triads, and Keys

Es sei demnach eine gewisse Klasse von einfachen Vorstellungen so
beschaffen, dass, wenn viele derselben zugleich im Bewusstsein sind, als-
dann aus ihrer Qualität bestimmte Abstufungen ihres Verschmelzens er-
folgen müssen: so ordnen sich unfehlbar diese Vorstellungen dergestalt
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From Pitch Criticism to Tone Center Geometry

neben und zwischen einander, dass man sie nicht anders als auf räumliche
Weise zusammenfassen, und sich darüber nicht anders als in solchen
Worten ausdrücken kann, welche dem Schein nach vom Raume entlehnt,
eigentlich aber eben so ursprünglich der Sache angemessen sind, als
wenn man sie auf den Raum bezieht. (Herbart [1850], p. 298, $ 139)9

Space is a natural medium for imagining inter-relations between percepts. Sim-
ilarity of percepts can be identified with spatial proximity. Mathematically, spatial
distances can be represented by a similarity measure. Some integrated percepts
can be decomposed into principle perceptual attributes that correspond to axes or
their spatial projections. To discover spatial equivalents of inter-relations between
percepts visualization and clustering algorithms are often used, such as multidi-
mensional scaling (MDS, [Shepard, 1962]), principal component analysis, indepen-
dent component analysis (Comon [1994], cf. Appendix A.1), SOM (cf. Section 2.3.4),
or correspondence analysis (Section 2.3.4). There are spatial perceptual models of
emotions, timbre, pitch, and keys. Some perceptual qualities are circular, e.g. pitch
class. For such structures, the Euclidean space is not an appropriate model. Man-
ifolds like circles, helices, and toroids are more suitable. Camurri et al. [2000] use
a spatial arrangement of emotional states combined with a mapping of emotions
to rhythmic and melodic features. In their installation, autonomous robots react
to visitors by humming sad or happy music and by moving in a particular man-
ner. Since the perception of timbre is complex, it is suitable to project timbres into
a two- or three-dimensional timbre space, in which the dimensions are related to
physical quantities [Grey, 1977; McAdams et al., 1995; Lakatos, 2000]. For example,
in the three-dimensional timbre space of McAdams et al. [1995] the first dimension
is identified with the log attack time, the second with the harmonic spectral cen-
troid (Equation 2.19), and the third with a combination of harmonic spectral spread
and harmonic spectral variation. Decomposing pitch into pitch class and brightness,
Drobisch [1855] supplies a spatial model of pitch in Figure 1.9. In one model of
inter-key relations, in Weber [1817]’s key chart, a key can be located on the axes
of fifths and major/minor kinships. Another plausible model of inter-key relations
is provided by the MDS analysis of the outcome of the psychoacoustic probe tone
experiment [Krumhansl and Kessler, 1982]: all major and minor keys are arranged
on a torus, preserving dominant, relative and parallel major/minor relations. This
structure also emerges from a learning procedure with real music pieces as training
data (cf. Section 3.8). Walking on the surface of the tone center torus results in
“maximally smooth transitions between keys” (Werts [1983], p. 72).

9Accordingly a particular class of simple imaginations be of a kind so that if many of them are in
consciousness simultaneously, derived from their quality certain degrees of fusion have to occur:
Then these imaginations organize certainly next to and between each other in a way so that one
cannot integrate them in another but a spatial manner and one cannot express oneself but in those
words that are seemingly borrowed from space, but actually are equally naturally appropriate, as
if one relates them to space. (cf. also Noll [2005])
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1.2 Musical Landscapes

1.2.1 Tonnetz, Temperaments, and Torus

The tonnetz (Figure 1.8; Euler [1774] 10) is a spatial representation of just intervals.
In the tonnetz the tone space is spanned by just major thirds and just perfect fifths
(and just perfect octaves). On the horizontal axis tones progress in just perfect fifths.
Along the diagonal from lower left to upper right, tones progress in just major thirds.
We can extend the planar grid spanned by integer multiples of just perfect fifths
and just major thirds, as in Figure 1.8, to a three-dimensional grid by adjoining
the just perfect octave as a third basis vector spanning the third dimension, the Z-
axis. Other intervals can be constructed as combinations of major thirds, perfect
fifths and perfect octaves. The tonnetz is the origin of many spatial arrangements
of tones. Several music theorists, among them Oettingen [1866], Riemann [1877],
Lewin [1987], and Chew [2000], base their account of harmony on the tonnetz.

In music making a compromise is made between just and adjusted intervals. Tun-
ing schemes provide a receipt which intervals to tune just and which to adjust.

10Euler [1774], p. 584 = Paragraph 29., p. 350-351 of the original.
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Historically, temperament developed from Pythagorean, mean-tone, well-tempered
to equal temperament. The old Greeks build a scale from two perfect fourths, so
called tetrachords, each of them divided into four notes. There are many different
concepts how to fill the second and third note in a tetrachord (Philolaus, cf. p. 22,
Archytas, cf. p. 22, Aristoxenus [ 330]; al Farabi [ 950]). The Pythagorean temperament
is constructed from pure fifths. To yield the twelve tones of the chromatic scale,
Pythagorean temperament consists of eleven pure perfect fifths. The sour twelfth
fifth, the wolf, has to compensate for the other just fifths. It is smaller than a pure
fifth by 23.46 Cent, the Pythagorean comma. Historically, the wolf is assumed to be
positioned at g♯–e♭ by most authors.Another tuning – mean-tone temperament – em-
phasizes the pure major thirds (frequency ratio 5

4 ). They are divided into two equal
whole tones.11 As a consequence, in mean-tone temperament all fifths except the
wolf are tuned a 1

4 syntonic comma (21.05
4 Cent) smaller than the pure fifth. The wolf

fifth is most commonly positioned at g♯–e♭, or distributed between c♯–a♭, g♯–e♭, or
d♯–b♭. Werckmeister [1697]’s recommendation for well-tempered tuning requires that
it “makes a pleasing variety”. Similarly Kirnberger [1776] says it should not “injure
the variegation of the keys.” 12 Equal temperament of the chromatic scale is defined
by uniformly tuned minor seconds with frequency ratio 12

√
2. It is widely established

around 1800. We will see in Section 3.6.2 how key preference is interdependent from
development of temperaments.

It is convenient to identify tones in the tonnetz, yielding a toroidal configuration.
Some tones appear twice in the tonnetz, e.g. d and d′. Every two points, represented
by knots in the cubic grid, can be derived from each other by linear combination of
horizontal steps, integer multiples, of just perfect fifths, diagonal steps of just major
thirds, and steps of just perfect octaves in Z-dimension. Starting from d′ we step up
a just major third to f ♯′ and then step down four just perfect fifths and reach d. By
stepping up in Z-dimension two just octaves from d, we arrive at a tone d∗∗, close in
frequency to tone d′. But the frequencies of d′ and d∗∗ differ by the syntonic comma
that is 21.51 Cent. In Western music it is prevalent to identify them as being the
same tone and to assign the same pitch class to d and d′.

In contrast, another identification, the enharmonic equivalence, e.g. d♯/e♭ identify-
ing e♭ and d♯′ (abstracting from octave position), is more debated. For example,
the archicembalo, described by Nicola Vicentino in 1555, has separate keys for d♯
and e♭ (Lindley [1987], p. 153). But on a contemporary piano the two enharmoni-
cally differently spelled notes d♯ and e♭ are represented by the same key, i.e. d♯ and
e♭ have the same acoustical correlate. However, enharmonic spellings have differ-
ent musical meaning (Dahlhaus [1967], p. 41). According to Leman [1995] (p. 3)
and Kurth [1913], the meaning of a tone cannot be fully provided by the isolated
tone itself. Instead, the context substantially contributes to its meaning. To give
another reference to linguistics, the meaning of a word depends on the situational
context of the conversation (“speech acts”, Austin [1962]). If the key of a piece of

11Sadie [2001], Vol. XVI, p. 205-6 by Mark Lindley.
12Both cited in Lindley [2004]. For more details on well-tempered tuning cf. Section 1.2.8 on page 60.
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Pitch Class 1 2 3 4 5 6 7 8 9 10 11 12

Major i i♯ ii iii♭ iii iv iv♯ v v♯ vi vii♭ vii
Minor i ii♭ ii iii iii♯ iv v♭ v vi vi♯ vii vii♯

Table 1.1: Heuristics to assign enharmonic spelling of the non-diatonic pitch
class as downward alteration of the higher scale degree or upward alteration
of the lower scale degree if the key is the only knowledge provided a priori.

major/minor tonality is the only information known beforehand a straightforward
heuristics to determine the enharmonic spelling of a non-diatonic note would be
the following (cf. Table 1.1). For major, we introduce accidentals according to their
appearance in the circle of fifths, and under the assumption that the tendency to-
wards upward modulation in the direction of the dominant is more frequent than
downward modulation. So we add the first three upward alterations (sharps) and
the first two downward alterations (flats). Instead, we also could have introduced
ii♭ accounting for a frequent use of Neapolitan chords. For minor, in the same way
we add tones that do not belong to Aeolian minor. The choice of vi♯ and vii♯ is clear
due to the melodic and harmonic variant of the minor scale. A more precise map-
ping of pitch class to enharmonic spelling can be yielded if statistics of enharmonic
spelling are collected for particular styles. However, sometimes the a priori knowl-
edge provided by the key does not suffice. The melodic and harmonic development,
previous and subsequent to a pitch class, have to be considered. In addition, the
actual spelling in the score is of minor importance. Let us give an example. In an
e–minor context a d♯/e♭ pitch class naturally means d♯ as a leading note resolving
upwards to e. Nonetheless, Chopin effectively misleads this expectation in bar 2 of
his Prélude op. 28 No. 4 in e–minor. d♯/e♭ resolves downwards to d. So in this
situation the key of the piece does not provide enough information to clarify the en-
harmonic spelling. The knowledge of the resolving note and the general descending
voice leading reveals the spelling as e♭.

By synchromatic (d ∼= d′) and enharmonic (e♭ ∼= d♯′) identification, the tonnetz
turns into a Z4 × Z3 torus. The circle of fifths wraps around the torus three times.
Cf. the torus analogously derived from the chart of tone centers in Section 1.2.7.

Criticism of the Notion of Tone Tuning sometimes varies within a piece. E.g. vi-
olinists adjust their intonation reacting to their fellow musicians. In the music of the
Aka pygmies, Central Africa, investigated by Arom [2003], throughout a particular
performance of a piece pitches of a well-defined set are precisely repeated. In con-
trast, the set of employed pitches varies drastically across various performances of
the very same piece. These findings suggest that the delineated basis of tones, tem-
peraments, and pitch makes cultural presuppositions prevalent in Western European
music.
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1.2.2 Pitch Classes

A subspace in the tonnetz defines a set of tones, such as the pentatonic, diatonic, or
chromatic scale. Temperaments distort the just inter-relations of tones provided in
the tonnetz in order to achieve scales for practical music making. By enharmonic and
octave equivalence we yield the twelve pitch classes. Pitches that are related to each
other by intervals of integer multiples of an octave are treated as one equivalence
class. It is not always appropriate to consider pitch classes instead of pitches: E.g. the
pitches used by the Aka pygmies [Arom, 2003] in a single piece do not repeat in other
octaves. Also in harmony of Western European music and Jazz the octave position
of tones matters. Chord inversions can only be interchanged according to specified
rules. However, there are several arguments emphasizing the eminent role of octave
equivalence: 1) biological reference by the uniformly spaced pattern of resonance
frequencies on the basilar membrane (cf. p. 33), 2) concept to explain psychoacoustic
phenomena (Figure 1.1.3 on page 33), 3) strength of the second partial, the octave,
in the singing voice and in Western musical instruments, and 4) important role in
Western harmony.

Are all twelve pitch classes equally important with respect to key? Sometimes
a few notes suffice to indicate the key. Harrison [1994] (p. 73) names this concept
position finding. E.g. for a major scale a tritone (b–f) reduces the potential keys in
question to two (C–major and G♭–major), thereby giving rise to the tritone substitu-
tion, a harmonization technique in jazz [Levine, 1996]. Provided an established tonal
context and depending on the keys perceived as most kindred (cf. Section 1.2.5) in
that musical style the number of key candidates is further reduced. E.g. for Bach
in C–major a transition to G–major is very likely. If there is an f ♯ appearing fol-
lowing a passage in C–major, this most likely indicates a tone center (cf. p. 54) of
G–major. Provided a keynote, in Section 3.4.2 we will show that for major/minor
mode discrimination, the major/minor third is most important. For Bach all pitch
classes are significant. For Chopin only thirds, sixths, and sevenths are discriminat-
ing, for Shostakovich only thirds. The selected pitch class material, e.g. the major,
minor, or whole tone scale, has a great impact on the style and the character of a
piece of music. In Section 1.2.9 on page 61, we will describe how pitch class profiles
of frequency of occurrence signify keys.

1.2.3 Pitch Decomposition into Pitch Class and Brightness

Pitches of tones can be thought of as aligned on a straight line, such as the chromatic
scale on the vertical axis in the tonnetz (Figure 1.8). Naturally pitch is related to
brightness. Normally a tone of higher pitch is brighter as well. On the other hand, by
introducing pitch class, it becomes apparent that pitch also has a circular attribute.
Integrating both aspects results in a helix (Drobisch [1855], cf. Figure 1.9 on the
facing page and p. 36 ff.). The helix arrangement decomposes pitch into the two
dimensions: pitch class, defined by the position on the circle, and brightness, given
by the vertical position. Pitch class represents the top view on the helix. Brightness
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is ambivalent, since besides being a component of pitch, it is also a quality of timbre.
If brightness and pitch class are independent dimensions of pitch, there should be
tones that differ only in either attribute. E.g. a brightness value can be assigned to
band-limited noise. But the latter has no pitch class.

It is Shepard [1964]’s intention to build tones that differ in pitch class but not in
brightness. In the geometric pitch model of a helix (Figure 1.9), a tone sequence
made up of such tones does not move vertically, but on the pitch class circle that
is the projection of the helix on the top view. In this projection, pitches in octave
interval distance are represented by exactly one point. This is the ground for Shep-
ard’s construction of complex tones that are used to build tone sequences that are
perceived circularly in pitch. A Shepard tone is a complex tone (Figure 1.10 on the
next page) with all partials in octave distance (double frequency) to their adjacent
partial. Figure 1.10 plots logarithmic frequency against loudness. The figure depicts
the partials of two Shepard tones, marked in solid and in dashed-dotted lines. A
spectral envelope is fixed for all Shepard tones. It defines the loudness of all par-
tials. For now, we assume a spectral envelope with a bell shape in the loudness
domain covering the entire hearing range. By using a bell shape, partials uniformly
decrease in intensity towards low and high frequencies, so that the hearing thresh-
old is reached evenly. In contrast to the frequency relations, the exact shape of the

49



From Pitch Criticism to Tone Center Geometry

Log Frequency

S
ou

nd
 P

re
ss

ur
e 

Le
ve

l (
dB

)

(a) Spectral structure of Shepard tones

Figure 1.10: Shepard [1964] (p. 2347 Figure 1) designs an intransitive tone
sequence. The complex tones only consist of partials in octave distance. A
fixed bell shape controls the sound pressure levels of the partials. When
the complex tone is transposed to a higher frequency (dashed line), higher
partials are muted until they vanish and lower partials fade in. Transposing
the complex tone by one octave leaves the tone unchanged.

spectral envelope is not crucial for the realization of the idea. In our experience, a
constant intensity envelope for the intensities yields almost the same sound quality,
since the hearing threshold then induces a bell shape in the perceived loudness. If
we listen to a continuous sequence of Shepard tones we let the grid of partials slide
from left to right underneath the fixed spectral envelope. A low partial inaudibly
moves in, so that it does not ruin the synthetic perception of the tone as a whole. An-
other intention of choosing a fixed and continuous spectral envelope is the constant
loudness of all Shepard tones. In contrast to harmonic complex tones, all partials
are eliminated that do not stem from frequency doubling. Another property signi-
fies Shepard tones. In Shepard tones the notion of fundamental frequency becomes
fuzzy, even though the maximum of the brightness envelope highlights a particular
octave component. Relative to this pseudo fundamental a Shepard tone does not
only contain partials that are generated by frequency doubling. A Shepard tone also
contains the frequencies generated from bisection of the frequencies of its other par-
tials. A Shepard tone has a pitch class, but cannot be assigned to an octave position.
The sound of a Shepard tone resembles the sound of an organ.

The pitch “paradox” is depicted in Escher’s lithograph Ascending and Descend-
ing (1960), Figure 1.11: A closed chain of people ascends a stair. The “lowest”
person is above the “highest” person. One can infinitely ascend this staircase. After
one round the stairs reach their starting point again. The stairs remain in the same
level of the building, the roof, as if the constant height in level would depict constant
brightness.
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Figure 1.11: Escher’s Ascending and Descending. The circular staircase
depicts the pitch class circle, the stairs remain in the same level, analogously
to the constant brightness in the pitch “paradox”.

1.2.4 Chords and Harmony

How can we categorize sets of simultaneous pitch classes, such as chords? Scale de-
grees, harmonic function, and chord morphology are possible criteria. As stereotype
sequences, chords coin cadence and key.

The Key to Tonality Let us first delineate a cadence as a constituting feature of
key. A cadence is

the conclusion to a phrase, movement or piece based on a recognizable
melodic formula, harmonic progression or dissonance resolution ..... The
cadence is the most effective way of establishing or affirming the tonality
... of an entire work or the smallest section therof. [Rockstro et al., 2004]

We can distinguish cadences on the basis of their varying degree of “finality”. Either
the end of the cadence deviates from the V − I pattern (perfect versus plagal, imper-
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fect, and interrupted cadence) or at least one chord is not in root position (perfect
versus authentic and medial cadence).

For a profile of frequency of occurrence of pitch classes (cf. Section on page 14)
accumulated across an entire piece, the sequentiality of notes and their positions
relative to beat weights are neglected, thereby missing major defining features of a
cadence. Likewise, Mazzola [1990] reduces a cadence to the minimal set of triads
on scale degrees completing the pitch class set of a particular major scale or its
minor relative, thereby ignoring sequentiality aspects as well. However, ignoring
sequentiality we will see that profiles of pitch classes contain much information
about key and composer.

For training in Leman [1995] and in Section 3.8.2 cadences such as the following
are used: I − IV − V7 − I, I − ii − V7 − I, I − vi − V7 − I. Koelsch et al. [2000] also
use I − II♭ − V7 − I, including the Neapolitan II♭.

Categorization of Synchronous Pitch Classes Rameau [1722]’s scale degrees as-
sociate a chord class with each tone of the diatonic scale. From the viewpoint of
functional harmony [Riemann, 1877], a cadence is the interplay between the tonic (T),

dominant (D), and subdominant (S) function. Typical representatives are the IV
6
5 for

the subdominant and dominant seventh chord V7 for the dominant (cf. Figure 1.12).
Dahlhaus [1967] understands function theory [Riemann, 1913] to be a further ab-

straction of the seven scale degrees to the three tonal functions. But the scale degrees
cannot be mapped to the tonal functions in a unique mapping. The third scale de-
gree, e.g. e–minor in C–major, is ambiguous in its double role, as tonic mediant and
dominant relative. With dominant functionality, the third scale degree could consti-
tute part of a sequence, such as I − V/vi − iii, but not a cadence, i.e. I − IV − iii − I
(Dahlhaus [1967], p. 146). Facing ambiguity problems of such kind, we could re-
place the unique mapping to harmonic functions by fuzzy ones, also interpretable
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Figure 1.12: In functional harmony chords are related to three functions:
tonic, subdominant, and dominant. For C–major typical representatives for
these functions are given. Terminology: The relative function is also called
sub-mediant. The mediant is also called leading-tone change, or “Leitton-
wechselklang” in German. Confusingly, relative is “parallel” in German.
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as probabilities of harmonic functions, given in a Riemann matrix [Mazzola, 2002].
Oettingen [1866] relates the major/minor duality to the duality of the harmonic

and the subharmonic series. The latter plays an important role in virtual pitch
(cf. Terhardt [1998] and Section 2.2.2). Noll [1995] suggests a classification of chords
based on their group theoretic morphology. Affine linear mappings, concatenations
of a transposition and a multiplication, operate on pitch class sets. These mappings
are employed to classify chords. Morphological chord analysis by means of group
theory is also performed by Cohn [1997].

Instead of classifying chords into a small number of classes, chords can be evalu-
ated on a refined scale with respect to how well they match with the tonal context.
Provided a keynote as a focal point, the tonic triad fits best in the tonal context,
followed by triads built on the fifth, fourth, sixth, and second scale tone, according
to a psychological experiment by Bharucha and Krumhansl [1983]. Besides the ap-
propriateness of a chord with respect to a given tonal context, also the sequentiality
of chords is important. Thereby syntactical aspects of music come into play.

Syntax and Music In an electroencephalogram (EEG) study, Koelsch et al. [2000]
demonstrate that parsing harmonies is part of music cognition. Event related po-
tentials significantly reflect violation of music expectancy, built up from preceding
musical context, especially for the final chord of a cadence. Various cadential chord
progressions consisting of five chords are presented. The replacement of the final
tonic by a Neapolitan chord, II♭3, evokes both an early right-anterior negativity and a
late bilateral negative frontal deflection. Koelsch et al. [2000] interpret this result as
a hint that language and music are closely related, since both require a grammatical
parsing process. Some kind of parsing, similar to language processing seems to be
involved in music listeners.

Lerdahl and Jackendoff [1983] implement Schenkerian analysis13 by context free
grammars that nowadays appear a plain mechanization of Schenker’s in-depth
analysis that is enriched by his musical intuition. Bod [2002] introduces a data-
driven method to automatically and recursively construct grammars from previ-
ously derived subtrees according to principles of likelihood and simplicity. Whereas
syntactic investigations might be appropriate to understand some features in mu-
sic, other aspects may be rather described as a continuous dynamic process14 or as
rigid idiomatic phrases, such as stereotype cadential formulas, fifth fall sequences,
and other mechanical musical elements. For elucidation let us refer to linguistics
once more. In his controversy to Fodor, Smolensky [1991] suggests that language
processing consists of complex processes of connectionist information flow, whereas
on a high level it is coarsely describable as a hierarchical grammar not parallel to
its syntactical neural implementation. Likewise, traditional music theory based on
the idea that musical knowledge can be reduced to building blocks, such as tones,

13Schenker [1935] reduces a score to a sequence of principle notes. The latter are in turn reduced to
the Urlinie, “the conceptual upper voice of a piece in its simplest terms.” [Drabkin, 2004]

14Lidov [1999] tracing back to Schopenhauer [1859], Nietzsche, and Herbart.
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chords, and keys, can meet with cognitive musicology that treats objects of musical
knowledge as results of a connectionist processing of sensorial information (Leman
[1995], p. 182), describable as a complex dynamic system.

1.2.5 Key Proximity

Like tones, keys are coined by their inter-relations. What makes keys adjacent? A
criterion frequently mentioned is the number of tones shared by the corresponding scales
(e.g. Weber [1817]). Considering the harmonic scale for minor, according to this
measure dominant, subdominant, and relative key (cf. Figure 1.12) are close to the
tonic. Their scales differ from the tonic scale only in one tone ( f ♯, b♭, g♯ in C–major).
Mainly based on the number of common scale notes, Schönberg [1969] (p. 67 f., p. 73)
divides up tone center inter-relations into five classes. The first two classes contain
keys having five to six, respectively three to four scale tones in common with the
reference major key.

Another viewpoint reduces a key to its tonic triad. As a consequence, the resulting
criterion for key proximity is the number of common-tones shared by their tonic triads.
There are only three non-identical pairs of major/minor triads sharing two common-
tones, as pointed out by Heinichen [1728]. 15 The three chords can be identified
with the relative, parallel, and mediant. Yet another criterion for key kinship is the
identity of the scale degree meaning of shared pitch classes. It is employed by Weber [1817]
to account for the close parallel relationship between C–major and c–minor [Werts,
1983]. Both keys share the same principal scale degrees, i.e. I, IV, and V. Weber [1817]
in this case especially emphasizes that both keys share the tonic note and the fifths
scale degree.

These key kinships also appear in the visualization of the psychological probe
tone experiment [Krumhansl, 1990] in Figure 1.21 on page 63. Cf. Appendix C for
an overview of various dissimilarities and distance measures that can be employed
to mathematically express proximities, e.g. between keys.

1.2.6 Chart of Tone Centers

Measures for key proximity imply a spatial display of keys.16 Illustrated by Fig-
ure 1.13 on the next page, the head of Chapter V in Heinichen [1728], p. 837, reads:

Von einem Musicalischen Circul, aus welchen man die natürliche Ord-
nung, Verwandschafft, und Ausschweiffung aller Modorum Musicorum
gründlich erkennen, und sich dessen so wohl im Clavier als Composition
mit vortrefflichen Nutz bedienen kann. 17

15cited in Werts [1983] and revisited in Cohn [1997].
16A tone center, also called “key area” or “key region” [Schönberg, 1969], is a predominating key

within a given time frame. Throughout this thesis we will, for the sake of simplicity, occasionally
not differentiate between keys and tone centers.

17About a musical circle, by which one can thoroughly comprehend the natural order, relationship,

54



1.2 Musical Landscapes

a

b
A

f#
E

c#
Bg#F#d#

C#

G#

D#

Bb

g
d C

124
23

22

21

20

2
3

4

5

6

7

8

9

10
11

121314
15

16

17

18

19

F

c

f

bb

D
e

G

Figure 1.13: Circle of fifths adopted from Heinichen [1728], p. 837. Major
keys (capital letters) alternate with minor keys (small letters).

“The organization principle of Heinichen’s scheme appears to be the maximization
of common-tones between adjacent scales,” (Werts [1983], p. 71) if we refer to minor
by the Aeolian scale. In the sequel, alterations of this graph are proposed by Matthe-
son [1735] and Kellner [1737], the latter suggesting two nested circles, an outer circle
of major keys and an inner circle of minor keys, adopting the adjacency of a ma-
jor and its relative minor key. Thereby Kellner’s arrangement reflects the inherent
two-dimensionality, spanned by the circle of fifths and the major/minor kinship.
Heinichen’s circle of fifths can be linked to the tonnetz, Figure 1.8, in the following
way: Take the extended horizontal axis of just fifths and replace each tone by the ma-
jor key with that keynote and its relative minor key. Then enharmonically identify
g♯ and a♭. The circle of fifths can be interpreted mathematically. Noll [2003] relates
the circle of fifths to the twelve elemented factor group Sp1(Z)/Sp1(Z)c ∼= Z12 of the
modular group18 and its commutator subgroup.19

In the chart of tone center inter-relations, tone centers are arranged according to
their proximity to the prevailing key. Figure 1.14 on the following page depicts
this for C–major. The organization principles of the chart are the maximization of
common-tones between the referring scales and the identity of scale degree meaning
of the shared pitch classes. Dominant, subdominant, and relative relations are given
reason by corresponding scales sharing all but one tone. For the parallel relationship,

and modulations of all musical keys, and of which one can make good use of at the keyboard as
well as in composition.

18The modular group Sp1(Z) is the group of 2 × 2 matrices M in Z with Mt JM = J and J =
(

0 1
−1 0

)

.
19For a group G the commutator subgroup Gc is the subgroup generated by all elements of the form

aba−1b−1 with a, b ∈ G.
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d♯ F♯ f♯ A a C c

g♯ B b D d F f

c♯ E e G g B♭ b♭

f♯ A a C c E♭ e♭

b D d F f A♭ a♭

e G g B♭ b♭ D♭ d♭

a C c E♭ e♭ G♭ g♭

Figure 1.14: Weber [1817]’s chart of tone centers arranges all major (cap-
ital letters) and minor keys (small letters) according to their relation to a
prevailing key, in this case C–major. The chart is structured so that fifth
relationships lie along the vertical axis, and in the horizontal axis relative
and parallel relations alternate.

C-major – c–minor, the tonic note and the harmonies on the fifths scale degree are the
same. Schönberg [1969] adopts Weber [1817]’s chart in Figure 1.15 on the next page.
The remote tone centers are somewhat compressed. We also witness the Neapolitan
D♭ 20 distorting the previous symmetry of the chart. In contrast to Weber’s chart, in
Schönberg’s chart distances between tone centers are relative to the key. For instance,
the distance between tone centers G♭–major and g♭–minor is smaller in the key of
C–major than in G♭–major.

1.2.7 Torus by Synchromatic and Enharmonic Identification

We will see that the toroidal structure of the inter-key relations is implicitly con-
tained in Weber [1817]’s chart of tone centers (Figure 1.14). 21 This is plausible
according to geometric considerations. We give reasons why the surface of a torus
supplies a suitable structure for a configuration of the major and minor keys. In
addition, we investigate how such an arrangement can be derived using consider-

20Here, we use the term Neapolitan in a broader sense, although it usually refers to the II♭ triad only
if the third is in root position and if all tones are resolved appropriately.

21Barely noticed, Werts [1983] (p. 18, Figure 47) presents the same train of thoughts.
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Figure 1.15: Chart of tone centers (Schönberg [1969], p. 20), going back to
Weber [1817]’s chart, Figure 1.14. Note the asymmetry of the Neapolitan
D♭–major and the squeezed remote keys on the left and right side.

ations based solely on fundamental information about musical inter-key relations.
Let us first consider a strip, Figure 1.16, cut out from Weber’s chart of tone centers,
Figure 1.14, then rotated from vertical to horizontal orientation.

e♭ b♭ f c g d a e b f♯ c♯ g♯ d♯

G♭ D♭ A♭ E♭ B♭ F C G D A E B F♯

g♭ d♭ a♭ e♭ b♭ f c g d a e b f♯

Figure 1.16: Strip of keys cut out from Weber’s chart of tone centers, Fig-
ure 1.14, and rotated to horizontal orientation.

In this scheme, some keys and their enharmonic equivalents appear in multiple
places. For example, g–minor appears in the upper row in Figure 1.16 as well as
three positions to the right in the lowest row. In order to arrange a unique position
for each key, we have to apply a spatial transformation. One curls up the strip,
forming a tube (Figure 1.17 on the next page) in order to unite the minor keys of the
upper row with those of the lower one. The redundant occurrences of g–minor in
Figure 1.17 (a) coincide in Figure 1.17 (b). This is the synchromatic identification we
apply to tones in Figure 1.8 on page 45.

The ends of the tube in Figure 1.17 (b) show keys that are enharmonically equiv-
alent. These are united by bending the tube and joining its ends. This creates a
toroidal surface, a toroidal model of inter-key relations (TOMIR), around which the cir-
cles of fifths for major and minor keys wrap three times before joining themselves. If

57



From Pitch Criticism to Tone Center Geometry

we unite major keys with their parallel minor keys, the circle of minor thirds evolves
on the diagonal from the lower left to the upper right (g♭, e♭, . . . ). The circle of major
thirds occurs horizontally (g♭, b♭, d, . . . ).

g♭
G♭

e♭

E♭
c

g
D

b
B

e♭

B♭
b♭

e
G

g

b
d

g♯

d♯
F♯

f♯

(a) Curling of the strip (The strip is shown somewhat stretched for better display)
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(b) Double appearances of minor keys are brought to accordance

Figure 1.17: The two locations of g–minor are identified by synchromatic
identification: (a) The strip of keys is curled up. (b) Double occurrences of
minor keys join. The same procedure is applied to tones in Figure 1.8 on
page 45. At both ends of the tube enharmonically equivalent keys appear.
Their identification by joining both ends of the tube yields a torus.

In Section 3.7.2 on page 154, the same arrangement is established by a computer
program that is designed to derive an appropriate configuration from a set of stipu-
lated close relationships.

The curling of Weber’s chart to a torus can be subtly related to tone center modu-
lation path and key character symbolizing the underlying idea in Richard Wagner’s
Parsival: spiritual and physical journey.

Gurnemanz: Du siehst mein Sohn, zum Raum wird hier die Zeit 22 (Par-
sival, Act I)

Temperley [2001], p. 119 ff, deducts character and semantics of tone centers from
such a journey encoded by the leitmotifs of mystery, wound, spear, and sorrow. We
expand and reorient Weber’s chart of tone centers, Figure 1.14, to the 12 × 9 grid
shown in Figure 1.18 on the next page, centered at D-major as an intersection point
(the wound) of a cross formed by the vertical axis of the circle of fifths from north,
A♭–major for “heaven”, to south, A♭–major for “earth”, and the horizontal axis of
minor thirds from west, A♭–major for “evil”, to east, A♭–major for “good”. In this
light, e.g. in the Act I Prelude from bar 80 to bar 100, the tone center trajectory from

22“You see, my son, here time is turned into space”
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Heaven
D b B g♯ A♭ f F d D
G e E c♯ D♭ b♭ B♭ g G
C a A f♯ F♯ e♭ E♭ c C
F d D b B g♯ A♭ f F
B♭ g G e E c♯ D♭ b♭ B♭
E♭ c C a A f♯ F♯ e♭ E♭

Evil A♭ f F d D b B g♯ A♭ Good
D♭ b♭ B♭ g G e E c♯ D♭
G♭ e♭ E♭ c C a A f♯ G♭
B g♯ A♭ f F d D b B
E c♯ D♭ b♭ B♭ g G e E
A f♯ F♯ e♭ E♭ c C a A
D b B g♯ A♭ f F d D

Earth
Figure 1.18: In Parsival, tonal space, in Weber’s extended chart, depicts the
cross of spiritual journey. The north-south passage from northern A♭–major,
symbolizing “heaven”, southboud to another A♭–major, “earth”, meeting
with the east-west passage from a third A♭–major, “evil”, westward to yet
another A♭–major, “good”. Both paths cross at D–major, signifying the
wound. (Graphics and description following Temperley [2001], p. 119 ff.)

A♭–major to A♭–major, along the horizontal axis in minor third steps, symbolizes
the spiritual journey from “good” (west) to opposite “evil” and “sin” (east). In the
projection of the trajectory onto the torus the opposite positions of A♭–major, west
and east, are identified, signifying identity of the physical location of Amfortas’
home as both departure and destination place of his journey. Physically, A♭–major
has a unique location on the TOMIR. Spiritually, A♭–major has different meanings
located in four separate spots on Weber’s chart.

1.2.8 Key Character

Weber [1817]’s chart of tone centers (Figure 1.14) and Schönberg [1969]’s adaptation
thereof (Figure 1.15) are isomorphic for any key of the same mode. Structurally they
look the same for C–major or for D♭–major. However, in Parsival we have seen that
every key can be associated with a specific meaning or character. This key character
is in particular connected to the history of temperaments.

Based on his analysis of Bach’s sacral vocal works Mayer [1947] 23 gives an
overview of keys and their associated character in Table 1.2 on the following page.
Certain rarely used keys, such as B–major, C♯–major, e♭–minor, and g♯–minor, are
not indistinguishably characterized. In his WTC, Bach transposed those keys from

23Cited in Auhagen [1983].
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Key Character
E–major ethereal, transcendental, consecration
A–major overwhelming joy, transfigured blessedness
D–major joy
G–major merry, charming, content, pastoral
C–major solemn, majestic, bright
F–major blessed happiness
B♭–major confident, solemn
E♭–major love
f♯–minor agonizing
h–minor God
e–minor graceful, majestic, desperation
a–minor lamenting, consoling
d–minor desperate, sad, dreary
g–minor grievous
c–minor grievous, consoling
f–minor intense sorrow

Table 1.2: Key character for the most prominent keys in Bach according to
Mayer [1947], as cited in Auhagen [1983], p. 240.

pieces originally written in a key one half-tone below or above [Keller, 1965]. Auha-
gen [1983] points out that the affect of one key partly holds also for the affect of the
keys next to it on the circle of fifths. He adds that the intensity of affects increases
with the number of accidentals. From investigating Bach’s vocal music, Auhagen
[1983] argues that Bach uses particular tone centers with threefold intention: First,
he associates certain affects with a particular key. Second, he uses tone centers with
many sharps to symbolize the cross. Third, the sequel of tone centers is arranged
to portrait the affective content of the text. Before being eroded, key character un-
dergoes changes depending on composer and musical epoche. According to Keller
[1965], by Beethoven the character of some keys is changed, e.g. c–minor is associ-
ated with passion, c♯–minor characterized by the Moonlight Sonata, F♯–major is
considered emotional. For Chopin (sonatas) C–major is passionate and F♯–major is
associated with “fragile damped light” [Keller, 1965]. In contrast to such a character-
ization, Auhagen [1983] relates keys in Chopin to genre, meter, and tempo. He finds
that A♭–major, C–major, a–minor, and c♯–minor are preferredly used for mazurkas
(A♭–major also for waltzes) and therefore are connected with triple meter.

Lindley [2003] points out the relation between keyboard tuning and key charac-
ter. In well-tempered tuning before equal temperament, with increasing numbers of
accidentals, sharps and flats, the third on the major tonic is stretched and the minor
second from the leading note to the tonic is diminished. Thereby with keys with
more accidentals there is more beating and roughness. Therefore these keys sound
more vibrant, nervous, and less calm. By the establishment of equal temperament
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during the decades after ∼1800, nuances of key character slowly vanish. Whereas
in Chopin key character can be still identified, this is not evident for Scriabin. 24 In
spite of the far-reaching implications of Lindley’s demonstrations for performance
practice, this hypothesis has not yet been tested based on systematic psychological
experiments.

Key character is also influenced by the heritage of the corresponding ecclesiastical
modes, the pitch range available to the performing singer or instrument, particu-
larities of certain instruments, e.g. open strings of the violin etc., and playability to
wind or keyboard instruments [Lindley, 2003].

In Section 3.6.2 on page 150, we will reveal a link between key preferences of par-
ticular composers and temperaments. In the discussion of normalized constant Q
profiles (Section 3.4.5 on page 139) we will suggest how this representation can con-
tribute to testing for significance of key character. We account for the differences
of key character in the experiments that reveal the circle of fifths based on per-
formance data with correspondence analysis (Section 3.5.2 on page 144) or Isomap
(Section 3.5.3 on page 146), and in the evolving toroidal model of inter-key relations
based on score data (Section 3.8 on page 156). However, in the late 19th century’s
perspective of equal temperament and eroded key character we will use transposi-
tions and average profiles in several computer simulations in Chapter 3.

1.2.9 Key – Reduction to an Empirical Profile

It would be worthwhile to have a simple quantitative description of the notion of key
that makes it more accessible to statistics and computation in music analysis. One
constituting factor of a key is its scale that can be displayed as a binary pitch class
vector (Figure 0.1 on page 15). Instead of providing binary information on whether
a pitch class is contained in a piece of music or not, we can count the occurrences
of pitch classes yielding a profile of frequency of occurrence (cf. Introduction on
page 14). Despite the complex inter-relation between major/minor tonality and var-
ious musical features, like voice leading, form, beat strength, tonal rhetoric25, and
gestalt, the mere frequencies of occurrences of pitch classes are a major cue for the
percept of a tonality [Krumhansl, 1990]. Entirely ignoring the sequential structure
of a piece of music, in this reductionist view, a major/minor key is a prominence
profile of pitch classes. E.g. for C–major the tone c is most important. The other
tones g, e of the tonic triad follow. The non-diatonic notes are least important. The
relevance of this representation of a key is supported by an experiment.

Probe Tone Ratings The probe tone experiment is pursued by Krumhansl and
Shepard [1979]. Probe tone ratings are a quantitative description of a key that creates
the possibility of relating statistical or computational analyses of music to cognitive

24Personal communication with Mark Lindley.
25The initial and the final chord of a piece or a section thereof particularly enforce the perception of

the referring key, a phenomenon named tonal rhetoric in Harrison [1994].
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Figure 1.19: Probe tone ratings supply a pattern of pitch class prominence
for each musical key. A tonal context C–major (c–minor) is established by
playing cadential chord progressions. Then the subject is asked to rate how
well different pitch classes fit into the previous context. The figure shows
the averaged answers for subjects with an average of 7.4 years of music
instruction [Krumhansl and Kessler, 1982].

psychology. The probe tone experiment consists of two stages: establishment of a
tonal context, and rating of the relation of a probe tone to that context. The tonal con-
text is provided by examples, which are unambiguously written in a certain key. In
our case the subjects listen to simple cadential chord progressions composed of Shep-
ard tones [Krumhansl and Kessler, 1982], such as IV − V − I, vi − V − I, ii − V − I
for major and analogous cadences for minor. Subsequently the probe tone, a Shep-
ard tone chosen randomly from the chromatic scale, is played. The subject is asked
to judge how well the note fits with the tonal context provided by the cadential
chord progression. The test subjects rate by a number from 1 (“fits poorly”) to 7

(“fits well”). After this procedure is repeated several times, with different chromatic
notes, the average rating for each pitch class is calculated (Figure 1.19). The 12-
dimensional vector containing the averaged answers for each pitch class is called
the probe tone rating. There are two types of rating vectors, one for major and one
for minor – depending on the mode of the context. Rating vectors of keys in the
same mode but with different tonic keynotes are assumed to be related by a shift
that compensates for the transposition interval. Abstracting from key character for
the sake of simplicity is in accordance with empirical results (see Krumhansl and
Kessler [1982], p. 342). One observes that the first scale degree is rated highest. The
third and fifth scale degrees are also rated high. Diatonic notes are rated higher
than non-diatonic notes. Thereby pitch classes are ordered by their prominence by
a “>” relation, defining a so called pitch class hierarchy. According to an observation
reported in Krumhansl [1990] (p. 66–76), each component in the probe tone rating
vector corresponds to the frequency and the overall duration of occurrence of the
corresponding pitch class at metrically prominent positions in a tonal piece that is
written in a given key. The meaning of one key develops by referencing the other
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Figure 1.20: The probe tone ratings are scaled down to a four dimensional
Euclidean space by multidimensional scaling. The scaled points lie approx-
imately on a sub-manifold formed by the crossproduct of two cycles (left
graph: 1st+2nd dimension, right: 3rd+4th dimension).
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Figure 1.21: The implicit two-dimensionality in the key visualization of
Krumhansl and Kessler [1982]: One axis is the circle of fifths, the other
the inhomogeneous axis of parallel and relative third major/minor relation-
ships. In addition, the mediant, e–minor, is also adjacent to the tonic.

keys, resembling the role of the context for meaning formation of a tone, described
on p. 46. Accordingly, key distances are calculated by comparing the correspond-
ing probe tone ratings by correlation, Euclidean distance, or other dissimilarities
described in Appendix C on page 195.

A TOMIR from Probe Tone Ratings With a dissimilarity at hand, keys repre-
sented as probe tone ratings can be visualized. Krumhansl and Kessler [1982] obtain
a TOMIR by scaling down the probe tone ratings to a four dimensional Euclidean
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space by multidimensional scaling. Closer inspection reveals that the scaled points,
which correspond to the major and minor keys, lie approximately on a sub-manifold
formed by the crossproduct of two cycles (cf. Figure 1.20 on the preceding page).
This sub-manifold can be mapped to a torus, with local adjacencies depicted in Fig-
ure 1.21. The topology of this configuration and its relations to the torus will be
discussed in more detail in Section 3.8 on page 157.

Limitations of the Probe Tone Experiment as a Psychological Reference In the
psychological experiments (Krumhansl [1990], pp. 21), probe tone ratings are derived
from group A, subjects with strong musical background (on average 7.4 years of mu-
sic instruction), differ significantly from the profiles derived from group B, subjects
with less musical education (5.5 years of musical instruction) and even more from
group C, subjects with very little education (0.7 years of musical instruction, Krum-
hansl [1990], p. 22–24). Whereas subjects of group A give high ratings to the diatonic
notes, especially the fifth, the ratings of diatonic notes given by naive listeners, the
subjects of group C, are inversely related to the distance to the keynote measured in
chromatic steps on the pitch class circle. We suspect that subjects of group A partly
recognize intervals, apply their musical knowledge, and judge the probe based on
their explicit knowledge of the prominence of the scale tone. Nevertheless, the probe
tone rating method seems to be a general concept for the description of tonal struc-
tures, applicable to non-Western music as well. Probe tone ratings can be employed
successfully to describe pitch organization in Indian music [Castellano et al., 1984].
Another way to investigate pitch use with psychological methods is based on a bet-
ting paradigm: The listener has to guess, how a musical segment is going to be
continued, i.e. what notes are going to be played. In contrast to the mere grading
in the probe tone experiment, it involves more complex considerations on the part
of the listener. The listener is encouraged to employ all his musical skills to solve
the task. Coupled with a prize to win it can further motivate the subject in a playful
manner. 26 Beyond the intensities of pitch classes, research of Auhagen [1994] and
Huovinen [2002] indicates the impact of sequentiality, beat weight, final intervals,
border notes, chords as frames of orientation for tonality perception. However, in
this work we limit ourselves to the aspect of accumulated pitch class intensities.

1.2.10 Spatial and Planar Views of Tones, Triads, and Keys

After separately visualizing tones and tone centers in various spatial and planar
models, we would like to embed distinct musical entities, i.e. tones, triads, and
keys, in the same plane or space, thereby viewing their inter-relations. In particular,
we will discuss the models by Chew [2000] and Lehrdahl [2001]. Concerning the
notation, not entirely consistently throughout this thesis, we will mark major keys
by capital letters, minor keys by small letters (or capital letters with an appended
“m”), and tones by small italics.

26Personal communication with David Huron.
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(a) Tones (b) Triad Triangles

(c) Triad Spiral (d) Key Spiral

Figure 1.22: Chew [2000]’s model of inter-dependence of tone, chord and
key: (a) Tones spiral up along the circle of fifths. (b) The three tones con-
tained in the basic triad of each harmonic function, tonic, mediant, and dom-
inant, are connected, thereby forming a triangle for each function. (c) The
center of mass of the triangle defines the locus of the triads (note names with
extension “+”, forming another spiralling trajectory in the 3-dimensional
space. (d) The centers of gravity of the three basic functional triads form
additional triangles. The centers of gravity of these triangles again consti-
tute an ascending helix, the trajectory of major keys. (The figure is adopted
from an illustration by Thomas Noll.)
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Figure 1.23: Side (a) and top (b) view of Chew [2000]’s helix. In contrast to
Figure 1.22, points are connected by staight lines instead of smooth ones. In
(a), the helix is related to a torus by gluing upper and lower side together.
In (b), the first four tones, triads, and keys are depicted in the top view,
the X-Y-projection. Major and minor keys are closer together than in Fig-
ure 3.51 on page 161, a configuration derived from self-organizing Chopin
profiles. Compare this picture to the alternative biplot of pitches and keys
in Figure 3.37 on page 142, resulting from correspondence analysis.

In Figure 1.22 on the preceding page, we depict the construction principle of Chew
[2000]’s three-dimensional model. It is derived from the tonnetz (Section 1.2.1 on
page 45, Figure 1.8, cf. Euler [1739]; Lewin [1987]). Tones are lined up on a helix
along the circle of fifths, circular in the X-Y-plane and elevating in the Z-direction.
For a triad composed of three tones, construct the triangle whose vertices are pro-
vided by the tones constituting the triad. Then the triad is represented by the center
of gravity of the triangle. In the same way a key is represented as the center of grav-
ity of the triangle whose vertices are the points identified with the three main triads
(tonic, dominant, and subdominant) of the key. Finally we observe three nested
spirals, of tones, triads, and (major) keys, escalating in fifths. The circle of fifths,
curling around the tube in Figure 1.17 (a), can be identified with the innermost spi-
ral of major or minor keys in Chew’s model. We also show side and top view in
Figure 1.23. For more detail see the comparison with data-driven geometric models
in Section 3.8.4 on page 164. For technical details cf. Appendix C.3.3.

Lehrdahl [2001] presents five nested circles in a plane. They represent a hierarchy
of tone sets. From the outermost to the innermost circle the referred musical entities
are: first, the chromatic scale tones, second, the diatonic scale tones, third, the basic
triad, fourth, the basic fifth, and fifth, the keynote identified with the center of the
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1.2 Musical Landscapes

circles. By adding up the instances of a pitch class in all circles he arrives at a profile
similar to the probe tone rating (cf. Figure 1.19 on page 62).

We will consider embeddings of keys and pitch classes displayed in biplots in
Figures 3.37 on page 142 and 3.55 on page 165.

1.2.11 Sequences of Tone Centers

Sequentiality and temporal development are crucial aspects of music. Up to now,
we have limited our discussion to planar and spatial views on static profiles of pitch
classes and of tone centers, neglecting the temporal dimension. What are reason-
able time scales for calculating pitch class profiles? What are musically meaningful
sequences of tone centers?

Temporal Granularity We can investigate harmonic progression on different time
scales, on the level of chords, beats, bars, phrases, sections, or the entire piece.
Harrison [1994] (p. 128) refers to varying temporal resolution of harmonic func-
tion by using the term “segmental analysis with varying thickness”. According to
the Schenkerian school pieces are viewed at different reduction stages. After a pre-
liminary reduction, further reduction stages comprise foreground, middle ground
and background level. Also Leman [1995]’s tone center attractor dynamics includes
different levels of temporal resolution.27 The consideration of long time windows
enables the reinterpretation of tone center progression from a looking-back perspec-
tive. This implies viewing the musical structure on different levels of temporal reso-
lution. In the analysis of harmonic content, the temporal granularity ranges between
two extremes: harmonic analysis of single chords without considering the context
and finding the key of the entire piece. Harrison [1994] (p. 129) cites an analysis of
Hermann Grabner in which a harmonic function is assigned to every chord. This
kind of analysis granularity level is appropriate for passages that contain very short
tonicizations. (cf. next paragraph) On the other hand, according to the principle of
monotonality, every tonal piece has a key as a whole, no matter how far modulations
lead away from that key. [Schönberg, 1969] For a piece of music this is the coars-
est temporal resolution. In Section 3.9.4 on page 174 we will provide tone center
analysis on multiple levels of temporal resolution.

Modulation In Western major/minor tonality tone centers normally do not follow
one after the other in an arbitrary fashion. Changes from one tone center to another
require particular musical preparation and continuation. A modulation is

a firmly established change of key, as opposed to a passing reference to
another key, known as a tonicization. The scale or pitch collection and
characteristic harmonic progressions of the new key must be present.
(Saslaw [2004], emphasized by the author)

27E.g. Leman [1995], Equation 9.8, p. 130, and Equation 9.9, p. 131.
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Thereby the significance of the pitch class set is emphasized.

[In a modulation] there will usually be at least one cadence to the new
tonic. Firm establishment also depends on these features having a certain
duration. [Saslaw, 2004]

There are the following variants of modulations:

“incidental” or “arbitrary”, involving brief chromaticism ..., “passing”,
involving longer references to the new key but no cadence, and “formal”,
requiring a cadence in the new key ... Techniques of modulation often
involve pivot chords, that is, chords common to the original key and the
new key which can provide a transition between the two ... The choice of
a pivot chord or chords depends on the range of pitches and chords held
in common between the original key and the new key. ... The closer two
keys are on the circle of fifths ... the more pitches they have in common,
and the larger the repertoire of available pivot chords. [Saslaw, 2004]

For more distant keys even a single pitch can be used as a pivot note. A sequential or
straightforward restatement of a phrase in a different key can be executed without a
pivot chord.

What types of modulations are there? In diatonic modulation all main chords
(I, IV, V) are frequently used as pivot chords, although their suitability is de-
bated. [Saslaw, 2004] In chromatic modulation by upward alteration of the keynote
or by downward alteration of the fifth of the tonic we can reach the tonic, domi-
nant, and subdominant function chord of the objective key. Chromatic modulation
of such kind allows the composer to reach any key within no more than two con-
secutive modulations. If we allow downward / upward alteration on prime, third,
and fifth we can reach any of the 24 major/minor keys immediately. In addition,
tone central modulation, mediants with no tone in common, tonal shift, and sequences
(Schneider [1987], p. 171–80) are used to reach remote keys.

Schönberg [1966] describes a modulation as a three part process, consisting of
neutral, fundamental, and cadential scale degrees. Mazzola [1990] (p. 202, 206) for-
malizes this idea in the modulation theorem. He applies the theorem to Beethoven’s
Hammerklavier-Sonate. The automorphism group built on the tones of the dimin-
ished seventh chord on c♯ separates the tone centers of the piece into two orbits.
These two groups of tone centers describe the parts of the piece that are circum-
scribed by the world/anti-world metaphor [Ratz, 1973]. However, the diminished
seventh chord is very popular during long phases in music history, so it is not so
significant that it plays a special role in the Hammerklavier-Sonate.

Although of great interest, the sequential and temporal aspects of music are be-
yond the main focus of this thesis. However, covering some auxiliary results, Sec-
tion 3.9 is devoted to temporal aspects such as tone center transitions.
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2 Methods – Signals, Ear Models,

Computer Learning

Some issues introduced and discussed in the Introduction and in Section 1 will reap-
pear in this section, covering mathematical and algorithmic details of auditory signal
processing, including an in-depth evaluation of autocorrelation for pitch detection,
and machine learning.

Most of this chapter is compiled and revised from previous publications: Sec-
tion 2.1 [Purwins et al., 2000b], 2.2.1 [Purwins et al., 2000a], 2.2.2 [Normann, 2000],
2.3.1 and 2.3.3 [Purwins et al., 2004a], 2.3.2 and 2.3.4 [Purwins et al., 2004b].

2.1 Constant Q Transform

After constructing the constant Q transform from Fourier filters we will describe its
fast calculation exploiting sparseness.

2.1.1 Deriving Filter Parameters

To derive the calculation of the constant Q (CQ-) transform of some sequence x, we
begin with an inspection of the familiar equation of a Fourier filter at z

∑
n<N

x[n] e−2πinz/N . (2.1)

Each component of the constant Q transform, in the sequel called CQ-bin, will be
calculated as such a filter, but suitable values for z and window length N have to
be found in order to match the properties discussed above. The bandwidth of the
filter (2.1) is ∆ft

z = fs/N ( fs denotes the sampling rate) independently of z. Thus
the desired bandwidth ∆

cq
k = fk/Q can be realized by choosing a window of length

Nk = fs

∆
cq
k

= Q
fs

fk
. The frequency to resolution ratio of the filter in Equation 2.1 is

fz

∆ft
z

= z. To achieve a constant value Q for the frequency to resolution ratio of each
CQ-bin one has to set z := Q. Thus for integer values Q the k-th CQ-bin is the Q-th
DFT-bin with window length Q

fs

fk
.

Summarizing, we get the following recipe for the calculation of a constant Q trans-
form: First choose minimal frequency f0 and the number of bins per octave b accord-
ing to the requirements of the application. The maximal frequency fmax only affects
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the number of CQ-bins to be calculated 1:

K := pb · log2(
fmax

f0
)q, (2.2)

Q := (2
1
b − 1)−1, (2.3)

and for k < K set

Nk := pQ
fs

fk
q, (2.4)

xcq[k] :=
1

Nk
∑

n<Nk

x[n] wNk
[n] e−2πinQ/Nk . (2.5)

To reduce spectral leakage (cf. Harris [1978]), it is advisable to use the filter in con-
junction with some window function: 〈wN[n] : n < N〉 is some analysis window of
length N. Following Brown and Puckette [1992], we use Hamming windows.

2.1.2 An Efficient Algorithm

Since the calculation of the constant Q transform, according to Equation 2.5, is very
time consuming, an efficient algorithm is highly desirable. Using matrix multiplica-
tion, the constant Q transform of a row vector x of length N (N ≥ Nk for all k < K)
is

xcq = x · T∗ (2.6)

where T∗ is the complex conjugate of the temporal kernel2 T = (tnk) n<N
k<K

tnk :=

{
1

Nk
wNk

[n] e2πinQ/Nk if n < Nk

0 otherwise.
(2.7)

Since the temporal kernel is independent of the input signal x one can speed up
successive constant Q transforms by precalculating T∗. But this is very memory
consuming and since there are many non vanishing elements in T the calculation of
the matrix product x · T∗ still takes quite a while.

For improving the calculation, Brown and Puckette [1992] carry out the matrix
multiplication in the spectral domain. Since the windowed complex exponentials
of the temporal kernel have a DFT that vanishes almost everywhere except for the
immediate vicinity of the corresponding frequency the spectral kernel

S = (snk) n<N
k<K

:= DFT(T) (1-dim. DFTs applied columnwise) (2.8)

1
pxq denotes the least integer greater than or equal to x.

2In (2.7) we center the filter domains on the left for the ease of notation. Right-centering is more
appropriate for real-time applications. Middle-centering has the advantage of making the spectral
kernel (2.8) real.
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is a sparse matrix (after eliminating components below some threshold value). This
fact can be exploited for the calculation of xcq owing to the identity

∑
n<N

x[n] y[n]∗ =
1
N ∑

n<N

xft[n] yft[n]∗ (2.9)

where x and y are sequences of length N and xft, yft denote their unnormalized
discrete Fourier transform. Applying this identity to the equation of the constant Q
transform (2.5), using definitions (2.7) and (2.8) yields

xcq[k] =
1
N ∑

n<N

xft[n] s∗nk

or, equivalently, in matrix notation

xcq =
1
N

xft · S∗. (2.10)

Due to the sparseness of S the calculation of the product xft · S∗ involves essentially
less multiplications than x · T∗.

The Fourier transforms that arise in the efficient algorithm should of course be cal-
culated using FFTs. To this end, N is chosen as the lowest power of 2 greater than or
equal to N0 (which is the maximum of all Nk). The calculation of the spectral kernel
is quite expensive, but having done this once all succeeding constant Q transforms
are performed much faster.

2.2 Auditory Models and Autocorrelation

2.2.1 Auditory Models

Lyon and Shamma [1996], p. 227, give a general characterization of auditory models:

All models, however, can be reduced to three stages: analysis, transduc-
tion, and reduction. In the first stage, the unidimensional sound signal
is transformed in a distributed representation along the length of the
cochlea. This representation is then converted in the second stage into
a pattern of electrical activity on thousands of auditory nerve fibers. Fi-
nally, perceptual representations of timbre and pitch are extracted from
these patterns in the third stage.

In this three-level description, analysis refers to linear processing. Transduction and
reduction are non-linear processes.

With reference to biology, the linear part concerns the outer and middle ear, and
the basilar membrane. Transduction refers to the non-linear transformation by the
inner hair cell, and in a broader sense, the stochastic transmission at the auditory
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nerve fiber. Finally, the “mechanical vibrations along the basilar membrane are
transduced into electrical activity along a dense, topographically ordered array of
auditory nerve fibers.” [Lyon and Shamma, 1996]

The physiological correlate of the reduction stage is understood very poorly. Au-
ditory models are quite speculative at that stage. In using embedding and clustering
algorithms (cf. Section 2.3.4 and Appendix C.3), we can claim biological plausibility
only within narrow bounds, e.g. we can mimic the auditory principle of tonotopy.

Both outer and middle ear combined show a response curve maximal at between
1 and 3 kHz and decreasing towards lower and higher frequencies. 3 For imitating
various pitch phenomena the effect can be implemented as a band pass filter. 4 The
inner ear contains the basilar membrane, with hair cells adjoined to it.

Non-linear Transduction

Within a neuron, voltage pulses passively propagate along a dendrite until they
reach the axon hillock. In the axon hillock all incoming voltage pulses accumulate
until they cross a threshold. As a consequence, a voltage pulse (spike) is generated.
The spike propagates across the axon until it reaches a synapse. Neurotransmitters
fill the vesicles of the presynaptic axon (Figure 2.1, left). The vesicles release the
neurotransmitters into the synaptic cleft, when triggered by the incoming spikes, and
the emitted neurotransmitters then enter the receptor channels of the postsynaptic
dendrite of the receiving cell.

The major properties of the hair cell in the inner ear are temporal coding and
adaptation behavior. According to Meddis and Hewitt [1991], the synapse of the hair
cell can be described as a dynamic system consisting of four elements (Figure 2.1,
right). In this model, the activity transmitted by the hair cell to the auditory nerve is
assumed proportional to the number of neurotransmitters c[t] in the synaptic cleft.
c[t] depends on the number of transmitters q[t] in the hair cell multiplied by a non-
linear function

k[t] =

{
gd[t](x[t]+A)

x[t]+A+B
for x[t] + A > 0

0 for x[t] + A < 0
(2.11)

where g, A, B are suitable constants (cf. Table 3.8.1). k[t] describes the permeability
of the presynaptic hair cell membrane and is triggered by the presynaptic membrane
potential. The closer q[t] is to the maximum capacity m, the less neurotransmitter
is produced. A portion of the transmitters (factor r) returns from the synaptic cleft
into the presynaptic hair cell. The temporal behavior of the system is described by
a non-linear first order differential equation. The change in parameter is calculated
from the balance of the incoming and outgoing quantities:

3Meddis and Hewitt [1991], p. 2868, Figure 2. Similar filter curves are motivated by different psy-
choacoustic phenomena, such as hearing threshold [Yost and Hill, 1979] or dominance region
[Terhardt et al., 1982].

4IIR filter, Oppenheim and Schafer [1989], of second order, Meddis and Hewitt [1991], Footnote
p. 2881.
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Figure 2.1: Information is transmitted from the presynaptic to the post-
synaptic cell (left). The action potential in the presynaptic cell forces the
vesicles to empty neurotransmitters into the synaptic cleft. The emitted
neurotransmitters enter the receptor channels and change the potential of
the postsynaptic cell. The hair cell synapse is modeled by a dynamic sys-
tem consisting of four stages (right, after Figure 4, Meddis and Hewitt
[1991], p. 2869). The non-linear function k[t] includes the presynaptic ac-
tion potential and controls the permeability of the presynaptic membrane.
The evoked potential in the auditory nerve scales with c[t]. (cf. Section 2.2.1)

∆q

∆t
= y(m − q[t]) + mw[t]− k[t]q[t], (2.12)

∆c

∆t
= k[t]q[t]− lc[t]− rc[t], (2.13)

∆w

∆t
= rc[t]− xw[t]. (2.14)

This hair cell model reproduces some experimental results from hair cells of ger-
bils, in particular: (i) Frequent spikes occur with the onset of a tone. The spike rate
decreases to a constant value, when the tone continues, thereby revealing adaptation
behavior. After the offset of the tone, it decreases to about zero. (ii) Below 4-5 kHz
spikes occur in the hair cell nearly exclusively during the positive phase of the sig-
nal (phase locking). In this range, thus, frequency is coded both by the position of the
responding hair cell on the basilar membrane and by temporal spike behavior. For
frequencies above 5 kHz spikes occur about equally often during the positive and
the negative phase of the signal. Therefore above 5 kHz frequency is only coded by
the place information on the basilar membrane.
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After mapping frequency on a critical band rate (Bark) scale, masking curves can
be approximated by triangular functions. Gammatone filters realize a fairly good
approximation of the filter shape. More complex masking templates are suggested
in Fielder et al. [1995]. Additive properties of simultaneous maskers is an ongoing
research topic.

Information Coding Hypotheses

There are three major hypotheses which attempt to explain how a sequence of spikes
encodes information: (i) by exact neuron firing times, (ii) by the time interval be-
tween proceeding spikes, the inter spike interval, and (iii) the spike rate, the inverse
of the mean inter spike interval. To precisely model (i) and (ii) we could solve a
system of non-linear differential equations [Hodgkin and Huxley, 1952] describing
current flow in the axon. As a simplification, we can make use of the “integrate
and fire” model [Maass, 1997]. Voltage is integrated until threshold is reached. Af-
ter a refractory period, integration starts again from rest potential. (iii) is a rough
simplification of spike behavior. Nonetheless, (iii) is the basis of the auditory image
(cf. p. 25) and the connectionist neuron used in multilayer feedforward networks in
artificial neural networks (cf. e.g. Haykin [1999], p. 156 f.).

Hebbian Learning and Tonotopy

If presynaptic and postsynaptic electrical activity occur synchronously, the post-
synaptic receptor channels become more permeable so that a presynaptic activity
evokes stronger activity at the postsynaptic dendrite. This principle is called Hebbian
learning.

According to the principle of tonotopy proximate hair cells on the basilar mem-
brane project to proximate neurons in the central nervous system. In computer
science the tonotopic principle can be implemented by algorithms such as the self-
organizing feature map (SOM, cf. Section 2.3.4, Kohonen [1982]).

Meddis Auditory Model

In Meddis [1988] the temporal signal undergoes the following transformations:

1. bandpass filter (outer and middle ear)

2. gammatone filter bank scaled according to ERB (basilar membrane)

3. per channel: non-linear transduction (inner hair cell, auditory nerve)

4. per channel: autocorrelation

5. summation of autocorrelation
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Figure 2.2: A hair cell model (Meddis [1988], cf. Section 2.2.1) responds
with an impulse to stationary sine wave signals with sharp onset and the
indicated sound pressure levels. Shortly after the onset, the firing rate de-
creases to a lower level. Throughout the duration of the signal, the firing
rate remains at that level [O’Mard et al., 1997].

An onset of a sound signal evokes a sharp increase in firing rate. If the signal
persists, the firing rate relaxes to a constant level. This spike pattern is reproduced
in Meddis [1988]’s hair cell model, as shown in Figure 2.2. The final sum vector, the
pitch vector, encodes the perceived pitch.

2.2.2 Pitch Detection Algorithms

We have discussed the phenomenon of virtual pitch in Section 1.1.6. How is it pos-
sible to design an algorithm that can capture the perceived pitch, e.g. of a residual
series? We will give an account of research related to Terhardt et al. [1982]’s al-
gorithm, before presenting the latter. Finally for complex tones, we will compare
autocorrelation with and without preprocessing by an auditory model.

Frequency Differences Between Partials

Whitfield [1970] considers pitch to be a process of pattern recognition. Activation
patterns are learned. Usually, natural sounds contain the fundamental. The activa-
tion pattern of a residual series differs only slightly from the activation patterns of
“complete” overtone series. Due to the pattern similarity the same pitch is heard.

Consider a residual series composed of partials with frequencies 1800, 2000 and
2200 Hz. A pitch of 200 Hz is perceived. The components of the residual series are
recognized as being the 9th, 10th, and 11th partial of 200 Hz. These models cannot
account for the pitch of a shifted residual series (cf. Figure 1.5). Let us look at a
residual series shifted 40 Hz up. According to this model we would determine the
pitch to be 40 Hz. 1840, 2040, and 2240 Hz would be considered the 46th, 51st, and
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56th partial of 40 Hz. In contrast, the experiment shows that we actually hear 204 Hz
(in some instances 184 Hz or 227 Hz are perceived).

Walliser [1968] overcomes this difficulty by emphasizing the frequency distance
between partials. He considers the frequency of the lowest partial as an additional
factor. According to Walliser [1968], the virtual pitch is the subharmonic of the
lowest partial that is closest to the frequency distance between partials. To be more
precise, let fl be the frequency of the lowest partial and ∆ f the frequency distance
of neighboring partials. Pitch is then calculated according to f = fl

m (m = 1, 2, . . .) so
that | f −∆ f | is minimal. In our example this is 204.4 Hz. 1840 Hz is the 9th harmonic
of 204.4 Hz. Terhardt [1992] modified this principle further by limiting the partials
that can be considered (cf. Figure 1.4). Terhardt [1974] considers subharmonics of all
partials within the existence region. In Terhardt [1974], virtual pitch is the pitch that
can be considered a subharmonic of most partials. In shifted residual series, we do
not yield exactly the actually perceived pitch. But the subharmonics of the partials
cluster around the perceived pitch.

For a given residual series, Goldstein [1973]’s “optimum processor” determines
the best matching overtone series in the sense of minimizing mean squared error.
Virtual pitch is the fundamental of the overtone series.

A similar approach is the “harmonic sieve” [Duifhuis, 1982; Scheffers, 1983]. To
each pitch we assign a sieve. Frequencies can only pass the sieve, when they are
proximate to the harmonics of the fundamental of that sieve. The pitch is determined
by the sieve that lets pass most of the frequencies.

A problem occurs in all these models: To each overtone series with fundamen-
tal frequency f there is another one with fundamental frequency f

2 . Let us look at
the harmonic sieve. All frequencies that pass the first sieve also pass the second
one. Different approaches are given to uniquely determine virtual pitch: limiting
the considered pitch range [Goldstein, 1973], limiting the number of partials consid-
ered, and “harmonic summation” [Cohen et al., 1995]. In the latter the weighting of
subharmonics is inspired by Terhardt [1974].

Calculation of Virtual Pitch

According to Terhardt [1998] (p. 362-366), we calculate virtual pitch from spectral
weights and subharmonic coincidence detection, as shown in Figure 2.3. A spectral
weight Si for frequency component fi with incisiveness LXi

(cf. Equations 1.8-1.12) is
calculated as

Si =







1−e

−LXi
15 dB

√

1+0.07(
fi

700 Hz− 700 Hz
fi

)2
for LXi

≥ 0

0 for LXi
< 0

. (2.15)

The denominator models the phenomenon of dominance regions (Section 1.1.6, Fig-
ure 1.4) in virtual pitch. The coincidence Cmn

ij of the m-th subharmonic of the i-th
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Freq.
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Partials

Figure 2.3: Virtual pitch as recognition of regularities in the frequency pat-
tern of the partials. A harmonic complex tone with missing fundamental
frequency f0 = 100 Hz consists of partials with frequencies 2 f0, 3 f0, 4 f0. For
each partial fi and spectral weight Si a subharmonic series Hi with frequen-
cies fi

m is constructed. In the further step of coincidence detection, the accu-
mulation of the subharmonic series leads to the spectrum of virtual pitch.
Its maximum (arrow) presents the (most prominent) virtual pitch.

spectral pitch with the n-th subharmonic of the j-th spectral pitch is determined as
follows:

Cmn
ij =







√
SiSj

mn (1 − γ
δ ) for γ ≤ δ

0 for γ > δ
(2.16)

with 5

γ = | n fi

m f j
− 1| , n = ⌊m f j

fi
+ 0.5⌋. (2.17)

The weight Wim of the virtual pitch referring to the m-th subharmonic of the i-th
spectral pitch for a total of k spectral pitches holds:

Wim =
k

∑
j=1,j 6=i

Cmn
ij . (2.18)

5⌊x⌋ is the highest natural number smaller than x
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Virtual Pitch and the Proximity Principle

The spectrum of virtual pitch provides a much more appropriate domain to deter-
mine pitch proximity than the ordinary spectrum. Let us compare two tones: a
harmonic complex tone with a missing fundamental and a sine tone of the same
frequency. We then compare both tones by applying a common dissimilarity (e.g.
Euclidean distance, cf. Section C) to their spectrum. This yields a high degree of
dissimilarity. This opposes the perception that the pitches of both tones are identical
(cf. quote on p. 32). But if we apply the distance to the spectrum of virtual pitch,
the dissimilarity between both tones is low. This is consistent with the perceived
pitch. Thereby the spectrum of virtual pitch can be seen as an implementation of the
gestalt principle of proximity with respect to pitch perception.

Pitch and Timbre

There are several approaches to formally describing timbral features. The helix
model (Section 1.2.3, Figure 1.9) decomposes pitch into pitch class and brightness.
We would like to have some measures for the latter.

For a complex tone, the harmonic spectral centroid [Peeters et al., 2000] for frequency
components fi and intensities Ii is given by:

µs = ∑
i

fi Ii. (2.19)
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Figure 2.4: Virtual pitch of the stimuli used in the experiment in Section
3.2.2: The incisiveness of the partials is displayed by vertical bars. The
spectral weights in the calculation of virtual pitch are indicated by “◦” (sec-
ondary pitch) and “△” (maximum: principal pitch). Brilliance is indicated
also by “∗”.
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In this equation frequency can be measured in Bark or in Hz; instead of the intensity
also the loudness or the spectral weight can be considered. We modify Aures [1985] 6

to calculate the more refined concept of brilliance:

µ′
s ∼

2.7782
ln(1 + 0.05 N

sone)

∫ 24 Bark

0
LX(z) 0.0165 · e

0.171z
Bark dz (2.20)

where z is the frequency in Bark, LX(z) the specific loudness (cf. p. 35), and N the
overall loudness integrated across a time window. On the basis of harmonic spectral
centroid or brilliance, also spectral spread can be calculated [Aures, 1985; Peeters
et al., 2000].

Autocorrelation with and without an Auditory Model

Meddis and Hewitt [1991] review several results on pitch perception. They then
try to reproduce these results with an auditory model. We will focus on a couple
of psychoacoustic effects that are more relevant with respect to pitch perception in
musical instruments. We compare the auditory model to direct autocorrelation with
respect to the capability of reproducing selected psychoacoustic effects.

Since in Meddis and Hewitt [1991] only specific cases are considered, we cannot
give a statistically significant benchmark for the auditory model and pure autocorre-
lation. We will demonstrate the capacity of autocorrelation to reproduce the results
from a set of remarkable psychoacoustic experiments. 7 Autocorrelation for time lag
l at time t0 within a window of w samples is given by

xacf[l] =
t0−l

∑
t=t0−w+1

x[t]x[t + l]. (2.21)

Parameters For determination of the pitch vector of the pure autocorrelation, the
input signal is sampled at 22050 Hz. The window length is 512 samples. In contrast
to figures from Meddis [1988] there are discontinuities in Figures 2.5 (e) and (f).
They are due to short window length. But this window length proves to be sufficient,
since the relevant maxima already appear in this setup.

For comparison of pure autocorrelation to the auditory model we use residual
series with partials of equal intensity as test signals.

Missing Fundamental of Separately Resolved Partials The signal consists of a
residual series of frequency components at 600, 800 and 1000 Hz. So the missing
fundamental (cf. Section 2.2.2) has frequency 200 Hz. All partials lie in the existence
region (cf. Figure 1.4).

6Cited in Terhardt [1998], p. 303, Equations (10.11), (10.18), and (10.19).
7Since all transformation steps are explicitly stated in equations, we could have discussed the re-

producibility of the data analytically. But the non-linear transduction presents a difficult obstacle.
We thus restrict ourselves to some numerical demonstrations.
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(a) Auditory
model: resolved
harmonics

(b) Aud. mod.: har-
monics not res.

(c) Auditory model:
ambiguity
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(d) Direct ACF: re-
solved harmonics
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Figure 2.5: Comparison of pitch detection by an auditory model (a, b, c
from Meddis and Hewitt [1991], p. 2871 f., Figure 6, 7, 8; d, e, f adopted
from Normann [2000]) and by direct autocorrelation (d, e, f). In (a, d) the
stimulus is a residual series of frequency components 600, 800, and 1000 Hz
(top in a). The partials are resolved into different channels (middle in a).
Both the auditory model (summary ACF in a) and the direct autocorrelation
(d) have a maximum at 5 ms, indicating a missing fundamental (200 Hz).
In (b,e) the stimulus is a complex tone consisting of frequencies 2800, 3000,
and 3200 Hz (top in a). Not all partials are resolved into different channels
(middle in a). Again both the auditory model (summary ACF in b) and
the direct autocorrelation (e) detect the missing fundamental at 200 Hz by
having a maximum at 5 ms. The signal consists of of 2189, 2388, 2587 Hz
(top in c). It is perceived ambiguously [Schouten et al., 1962]. We consider
local maxima close to the maximum in the auditory model (bottom in c) and
direct autocorrelation to be candidates for the various perceived pitches in
the experiment [Schouten et al., 1962]. The perceived pitches do not coincide
with the 5 highest local maxima, since the local maximum at 4 ms in (f) is
higher than the one at 6.5 ms (cf. Table 2.1).

80



2.2 Auditory Models and Autocorrelation

Detection Method Frequencies (in Hz)
Perception 145 160 178 198 220

Auditory Model 153 166 181 199 221

Direct ACF 153 167 182 200 218

Table 2.1: Five different pitches (first row) are perceived in the pitch am-
biguity experiment by Schouten et al. [1962]. These pitches are matched to
local maxima closest to the absolute maximum in the pitch vector of the
auditory model (second row) and direct ACF (third row). Cf. Figure 2.5 (c)
and (f).

Figure 2.5 (a) shows the autocorrelogram generated by the auditory model. The
partials are resolved in different channels. The sum vector displays a clear maximum
at 5 ms. This is exactly the frequency of the missing fundamental.

As we would expect based on the theoretical results, the pure autocorrelation of
the signal delivers the same result. Around the maximum, the pitch vector from di-
rect autocorrelation (cf. Figure 2.5 (d)) does not significantly differ from the auditory
model.

Missing Fundamental of Non-Resolved Partials In this example the signal consists
of partials with frequencies 2800, 3000, 3200 Hz. The missing fundamental has a fre-
quency of 200 Hz. Not all frequencies are still in the existence region (cf. Figure 1.4).
Partials are not resolved into separate channels, as the autocorrelation shows in Fig-
ure 2.5 (b). Here again, the pitch vector does not differ significantly from the one
produced by pure autocorrelation in Figure 2.5 (e). The maximum again occurs at
5 ms.

Ambiguous Pitch Schouten et al. [1962] conduct a psychoacoustic experiment
in order to explore the ambiguity of pitches in a complex tone that consists of the
11th, 12th and 13th component of a missing fundamental of frequency 199 Hz. The
subjects are asked to adjust a reference tone so that both have the same pitch. The
results are listed in Table 2.1

The pitch vectors of this tone are displayed in Figure 2.5 (c) (auditory model) and
Figure 2.5 (f) (direct autocorrelation). Local maxima proximate to the absolute max-
imum are considered candidates for a possible pitch perception (we will call them
pitch of the pitch vector in the sequel). In Meddis [1988] the figure and its caption
do not give information on whether the five maxima are used for determination of
different pitches. In direct autocorrelation this is not the case: the maximum at 4 ms
is obviously higher than the one in 6.5 ms. In Table 2.1 we list the pitches closest to
the one observed in the experiment.

The deviation between auditory model and pure autocorrelation are always below
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the just noticeable difference (∼ 3.6 Hz).8 But the perceived pitch in Schouten et al.
[1962] deviates from both the other values more than the just noticeable frequency
difference. Meddis [1988] links these effects to non-linearities.

Shifted Residual Series Schouten et al. [1962] explore different shifted overtone
series (cf. Figure 1.5). The dependence of virtual pitch is determined by a shift of
the overtone series that consists of six harmonics. The fundamental frequency of the
original series is 100 Hz. Figure 2.6 (a) (auditory model) and Figure 2.6 (b) (direct
autocorrelation) display the pitch vectors of these overtone series. Both the auditory
model and the direct ACF give similar results, but the maxima vary excessively in
frequency, whereas in Figure 1.5 virtual pitch varies only slightly.

(a) Auditory model and ACF

0 2 4 6 8 10 12 14 16 18 20

0

Periode (ms)

25
  

50
  

75
  

10
0 

 
12

5 
 

(b) Direct ACF

Figure 2.6: Pitch determination of shifted residual scales by autocorrelation
with (a, from Meddis and Hewitt [1991], p. 2872, Figure 9; b adopted from
Normann [2000]) and without an auditory model (b). The input signal is an
overtone series with frequency components 100, 200, 300, 400, 500, 600 Hz.
In the lowest row in (a) and (b) the ACF of the original series gives a maxi-
mum at 100 Hz corresponding to the perceived pitch of 100 Hz. The upper
rows give the ACF of the original series shifted by 25 (second lowest row),
50, 75, 100, and 125 Hz (top row). The position of the maximum is shifted
towards higher frequencies. Also it decreases. For a shift of 50 Hz (4th row)
the situation is ambiguous. The local maxima right and left from 100 Hz
have the same height. For a shift of 75 Hz the maximum below 100 Hz
(right from the dotted vertical line) dominates the one above 100 Hz. The
process repeats cyclically.

8These deviations could be due to rounding errors.
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Limited Impact of Auditory Model We have compared auditory models to direct
autocorrelation. This gives rise to the conjecture that processing of filter bank and
the non-linear transduction in the auditory model do not have a significant impact
on the resulting pitch vector, since it varies only slightly from pitch vector gener-
ated by direct autocorrelation. As long as we work with signals in the form of
overtone series, we can omit the preprocessing and can restrict the processing to di-
rect autocorrelation. The temporal properties of the non-linear transduction are not
considered here.

The auditory model’s strength is that it can reproduce several pitch phenomena
within the framework of physiological constraints.

The model has the merit of being able to deal with pitch percepts aris-
ing from both resolved and unresolved signal components while offering
an explanation for the dominance of low frequency harmonics in giv-
ing rise to the sensation of low pitch. In so doing, it combines insights
from two rival schools, championing, respectively, place and temporal
theory. [Meddis and Hewitt, 1991]

Meddis and Hewitt [1991] do not give unequivocal biological evidence of the central
component in their model, autocorrelation:

The biggest conceptual difficulty with the time interval detection ap-
proach is knowing how it is achieved physiologically. There is a consider-
able gap between the knowledge that timing information is available and
identifying a nucleus in the nervous system that does the job. [Meddis
and Hewitt, 1991]

2.3 Classification, Clustering, Visualization

In this section the theoretical background for classification is outlined. Then k-means
clustering (Section 2.3.3) and visualization tools, such as correspondence analysis
(p. 89), Isomap (p. 91), and the self-organizing feature map (p. 91) are presented.

Supervised versus Unsupervised Learning Supervised learning can be used to clas-
sify data according to certain labels (e.g. key, mode, composer, performer). Unsuper-
vised learning lets salient structural features emerge without requiring any assump-
tion or focusing on a specific question like a classification task according to prede-
fined categories. While the performance of supervised methods can be quantified
by – more or less – objective measures (cf. subsequent paragraphs) the evaluation of
unsupervised analyses is more delicate due to their exploratory nature and the lack
of a specific goal that has been fixed beforehand.

Evaluating Classification Algorithms We will discuss how performance of super-
vised learning can be measured. The concept of cross-validation and the receiver
operating characteristic are discussed.
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Cross-Validation Machine learning algorithms for classification work in two steps.
First the learning algorithm is fed with some labeled data (training set) from which
regularities are extracted. After that the algorithm can classify new, previously un-
seen data. In order to validate how well a classification algorithm learns to generalize
from given data, e.g., a technique called k-fold cross-validation is applied: the data
set is randomly split into a partition of k equally sized subsets. Then the classifier is
trained on the data of k − 1 sets and evaluated on the hold-out set (test set). This pro-
cedure is done until each of the k sets have been used as test set, and all k error ratios
on those test sets are averaged to get an estimation of the generalization error, i.e., the
error which the classification algorithm is expected to make when generalizing to
new data from given training data on which the classifier has been trained before.
Of course this quantity greatly depends on the structure and complexity of the data
and the size of the training set. To get a more reliable estimate one can also do
n-many partitions of the data set and do k-fold cross-validation of each partitioning
(n times k-fold cross-validation).

Technical note: With our music corpus some care has to be taken when doing
cross-validation in order to avoid underestimating the generalization error. Since
some pieces exist in versions from various performers, all pieces are grouped in
equivalence classes, each holding all versions of one specific piece. But most pieces
exist only in one interpretation and form a singleton equivalence class. In cross-
validation all pieces of one equivalence class are either assigned to the training or to
the test set.

Receiver Operating Characteristic Receiver operating characteristic (ROC) analysis
is a framework to evaluate the performance of classification algorithms independent
of class priors (relative frequency of samples in each class, cf. Provost et al. [1998]).
In a ROC curve the false positive rate of a classifier is plotted on the X-axis against
the true positive rate on the Y-axis by adjusting the classifier’s threshold. In a plot
all ROC curves from n times k-fold cross-validation procedure are averaged. To
subsume the classification performance in one value the area under the curve (AUC)
is calculated. A perfect classifier would attain an AUC of 1, while guessing has an
expected AUC of 0.5, since false positive rate equals true positive rate in the latter
case.

2.3.1 Supervised Learning

Two classifiers, regularized discriminant analysis and support vector machines,
prove successful in Section 3.4.1 for determining the composer based on normal-
ized constant Q profiles.

K-Nearest-Neighbor Classifier Be X an n× l-matrix, with l vectors of dimension n.
Be d(x, x′) a dissimilarity between columns x, x′ of X and rkd(x, x′) their respective
rank order (Equation C.8). Gx(k) be the set of k-nearest neighbors, that means, the k
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points closest to x according to dissimilarity d:

Gx(k) = {x′ column of X : rkd(x, x′) ≤ k}. (2.22)

Then we define the number of points gx,i in Gx(k) that belong to class Ci:

gx,i = |{x′ ∈ Gx(k) : x′ ∈ Ci}|. (2.23)

In the k-nearest-neighbor classification rule, a data point x is assigned to a class Ci′ by

i′ = arg max
i

gx,i. (2.24)

We assign x to the class Ci′ that has the highest number gx,i of representatives among
the k-nearest neighbors Gx(k) of x.

Regularized Discriminant Analysis The quadratic discriminant analysis (QDA) is a
classification method which assumes that each class Ci has a Gaussian distribu-
tion N (µi, Σi) with mean µi and covariance matrix Σi. Under this assumption with
known parameters µi, Σi it is possible to derive a classification rule which has the
minimum misclassification risk. The regions of the classes in input space are sepa-
rated by a quadratic function. A related but simpler classifier is the linear discriminant
analysis (LDA) which makes the further assumption that the covariance matrices of
all classes are equal (Σ = Σi for all i). In this case, the rule that minimizes the
misclassification risk leads to a linear separation. Whether it is better to take QDA
or LDA depends on the structure of the data. The covariance matrix of a Gaussian
distribution describes in what way individual samples deviate from the mean. In
classification problems where this deviation is class independent LDA should be
preferred, otherwise QDA is based on the more appropriate model. So far the the-
ory. Apart from that, in real-world problems one is faced with additional issues,
even if we suppose that the Gaussian assumption is valid. The true distribution
parameters µi and Σi are not known and thus have to be estimated by (µ̂i, Σ̂i) from
given training data. If the number of training samples is small compared to the
dimensionality n of the data this estimation is prone to error and degrades the clas-
sification performance. This has two consequences. Even when the true covariance
matrices are not equal, LDA might give better results than QDA, because for LDA
less parameters have to be estimated and it is less sensitive to violations of the basic
assumptions. We modify the estimated covariance matrices according to

Σ̂i 7→ (1 − λ)Σ̂i +
λ

#classes ∑ Σ̂j. (2.25)

Then one can mediate between QDA (for λ = 0) and LDA (for λ = 1). This strategy
is called regularization. On the other hand, the estimation of covariance matrices
from too little samples holds an inherent bias causing the ellipsoid that is described
by the matrix deviating too much from a sphere: Large eigenvalues are estimated
too large and small eigenvalues are estimated too small. To counterbalance this
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bias a so called shrinkage of the covariance matrices towards the identity matrix I is
introduced:

Σ̂i 7→ (1 − γ)Σ̂i + γI · trace(Σ̂i)/n. (2.26)

Of course regularization and shrinkage can also be combined which gives regu-
larized discriminant analysis (RDA), cf. Friedman [1989], while LDA with shrinkage is
called RLDA. The choice of parameters λ and γ is made in a model selection, e.g., by
choosing that pair of parameters that results in the minimum cross-validation error
on the training set.

Support Vector Machines The support vector machine (SVM, Vapnik [1998]) is a
popular classification tool. The method is based on the idea to use large margins
of hyperplanes to separate the data space into several classes. Also non-linear func-
tions, e.g. radial basis functions, can be used to obtain more complex separations by
applying the kernel trick, cf. Appendix C.2 and the review Müller et al. [2001].

2.3.2 Analysis of Co-occurrence

Co-occurrence data frequently arise in various fields ranging from the co-
occurrences of words in documents (information retrieval) to the co-occurrence of
goods in shopping baskets (data mining). In the more general case, we consider the
co-occurrence of two different features. One feature K is described by a vector that
contains the frequencies how often it co-occurs with each specification of the other
feature P and vice versa. Correspondence analysis aims at embedding the features
K in a lower-dimensional space such that the spatial relations in that space display
the similarity of the features K as reflected by their co-occurrences together with
feature P .

c . . . . . . b hK

C hK,P
C,c . . . hK,P

C,b hK
C

. . . . . . . . .
B . . . hK

B
Cm . . . hK

Cm
. . . . . . . . .
Bm hK,P

Bm,c . . . hK,P
Bm,b hK

Bm

hP hP
c . . . hP

b n

Table 2.2: Co-occurrence table HK,P of keys K and pitch classes P . Cf. text
for details.

86



2.3 Classification, Clustering, Visualization

Consider, as our running example, the co-occurrence table

HK,P = (hK,P
ij ) 1≤i≤24

1≤j≤12
(2.27)

for keys (K) and pitch classes (P). In Table 2.2, HK,P reflects the relation between
two sets K and P of features or events (cf. Greenacre [1984]), in our case K =
{C, . . . , B, Cm, . . . , Bm} being the set of major and minor keys, and P = {c, . . . , b}
being the set of different pitch classes. Then an entry hK,P

ij in the co-occurrence table
would just be the number of occurrences of a particular pitch class j ∈ P in musical
pieces of key i ∈ K. The frequency hKi is the summation of occurrences of key i
across all pitch classes. The frequency of pitch class j accumulated across all keys is
denoted by hPj . The sum of the occurrences of all pitch classes in all keys is denoted
by n.

From a co-occurrence table one can expect to gain information about both sets of
features, K and P , and about the relation between features in K and P , i.e., between
keys and pitch classes in the example above. The relative frequency of the entries is
denoted by

fK,P
ij =

1
n

hK,P
ij . (2.28)

Co−occurrence Table WTC II − Fugues (Gould)

K
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Figure 2.7: Co-occurrence table (cf. Table 2.2) of Bach’s Well-Tempered

Clavier, fugues of Book II, recorded by Glenn Gould. The keys of the 24

fugues are labeled on the vertical axis. For each fugue the intensities are
accumulated for each pitch class, calculating CQ-profiles (cf. Section 3.3.1
and Purwins et al. [2000b]). Light color indicates high intensity. Dark color
indicates low intensity. This table is analyzed in Section 3.5.2.

87



Signals, Ear Models, Computer Learning

c c# d d# e f f# g g# a bb b 
0.07

0.075

0.08

0.085

0.09

0.095
Pitch Class Intensities f P Accumulated across Keys

Pitch Classes

C  Db D  Eb E  F  F# G  Ab A  Bb B  Cm C#mDm D#mEm Fm F#mGm G#mAm BbmBm 
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Key Intensities f K Accumulated across Pitch Classes

Keys of WTC II, Fugues

Figure 2.8: Relative frequency of pitch classes fP and keys fK of performed
WTC II, fugues, accumulated from the co-occurrence table (Figure 2.7). It
is remarkable that the non-diatonic notes in C–Major are the most promi-
nent notes, as if Bach (and/or the performer Gould) wanted to oppose to
the emphasis of C–Major in pre-well-tempered tuning. Upper: fP is the
normalized vector of pitch class intensities accumulated across all fugues in
WTC II. Lower: fK is the normalized vector of accumulated intensity of each
fugue, i.e. each key.

It is the joint distribution of K×P . The relative frequency of column j is fPj = 1
n hPj .

It is the marginal distribution of fK,P
ij . The diagonal matrix with fP = ( fP1 , . . . , fP12)

on the diagonal is denoted FP ,P . The conditional relative frequency is denoted by

f
P|K=i
j =

hK,P
ij

hKi
, (2.29)

in matrix notation: FP|K = ( f
P|K=i
j )ji.

Instead of co-occurrence tables HK,P of frequencies of occurrences, in the sequel,
we will also consider co-occurrence tables of overall annotated durations (cf. Sec-
tion 3.5.2) as well as co-occurrence tables of accumulated intensities (cf. Figures 2.7,
2.7 and Section 3.5.2). The rows and columns of a co-occurrence table can be an-
alyzed by clustering, correspondence analysis, Isomap, and the self-organizing fea-
ture map.
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2.3.3 K-Means Clustering

Cluster analysis [Jain and Dubes, 1988] is a technique of exploratory data analysis
that organizes data as groups (clusters) of individual samples. The k-means clustering
method employs the expectation maximization (EM) technique in the following way:
The data points are randomly separated into k clusters. First the mean of each
cluster is calculated (E-step) and then each point is re-assigned to the mean to which
it has the least Euclidean distance (M-step). The E- and the M-step are iterated until
convergence, i.e., the M-step does not change the points-to-cluster assignment. It
can be proven that this algorithm always converges. But runs with different initial
random assignments could lead to different final configurations. In our experiment
in Section 3.4.3 repetitions led to the same result.

2.3.4 Embedding and Visualization

For the visualization of high dimensional data that effectively lie on a low dimen-
sional manifold of the data space we will introduce a linear method (correspondence
analysis), a linear method with previous non-linear transformation such as graph
distance calculation (Isomap), and a non-linear approach (self-organizing feature
map).

Correspondence Analysis

In this section we extend this general idea of embedding musical structure in two-
dimensional space by considering the Euclidean embedding of musical entities
whose relation is given in terms of a co-occurrence table, such as Table 2.2. This
general approach enables us not only to analyze the relation between keys and pitch
classes (Sections 3.5.2 and 3.8.4), but also of other musical entities including aspects
of the style of composers (Section 3.6.3). We can, for instance, exploit the fact that
composers show strong preferences towards particular keys. This provides the ba-
sis for arranging the composers by correspondence analysis reflecting their stylistic
relations.

We will first introduce the technique of correspondence analysis with a focus on
the analysis of co-occurrences of keys and pitch classes in Section 2.3.2.

Principle Given a co-occurrence table HK,P , for visualization purposes we aim at
displaying the features K and P in a two-dimensional space, such that aspects of
their tonal relation are reflected by their spatial configuration. In particular, cor-
respondence analysis can be thought of as a method that aims at finding a new
co-ordinate system that optimally preserves the χ2-distance between the frequency
K-, and P-profiles, i.e., of columns and rows. For 12-dimensional pitch class fre-
quency vectors we consider the χ2-distance, Equation C.5. The χ2-distance is equal
to the Euclidean distance in this example if all pitch classes appear equally often.
The χ2-distance weights the components by the overall frequency of occurrence of
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pitch classes, i.e., rare pitch classes have a lower weight than more frequent pitch
classes. The χ2-distance satisfies the natural requirement that pooling subsets of
columns into a single column, respectively, does not distort the overall embedding
because the new column carries the combined weights of its constituents. The same
holds for rows.

We can explain correspondence analysis by a comparison to principal component
analysis. In principal component analysis eigenvalue decomposition is used to ro-
tate the co-ordinate system to a new one with the axes given by the eigenvectors.
The eigenvalue associated with each eigenvector quantifies the prominence of the
contribution of this particular co-ordinate for explaining the variance of the data.
The eigenvector with highest eigenvalue indicates the most important axis in the
data space: the axis with highest projected variance. Visualization in this framework
amounts to projecting the high-dimensional data (the 12-dimensional pitch class fre-
quency space or, respectively, the 24-dimensional key frequency space) onto a small
number of (typically two or three) eigenvectors with high eigenvalues. Hereby only
insignificant dimensions of the data space are discarded, leading, effectively, to a
plot of high dimensional data in two- or three-dimensional space.

In principal component analysis by rotating the co-ordinate system, the Euclidean
distances between data points are preserved. Correspondence analysis is a gener-
alization of principal component analysis: The χ2 distance (a generalization of the
Euclidean distance) between data points is preserved.

If the data matrix is not singular and not even symmetric, generalized singular
value decomposition instead of eigenvalue decomposition yields two sets of factors
u1, . . . , ud and v1, . . . , vd, instead of one set of eigenvectors. So either for the m-
dimensional column vectors of the data matrix the co-ordinate system can be rotated
yielding a new co-ordinate system given by the column factors u1, . . . , ud, or the n-
dimensional row vectors of the data matrix are expressed in terms of co-ordinates
in the new co-ordinate system of row factors v1, . . . , vd. In principal component
analysis each eigenvector is associated with an eigenvalue. In the same sense for
each pair of column and row vectors uk and vk, an associated singular value δkk

quantifies the amount of variance explained by these factors (cf. Appendix C.3.1 for
technical details). Consider the conditional relative frequency of pitch classes FP|K

being the data matrix. If we project the 12-dimensional pitch class profile fP|K=i

into the space spanned by all d vectors v1, . . . ,vd and represent each profile fP|K=i

by its d-dimensional co-ordinate vector si, then the χ2-distance between fP|K=i and
fP|K=l equals the Euclidean distance between the co-ordinate vectors si and sl of
their projections. But if we only use the two co-ordinates with highest singular
value, instead of all d co-ordinates, then all distances are contracted and more or
less distorted, depending on the singular values.

A biplot provides a simultaneous projection of features K and P into the same
space. Both the co-ordinates of a K-profile in the co-ordinate system of the uk’s and
the co-ordinates of a P-profile in the co-ordinate system of the vk’s are displayed in
the same co-ordinate system. Such a biplot may reveal the inter-set relationships.
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2.3 Classification, Clustering, Visualization

Using the multiv library in R ported by Friedrich Leisch from the original S pack-
age by Fionn Murtagh, in Sections 3.5.2 and 3.8.4 we will present the results of our
correspondence analysis of inter-key relations in scores and recorded performances
that leads to the emergence of the circle of fifths and to a toroidal model of inter-key
relations. We show how these results relate to a similar model from music theory
[Chew, 2000] and to earlier experiments with a different cognitive model [Purwins
et al., 2000a]. In Section 3.6 we apply correspondence analysis to the problem of styl-
istic discrimination of composers based on their key preference. Please note that we
provide a more technical perspective on correspondence analysis in Appendix C.3.1.

Historical Note According to Greenacre [1984], the interest in studying co-
occurrence tables emerged independently in different fields such as algebra
[Hirschfeld, 1935], psychometrics [Horst, 1935; Guttman, 1941], biometrics [Fisher,
1940], and linguistics [Benzécri, 1977]. Correspondence analysis was discovered not
only in distinct research areas but also in different schools, namely the pragmatic
Anglo-American statistical schools as well as the geometric and algebraic French
schools. Therefore, various techniques closely related to correspondence analysis
have been discussed under various names, e.g., “reciprocal averaging”, “optimal (or
dual) scaling”, “canonical correlation analysis of contingency tables”, “simultaneous
linear regressions”.

Isomap

Often high dimensional data can be approximately described by a curved manifold
of a lower dimension. For Isomap [Tenenbaum et al., 2000] data points in high di-
mensional space are given. Each of them is connected to its k nearest neighbors
(cf. Section 2.3.1 and Ripley [1996]), with respect to a given dissimilarity, e.g. Euclid-
ean distance. The idea is that from one point another point cannot be reached di-
rectly, only by taking a route via data points that are connected to each other. The
graph distance assigned to a pair of data points is the length of the shortest path
via connected points. Multidimensional scaling [Shepard, 1962] is performed on the
graph distance matrix, so that projecting the points onto the eigenvectors with high-
est eigenvalues shows the configuration of points in a low dimensional Euclidean
space that optimally preserves the graph distances. E.g. a two dimensional manifold
hidden in the high dimensional data is visualized by Isomap as a planar display that
appropriately reflects the inter point distances on the surface of the manifold. Cf.
Appendix C.3.2 on page 199 for technical details.

Toroidal Self-Organizing Feature Map (SOM)

The weight vectors wi ∈ Rn of the SOM have the same dimensionality as an ana-
lyzed input datum x ∈ Rn. During training, the weight vectors adjust to the input
vectors. The indices of the weight vectors form a grid structure defined by some
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neighborhood function. In our application, a two-dimensional toroidal grid is de-
fined by the toroidal distance dT (l, l′) (Equation C.7), serving as a neighborhood
function. During training, the grid is smoothly embedded in the high dimensional
input space. The algorithm works as follows, dn being the Euclidean distance in Rn:

1. random initialization of weights wi ∈ Rn,

2. random choice of input vector x ∈ Rn,

3.

ix = arg min
i

(dn(x, wi)), (winner − takes − all step) (2.30)

4. update:

wi :=

{

wi + η(x − wi) if dT (i, ix) < N

wi otherwise
, (2.31)

5. continue at 2. with learning parameters η and N (neighborhood range) gradu-
ally decreasing.

Graepel et al. [1997] further develop a more robust version of the SOM by intro-
ducing stimulated annealing into the algorithm. An energy function can be defined
for infinitely many simulations by viewing the evolution of the wi as a stochastic
process [Ritter and Schulten, 1988]. The SOM preserves the topology, i.e. adjacent
(defined by dn) vectors in the input space map to neighboring (defined by dT ) po-
sitions on the grid. The topology preserving property of the SOM is also optimal
in the sense of the information theoretic principle of maximal information preser-
vation [Linsker, 1989]. Topology preservation is a property that can be observed in
the brain also, e.g. in tonotopic or retinotopic maps. Therefore, the SOM serves as
a model of the cortical organization, e.g. of orientation preference and ocular dom-
inance patterns. [Obermayer et al., 1991] However, the biological relevance of the
SOM is limited, since the “winner-takes-all step” (Equation 2.30) would assume a
global comparison with all other “neurons” (= weights) in the brain. Lacking biolog-
ically more plausible models, we will use the SOM as a coarse cognitive model of a
schema for the perception of key and tone centers.
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3 Results – Sawtooth, Pitch Class

Profiles, Circles, and Toroids

We will first discuss the pitch “paradox”, then the constant Q profiles and their
applications.

The material presented in this section is mostly a revised version from previous
publications: Sections 3.1, 3.2.1, 3.2.3, 3.2.5, 3.2.6, and 3.5.1 [Purwins et al., 2005],
3.2.2, 3.2.2, and 3.2.4 [Normann et al., 2001a,b], Subsection “The subject’s comments”
of 3.2.2 [Normann, 2000], 3.3.1 – 3.3.5, 3.9.3 [Blankertz et al., 1999b,a; Purwins et al.,
2000b, 2001a], 3.4 [Purwins et al., 2004a], 3.5.2, 3.6, and 3.8.4 [Purwins et al., 2004b],
3.7.2 and Subsection “Simulations” of 3.8.1 [Purwins et al., 2006], 3.8.2 and Subsec-
tion “Simulations” of 3.8.3 [Purwins et al., 2000a], 3.9.4 [Purwins et al., 2002].

3.1 The Sawtooth Culmination Pattern

The range of musical parameters, like pitch, tempo, and loudness is limited by the
capability of the auditory system. This is reflected by design constraints of musical
instruments and in playing technique. Every instrument has an ideal pitch range.
But in addition, the hearing range limits the perceived pitch by an upper and a lower
bound. Also tempo is limited to a specified range. An accelerating pulse sequence is
perceived as a beat. But by exceeding a certain tempo a pitch is heard. Also loudness
is limited by the threshold of pain and the hearing threshold. For ultimately extend-
ing the period of suspense before reaching the climax, composers use a trick. The
parameter in question (e.g. pitch, tempo, or loudness) slowly increases. Then the
parameter is suddenly turned down. After that, the slow increase repeats, possibly
in a varied form, abruptly collapses again and so forth. Inspired by Schneider [2005]
we observe a sawtooth pattern.

Figure 3.1: The sawtooth culmination pattern: a repeating cycle of slow rise
and quick fall.
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Figure 3.2: Final Presto of Beethoven’s overture Leonore III.

Let us take a closer look at the first eight bars from the final Presto in Beethoven’s
overture Leonore III (Figure 3.2). At a crude level we can assume a quick long falling
scale. But this idea cannot be realized directly. A sawtooth-like pitch sequence (Fig-
ure 3.1) is a good approximation: The solo violins jump up a seventh after every six
descending diatonic scale notes. They then continue with the falling scale playing
up an octave. The jump is audible though. Shepard [1964] (cf. p. 48) aims at cam-
ouflaging the jump. The next falling scale already inaudibly fades in before the last
scale fades out.
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3.2 Circular Pitch in Harmonic Complex Tones

Just to name one of numerous examples for a sawtooth-like cumulation in the
loudness domain, we may look more closely at Danse Générale from Maurice
Ravel’s Daphnis et Chloé, Suite No. 2. Danse Générale consists of one long
steady cumulation of a driving repetitive motive in triplets. Throughout this section
the dynamics slowly build up from p or pp to mf or ff, before collapsing, and slowly
dynamically rising again (new cycles at No. 210, 2nd bar after 212, 2nd bar after 214,
2nd bar after 215, 216, 217, 218, 4th bar after 220).

3.2 Circular Perception of Relative Pitch in Harmonic

Complex Tones

die Idee von etwas, was immer weiter wächst, immer nach oben wächst,
aber nie . . . ankommt 1 (György Ligeti referring to his etudes L’escalier

du diable and Columna infinită)

3.2.1 Octave Ambiguity and Octave “Paradox”

Tritone intervals of Shepard tones are either perceived as going up or going down.
In one listener the perception is consistent. But it varies from one listener to another.
[Deutsch, 1986] In addition there is the phenomenon of octave ambiguity: Even
trained singers sometimes miss a tone by one octave, especially when a female voice
wants to meet the tone of a man’s voice or vice versa.

Bells are special among the instruments of classical Western music. Bell spectra
can only insufficiently be approximated by harmonic complex tones. 2 Due to this
feature, composers often feel challenged to imitate bell spectra by suitable chords,
thereby opening new harmonic perspectives: Franz Liszt’s Funérailles, the crown-
ing scene in Modest Mussorgsky’s Boris Godunov, Arnold Schönberg’s Sechs

kleine Klavierstücke op. 19 No. 6, the highlights in György Ligeti’s L’escalier

du diable, and Manfred Stahnke’s Bellringer’s Song, about 1200. The pitch of
bells is often ambiguous with respect to the octave position [Terhardt and Seewann,
1984].

How can we explain this phenomenon? Let us consider Shepard tones, introduced
in Section 1.2.3. Due to their spectrum, octave intervals cannot be generated with
Shepard tones. This is so because transposing a Shepard tone up an octave yields
the identical tone. Let us put it this way. Shepard’s trick is as follows: On the
pitch helix (Figure 1.9) tones in octave interval distance can be distinguished due
to their vertical position. Shepard [1964] lets the helix shrink to a circle in the X-
Y-plane, so that octaves unify in one point. Let us imagine a variation on Shepard
[1964]’s experiment, which works the other way around: we let pitch class stay

1“the idea of something that is continuously growing, always growing upwards, but never arrives”
Ligeti in his introduction to the first performance of Columna infinită (1993) in Münster.

2Terhardt [1998], p. 220. Definition of a “harmonic complex tone” on p. 32 of this thesis.
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Figure 3.3: Generation of octave ambiguity. The spectral envelope of a
Shepard tone is varied, while the partials remain the same.

the same and vary the spectral envelope, as seen in Figure 3.3. In other respects
the structure of the complex tone remains the same. It is constructed from partials
in octave distance. In this experimental design we explore brightness in isolation,
referring to the vertical axis of the pitch helix. Without actually having conducted
the experiment, we can expect that a complex tone with a spectral envelope centered
in the lower register is perceived lower than a complex tone with an envelope in the
higher pitch register. The spectral envelope can be shifted continuously from low to
high frequencies. Octave ambiguity occurs if the centroid of the spectral envelope
is in a certain position, so that octave position of that tone is judged differently by
different subjects. The experimental design could be as follows: A complex tone
is presented initially. Two partials in octave distance, one lower and the other one
higher than the spectral centroid, are then presented in isolation. The subject is
asked: Which sine tone of the latter pair resembles the initially presented tone more
closely? We would expect that the answers vary among the subjects.

From octave ambiguity we can construct the octave “paradox”, using the gestalt
principle of similarity. A small shift of the spectral envelope would not change the
perceived octave position of the tone. But an accumulation of consecutive small
shifts causes the final note to have another octave position from that of the starting
note.

The Shepard scale is still perceived “paradoxically” if we combine the pitch class
movement with a smooth temporal variation of the spectral envelope. Brightness
can fluctuate or can move parallel to or opposite to pitch class. We can double
the pitch “paradox” (Figure 3.4) by designing a sound sequence that is circularly
perceived as ascending and descending in pitch at the same time. Pitch class and
brightness both change cyclically with different cycle durations. Pitch class infinitely
rises. A sinusoidal spectral envelope cyclically descends and thereby lets brightness
infinitely get duller. We will see in Section 3.2.6 how spectral centroid and spectral
spread are tuned for usage of circular pitch in particular pieces of music.
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Figure 3.4: Doubled “paradox”. Instead of a fixed bell shape such as in
Figure 1.10, we employ a sinusoidal spectral envelope moving opposite to
pitch class. When the pitch class moves up (small arrow on the bottom from
solid to dashed-dotted lines) the spectral envelope moves down (long arrow
on top). Pitch class ascends, whereas brightness gets darker at the same
time.

To give an example in music for acoustical instruments, the beginning of the
Presto at the end of Beethoven’s overture Leonore III refers to the octave “para-
dox” with falling spectral envelope (Figure 3.2). The strings play the same pitch
class unisono but in different octave positions, starting with the violins, later joined
by other instruments in increasingly lower registers. First only the violins play fast
runs. One after another, the viola, cello and double-bass join in. By bar 16 the pas-
sages run in three parallel octaves. Techno music sometimes employs a comparable
effect, technically realized by the steady fall of the boundary frequency of a low pass
filter.

A problem arises here. If the ear hears analytically it may decompose a single
tone into several components or even its partials. For a tone sequence with circular
pitch we may hear how particular components become more prominent and others
vanish. In the description of the experiment in Section 3.2.2, we will explain how we
support synthetic perception of single tones.

3.2.2 Experiment: Judgment on Pitch Comparison

Usually an order is considered to be transitive. A relation “≺” is termed circular,
if there are elements a0, a1, . . . , an with a0 ≺ a1 ≺ . . . ≺ a0. The “paradox” of
our experiments is based on circular and intransitive pitch relation. According to
common notion we would assume that any tone determines a unique pitch on a
linear scale. But such a linear and transitive order falls short in explaining our
experiments.

For our experiment, stimuli are designed in the following way. Starting from the
first tone (top Figure 3.5), step by step, partials of a fundamental with half of the
lowest frequency are added (2nd to 6th row in Figure 3.5). Six tone pairs are com-
bined from these six consecutive harmonic complex tones: 1st with 2nd; 2nd with
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Figure 3.5: The harmonic complex tones of a group differ in amplitude of
the even and the uneven partials (left). The timbre manipulation leads to an
octave uncertainty that enables paradoxical, namely circular, pitch percep-
tion (right). c → d denotes “perceived pitch of d higher than perceived pitch
of c”.

3rd; ... ; 5th with 6th; and 6th with 1st. This group of tone pairs is considered in
nine transpositions. A second block of stimuli is derived by reversing the order of all
6 ∗ 9 = 54 tone pairs. Each of the 18 subjects has to give one of the following alterna-
tive judgments on pitch comparison to each of the 6 ∗ 9 ∗ 2 = 108 tone pairs: 1) “first
tone higher”, 2) “second tone higher”, 3) “both tones equal”, or 4) “undecidable”.
The sequence of tone pairs is presented in random order. 3

A statistical investigation of the stimuli reveals that the brilliance (Equation 2.20

in Section 2.2.2) remains between 5.5 to 7 Bark with the exception of the first tone (>
4 Bark).

Results The results are shown in Figure 3.6 and they are summarized in Figure 3.7.
Each column of each block in Figure 3.6 reflects 54 judgments of one subject. In the
lower block, tone pairs are presented in reversed order. Each block is divided into
nine rows, one for each transposed group of tone pairs. For each subject and each
transposed group, one rectangle contains the judgments on the six tone pairs of that
group. Each individual pitch judgment is not interesting in isolation. The group of
six pitch judgments on the whole, the contents of one rectangle, is of interest. As
shown in Figure 3.5, the tones of a group are compared with each other in a circular

3For a more detailed description of the experiments cf. Normann [2000].
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Figure 3.6: Pitch judgments on pairs of consecutive tones from Figure 3.5.
Each of the nine rows of groups indicates a different transposition of the
group of tone pairs. Each column shows the judgments of a different subject.
The lower block refers to the same tone pairs as the upper block, but in
reversed order. The pitch judgments are encoded by colors as follows: “first
tone higher” (blue), 2) “second tone higher” (yellow), 3) “both tones equal”
(green), and 4) “undecidable” (red). (Confer text for details. From Normann
[2000], p. 29.)
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Figure 3.7: Percentage of answers for the six tone pairs. Tone pair no. 1

refers to tone no. 1 compared with tone no. 2 in Figure 3.5 . . . tone pair 6 to
tone no. 6 compared with tone no. 1. In the right figure tones are presented
in reverse order. The colors encode the judgments on pitch difference: yel-
low - ascending; blue - descending; green - equal; red - not comparable
in pitch. The mean is taken across the 9 transpositions of the tone pairs
and the 18 subjects. We can see that the judgments across tone pairs are
quite homogeneous with relatively low probability for the comparison of
the ascending third (left no. 3) and the descending second tone pair (right
no. 2). A more advanced design of stimuli could smooth out the differences
(cf. Section 3.2.5 and Figure 3.13).

order. A subject has perceived six tones of a group circularly if there is at least one
ascending tone pair (“second tone higher”) and all others are perceived ascending
as well or equal in pitch. An analogous formulation holds for circularly descending
tones of one group. If we expect that tones should arrange in a linear order such
a sequence of tones appears paradoxically. In Figure 3.6, circularly perceived tone
sequences can be identified as rectangles that contain only the color(s) yellow (and
green, first block) or blue (and green, second block). On the whole in the first
block, 96 of the 162 rectangles are circular, in the second 102. That indicates that the
constructed tone sequence is perceived circularly in more than half of the instances.
There are four subjects that confirm the circularity in all groups in both blocks.

The histogram of different degrees of circular perception (right Figure 3.8) reveals
two blobs, one on the right, another one on the left side. We interpret this as a
bimodal distribution related to two groups of listeners. An informal screening of the
background of the subjects suggests that the musically experienced listeners tend to
“paradoxical” perception (right blob). Naive listeners (left blob), on the other hand,
guess more than actually hear the pitch attribute and distinguish less between pitch
and brilliance. How significant is the “paradoxical” perception of the subjects in the
right blob?

100



3.2 Circular Pitch in Harmonic Complex Tones

2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Subject Index

%
 o

f 
C

ir
cu

la
rl
y 

P
e

rc
e

iv
e

d
 B

lo
ck

s
Histogram of Different Degrees of Circular Perception

0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100
0

1

2

3

4

5

6

7

% of Blocks Circularly Perceived Pitch

N
o.

 o
f S

ub
je

ct
s 

Histogram of Different Degrees of Circular Perception

Figure 3.8: 11 out of 18 subjects perceive at least 70% of all blocks circularly.
For all the subjects equivalent statements hold for mostly 30% of all blocks
(left). The result is a bimodal distribution that indicates the different types
of listeners (right).

Statistical Formulation and Evaluation For the i-th block, define a binary random
variable Xi: Xi = 1, if the i-th block is perceived circularly descending, otherwise
Xi = 0. Be P{Xi = 1} = πk, P{Xi = 0} = 1−πk, for subject k. Under the simplifying
assumption of stochastic independence Yk = ∑

18
i=1 Xi is binomially B18,πk

-distributed.
The uniformly best, randomized Neymann-Pearson test for two-sided test prob-

lems to error level α = 0.05 yields that at least 39 % of the subjects have a circular
pitch perception (“πk > 0.5”; for comparison “wild guess” would yield π = 0.094).

The Subjects´ Comments Before the experiment started, most of the subjects were
convinced that for any tone a pitch could be determined unequivocally. So they
thought their judgments were either right or wrong. The experimenter explained to
the subjects that pitch is a perceptual quality. So the matter of investigation would
be rather “how” than “how well” the subjects would judge pitch, he said. In the end
the subjects were asked: When would you think two tones were not comparable in
pitch? Various responses to this question were given:

1. “The tones sound too different with respect to timbre”

2. “At the same time, a tone sounds brighter and lower than another tone”

3. “A tone is musically lower but physically higher then another one”

4. “In one tone one could hear two pitches simultaneously”

5. “One could hear two or even more tones simultaneously”
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6. “The fundamental was missing”

These answers reflect different ways of hearing in music: Musically experienced
participants have another way of listening. Some listeners tend to listen more syn-
thetically, others more analytically. Some of the subjects have in-depth experience
with using sound synthesis techniques on the computer, e.g. additive synthesis. The
answers also reveal the competition of timbre and pitch cues.

Only rarely the subject chose the judgment “tones are not comparable in pitch”.
Most subjects said they mostly heard only one pitch, given one tone. Or at least one
pitch would have dominated other pitches, they explained.

We should also report how the subjects helped themselves to give a judgment
on pitch difference. Often they tried to reproduce the tone sequence by singing,
humming, or whistling. Obviously the pitch comparison referred to the reproduced
tone pair rather than to the original tone pair itself. It looked as if the underlying
strategy was to translate two tones with distinct timbre into tones with familiar
timbre. So the subjects could solve the task in a timbre domain they were more
familiar with.

3.2.3 Dimensionality, Proximity, Perceptual Quantization, and

Competition

We would like to discuss the “paradoxes” with regard to the following aspects:

1. the multidimensionality of the adequate psychoacoustic model for pitch and
tempo,

2. the gestalt principle of proximity at work in the contour space of pitch classes,

3. the perceptual quantization accumulating inaudibly small changes to a notice-
able qualitative change, and

4. the contradictory arrangement of competitive cues that are usually redundant
in a natural environment.

According to Drobisch [1855] (see Section 1.2.3 and Figure 1.9 on page 49) pitch
is an inherently two-dimensional feature that can be decomposed into pitch class
and brightness. On a straight line one cannot walk in circles. But if a feature is
defined by several degrees of freedom it is not surprising to embed a circle in the
multi dimensional feature space.

As we have seen above, the pitch of Shepard tones is solely represented by pitch
class given by the angle that is a point on the pitch class circle (Figure 1.9). But in the
experiment we only ask for the relation between two pitches. After this preparation,
the concept of Shepard pitch offers a convincing explanation of experimental results.
In essence, the subjects involved in the experiment were asked to establish a relation
between two points on the circle by using their auditory perception. The subject’s
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Figure 3.9: Gestalt principle of proximity on the circle of pitch classes. d is
higher than c, because the shortest path between c and d is clockwise. Two
ascending halftone steps (solid line) are shorter than ten descending half
tones (dotted line).

answer “a is lower than b” can be visualized as a clockwise walk on the circle from
a to b. “a is higher than b” implies a counterclockwise walk on the circle from a to b.
The experimental results show significantly that the subjects hear pitch comparisons
according to the shortest path on the pitch class circle (Figure 3.9).

The subjects choose a perspective, so that a and b are closer to each other. This can
be interpreted as a result of the gestalt principle of proximity, if viewed in the ap-
propriate formulation: For pitch classes a and b, let us consider the directed interval

d = d(a, b) = (b − a + 6) mod 12 − 6 (3.1)

The signature σ(d) of d is positive, if the shortest path on the pitch class circle runs
clockwise, otherwise σ(d) is negative. For a melody the contour is the sequence of
ups (“1”), downs (“-1”), and repetitions (“0”) in pitch. Therefore, in the contour
space C = {−1, 0, 1}n, the gestalt of a heard contour is determined by the closest
path connection (σ(d) = ±1). In this formulation, the phenomenon of circular pitch
perception obeys the gestalt principle of proximity.

In the experiment we make another observation: the more the directed interval
between a and b approaches six halftones (a tritone), the more the variation of per-
ceived pitch relation increases across different subjects. For this interval, the vari-
ability of the subject’s judgments reaches its maximum. This result is consistent with
psychological experiments in general, in that the task requires the subject to give a
yes/no answer depending on whether he perceives a stimulus to be above or below
a certain threshold. Then the averaged answers can be described by a sigmoid with
its symmetry point at the threshold.

Due to the just noticeable differences and perceptual thresholds the perceptual
system quantizes the analog stimulus, thereby generating a quantization error. A
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similar value in the analog signal can result in an equal value in the quantized signal.
The accumulation of inaudible differences finally results in a change of perceptual
quality. In the design of circularly perceived sequences, consecutive stimuli have to
be perceived similarly according to the related gestalt principle. We can also read this
in light of the motto from gestalt psychology: “The whole is more than the sum of
its parts”. Frequency components with octave relationships fuse into one perceived
tone. For a Shepard scale, this is a way to camouflage the entry of single compo-
nents. If one could analytically extract them, their sudden entry would disrupt the
sequence. Shepard [1964] describes how spectra of superimposed thirds, instead of
octaves, are not suited for constructing a gradually changing sequence, since they
are perceived as chords instead of fusing to a single tone perception. Furthermore in
synthesis experiments we observe that for circular sequences, of both octave spectra
and harmonic complex tones, the cycle duration of the rise should not be too short.
In that case, changes (e.g. fade-out of high, fade-in of low components) of the tone
are camouflaged better because they are closer to the perceptual threshold. Thus we
can return to the initial sound imperceptibly.

Figure 3.10: Ponzo scalability paradox: Two lines are running towards the
vanishing point. There are two parallel bars of equal size on top. The bar
“behind” apears bigger.
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3.2 Circular Pitch in Harmonic Complex Tones

Starting from Risset [1985], we would like to present another hypothesis that will
guide us to further formalization in Section 3.2.4. In the perception of our environ-
ment, certain information is encoded by several redundant features. For illustration
of the problem, let us look at Ponzo’s scalability paradox (Figure 3.10). Two lines
converge towards the vanishing point, thereby creating a perspective. Two bars of
identical shape and size lie on top of the lines. The upper bar appears bigger. What
could be the explanation? On one hand, due to their equal shape, both bars should
be perceived as being the same. On the other hand, the item is closer to the vanish-
ing point. In this optical illusion we synthesize a combination of features that does
not appear in this way in our environment. Normally these features are coherent. If
an object of the same shape is further away in perspective, it is scaled down. But in
our setup we present an incoherent combination of features. The size of the bar re-
mains the same. But it is stationed further toward the vanishing point. Two features
compete with each other: “same shape” versus “position closer to vanishing point”.
The feature “position closer to vanishing point” dominates.

We can apply this principle to the Shepard tones (Section 1.2.3 on page 48): The
pitch class changes, the brightness stays the same. For natural sounds in general, it
applies that a higher tone is brighter. Refined adjustment of parameters results in
the circularly perceived Shepard scales that maintain brightness while ascending in
pitch class. For circular sequences of harmonic complex tones, the following cues
for the determination of the fundamental are competitive. In the spectrum of pitch
difference (Equation 3.2) the two main peaks compete with each other. Different
cues are incorporated into this equation: On the one hand, the difference of the
frequencies of adjacent partials is the fundamental frequency. On the other hand the
fundamental of a complex sound is determined by the lowest partial. We are now
ready to formalize the competition of cues for pitch determining.

3.2.4 Model: Spectrum of Pitch Differences

We want to design a psychoacoustic model for higher/lower pitch comparison be-
tween tones, such as in the experiment in Section 3.2.2 on page 97. Ambiguity in
pitch (e.g. bell sounds) and in relative pitch (e.g. the tritone “paradox”) motivates
the idea to model relative pitch as a spectrum rather than a single scalar value, in the
same way as virtual pitch expands the idea of a definite unique pitch to a spectrum of
pitch candidates with various prominence. Within the limited scope of this thesis we
have to restrict ourselves to the pitch comparison of complex tones. Like in virtual
pitch, for each partial of each complex tone its prominence (spectral weight), given
by the existence and dominance region in virtual pitch, is calculated (Section 1.1.6 on
page 38). For each partial the spectral weight is expanded to its subharmonic series
that is then decreasingly weighted. For a given frequency difference of subharmon-
ics their spectral weights are multiplied. These products of subharmonic weights are
summed up across all subharmonic pairs of the same frequency interval. Finally we
yield a spectrum of pitch difference indicating various degrees of prominence of the
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intervals.
In our approach, to each compared pair of complex tones, we assign a spectrum

of pitch difference (SPD). In this mathematical framework, pitch comparison is an
operator that maps two functions – the spectra of the compared complex tones –
to another function Γ of pitch differences δp. Γ(δp) denotes the intensity of the
perceived pitch difference δp. A pair of complex tones with an ambiguous pitch
relation should lead to a SPD with two or more peaks at the same level, whereas
distinct global pitch differences should show a single significant peak in the SPD
(e.g. when pure tones are compared).

To give the explicit equation, the equation for calculating virtual pitch in Terhardt
[1998], p. 362-364 (Section 2.2.2 on page 76) is adapted to pitch intervals:

Γ(δp) := ∑
1≤j≤N
1≤k≤M

δp=log2
f jm

f ′
k

n

∑
1≤n,m≤12

SjS
′
k

nm
(SPD), (3.2)

where f = ( f1, . . . , fN) and f ′ = ( f ′1, . . . , f ′M) are the spectral frequencies of the two
complex tones. S = (S1, . . . , SN) resp. S′ = (S′

1, . . . , S′
M) are their associated spectral

weights (Equation 2.15 on page 76). For each partial f j of the first tone f , the spectral
weight Sj/m of the subharmonic f j/m is compared to the spectral weight S′

k/n of
the subharmonic f ′k/n of each partial f ′k of the second tone f ′. 4 Products of spectral
weights are added, if their corresponding subharmonics have the same logarithmic

pitch dissimilarity δp = log2
f jm

f ′kn
. A reversed order of pitch comparison leads to a

mirrored SPD (Γ(δp) → Γ(−δp)).

Applications To give application examples, we will first calculate pairwise SPD be-
tween the harmonic complex tones used in our experiment. Then we will determine
the SPD between Shepard tones. We calculate the pitch difference between succes-
sive tones in the scale of harmonic complex tones and in the Shepard scale. If the
maximum of the spectrum of pitch difference is either always positive or always
negative circular pitch perception is indicated.

Let us look at the SPD of circularly perceived tone series, of harmonic complex
tones in Figure 3.11 on the next page and of Shepard tones in Figure 3.12 on page 108.
For a qualitative description of the experiments by the SPD, the SPD must be inter-
preted. If the maximum of the SPD Γ lies left from the vertical zero line (δp < 0) it
means that the subjects predominantly judge “the first tone is lower then the second
one”. Respectively δp > 0 means “the first tone is higher then the second one”. Both
tone sequences are circularly ascending meaning that most subjects judged the tone

4This idea is inspired by Terhardt’s principle of subharmonic coincidence for calculation of virtual
pitch (Terhardt [1998], p. 363-364, cf. Section 2.2.2). Though we do not determine virtual pitch
explicitly, the SPD equation can be considered to some extent a comparison of virtual pitches.
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3.2 Circular Pitch in Harmonic Complex Tones

of the k-th row lower then that of the k + 1-th row and the last tone lower then the
first one. These results are consequently reflected by the corresponding SPD: Each
SPD has its absolute maximum for a δp < 0. Thus the SPD describes the experi-
mentally found circular structure of pitch relations. Amplitudes of two subsequent
tones according to Figure 3.5 yield an octave ambiguous interval perception. The
octave ambiguity is apparent in the two most prominent peaks in the right column
of Figure 3.11.

In Figure 3.12 and 3.11, virtual pitch is calculated according to Equations 2.15, 2.16,
and 2.18 on page 77. For plausible reasons but with no experimental psychoacoustic
verification so far, in contrast to Terhardt [1998], virtual pitch calculation starts from
inciciveness (Equations 1.8,1.9, and 1.12 on page 36).
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Figure 3.11: Pitch determination of the harmonic complex tones in the ex-
periment (cf. Figure 3.5). The equation models the perception of a circular
sequence of harmonic complex tones. In the left column we see scaled inten-
sities (bars), loudness (◦), incisiveness (dashed, ∇) of the harmonic complex
tones, and the hearing threshold (solid line). In the middle column virtual
pitches (dotted, cf. Section 2.2.2) are indicated including the six most promi-
nent virtual pitches (△). The right column displays the spectrum of pitch
differences (SPD) of complex tones belonging to this and the subsequent
row. The most prominent value of SPD is indicated by △. The SPD in the
last row belongs to the complex tones of the last and the first row. The
△ is always on the same side of the vertical zero line throughout the right
column. That indicates circular pitch perception.
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Figure 3.12: Pitch determination of the chromatic Shepard scale. (Cf. Fig-
ure 3.11 for explanation.)

3.2.5 General Construction Principle

We will outline a general construction algorithm for circular pitch. The algorithm is
capable of generating Shepard tones as well as the stimuli used in the experiment
in Section 3.2.2. To provide a more general framework, we describe the continuous
version of circular pitch, the circular glissando. From that, stepwise circular pitch
sequences, such as the ones discussed above, can be deduced. We superimpose
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3.2 Circular Pitch in Harmonic Complex Tones

Figure 3.13: Generalized Shepard glissando: The spectrum of the sound
reaches the same state (right dotted vertical line) after cycle duration d that it
used to have in the beginning (left vertical axis). The glissando repeats with-
out disruption. The solid lines sketch out the continuous Shepard glissando,
consisting of “sinusoidal” components in octave distance, with a spectral
envelope above the basic start frequency f0. The partials between octave
components are generated by glissandi from uneven multiples of the basic
start frequency. In order to avoid discontinuity, glissandi starting from lower
basic frequency fade in earlier and more slowly.

glissandi with bell shaped envelopes. Each glissando starts at a different time and
with a different “partial”. We can only coarsely outline the concept here. It is
beyond of the scope of this thesis to prove and evaluate the construction recipe in
detail. This task has to be left for future work.

To start with, we choose a Shepard tone with a spectral envelope that is squeezed
so that all octave components below the basic start frequency f0 become inaudible
(Figure 3.13). Shepard tones only consist of partials in octave-multiple relationships
to each other. For harmonic complex tones, partials in between the octaves have to
be added. To generate N partials and their upper octaves within a circle duration d,
we have to superimpose the initial Shepard glissando G1 with other Shepard glissandi
Gn that are shifted in frequency and enter at a time offset. The additional Shepard
glissandi start with uneven multiples (2n − 1) f0 (n = 1, 2, . . . , ⌈N

2 ⌉) of the start ba-
sic frequency f0. To avoid disruption in the progression of the sound, all Shepard
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glissandi enter at a distinct time dn = (2n−1)
N d. The lower components start first. An

abrupt entrance of these components would not be masked by lower frequencies,
and hence would be more obvious. The additional Shepard glissandi Gn differ from
the initial Shepard glissando G1 in two aspects: the shifted frequency position and
the shrunk spectral envelope.

3.2.6 Circularity in Music Literature

How is circularity of musical attributes referred to in music? First we will discuss
examples of circular pitch. Then we will shortly describe the role of circular tempo
and loudness (p. 117) in selected musical examples.

Circular Pitch For circular pitch, the following properties are constituent: first,
a steady movement up or down respectively, second, brightness decoupled from
pitch class, and third, the perceived similarity of consecutive tones. For selected
music samples, we will set out to what degree these criteria are or are not met.
Furthermore, the role of circular pitch in the overall context of the piece of music will
be discussed. The ascension of pitch class is realized as scales. Due to its uniformity
the chromatic scale is especially well-suited to support circular pitch. Other scales
are used also, sometimes in conjunction with special tuning systems. Sophisticated
variations on the chromatic scale occur. Brightness is characterized by the mean
(spectral centroid) and the width (spectral spread) of the spectral envelope integrated
over a small section of the piece (cf. Section 2.2.2 on page 78). Do the varied scales
move across several octaves or do they remain within the range of a high or low
register? As long as the variation of brightness is not directly synchronized with
the pitch class trend, brightness does not need to be kept constant. The brightness
trend can go in a direction opposite to the trend of pitch classes, can fluctuate, or can
imitate the trend of pitch classes in an alleviated manner. A homogeneous circular
pitch class trend is perceived, when consecutive sounds smoothly morph into each
other, due to their proximity in the spectrum of virtual pitch. The question rises,
whether the drive occurs synchronously in several voices that fuse together. For
ascending pitch class trend this is realized in the following way: Before an ascending
line fades out, a new ascending line fades in almost imperceptibly. Sometimes varied
scales ascend in parallel. Are the tones then grouped as chords or chordal streams?
Is a crescendo used in order to camouflage the onsets of low pitch, a decrescendo for
the off-sets of high pitch? What does circular pitch mean in the particular musical
context? Does it serve as a metaphor for the central musical idea? Does it take the
part of a background foil, behind another musical action? Or is circular pitch just
the starting point for a musical development that leads further away from it? In
the sequel we will discuss these issues based on scores and recordings. It is beyond
the scope of this thesis to explicitly calculate the SPD and other features based on
mathematical formalism, such as spectral centroid and spectral spread, brightness
trend, and smoothness, even though the equations of Aures [1985] and Peeters et al.
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[2000] can be employed to do so (cf. Schneider [2005]).
Alban Berg anticipates Shepard scales in Wozzeck (1925, Act III, Scene 4, Lévy

[2004]). Wozzeck is drowning in the pond. The vanishing rising air bubbles and
the decreasing concentric wave motion are onomatopoetically illustrated. Chromatic
scales rise. The scales cross-fade. Before one scale decreases in loudness in the
high register, another one starts in the low register, increasing in loudness. Re-
markably, Berg explicitly notes crescendo and decrescendo. Electro-acoustically gener-
ated sounds in Ernst Krenek’s Pentecost Oratorio Spiritus Intelligentiae Sanctus

(1956) are given by Stuckenschmidt [1969] as another anticipation of circular pitch.
The slow descending glissando in the beginning of the fourth region of Hymnen

(1966-67) by Karlheinz Stockhausen can be linked to circular pitch as well [Lévy,
2004]. Jean-Claude Risset uses descending Shepard glissando in the movement Fall

of the computer-generated tape Little Boy (Computersuite 1968). First he uses fast
cycles of descending Shepard glissandi in its pure form, adding other descending
glissando tones. Later he playfully employs interference of various discrete and con-
tinuous ascending and descending cyclic pitch class trends. He uses different cycle
durations and sound textures. In the movement Contra-Apotheosis such sections
alternate with wavering pitch class trends of Shepard tones. In one part brightness
changes cyclically. Circular pitch stands for the trauma of the pilot, who dropped
the atomic bomb on Hiroshima. In his hallucination the bomb falls endlessly with-
out ever reaching the ground. Circularly ascending and descending pitch sequences
cross-fade as an onomatopoeia of a schizophrenic mind. A sparse Shepard scale
can be found in Ligeti’s Doppelkonzert für Flöte, Oboe und Orchester (1972),
second movement bars 69-70 (Sabbe [1987], p. 11).

In the beginning of the movement Bellringer’s Song, about 1200 in Manfred
Stahnke’s Partota (1983-85, Figure 3.14 on the next page) the pitch class trend is
performed by the descending diatonic scale b♯, a♯, g♯, f ♯, e♯, d♯, c♯. Mixtures of the
following kind are used: The right and left hands play tones out of triads that are
transposed relative to each other by a major tenth. As in Hofstadter [1979] 5, small
and big notes graphically indicate that chord components subtly fade in and out.
However, while listening to an interpretation (Hofer) an endlessly descending scale
cannot be perceived. Between the second and the third chord stroke of the left
hand brightness constantly decreases along the direction of the pitch class trend.
Thereby particular tones in the mixture are highlighted, forming a new melody.
The circular pitch motion builds the background against the chords in fff in the
foreground. Opposing the descending pitch class trend, the accelerating chords
ascend.

Ligeti’s L’escalier du diable (Floros [1996]; Schneider [2005], Figure 3.15 on
page 113) from Études pour piano – deuxième livre (1988-94) starts with a varia-
tion on a chromatic run. The left hand plays the chromatic scale. At the same time
the right hand escalates in a pendulum movement consisting of alternating major
seconds and major thirds, rhythmically grouped in sections of nine, seven, nine,

5p. 766 of the German edition.
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Figure 3.14: The beginning of the fourth movement Bellringer’s Song,
about 1200 of Manfred Stahnke’s Partota. The cycle of mixture sounds
repeats barwise. From the fff chord in the left hand in bar 6, the spectral
envelope falls slowly. By this envelope shift the emphasis of particular,
thereby highlighted, tones changes. Out of the, up to then, synthetically
perceived mixtures, a melody consisting of these emphasized tones can be
analytically singled out.
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and eleven eighth notes. Consisting of thirty-six eighth notes, this rhythmic pattern
repeats across the first nine bars, comparable to the medieval talea concept [Gann,
1995; Purwins et al., 2005]. In addition, the piece offers other implementations of
the idea of pitch class rise. Three- and four-tone chords, often constructed in layers
of thirds, tie over and slowly push chromatically upward (bars 37 middle – bar 43).
Chromatically ornamented melodic phrases (bars 11-12, 15-17), and chromatic chord
shifts (bars 7-9) contribute to the sense of a rise throughout the piece. On a coarser
time scale, the ascension is echoed by a sawtooth pattern. The ambitus is shifted up-
ward slowly and smoothly, interrupted by harsh crashes (bars 10, 17, 26, and 43) that
articulate the formal structure. Twice the piece breaks through the ascending spiral,
at a culmination in bars 29-32 (“wild ringing of bells”) and in bar 46 until the end,
an onomatopoeia of bells (“like bells, gongs, tamtams”). Circular pitch impressively
works for conveying the central idea of the piece: the Sisyphean labor, “the fruitless

Figure 3.15: Ascending passages with shifted onsets in the beginning of
L’escalier du diable from Ligeti’s Études pour piano – deuxième livre.
The left hand plays a chromatic scale. The right hand escalates in ma-
jor thirds and seconds (encircled notes). This pitch organization interferes
with a rhythmical cycle consisting of nine, seven, nine, and eleven eighth
notes. (reprinted with friendly permission from SCHOTT MUSIK INTER-
NATIONAL, Mainz)
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Figure 3.16: The beginning of Columna infinită from Ligeti’s Études

pour piano – deuxième livre. (reprinted with friendly permission from
SCHOTT MUSIK INTERNATIONAL, Mainz)

effort to ascend” (Floros [1996], p. 193).
Ligeti’s etude Vertige reveals flexible employment of spectral envelopes. The

principal layer of the piece is built from a very fast descending chromatic scale,
consisting of sixteenth notes. First, the ambitus remains the same until bar 4, then
it expands by semitone steps. In the general development the spectral envelope
describing brightness first remains at about the same, then rises, fluctuates, and
descends again toward the end [Toop, 1999; Schneider, 2005].

Ligeti’s etude Columna infinită (1988-94, Figure 3.16) is based on ongoingly
rising eighth notes. The spectral envelope remains more or less constant [Schnei-
der, 2005]. In several aspects this etude resembles L’escalier du diable, except,
Columna infinită appears more static, in repeated blocks of rising figuration.

The idea of circular pitch is also the principal ingredient of the third movement
Intermezzo (Figure 3.17 on the next page) of Ligeti’s Violin Concerto (1990/92,
cf. Floros [1996], p. 215 and 221-2). Closely resembling Shepard [1964]’s original
sequence, throughout the entire movement, chromatic runs with offset entrances are
played by the strings. They are perceived as a curtain moving from background, at
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Figure 3.17: The beginning of the third movement Intermezzo from Ligeti’s
Violin Concerto. (reprinted with friendly permission from SCHOTT
MUSIK INTERNATIONAL, Mainz)
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Figure 3.18: The second page of Hans Peter Reutter’s The Shephard’s
Flute from Orchestral Set No. 1. The four flutes play freely rising
melodies with shifted entries. The melodies tend to break the pattern of
strict ascension. First cello and bass clarinet escalate in triplets.
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an almost inaudible loudness level (pp), to foreground, played at ffffff from bar 72.
An offspring of this pitch class movement is heard in the beginning of the princi-
pal theme of the solo violin: six descending notes, composed of three notes of a
chromatic scale and three notes of a whole tone scale, connected by a major third.
For accompaniment, the chromatic runs increase in range from fifteen to twenty-five
tones by bar 28. The range of this pitch material starts with b♭1 − c3 and finally
reaches b3 by bar 42. Then the spectral envelope separates into a high and a low
frequency region. While the lower frequency region falls, the upper region narrows,
limited by b♭3 until it merely consists of two tones, b♭3 and a3. Playing cantabile,
the solo violin fills in the omitted middle range of the spectrum. Circular pitch
perception is supported by two factors. First, the selection of instruments (strings,
later flutes and clarinets) supports fusion and thereby synthetic hearing. Second, the
irregular entries of the falling runs follow closely one after another. In this piece,
circular pitch appears airily in character. Finally, the sixteenth-note runs reach the
range B♭1 − b3. This momentum takes over the entire orchestra, including the solo
violin.

Four flutes play freely rising melodies in The Shephard’s Flutes by Hans Peter
Reutter’s Orchestral Set No. 1 (1993, Figure 3.18 on the facing page), composed
of microtonal pitch material. The design of the ascending melody is very alive,
often breaking the pattern of strict ascension. The flutes are accompanied by the
spiraling triplets of the first cello and the bass clarinet, continued from the previous
movement. The spiraling momentum resembles the right hand part in the beginning
of Ligeti’s L’escalier du diable (cf. Figure 3.15 on page 113). The brightness does
not change significantly during this movement. Despite the free design of the rising
movement, a sense of the circularity of pitch still remains for two reasons. First, the
ascending melodies enter with a crescendo and fade out with a decrescendo. Second,
all melodies enter offset to each other. Propelled by percussion, circular pitch acts as
a perpetuum mobile, continually generating new rising melodies.

Other examples include: James Tenney’s For Ann (rising) (1969) and Georg Ha-
jdu’s Fingerprints for Piano (1992). Lévy [2004] further mentions Manfred Tro-
jahn’s Enrico (premiered in 1991) and Was ihr wollt (premiered in 1998), Marc-
André Dalbavie’s Concerto pour Violon (1997), and Fabien Lévy’s Coincidences

(1999).

Circular Tempo and Loudness Meter can be obliterated. Different meters can
exist simultaneously. The Aka pygmies make extensive and elaborate use of the
interference of simultaneous meters. In Western music, the latter play an important
role in the work of Colon Nancarrow [Gann, 1995], tracing back to Chopin and
Brahms (cf. Purwins et al. [2005] for more details). Metrical confusion fertilizes the
ground to cultivate another “paradox” upon.

Downscaling frequency is the means for adapting circular pitch to the domain of
tempo. The spectrum of partials of a complex tone is interpreted as a spectrum of
beat frequencies in a slower time scale. But, in contrast to pitch, phase has a more
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important impact for rhythm.
We can reinterpret a sine tone of frequency 440 Hz to a pulse of 440 beats per

second. Slowing down by a factor of 100 results in 4.4 beats per second, equivalent
to a tempo of 264 MM. We apply the analogy straight forward to a single Shepard
tone, shown in Figure 1.10 on page 50. After suitable rescaling and assigning each
partial to a different percussive timbre, the Shepard tone turns into overlaid pulses
of frequencies . . . , f

4 , f
2 , f , 2 f , 4 f . . .. To enforce the tempo “paradox”, ideally, the

percussive timbres assigned to each tempo should continuously morph into each
other. While speeding up to double tempo, the timbre of a pulse should steadily
transform into the timbre associated with double tempo. For such a Shepard rhythm,
we let the beats slide under the envelope that in this framework defines the intensity
of the beats. Then a steadily accelerating tempo is perceived. This train of thoughts
leads to circular tempo by Risset and K. Knowlton [Risset, 1985]. If we replace
frequency with pulse speed, all considerations for pitch and Shepard tones apply
for tempo and Shepard rhythm as well. The equivalent of octave ambiguity for pitch
is the ambiguity in perceiving a given tempo or the tempo of doubled speed. The
theoretical explanation exploiting the gestalt principle of proximity for relative pitch
(Section 3.2.3 on page 103) is applicable to tempo as well.

There is a rhythmical pattern in music literature that resembles the Shepard
rhythm (Figure 3.19). The pulse sequence speeds up, while fewer beats are empha-
sized. First every beat is emphasized, then every second, every third, and so forth.
At the same time, the volume of the the unstressed beats is reduced. This variant is
realized in Arthur Honegger’s Pacific 231 (1923). A smoother version of this pattern

Figure 3.19: The ancestor of the Shepard rhythm. A beat sequence acceler-
ates while decreasing in loudness. At the same time the emphasized beats
become more rare. After the fade out of the fast beats the emphasized beats
constitute the main beat. The cycle repeats again.

can be generated in sound post-production. The accents are then replaced by manip-
ulated temporal volume envelopes. Given an accelerating pulse sequence, the peaks
of the volume envelopes are gradually shifted from the attack phase of the tone to-
wards the sustain phase and furthermore to the attack phase of the following tone.
Similar ideas are applied in techno music. Risset presents a decelerating sequence,
consisting of only one beat pair, trickily manipulating phase and degree of fusion to
support the intended circular tempo perception (Figure 3.20). The sequence starts
with a pulse with regular beat. Then a second pulse enters in a low voice shortly
after the first pulse. At that stage both pulses almost fuse. Gradually the entry of the
second pulse is shifted towards the position exactly in the middle between two beats
of the main pulses, increasing volume until the second pulse reaches the volume of
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Figure 3.20: Idea of Risset’s circularly accelerating sequence of a pair of
pulses. Circular pitch is adapted to the tempo domain. In addition, phase
and degree of fusion are controlled. Initially the pulse of frequency f almost
fuses with the slightly offset secondary pulse. During a cycle duration d

the main pulse decelerates down to tempo f
2 (left) and the secondary pulse

reaches loudness of the main pulse (left). Gradually the entry of the sec-
ondary pulse is shifted in phase relative to the main pulse (right). After a
time d it enters exactly in between two main beats. Then we hear a single
pulse of frequency f and the cycle starts again.

the main pulse. By then the two pulses cannot be distinguished any longer. They
form one homogeneous pulse identical to the initial pulse. The cycle starts again.

Adapting circular pitch to loudness, how would a culmination sound? The specific
loudness of a single component rises slowly, then falls abruptly, while in another
frequency band a new tone slowly increases in loudness, and so forth... Richard
Wagner uses this technique in the endings of his operas. For the final culmination,
string tremoli are played in a sawtooth pattern of loudness. A tremolo on one tone
slowly rises in loudness from piano to forte, before abruptly falling back to piano.
A tremolo on another pitch slowly rises again. Despite the abrupt withdrawal of
loudness such passages are perceived as continuously stepping up.

In Section 3.5.1 we find a more abstract adaptation of the idea of circularity in the
domain of tone centers.

3.2.7 Discussion

The SPD (Equation 3.2 on page 106) has been mainly designed to express the circular
perception of “paradox” sound sequences, such as the stimuli of our experiment as
well as Shepard tones. For the analysis of a greater variety of sounds, the SPD
needs to be modified further. Subharmonics of two partials do not always match
exactly. An analyzed tone may be out of tune or its partials may be approximately,
but not exactly, harmonic. To cope with small deviations of subharmonics, it would
be useful to adopt the degree of inharmonicity γjk from Equation 2.17 on page 77 for
calculating coincidences. The corpus of musical data to be analyzed could include
the pieces discussed in Section 3.2.6 on page 110 and Pierre Schaeffer’s “paradox”.
The SPD is not limited to describe “lower/higher” pitch relations. It provides more
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detailed information. It can be used to calculate ambiguous relative pitch also, for
instance, when comparing the pitch of two bell sounds. An appropriate experiment
for detailed testing of the SPD and the general construction principle of circular
pitch (Section 3.2.5 on page 108) is not designed so far.

3.3 Pitch Class Content of Musical Audio

We have indicated how to represent pitch by a vector of virtual pitches.6 Another
pitch representation is the correlogram. (Cf. Section 2.2.2 on page 79 and Figure 3.50

on page 160 a.) In contrast to virtual pitch and correlogram, a profile of pitch classes
(Section 1.2.2 on page 48) can be calculated more effectively and more reliably and
it can be applied to music theory more easily. In the simplest case (Figure 0.1 on
page 15), a binary pitch class profile indicates which pitch class is included (“1”)
and which is not (“0”). (Introduction p. 14) Taking statistics and durations of pitch
classes into account, we yield the pitch class profile of frequency of occurrence and
the profile of overall durations (p. 14). These profiles are similar to the psychological
probe tone ratings (Section 1.2.9). In a harmonic complex tone,7 the fundamental,
the 2nd, and the 4th partial have the same pitch class. But the 3rd, 5th, and 6th
partial have other pitch classes. For this and other reasons, such as temperament,
inharmonic partials, spectral leakage, onsets, and noise, in a pitch class profile from
audio one tone yields intensities for several pitch classes.

First we describe how to calculate pitch class profiles from audio, how to compare
them, and how to generate key prototypes. Then we compare these profiles with
the probe tone ratings, calculate, and discuss the profiles of the analyzed musical
corpus.

3.3.1 Constant Q Profiles

In this section we develop a new concept of key profiles (cf. Introduction, p. 15),
called constant quotient (CQ-)profiles. One of our aims is to build a system for au-
tomatic key-finding in audio recordings. It is desirable that the tonal hierarchy on
which the system relies is derived from music literature itself and not merely from
music theory (cf. Introduction). This is a more direct way and ensures the flexibility
of the architecture. Such a system can be adapted to different musical styles sim-
ply by using a reference set (cf. p. 123) that is built from material of that style. In
Section 3.9 we present several experiments which give strong indications that the
CQ-profiles are a suitable tool for the tracking of tone center transitions (Section 3.9
on page 168).

The CQ-profiles unite features of Krumhansl and Kessler [1982]’s probe tone rat-
ings and Leman [1995]’s correlograms (Fig. 1.19 on page 62 and 3.50 on page 160).

6Cf. Section 2.2.2 on page 76. Leman [1995], p. 49, uses a simplification of the virtual pitch model,
the subharmonic sum spectrum.

7Definition on p. 32.
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3.3 Pitch Class Content of Musical Audio

Advantages include:

• Each CQ-profile has a simple interpretation, since it is a 12–dimensional vector
like a probe tone rating. The value of each component corresponds to a pitch
class.

• A CQ-profile can easily be calculated from an audio recording. Since no com-
plex auditory model or other time consuming methods are used, the calcula-
tion is very quick, and can be done in real-time.

• The calculation of the CQ-profiles is very stable with respect to sound qual-
ity. In Sections 3.8.3 and 3.9 we pursuit an analysis based on Alfred Cortot’s
recording of the Chopin Préludes from 1933/34.

• The CQ-profiles are transposable. That means a CQ-profile calculated from a
transposed piece of music is the transposition of the CQ-profile of the original
piece. In Section 3.4 this property will prove to be very useful.

Normalized constant Q (NCQ-) profiles 8 are derived from constant Q profiles by
transposition to the same reference key. That means that the first entry in the profile
corresponds to the keynote and the last entry corresponds to the major seventh.

Calculation of CQ-Profiles

In this section, we will describe how a short-time CQ-profile is calculated from some
audio sequence and how successive profiles are summarized in a long-term CQ-
profile. First the digitized pieces are converted to 11025 Hz mono, in WAV format.
As underlying DSP method for further processing serves the constant Q transform
which has been presented in Section 2.1 on page 69. The Matlab implementation by
Benjamin Blankertz [Purwins et al., 2000b] is employed. First a reasonable choice for
the frequency range and the resolution of the constant Q transform has to be made.
To cope with spectral leakage effects, we decide to use a resolution of b = 36 bins
per octaves instead of 12. To cover a wide range of tones we chose the minimum
frequency f0 about9 131.25 Hz (corresponding to c) and a maximum frequency five
octaves above. Tones below the minimum frequency are also captured, by their
harmonics. So there will be 12 CQ-bin triples per octave. In approximately equal
temperament, only CQ-bins in the middle of such triples correspond to tones of the
chromatic scale and they will be protected from spectral leakage due to the high
frequency resolution. The outer bins are used to check for note onset and other
inharmonic noise.

To concentrate the so found frequency information in a 12-dimensional vector
xcqp – which we call CQ-profile – all the values that belong to one pitch class are

8In Purwins et al. [2004a] NCQ-profiles are named scale degree profiles.
9To be exact: f0 is chosen “one CQ-bin below” such that the frequency of the first scale tone resides

in the middle of the first CQ-bin triple. The value should be trimmed to the tuning of the recorded
instrument(-s). This can be done by a heuristics (cf. p. 123).
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summed up from the constant Q transform xcq (Equation 2.5 on page 70) and the
result is converted to dB. For 0 ≤ k < 12 we define:

xcqp[k] = max(20 log10( ∑
n∈N (k)

|xcq[36n + 3k + 1]|) + dbT, 0), (3.3)

where N (k) = {n < N
36 : xcq[36n + 3k + 0] < xcq[36n + 3k + 1] > xcq[36n + 3k +

2]}, N being the number of bins of the CQ-transform. dbT is a threshold value
that should be chosen in a way so that contributions from background noise stay
in the negative range. If not otherwise stated we use dbT = 170. The effect of
this summation process is similar to working with Shepard tones in Leman [1995]’s
system.

A triple CQ-bin per scale tone provides a possibility of detecting inharmonic fre-
quency contributions like onset noise or crackling. A spectral contribution that is
reasonable in our sense has a frequency near the center frequency of some middle
CQ-bin (middle with respect to the triple). So in this case the magnitude of the mid-
dle bin towers above the side magnitudes. On the other hand frequencies stemming
from a note onset blast are spread over several CQ-bins with the strongest intensity
at the note’s frequency. This simple criterion for filtering is realized by taking the
sum in (3.3) only over those CQ-bins whose magnitude is a local maximum. Fig-
ure 3.21 shows a selection of a constant Q transform of a forte minor third c – e♭ (on
a dB-scale) played on the piano.
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Figure 3.21: The constant Q transform is calculated from a minor third c –
e♭ (played on piano) with three bins per half-tone (left figure). We yield the
constant Q profile (right figure) by summing up middle bins for each tone
over all octaves.

In most applications of analysis filters the trade-off between frequency and time
resolution is delicate. Since in the present application subsequent filter outputs are
summed up anyway, we are free to choose such a fine frequency resolution. The
resulting time resolution would be too coarse, for instance, for note identification.

A long-term CQ-profile summarizes successive short-term CQ-frames. Given a sam-
pled signal, short-time CQ-profiles are calculated every 50 ms if not stated otherwise.
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3.3 Pitch Class Content of Musical Audio

Depending on the intention of the analysis, these frames might just be summed up
(giving a kind of overall tonal orientation) or the sum might be weighted by a win-
dow function. To simulate memory one can use, for example, an exponential win-
dow. We use unweighted sums in all our simulations. For better comparability we
scale all profiles to have mean 0 and standard deviation 1. Equalizing the deviation
is problematic for the comparison of profiles stemming from very different musical
styles. For example, the average standard deviation of the preludes of Hindemith’s
Ludus Tonalis is more than four times as much as the deviation of any other piece
of traditional tonal music discussed in this thesis.

Assuming approximately stable equal temperament in the sound sample, a simple
heuristics is used to fine tune the minimum frequency f0 of the constant Q transform.
Within 128.75 Hz ± a quarter tone, f0 is varied. For each f0 the long-term CQ-profile
is calculated. If the bin triples are in the right position the middle bin captures
most of the partials. Then the sum of the CQ-profiles is maximal, indicating the
appropriate tuning of f0.

The CQ-Reference Set

A CQ-reference set is a set of twenty-four CQ-profiles, one for each key. Every profile
should reflect the tonal hierarchy that is characteristic for its key. A more precise
description depends on the specific purpose for which the reference set is calculated.
The reference set can be used to display structural information, for example by a
geometrical arrangement of the profiles. We also employ the reference set for key-
finding. It may be used, for instance, to determine the key of a piece or a tone
center of a section of a piece. For the former task a CQ-reference set calculated
from sampled cadences is appropriate while for the latter moderately modulating
pieces would be a good basis. In Section 3.3.5 on page 126 and in the Appendix B
on page 189 we present CQ-reference sets from various sets of pieces, among them
Bach’s WTC. The CQ-profile of each prelude reflects many characteristics of its key.
But due to the individuality of each prelude, there is some variance in the profiles.
For comparison the NCQ-profiles are used. Supposing that our tonal reference set
should be invariant under transposition we calculate a major and a minor mean
prototype profile as the average over all major respectively minor NCQ-profiles. An
invariant reference set is established by transposing the mean prototypes to all keys.
This can only be done since the CQ-profiles are transposable. Alternatively one
could take different pieces of music for each key and calculate the average of their
CQ-profiles. But then many more suitable pieces from music literature have to be
found and more material has to be processed.

3.3.2 Fuzzy Distance and Key-Finding

How can a musical signal, an entire piece or a passage thereof, be classified ac-
cording to a CQ-reference set? Generally we have the problem of matching an ex-
tracted CQ-profile with a profile of the CQ-reference set. Typical matching criteria
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are strongest correlation or minimal Euclidean distance. Classification is also pos-
sible with a SOM that has been trained with the profiles of the CQ-reference set
(Section 3.8.3). But there is some additional structural information that is neglected
by these methods, namely the uncertainty of each rating value. When comparing
the NCQ-profiles of various pieces of the same composer the variance will vary
from component to component. For example the poor rating for the minor second
will be quite fixed throughout most music samples. But for the major and minor
sixth and seventh there will be a notable variance in different minor samples due to
the variable appearances of the minor scale. This uncertainty in the rating can be
quantized as standard deviation and should be attached as additional information
to the CQ-reference set. To make use of this information, we present a different
classification method. We define a distance measure that takes the uncertainty into
account. Therefore we call it fuzzy distance although no allusion to fuzzy logic is
intended. The classification of a CQ-profile is made by choosing the key of that
profile of the CQ-reference set with minimum fuzzy distance to the given profile
(cf. Appendix C.1).

Let y be a value subject to an uncertainty quantized by a value σ. Typically y is
the mean and σ the standard deviation of some statistical data. The fuzzy distance
of some value x to y regarding σ is defined by

dσ(x, y) := |x − y| ·
(

1 − σ

|x − y| + σ
e
− |x−y|2

2σ2

)

. (3.4)

The generalization to higher dimensions is accomplished by using the Pythagorean
equation as in the Euclidean metric (Equation C.6 on page 196).

For σ = 0 the fuzzy distance equals the Euclidean metric. The greater the un-
certainty the more relaxed is the metric, or rather the more relative becomes the
meaning of “small”.

To test the fuzzy classification method we process the preludes of Bach’s WTC I
recorded by Gould. With the proposed method, to every piece the right key is
assigned, whereas there is one misclassification, when one of the other methods is
employed.

On the 96 pieces of midi-synthesized audio (from Baroque to romanticism), 94 %
of the keys are correctly assigned in a leave-one-out procedure. We take the first
15 s of each piece, weighted by a cosine window (from 0 to π

2 ). However, in this
experiment, we use correlation for measuring the similarity to the reference vectors.
Our approach ranks second in the MIREX 2005 audio key finding competition.

3.3.3 CQ-Profiles and Probe Tone Ratings

Krumhansl [1990] observes a remarkable correlation between the probe tone ratings
and the profiles of frequency of occurrence of the twelve chromatic scale tones in
musical compositions (cf. Section 1.2.9 on page 61). Krumhansl’s observation gives
rise to the conjecture that probe tone ratings and profiles of a CQ-reference set are
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I II III IV V VI VII

CQ−Profiles of Cadences
Spectrally Weighted Ratings

(a) Major ratings

I II III IV V VI VII

CQ−Profiles of Cadences
Spectrally Weighted Ratings

(b) Minor ratings

Figure 3.22: The CQ-profiles of sampled piano cadences compared with
spectrally weighted ratings display high consistency. Cf. Figure 1.19 on
page 62.

closely related also. But in order to establish a direct correspondence one fact has
to be taken into consideration. In the CQ-profiles not only the played tones are
captured but all harmonics. For piano tones the strongest frequency contribution
falls (modulo octaves) on the keynote and its dominant in an approximate average
ratio 3:1. Hence CQ-profiles should not be compared with the probe tone ratings,
but with adapted ratings in which the harmonic spectrum of the analyzed tones
is accounted for. Such a spectrally weighted rating is calculated by adding to the
rating value for each tone one third of the rating value for the tone seven chromatic
steps above (modulo octave). Figure 3.22 shows the highly consistent correlation of
the average NCQ-profiles of sampled piano cadences (I-IV-V7-I and I-VI-V7-I) with
the spectrally weighted ratings. In this experiment the NCQ-profiles are averaged
across all major or minor keys respectively. For all cadences the octave positions of
the samples are determined by random.

This close relationship indicates why CQ-profiles can be employed for automatic
key-finding.

3.3.4 Musical Corpus

As musical material we choose Johann Sebastian Bach’s Well-Tempered Clavier

(WTC) and various sets of preludes and fugues that encompass a piece in every key.
The 226 constant Q profiles under investigation are:

1. The preludes of WTC, Book I and II, and the fugues of Book II by Bach (1685-
1750) are interpreted by Glenn Gould. Another interpretation of the preludes
of Book II is given by Samuil Feinberg. There are altogether 96 Bach profiles.

2. The Préludes op. 28 (1836-39) by Frédéric Chopin (1810-1849) are played by
Alfred Cortot and Ivo Pogorelich, altogether 48 profiles.

3. The 25 Préludes op.31 (1847) by Charles-Valentin Alkan (1813-1888), including
two pieces in C–major, are recorded from Olli Mustonen.
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4. We use 21 profiles from the Preludes op. 11 (1888-1896, all pieces except the
ones in A–major, b–minor, and f–minor) by Alexander Scriabin (1872-1915),
played by Vladimir Sofronitsky, Heinrich Neuhaus, Vladimir Horowitz, and
the composer, reproduced from a Welte-Mignon piano roll.

5. Mustonen played the Twenty-four Preludes op. 34 (1932-33) by Dmitri
Shostakovich (1906-1975).

6. Ludus Tonalis (1942) by Paul Hindemith (1895-1963) contains one fugue and
one interludium for each pitch class as a keynote, but neither major nor minor.
The 12 fugues are part of the corpus, presented by Mustonen.

3.3.5 Composers and Pieces Portrayed in CQ-Profiles

It is an interesting question, what other references to Bach the latter pieces contain,
apart from the concept as a set of preludes and fugues in all keys.

Investigations of tonal music give indications that the profile of frequency of oc-
currence of notes subsumed under pitch classes, eventually considering durations
also, is very characteristic for its key. This should be reflected by the CQ-profiles.
In Chopin and Bach their peaks in Figure 3.23 are related to the diatonic scale and

I II III IV V VI VII

Normalized Constant Q Profiles

Bach WTC I 1.Prelude C−Major (Gould)

I II III IV V VI VII
Bach WTC I 20.Prelude a−minor (Gould)

I II III IV V VI VII
Chopin Op.28 1.Prelude C−Major (Cortot)

I II III IV V VI VII
Chopin Op.28 2.Prelude a−major (Cortot)

I II III IV V VI VII
Hindemith Ludus Tonalis 1.Fugue in C (Mustonen)

Figure 3.23: Normalized constant Q profiles for selected pieces from Bach,
Chopin and Hindemith. Scale degrees are shown on the horizontal axis. In
Chopin and Bach the peaks are related to the diatonic scale and to psycho-
logical probe tone ratings (Cf. Section 3.3.1). Hindemith deemphasizes the
diatonic notes.
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to psychological probe tone ratings (Cf. Section 3.3.1 on page 121). However, Hin-
demith deemphasizes the diatonic notes. We find strong conformity among CQ-
profiles within WTC. Figure 3.24 and 3.25 show the CQ-profiles of all preludes of
Book I, interpreted by Glenn Gould.

The high rating for the tonic triad tones and the poor rating for the minor second
is consistent in most music samples. Minor sixths and sevenths exhibit a notable
variability in different minor samples, due to the variable appearances of the minor
scale as natural, harmonic or melodic.

An important question that arises regarding CQ-reference sets that are calculated
from audio recordings is in what respect the results are affected by

(1) musical interpretation,
(2) the recorded instrument,
(3) the selected pieces of music,
(4) the data format.
For the examination of (1) we compare the radically different interpretations of the

Chopin preludes by Alfred Cortot on one hand and by Ivo Pogorelich on the other
hand. The mean profiles show a correlation of 10 0.993/0.981. A comparison of the
recordings of the preludes of WTC I, by Glenn Gould and Samuil Feinberg reveals

10When writing correlation values in the form x/y we use the convention that x refers to major
profiles and y to minor profiles.
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Figure 3.24: The CQ-profiles of the preludes of Bach’s WTC I in major,
played by Glenn Gould. It can be observed that the profiles can be approxi-
mately generated from the combination of two Gaussians or triangles, a big
Gaussian/triangle centered at scale degree I or one or two fifths up in the
circle of fifths and a small Gaussian/triangle centered at the major third.
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Figure 3.25: For the minor preludes of WTC I again two Gaussians or tri-
angles appear. But this time the small one is on the left side centered at the
the minor third.

even a correlation of 0.997 between the corresponding profiles (for both major and
minor).

For the investigation of (2) we compare the recordings of the preludes of WTC
I performed on modern pianos and on a Pleyel harpsichord by legendary Wanda
Landowska. We find that the mean NCQ-profiles of the harpsichord recording cor-
relate very highly with those of the piano recordings. The correlation with Gould’s
recording is 0.989/0.982.

To study the impact of the selection of music (3) on the corresponding reference
sets, we perform some inter and some across epoch comparisons. Group 1 consists of
four reference sets calculated from the preludes/fugues cycles (separately) of both
books of WTC (Glenn Gould’s recording). Group 2 consists of two reference sets
derived from Alfred Cortot’s recording of Chopin’s Préludes op. 28 and from Olli
Mustonen’s recording of Alkan’s Préludes op. 31. Group 3 consists of a reference set
based on Scriabin’s Preludes op. 11. The inter-group correlations are 0.992/0.983 for
the Bach reference sets (mean value) and 0.987/0.980 between Chopin’s and Alkan’s
preludes. The mean across group correlations are 0.924/0.945 between groups 1 and
2, 0.935/0.949 between groups 1 and 3 and 0.984/0.952 between groups 2 and 3.

How do the constant Q profiles depend on the data format the music is repre-
sented in? In Table 3.1, first the mean is calculated, then the correlation is performed.
The following formats are compared: score (WTC fugues) encoded in humdrum
format [Huron, 1999], expressively performed MIDI, spectrally weighted probe tone
ratings, introduced in Section 3.3.3, Figure 3.22 on page 125 [Krumhansl and Kessler,
1982], and CQ-profiles of a digitized recording. On average, for the scores, the corre-
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3.3 Pitch Class Content of Musical Audio

Profile Correlation
WTC II Score WTC I Exp Spec Probe Rec CQ

WTC I Score 0.994/0.994 0.993/0.996 0.905/0.914 0.970/0.967

Table 3.1: Correlations between profiles in various data formats: overall
annotated durations (“Score”), expressively performed MIDI (“Exp”), spec-
trally weighted probe tone ratings (“Spec Probe”), and accumulated CQ-
profiles from a digitized recording (“Rec CQ”).

I II III IV V VI VII

(a) WTC I+II

I II III IV V VI VII

(b) Romantizism

Figure 3.26: Comparison of mean NCQ-profiles in major from (a) the pre-
ludes and fugues of Bach’s Well-Tempered Clavier, Book I and II, and (b)
the romantic preludes by Alkan op. 31 (“△”) and Chopin op. 28 (“∇”).

lation between cycles is in the range of the correlation between score and expressive
MIDI, higher than the correlation between score and CQ-profiles, and a lot higher
than the one between spectrally weighted ratings and score.

Figure 3.26 (a) compares four NCQ-profiles: the mean NCQ-profile of all preludes
of Bach’s WTC I, the mean profile of all fugues of WTC I, and the same for WTC II.
As in Bach, the CQ-reference sets of preludes by Chopin and Alkan are mostly stable.
Figure 3.26 (b) shows the averaged NCQ-profiles in Alkan and Chopin. The upright
triangle stands for the 25 preludes by Alkan op. 31. The reverse triangle stands for
Chopin’s Préludes op. 28. Again, the mean NCQ-profiles are quite similar. Slight
differences arise from the fact that Chopin more frequently uses the tritone in minor
and the leading tone in major, whereas Alkan uses more third and fourth scale
degrees in major and the leading tone in minor. (Minor is not shown in the figures.)

Comparing the CQ-profiles of Figures 3.26 (a) and (b) we find only small differ-
ences. There seems to be the general tendency in Bach to equally emphasize all
diatonic scale degrees in major.

Even though the particular handling of pitch might be very special and expres-
sively free, the overall distribution of pitch seems to be quite determined in the
discussed composers. It might serve as the reference even though the momentary
pitch use might differ.
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3.3.6 Discussion

The constant Q technique is by no means limited to piano and tuning in equal
temperament. The respective filter matrix can be adjusted to various instruments
and tunings. For tunings significantly different from equal temperament the initial
frequency estimation heuristics (p. 123) has to be modified. In addition, the efficient
calculation of CQ-profiles requires the stability of the tuning throughout the piece,
since the filter matrix (Equation 2.8 on page 70) has to be adjusted to the tuning and
calculated beforehand. Frequency glides and vibrato may require special treatment.
When analyzing other instruments we have to take their overtone structure into
account, especially when comparing to the probe tone ratings as in Figure 3.22.
Capability of generalization to other instruments is indicated by the experiments on
page 124.

3.4 Mode, Style, and Composer Information in

Profiles from Audio

Employing the key-finding method (Section 3.3.2 on page 123), we can transpose
a CQ-profile so that the first component is the intensity of the keynote, yielding a
NCQ-profile. For further investigation of the NCQ-profiles we apply various ma-
chine learning techniques. Classifiers are used to determine the composer. Cluster-
ing reveals the salient attribute in NCQ-profiles, the mode. Visualization by Isomap
indicates interrelations between pieces and composers.

3.4.1 Composer Classification

With an appropriate classifier, composer classification works astonishingly well
based on NCQ-profiles, especially considering that only very reduced and noisy
data are provided. One composer is classified against all the rest. We apply a Mat-
lab implementation of the RDA by Benjamin Blankertz with modifications by Guido
Dornhege. For model selection by n × k-fold cross-validation the optimization li-
brary CPLEX with a Matlab-C interface by Gunnar Rätsch is used. 11 Table 3.2 on
the facing page shows the area under the curve of the receiver operating charac-
teristics. Instead of applying LDA, classification performance improves when using
RDA (cf. Section 2.3.1 on page 85), a compromise between LDA and QDA. An ex-
planation could be (1) that the variance varies a lot between classes and (2) that some
class sample sizes are quite small. E.g. for Hindemith there are only twelve samples
with high variance. RDA and SVM (Sections 2.3.1 and C.2) with radial basis func-
tions are even for Bach and Shostakovich. RDA beats SVM slightly for Scriabin and
Hindemith. SVM beats RDA for Chopin and Alkan. RDA and SVM beat k-nearest
neighbor (k-NN, Section 2.3.1).

11Rätsch et al. [2001]. Cf. also Section 2.3 of this thesis.
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LDA RLDA RDA SVMrbf k-NN
Bach 0.79 0.79 0.95 0.95 0.91

Chopin 0.52 0.52 0.64 0.73 0.63

Alkan 0.43 0.43 0.72 0.76 0.57

Scriabin 0.65 0.65 0.72 0.69 0.61

Shostakovich 0.81 0.85 0.86 0.86 0.71

Hindemith 0.93 0.93 0.97 0.95 0.72

Table 3.2: For the classification of one composer versus the rest, the perfor-
mance of various classifiers is evaluated by a measure called the area under
the curve describing the receiver operating characteristics (cf. Section 2.3).
The best classifiers are emphasized in boldface. Regularized discriminant
analysis and support vector machines with radial basis functions as kernels
perform equally well. (Cf. Section 2.3.1 on page 84.)

3.4.2 Which Scale Degree Does Signify Mode?

What does distinguish major and minor? According to the concept of position find-
ing (Section 1.2.2 on page 48), single pitch classes may have the potential to signify
the key. To identify the significance of different scale degrees for mode separation we
apply two methods: (1) two sided t-test [Witting, 1966] with error level 1%, (2) linear
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Figure 3.27: Significance of scale degrees for mode discrimination. The
horizontal axis denotes the scale degrees, “-” indicating the minor intervals.
The vertical axis denotes significance. The horizontal red lines indicate the
significance level for the t-test of error level 1%. If the blue line (“o”) is
above the upper or below the lower red line, the scale degree contributes
significantly to major/minor discrimination. The thick black line indicates
to what extent which scale degree is emphasized for discrimination in a
sparse linear programming machine (LPM). In Bach both t-test and LPM
emphasize the thirds and the minor seventh. In addition t-test identifies
every scale degree to be very significant, except the major second and the
fifth.
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Figure 3.28: In Chopin (a) the t-test identifies only thirds, sixths, and sev-
enths to be significant for mode discrimination. LPM emphasizes thirds
and the major seventh. In Shostakovich (b), according to the t-test, only the
thirds allow for mode discrimination. (Cf. Figure 3.27 for an explanation of
the curves.)

programming machine (LPM, Bennett and Mangasarian [1992]). The latter method
is a classification algorithm that is similar to the SVM, but has a linear goal function.
A special feature of the LPM is that it seeks to produce sparse projection vectors,
i.e., it tries to find a good classification that uses as little feature components (in our
case scale degrees) as possible. The components that are chosen by the LPM are
thus most important for the discrimination task. We apply an LPM implementation
coded by Benjamin Blankertz, adopting programs by Sebastian Mika and Gunnar
Rätsch.

According to the t-test, in Bach (Figure 3.27) we see the outstanding significance
of both thirds and the minor seventh. All other scale degrees are equally significant,
except the (almost) insignificant major second and the fifth. In Chopin (Figure 3.28 a)
the significance of these scale degrees is much less. In the t-test only thirds, sixths,
and sevenths are significant. The minor sixth is close to insignificance. LPM em-
phasizes the major seventh. In Shostakovich (Figure 3.28 (b)) only the thirds are
significant according to the t-test. In Alkan thirds are significant. The minor seventh
is slightly significant. For Scriabin thirds have high significance. But also sixths and
sevenths have some significance.

As expected the thirds and to some degree the sixths and sevenths are significant
for major/minor discrimination. During music history from Bach to Shostakovich
the significance of all pitch classes gets eroded due to increasing chromaticism and
the continuing extension of tonality.

3.4.3 Mode as Salient Feature in Clustering

To evaluate the outcome of the clustering procedure we introduce the following class
membership function mi(p), with data point p. We scale down k-means clustering
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Figure 3.29: “Majorness” in k-means clustering (k = 2) of normalized
constant Q profiles. The vertical line in the middle separates the differ-
ent groups of pieces. From bottom to top the rows mean: a summary
of all pieces, then Bach’s WTC (preludes – “p” and fugues – “f”, black)
performed by G. Gould (“GG”), and S. Feinberg (“SF”, only WTC I pre-
ludes), Chopin’s preludes (“cp”, red), performed by A. Cortot (“AC”) and
I. Pogorelich (“IP”), Alkan’s preludes (“ap”, cyan), and Scriabin’s preludes
(“sp11”, green). At the bottom of the graph, the pieces are shown again
without labels, “o” indicating major, “+” indicating minor, with the typical
colors assigned to each composer. The horizontal axis indicates the mode
membership for major (1 meaning typical major, 0 minor, 0.5 ambiguous).
The vertical line in the middle at membership 0.5 splits the profiles into a
left major and a right minor cluster. Bach and Scriabin clearly separate. In
Chopin and Alkan more major/minor ambiguous pieces can be found, e.g.
Chopin’s a–minor prelude (cf. text).

with the k = 2 class centers c1, c2 of the data points:

m1(p) =
‖p − c2‖

‖p − c1‖ + ‖p − c2‖
. (3.5)
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A value near 1 is assigned to data points p close to the center c1 of cluster 1 by
function m1. Points that ambiguously lie between the clusters get values near 0.5 in
both functions, m1 and m2.

K-means clustering is performed on the corpus excluding Hindemith and
Shostakovich, since they are the least tonal. Using Equation 3.5 as a major mem-
bership function yields clustering into a major (left) and minor (right) cluster (Fig-
ure 3.29). The results indicate a degree of “majorness” of the keys. Pieces which lie
on the borderline between major and minor may not be very typical representatives
of that key. Bach’s pieces concentrate in a smaller region. Bach clearly separates
with a wide margin. This is due to the fact that in general Bach modulates only
to tone centers that lie closely around the tonic on the circle of fifths. Usually he
modulates in the range of a fifth lower and three fifths upper. Only the chromatic
a–minor prelude of WTC II is a little off the Bach cluster. This will be discussed in
Section 3.4.4 on the facing page. Chopin’s a–minor prelude is (for Pogorelich and
Cortot) almost on the borderline. This is related to the wired harmonic content of
the piece that makes it ambiguous in mode.

Analyzing pieces that are found in the “wrong” cluster reveals musical particu-
larities of these pieces. There are three minor NCQ-profiles (f–minor, b–minor, and
a♭–minor by Alkan) on the side of the major cluster and six major NCQ-profiles
(Chopin’s B♭–major played by Cortot and Pogorelich, D♭–major, A♭–major, and
Alkan’s D♭–major and A♭–major) within the minor cluster. For some of these pieces
there is an intuitive musical explanation for their position in the other cluster. In
Chopin’s B♭–major prelude the middle part in G♭–major emphasizes the minor third
and deemphasizes the leading note a in B♭–major. In addition, the left hand figura-
tion introduces chromaticism that later is taken over by the right hand also. Chopin’s
A♭–major prelude is once found in the “wrong” cluster (Pogorelich). In Cortot’s in-
terpretation it is the major piece second closest to the cluster border. The closeness
to the minor cluster is especially due to modulations to E–major and therefore the
emphasis of the minor third of A♭–major. Also in the A♭–major parts the minor
seventh chord on a♭ is frequently used. Alkan’s A♭–major prelude is chromatic.
Within the length of one bar, all four flats, b♭, e♭, a♭, d♭, alternate with notes a half
tone above. Therefore12 the major and minor third are heard all the time. Alkan’s
D♭–major prelude has a middle part in d♭–minor. Alkan’s f–minor prelude has an
F–major middle part. Alkan’s a♭–minor has a middle part in A♭–major.

Major/minor mode is the most salient property in the NCQ-profiles. K-means
clustering with the major membership function reveals the degree of “majorness”.
For most pieces around the borderline between clusters chromaticism or extended
tonality holds. Mode separability of different composers is reflected in the clustering.

12Lacking a proper score, the musical interpretation of the clustering is done with MIDI files at hand
that do not contain enharmonic spelling. Therefore we can only refer to enharmonic equivalence
classes, instead of enharmonically spelled out notes.
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Figure 3.30: “Landscape” of all pieces. A two-dimensional projection of
the Isomap with k-nearest neighbor topology (k = 2), trained with the
entire corpus: Bach (black), Chopin (red), Alkan (cyan), Scriabin (green),
Shostakovich (blue), and Hindemith (magenta). As in Figure 3.29, “o”/“+”
denote major/minor respectively. The two-dimensional projection accounts
for explaining 86.2 % of the variance in the data. In this graph the projected
pieces by Hindemith are labeled with their keynote. Hindemith occupies the
outlier positions in the Isomap projection. Figures 3.31, 3.32, 3.33, 3.34, and
3.35 are all the same curve, but with labels that belong to another composer.

3.4.4 Visualizing Inter-Relations of Modes, Composers, and

Pieces

How can we measure similarity among pieces? For each pair of pieces let us calculate
the Euclidean distances between their NCQ-profiles. A dissimilarity measure is then
given by the shortest path length via pieces that have smallest Euclidean distance
to their predecessor. We would like to analyze the net structure that is build up
by connecting the NCQ-profile of each piece to its two closest neighbors. We use
the Isomap (Section 2.3.4 on page 91), implemented by Josh Tenenbaum, with k=2

nearest neighbors for visualization (Figures 3.30, 3.31, 3.34, 3.35, and 3.33). Under
the assumption of the above given dissimilarity, Isomap reveals that the pieces form
a circular structure with two “poles” (major and minor) and some extensions to
outliers. This two-dimensional visualization accounts for 86.2 % of the variance in
the data.
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Figure 3.31: Bach’s preludes of WTC II are labeled. Two densely concen-
trated well separated clusters are formed: a highly compressed major cluster
and a minor cluster in the form of a strip. The very chromatic a–minor pre-
lude of WTC II is an outlier relative to these clusters. (Cf. Figure 3.30 for all
Bach pieces labeled as black symbols.)
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Figure 3.32: Chopin’s Préludes op. 28 in Cortot’s interpretation are high-
lighted. They distribute around the circle. Major and minor are not clearly
separated. See all Chopin preludes marked as red symbols in Figure 3.30.
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Figure 3.33: Alkan concentrates somewhat on two wide clusters, but major
and minor intermingle a little. D♭–major and f–minor are outliers due to
their modulation to the parallel of the tonic in the middle part, A♭–major is
a chromatic prelude. (Cf. Figure 3.30 for details.)
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Figure 3.34: Scriabin clearly separates into a major and a minor cluster. (Cf.
Figure 3.30 for details.)
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Figure 3.35: Shostakovich is widely distributed with A–major as an outlier.
(Cf. Figure 3.30 for details.)

Compare the positions of the pieces in the visualization of Figure 3.30 to the clus-
tering in Figure 3.29. On the Isomap Hindemith (Figure 3.30) occupies outlier posi-
tions very far away from the center. Only A(–major) lies more closely to the center.
Bach’s major preludes cluster densely on a small spot, while his minor preludes
concentrate on a prolonged strip (Figure 3.31 on page 136). As in k-means cluster-
ing in Figure 3.29, the margin between the two clusters is wide. It is not arbitrary
that the a–minor prelude of WTC II is the only prelude outside the two main Bach
clusters. This prelude also stands aside from the Bach minor cluster in Figure 3.29.
The special position of this prelude is due to the chromaticism that dominates it.
In Chopin (Figure 3.32 on page 136) major and minor intermingle. In Alkan (Fig-
ure 3.33 on the preceding page) a major and a minor cluster is found, but they are
not clearly separated. Due to its chromaticism A♭–major is very far in the minor re-
gion. On the other hand, f–minor and a♭–minor are in the major region, because they
modulate to the parallel key in their middle parts. D♭–major is far off for the same
reason. Accidentally, it is next to Hindemith’s fugue in D♭. Scriabin (Figure 3.34 on
the previous page) makes up two major/minor clusters clearly separated by a wide
margin. Shostakovich (Figure 3.35) does not separate well between major and minor.
The A–major prelude is off.

The Isomap reveals stylistic characteristics of composers and pieces. Again, distin-
guished positions on the “landscape” often coincide with high chromaticism and a
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character unusual for that composer. Also stylistic coherence in a composer’s work
is visualized.

3.4.5 Discussion

Audio in the compressed format of the NCQ-profile has been processed by a wide
range of machine learning methods. We successfully applied classification, cluster-
ing, and visualization to NCQ-profiles for composer, mode, and style analysis.

The classification results show that normalized constant Q profiles can substan-
tially contribute to composer identification based on audio, provided the use of ap-
propriate classifiers: RDA and SVMrbf performed best among a group of classifiers.

K-means clustering of the NCQ-profiles reveals that the “majorness” is the most
salient property in the data. Applying an appropriate mode membership function
yields two clearly separated clusters: major and minor. The mode membership can
be interpreted musically. For some of the pieces with “ambiguous” membership
to both the major and minor cluster center, musical analysis reveals an ambiguous
major/minor content, chromaticism, or modulations to the parallel major/minor key
or to tone centers far away from the tonic on the circle of fifths. The compactness of
clusters can be musically interpreted in the way that the composer consistently uses
the same modulation range in all pieces, e.g. stays in a small compact neighborhood
of tone centers around the tonic.

The Isomap visualization allows a stylistic comparison of pieces and groups of
pieces by different composers. Some composers reside in the outlier positions (Hin-
demith) whereas other densely concentrate (Bach).

Considering that the NCQ-profiles reflect only a very special aspect in music,
reducing high musical complexity to a small cue, they reveal a remarkable variety
of information. It is promising to use this feature in combination with rhythmic and
other attributes.

Based on an extended corpus of musical data, other questions of interest include
the investigation to what extent certain features do manifest in NCQ-profiles, like
key character (cf. Section 1.2.8) and performer. We can test the hypothesis, whether
NCQ-profiles signify the key character as perceived by a particular composer (Sec-
tion 1.2.8 on page 59). It is also interesting whether the performer can be determined
with a recording at hand.

The suggested machine learning methods are by no means restricted to the analy-
sis of NCQ-profiles for composer, mode, and style analysis. They can be promisingly
used for instrument identification, beat weight analysis, and harmonic analysis as
well, just to name a few other possible applications.

3.5 Circle of Fifths

Often it is more reasonable to display pitch class profiles in the order of the circle
of fifths than, of the pitch class circle. Let us arrange the probe tone ratings in
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Figure 3.36: Probe tone ratings mapped on the pitch class axis in circle of
fifths order. Compared to Figure 1.19 on page 62, the hierarchies describe a
smoother graph that resembles an addition of two hills centered at the tonic
and the major/minor third.

Figure 1.19 according to the circle of fifths (Figure 3.36). Then the zigzag pattern
is replaced by a composition of two hills, one centered at the tonic, and a smaller
second one centered at the third scale degree, the major or minor third respectively.

Heinichen [1728]’s circle of fifths can be deduced from Euler [1739]’s tonnetz and
Weber [1817]’s chart of tone centers (cf. Section 1.2.6 on page 54). By enharmonic
identification the straight line of fifths bends and turns into a closed circle of fifths
(cf. Section 1.2.7 on page 56).

First we will see how the circle of fifths is supported by equal temperament. Then
we will observe the emergence of the circle of fifths in a couple of experiments, in
correspondence analysis (WTC I fugues score; WTC II fugues audio) and in Isomap
(entire WTC audio).

3.5.1 Equal Temperament for Infinite Tonal Progression

In Pythagorean temperament (p. 46) a modulation along the line of fifths would
be perceived like the sawtooth pattern in Figure 3.1 on page 93. The sequence as-
cends smoothly with a disruption at the wolf. How can this break be eliminated?
Although already Adrian Willaert (c. 1490–1562), in the chromatic duo Quid non

ebrietas, takes the singer through the entire circle of fifths, the closure of the lat-
ter becomes a manifest in equal temperament, enabling instruments to modulate to
tone centers infinitely far away. In the tonnetz (Figure 1.8) the tones of just into-
nation are generated by stepping forward in just fifths and just octaves. We have
seen in Section 1.2.1 that twelve fifths and seven octaves differ by the Pythagorean
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comma. In just intonation, from tone c, we can progress infinitely far in pure fifths
and octaves towards either flat or sharp keys without ever reaching initial c again.
The finite number of keys of a keyboard instrument, customarily twelve per octave,
constricts either tuning or smooth progression along the circle of fifths. On instru-
ments with stable tuning, well-tempered tuning, or, to a even higher degree, equal
temperament, continuous progression is enabled across the entire circle of fifths, by
equal distribution of the Pythagorean comma to all fifths. Thereby there is no dis-
continuity in the chain of fifths. Modulations may start from c-minor, following the
circle of fifths, until reaching b♯–minor, which – useful enough – physically is iden-
tical to c–minor on the keyboard. Some pieces ground in that idea, e.g. the canon

circularis per tonos of Bach’s Musikalisches Opfer. The first entry of the canon
starts in c-minor and modulates towards d-minor. For the second entry voices are
transposed up a major second to d-minor. The second entry of the canon ends in e–
minor, and so forth. After six entries the canon reaches the initial ton center c–minor
again. Hofstadter [1979] arranges the canon with Shepard tones to emphasize the
circularity of the modulation. Zwei Präludien durch alle Tonarten op. 39 (first
performed 1789) by Ludwig van Beethoven also circumnavigate the circle of fifths.
Franz Schubert’s Sonate in B♭-major op. posth., Movement 3, Scherzo, bars 1–67,
modulates in the following way: B♭-major → E♭-major → f-minor → A♭-major →
b♭-minor → D♭-major → f♯/g♭-minor → A-major → d-minor → B♭-major. Accord-
ing to Werts [1983], p. 17, Figure 42, the trajectory of these tone center transitions
can be displayed on the circle of fifths rather than in Weber [1817]’s chart of tone
centers.

3.5.2 Circle of Fifths Emergence in Correspondence Analysis

We will now investigate the set of preludes & fugues in Bach’s WTC. For each part
of WTC there is a one-to-one mapping between all 24 pairs of preludes & fugues and
all 24 major and minor keys. Table 2.2 on page 86 shows how each key – that implies
each prelude & fugue pair also – can be represented by a frequency profile of pitch
classes. The pitch class frequency profiles can either contain the overall annotated
durations from the score or the accumulated CQ-profiles from a performance of that
piece. Correspondence analysis visualizes inter-key relations on keyscapes based on
pitch class profiles. The projection of pitch classes homogeneously displays the circle
of fifths for both score and performance.

Circle of Fifths from Score

Humdrum [CCARH, 2003] is a digital format that has been developed in order to
fully and precisely represent the essential content of a composition as it is indicated
in notation in sheet music. All fugues of Bach’s WTC are encoded in Humdrum
**kern format. Instead of analyzing the co-occurrence table of frequencies of keys
and pitch classes (Table 2.2) we look at the overall annotated duration of pieces in a
particular key and the overall annotated duration of pitch classes across all fugues in
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WTC. Annotated duration is measured in multiples and fractions of quarter notes,
rather than in seconds. Measuring duration in seconds would imply that the results
would vary a lot depending on the choice of tempo. But the issue of tempo in Bach
is heavily debated.

The correspondence analysis of WTC (Figure 3.37) reveals a two-dimensional
structure which allows for an adequate representation in a plot based on the first two
factors corresponding to the two largest singular values (Figure 3.39). The 24 pitch
class frequency profiles are optimally projected onto a two-dimensional plane, such
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Figure 3.37: Annotated durations of keys and pitch classes are derived from
the score of the fugues of Bach’s WTC I and then projected onto the factors
of correspondence analysis. Upper left: The emerged circle of fifths is lined
out for major (solid) and minor (dashed) keys (“m” denoting minor). Upper
right: Likewise, pitch classes appear in the order of the circle of fifths. Lower:
The biplot of keys and pitch classes derived from putting both transparent
upper graphs on top of each other. We observe that the pitch classes are
close to the corresponding minor keys.
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3.5 Circle of Fifths

that the χ2-distance between profiles is minimally distorted and the χ2-distance of
the two-dimensional projections matches the original profile distance as well as pos-
sible. In the fugues of WTC, the circle of fifths emerges clearly and homogeneously
(upper left Figure 3.37). However, in the upper left Figure 3.37 some inter-key dis-
tances are smaller (D♭–A♭) than others (D–A), due to different χ2-distances between
pitch class profiles of overall annotated durations in these pieces. In addition the
minor keys form a circle of fifths inside the circle of fifths of the major keys. This
shows that the pitch prominence patterns for major keys are more distinct than for
minor keys according to the metric employed.
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Figure 3.38: Phase of the circles of fifths described by major and minor
keys (upper left Figure 3.37) relative to the phase of the circle of fifths in
pitch classes (upper right Figure 3.37). The graph displays almost straight
parallel lines. The angular co-ordinates of pitch classes and minor keys are
“in phase”. The angular co-ordinates of pitch classes and major keys are
offset by a constant value slightly less than π/2.

In co-occurrence Table 2.2, pitch classes are represented as columns of overall
annotated durations in the different keys, that means overall annotated durations
in each fugue of WTC I, since in WTC I a one-to-one correspondence of fugues
and the 24 keys is given. The same factors with maximal singular values as in
the upper Figure 3.37 are used to optimally project the 24-dimensional pitch class
vectors upon a plane. We observe the pitch classes forming a circle of fifths as
well (upper right Figure 3.37). We can now consider the biplot (lower Figure 3.37)
by putting the transparent plot of pitch classes (upper right Figure 3.37) on top of
the plot of keys (upper left Figure 3.37). We have three circles of fifths, one each
for the major and minor keys and one for the pitch classes. We change the co-
ordinates of the factor plane to polar co-ordinates in terms of a polar angle (on the
circle of fifths) and the distance to the origin. Consider the angles of both the major
and minor keys relative to the angles of the fundamental pitch class (Figure 3.38).
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Figure 3.39: A low dimensional representation is sufficient for displaying
the high dimensional data: For WTC I (fugues) in score representation the
two-dimensional projection of the overall annotated durations of keys and
pitch classes accounts for 85.4 % of the variance of the high dimensional
vectors. Each of the two most prominent factors have approximately the
same singular value.

The plot shows two almost straight parallel lines, reflecting that pitch classes and
keys proceed through the circle of fifths with almost constant offset. The graph
for the minor keys is almost the identity, indicating that pitch classes and keys are
“in phase”: The pitch classes can be identified with the fundamentals of the minor
keys. The explanation lies in the relatively high overall annotated duration of the
fundamental pitch class in the annotated duration profile in minor compared to
major. Also the overall annotated duration of the fugues in minor is longer than
the one in major (Figure 2.8 on page 88). We conclude that the minor keys induce
the circle of fifths in the pitch classes. In Figure 3.39 the singular values to the
factors are shown. They indicate how much of the variance in the data is captured
if correspondence analysis projects the data onto the factors with highest singular
values. It is interesting that the explanatory values, e.g., the singular values, of the
two most prominent factors in WTC I (fugues) are almost equal, in contrast to the
other singular values, whose explanatory value is much smaller.

Circle of Fifths from Performance

We choose a recording of Glenn Gould playing the preludes and fugues of Bach’s
WTC, Book II. We calculate long-term CQ-profiles (p. 122), one for each of the 24

fugues of WTC II in all major and minor keys (cf. Figure 2.7 on page 87). Instead of
containing frequencies of co-occurrences (Table 2.2) or annotated durations (p. 141

and Figure 3.37), the co-occurrence table now consists of the intensities of each pitch
class accumulated for each of the 24 fugues in all 24 major and minor keys (Fig-
ure 2.7). Pitch classes are represented by 24-dimensional key intensity vectors. In

144



3.5 Circle of Fifths

the same way as on p. 141, in correspondence analysis a singular value decomposi-
tion is performed yielding the factors as a new co-ordinate system. As in upper right
Figure 3.37 on page 142, the pitch class vectors are projected onto a two-dimensional
plane, spanned by the two most prominent factors. The circle of fifths evolves in
pitch classes in performance data as well. The two factors of performed WTC II
(lower Figure 3.40) capture an even higher percentage (88.54 %) of the variance of
the data, than those for the score data of WTC I (cf. Figure 3.39). Both factors are
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Figure 3.40: The circle of fifths (lined out) appears also in performed WTC
(upper). The analyzed data are the overall intensities of pitch classes in
the fugues of Bach’s WTC II in the recording of Glenn Gould shown in
Figure 2.7. The same procedure as in Figure 3.37 (upper right) is applied to
project the 24-dimensional pitch class vectors onto a two-dimensional plane,
spanned by the two most prominent factors. These two factors of performed
WTC II capture an even higher percentage (88.54 %, lower) of the variance
of the data than those for the score data of WTC I (cf. Figure 3.39).
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high and almost equal. Therefore the two–dimensional projection appears to be a
very appropriate representation of pitch classes.

Comparisons have been made with other cycles of musical pieces like Chopin’s
Préludes op. 28 and Hindemith’s Ludus Tonalis: In these cycles one singular value
alone is by far most prominent. That means that key frequency space as well as pitch
class space can be reduced to one dimension still being able to explain the majority
of the data.

3.5.3 Circle of Fifths Evolving in Isomap

Using the CQ-profiles of all pieces from WTC in our corpus, the circle of fifths clearly
emerges in k-nearest neighbors Isomap (k = 4, Figure 3.41). The projection to two
dimensions accounts for 53% of the variance in the data. As an extension to similar
experiments with correspondence analysis in Section 3.5.2, here more performed
pieces are taken into account.

3.5.4 Discussion

In WTC score and audio, the circle of fifths emerges in correspondence analysis
as well as in Isomap. Besides fifths relations we can consider parallel and relative
major/minor relations also. Then we will arrive at toroidal models of inter-key
relations (TOMIR, Section 3.8 on page 156). For further discussion of the simulations
in this section please cf. the discussion for TOMIR in Section 3.8.5 on page 166.
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Figure 3.41: Keys arrange in a circle of fifths in an Isomap trained by the
CQ-profiles of all Bach sets in the corpus.
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3.6 Composers Characterized by Key Preference

3.6 Composers Characterized by Key Preference

In the following experiment the interplay of key preference and composer, rather
than the interplay of key duration and pitch class duration is considered. For seven
composers we provide the frequencies of pieces each composer wrote in each of the
24 major and minor keys. We will discuss key preference in the light of key character
and display the relations between different composers and between composers and
keys.
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Figure 3.42: Key preference statistics of the complete works of Vivaldi and
Chopin and the keyboard works of Bach. In this and the two subsequent
figures, small letters indicate minor keys. Vivaldi prefers C–major and D–
major, Bach prefers a–minor, c–minor, and C–major. Some rare keys are
only used in the WTC: F♯–major, B–major, A♭–major, c♯–minor, g♯–minor,
and b♭–minor. 45.5% of the pieces are written in a major key. The most
frequent keys in Chopin are A♭–major, a–minor, C–major, E♭–major, and
c♯–minor. There are only two pieces in d♯–minor. 57% of the pieces are in
major.
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Figure 3.43: Beethoven prefers the “heroic” E♭–major and D–major. As in
Vivaldi (cf. Figure 3.42) the key preference of Mozart and Haydn takes the
“Cologne Dome” shape, favoring C–major and D–major. 90% of the keys
are in major.
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Figure 3.44: Haydn Symphonies show the “Cologne dome” distribution
in contrast to the lesser preference of D–major in his keyboard works (not
displayed in this thesis).

3.6.1 Key Preference Statistics

For each key and for each composer the co-occurrence table 2.2 now contains the
numbers of pieces written in that particular key by that particular composer. We
identify enharmonically equivalent keys (p. 46). Key preference statistics are col-
lected in the following composers: Antonio Vivaldi (AV, 1678-1741), Johann Sebas-
tian Bach (JSB, 1685-1750, only works for keyboard), Joseph Haydn (JH, 1732-1809),
Wolfgang Amadeus Mozart (WAM, 1756-1791), Ludwig van Beethoven (LvB, 1770-
1827), Frédéric Chopin (FC, 1810-1849), and Johannes Brahms (JB, 1833-1897, non-
vocal works). If not stated otherwise all works of the composer are considered
provided they contain the key name in the title of either the entire work or of single
pieces in case the work consists of a cycle of several pieces. For instance, a sonata in
C–major is accounted for once, but WTC, Book I is accounted for 24 times. These key
preference statistics (Figures 3.42 and 3.43) are generated from complete work lists
of these composers found on the Internet.13 Auhagen [1983] counts the keys of every
single movement in a set of works by Chopin. He counts enharmonically equivalent
keys separately. The most frequently used key is A♭–major in our statistics as well
as in Auhagen [1983]. Also the six most frequent keys are the same in our statistics
and in Auhagen [1983].

13http://classical.efront.com/music/composer/works/vivaldi/
http://www.jsbach.net/catalog/
http://home.wxs.nl/ cmr/haydn/catalog/piano.htm
http://classical.efront.com/music/composer/index.html
http://www.classical.net/music/composer/works/chopin/#opus
http://w3.rz-berlin.mpg.de/cmp/brahms_works.html
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Figure 3.45: Based on the key preference profiles (cf. Figures 3.42 on
page 147 and 3.43) for different composers the stylescape (upper left) and
the biplot of composers/keys (upper right) with associated singular values
(lower) are shown. Capital letters indicate major keys, small ones minor
keys, italics indicate composers. Upper left: Haydn (JH) and Mozart (WAM)
are very close. Beethoven (LvB) is nearby. Brahms (JB) and Bach (JSB) can
be considered a group. Chopin (FC) is an outlier. Upper right: In the bi-
plot composers/keys we observe that the Viennese classics (JH, WAM, LvB)
gather in the region of D–major and G–major. Chopin (FC) maintains his
outlier position due to the distant position of his favored A♭–major key.

3.6.2 Key Character and Key Statistics

Key character (Section 1.2.8 on page 59) is determined by several factors. One is the
complex aspect of keyboard tuning (Section 1.2.1 on page 45). The composers con-
sidered here strongly differ in their preference for A♭–major. To give an example we
will inspect the key character of this key and consider its impact on key preference.

In mean tone tuning w.r.t. C, the wolf fifth g♯ – e♭ sounds very rough, since this
fifth is 35.7 Cent higher than the just fifth (Meister [1991], p. 81 cited in Grönewald
[2003]). Bach used Neidhardt’s tuning [Lindley, 2001]. Even though in Neidhardt’s
tuning the wolf is eliminated, Bach uses A♭–major and g♯–minor only in WTC. Bach’s
avoidance of these keys could be due to the reminiscence that these keys would have
sounded odd in a tuning with the wolf on a♭/g♯.
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3.6 Composers Characterized by Key Preference

On the other hand, A♭–major is the favored key of Chopin. What does make
Chopin prefer this key? Does A♭–major have a special key character for Chopin?
Lindley [2003] points out “the tradition of tender affects” for this key which may
have appealed to Chopin’s character. Chopin used equal temperament. For all major
keys, all intervals relative to the tonic were the same. For Chopin key character may
be influenced by 18th century keyboard tuning that preceded equal temperament.
In tunings common at time when “Clementi was flourishing and Beethoven was
not yet deaf”, A♭–major had characteristic differences to tunings of keys with none
or only few accidentals, e.g. C–major. First, the major third a♭–c in A♭–major is
stretched compared to c-e in C–major. Second, the leading note – tonic step, g–a♭,
is squeezed compared to b–c. Therefore this tuning endows A♭–major with a more
nervous character and C–major with a more solid one. 14

3.6.3 Analysis

Correspondence analysis is performed on the key preferences of the seven com-
posers. It is noteworthy that correspondence analysis contributes to the varying
amount of data available for the different composers. E.g. the few available pieces
by Brahms weight less than the several pieces by Haydn. The projection of the com-
posers onto the two-dimensional plane spanned by the two most prominent factors
provides a stylescape: stylistically related composers are close to each other on this
plane (cf. Figure 3.45 on the preceding page). In the biplot of composers/keys in
Figure 3.45 composers are related to keys: Due to their shared “Cologne Dome”
preference for C–major and D–major, Haydn and Mozart are very close and Vivaldi
is not so far off. Beethoven is close to his favored E♭–major and proximate to Haydn
and Mozart. Reflecting their preference for the minor mode, Bach and Brahms are
positioned within a cluster of minor keys. Chopin maintains his outlier position due
to the outlier position of his favored A♭–major key. The explanatory value for the
first (63.23 %) and the first two factors (88 %) in correspondence analysis is high.
The most important factor is very dominant.

3.6.4 Discussion

The data can be counted differently. It would be more appropriate, but more labori-
ous, to take, in addition, pieces into account which do not use the key name in the
title. It is a matter of preference, whether to count entire pieces or each movement
in that key. To isolate the contribution of key character from factors like playability
on the particular instrument, it would be interesting to investigate a heterogeneous
set of keyboard pieces.

14The arguments in this subparagraph are from Lindley [2001, 2003] and from personal communica-
tion with Mark Lindley.
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3.7 Visualization of Inter-Key Relations

We will first investigate how inter-key relations can be displayed by colors. Then
we will introduce a new algorithm that globally arranges items according to a pre-
viously stipulated local neighborhood, such as closely related keys.

3.7.1 Key-Color Maps

. . . auch hatte ich gerade ein Kleid an, das ich einst im höchsten Un-
mut über ein mißlungenes Trio gekauft, und dessen Farbe in cis-Moll
geht, weshalb ich zu einiger Beruhigung der Beschauer einen Kragen aus
E-Dur-Farbe daraufsetzen lassen . . . 15 (E. T. A. Hoffmann [1814]: Kreis-
leriana)

Synesthesia is the close connection between different perceptual modes. It can refer
to various musical attributes including tones and keys. It is believed that Nikolai
Rimsky-Korsakov had synesthetic tone-color perception. This kind of perception is
quite rare, but shared e.g. by Oliver Messiaen. On the other hand, Scriabin sup-
posedly had pseudo-synesthetic tone-color association. In contrast to genuine synes-
thesia, pseudo-synesthesia is a rather deliberate mapping between the attributes of
different modes. 16 The tradition of tone-color mappings originates in the Pythago-
rean view of the world, identifying notes with intervals, intervals with relations of
celestial bodies and celestial bodies with (apparent) colors. Jewanski [1999] 17 recon-
structs the tone-color mapping of Aristotle and accounts for his followers in detail
(Jewanski [1999], p. 67-266). The other, “prismatic”, tradition can be traced back to
Newton [1704] and builds on the analogy of electromagnetic and acoustic waves that
is further emphasized by the observation that white sunlight is composed of seven
spectral colors, with the widths of these colors in the spectrum being proportional
to the intervals of the diatonic scale (Jewanski [1999], p. 7). Castel took up Newton’s
idea in constructing the “Clavecin oculaire” (Jewanski [1999], p. 267-449).

The color encoding schemes discussed in this section refer only to the keynote,
not considering the mode (major or minor). They are all based on the prismatic
color order. So the major difference in the schemes lies in the onset (which color to
start with?, which color to assign to c?), the direction how to go through the color
spectrum (from violet to red or vice versa), and how many keys are mapped to a
particular region of the color spectrum.

We distinguish two types of key-color mappings. In the prismatic chromatic fifth key
mapping (PCFKM) the color prism is mapped onto the entire circle of fifths consisting

15. . . in addition I just wore a garment that I had once bought in the highest displeasure about a
failing Trio, and whose color tends towards c♯–minor, wherefore, for calming down the spectator,
I let a collar in E–major color sew onto it . . .

16Kandinsky [1926]’s pseudo-synesthesia associates basic shapes with colors: circle – blue, square –
red, triangle – yellow.

17Jewanski [1999], p. 86, citing Gaiser [1965], p. 190.
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C  Db  D  Eb  E   F   F# G  Ab  A  Bb  B   c   db  d   eb e    f    gb  g   ab  a   bb  b

Figure 3.46: Key-color map according to the prismatic diatonic fifth key
mapping (“Diat.”), the Rosicrucians (“Ros.”), Scriabin (“Scr.”), and Rimsky-
Korsakov (“R.-K.”).

of twelve keys. In the prismatic diatonic fifth key mapping (PDFKM) the color prism is
mapped onto the notes of the diatonic scale only. In the latter, alterations of the scale
notes are recognizable as a derivate of the color that has been assigned to the non-
altered tone. This color derivation can be performed by lightening or darkening or
mixing the color more with brown or gray (e.g. Sapp [2001]). This scheme respects
the enharmonic difference between c♯ and d♭.

We will describe the following key-color mappings (cf. Figure 3.46).

• Rainbow This is the straight forward PCFKM. The Rosicrucian order is another
straight forward PCFKM with onset c = “yellowish green”. Variants of this
scheme are presented by Charles Fourier [Lucy, 2000]. He maps the keys onto
the flipped prism. Inspired by Fourier, Lucy [2000] assigns c to “dark green”.
For some reason f is mapped to the invisible light spectrum. Therefore no
color is assigned to it.

• Rimsky-Korsakov His color scheme is basically a PDFKM. The onset is d = “yel-
low”. The keys on the circle of fifths are mapped along the color sequence
“yellow – rose – blue – dark blue – green”. The alterations of the scale tones
are colored by a grayish or brownish derivation of the original color of that
scale note. In contradiction to the PDFKM, c is mapped to “white” and no
color at all is assigned to b♭.

• Sapp A strict PDFKM is given by Sapp [2001].

• PDFKM for pitch classes We want to apply the PDFKM to an audio based analy-
sis. In that scenario we do not know the enharmonic spelling a priori (Sec-
tion 1.2.1 on page 46). In our approach we first estimate the key of the piece. If
we know the key we choose the most likely enharmonic spelling according to
the scheme depicted in Table 1.1 on page 47.
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We assign the basic colors to the diatonic pitch classes of the scale. The non-
diatonic pitch classes are assigned with the (modulated) color of the pitch
classes they are derived from. But in contrast to Sapp [2001] we darken the
color when the pitch class is altered downwards.

• Scriabin This is a mixed PCFKM/PDFKM scheme with onset c = “red”. His
specific key-color mapping was rediscovered late. The so-called luce-string is a
notation for the light-organ accompanying Scriabin’s orchestra piece Prometei,
Poem of fire. The decryption of the luce-string is the basis of the insight in
Scriabin’s key-color mapping. Scriabin’s specific pseudo-synesthetic approach
is described in Shaw-Miller [2000]:

Scriabin did not . . . experience color-tone relationships individu-
ally, but rather through chordal complexes, and, according to some
sources, deduced the full cycle from his spontaneous recognition of
C = red, D = yellow and F-sharp = blue.

This key-color mapping traces back to Castel [Vanechkina, 1994]. The Scriabin
key-color map is a PCFKM, with two exceptions. The grayish blue color codes
of the keys (E♭–major, B♭–major) are a greyisch derivation from the color code
of (E–major, B–major).

How can we derive a color for minor keys from given colors of major keys? We
can use the same or a darker color as for parallel or relative major.

3.7.2 Topographic Ordering Map

We present a learning algorithm that uses Kohonen’s idea of establishing a topology
preserving map in a new and unusual manner. In the usual SOM (Kohonen [1982],
cf. Section 2.3.4 on page 91) the objects under investigation are characterized by fea-
ture vectors in a high dimensional space which are assumed to lie approximately
on a low dimensional sub-manifold outlined by the given metric on the formal neu-
rons (after successful training). The correspondence between neurons and objects is
established by the self-organizing learning process.

In the modified SOM, each neuron represents exactly one object in a fixed a priori
correspondence. In the learning process, a suitable placement of the neuron vectors
is to be found in a stipulated metrical space that realizes a given neighborhood
relation on the neurons.

Let K = {0, . . . , n} be a finite set of indices and T be a topological space with
metric dT . 18 As given information we stipulate for every pair of indices i, j ∈ K a
(symmetrical) degree of neighborhood dK(i, j) ∈ {0, 1}, a “0” meaning immediate
neighborhood. 19 The learning algorithm is designed to place vectors w0, . . . , wn

18Cf. also Appendices C.1 on page 195 and C.3.
19Our algorithm generalizes to the case of arbitrary neighborhood degrees dK(i, j) ∈ R≥0 in a straight

forward manner.
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3.7 Visualization of Inter-Key Relations

(formal neurons) in the topological space T in a way that the relation of the immedi-
ate neighborhood of the wi’s in T coincides with the previously stipulated one, i.e.
wi and wj should be immediate neighbors in T just in case dK(i, j) = 0. (The aim
should be clear, in spite of the absence of an exact meaning of “immediate neigh-
bor” in the metrical space T .) Formally we use the SOM algorithm with certain
specifications: Our input samples wi are equally distributed across T . Our special
assumptions on what is close and remote are encoded in the function dK(i, j), which
is then used as the neighborhood function. Because dK(i, j) is a function that only
maps to {0, 1}, in the update rule for the weights, we have to treat the winner neuron
separately in order to approximate the shape of a triangle.

• Choose initial values for vectors wi ∈ T (i = 0, . . . , n) by random.

• Iterate the following steps while letting the learning rates η1 and η2 decrease
towards 0.

– Choose x ∈ T by random (equally distributed over T ).

– Determine the neuron of maximal excitation, i.e. choose

ix = arg min
i

(dT (x, wi)). (3.6)

– Update the neuron vectors according to the following rules:

wi :=







wi + η1 · (x − wi) if dK(i, ix) = 0, i 6= ix

wi + η2 · (x − wi) else if i = ix

wi otherwise

(3.7)

To measure the error (or stress) of a configuration of the neurons we define the
neighborhood dissimilarity dN on T by

dN(wi, wj) :=

{

0 if rkdT (wi, wj) ≤ ∑i 6=k(1 − dK(i, k))

1 otherwise
(3.8)

where rkdT (wi, wj) for i, j ∈ K, i 6= j is the rank order (Equation C.8) of the distances
dT . According to Equation 3.8 we can calculate rank order distortion:

σ :=
1

(n + 1)n ∑
i 6=j

|dK(i, j) − dN(wi, wj)|, (3.9)

where n + 1 is the number of weights wi. This error function gives the possibility to
start the algorithm described above several times with different initializations, and
to choose the result with minimum stress value.
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3.7.3 Discussion

We have introduced means for visualizing inter-key relations, by key-color map-
pings and by an algorithm for deriving a global arrangement of keys from given key
proximities. For a comprehensive coverage of color/tone interrelations cf. Jewanski
[1999]. Applications of the topographic ordering map include logistic problems and
integrated chip construction. If certain units depend on being adjacent to other ones
an optimal global arrangement can be deduced by the topographic ordering map, for
the localizations of logistic centers as well as the spacial positioning of the building
blocks in an integrated chip.

3.8 Toroidal Models of Inter-Key Relations (TOMIR)

Fed with audio, the circle of fifths evolved in various cognitive models (Section 3.5).
We arrive at a torus, referred to as a TOMIR, if we consider relative and parallel
major/minor relations also. We will first discuss the topology of a torus. Stipulating
two sets of key kinships, we will derive key configurations on a torus, using the
topographic ordering map. Then simulations with various cognitive models of key
acquisition are preformed. In all simulations a TOMIR emerges. A neuromimetic
model consists of an auditory model and a SOM. The model processes piano ca-
dences. Processing the Chopin Préludes, another cognitive model calculates aver-
age CQ-profiles. A SOM is then trained by these profiles. In yet another approach
correspondence analysis is employed. The correspondence analysis is fed by profiles
of frequency of occurrence from the scores of WTC.

(a) 2-dim. Representation (b) 3-dim. Representation

Figure 3.47: The torus as a geometric object can be seen in the 3-dimensional
representation in Figure (b). We can reconstruct Figure (b) from Figure (a)
by gluing the upper and lower sides and the left and right sides. (Cf. Sec-
tion 3.8.1 for a note on the visualization.)
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3.8 Toroidal Models of Inter-Key Relations

Topology of a Toroidal Surface A toroidal surface can be parameterized in differ-
ent ways. The most prominent are the following:
• A 4-dimensional representation: In this form the toroidal key arrangement is

first established in Krumhansl and Kessler [1982] (cf. Figure 1.20 on page 63). Since a
four-dimensional space is hard to imagine, Krumhansl and Kessler use their finding
about the structure to further scale down the data to a two-dimensional representa-
tion (see below).
• A 3-dimensional representation (cf. Figure 3.47 (b)): This is the geometrical

object that one would usually think of, when talking about a torus. For the sake of
a homogeneous configuration the 2- or the 4-dimensional representation should be
used, see the remark below and Krumhansl and Kessler [1982], p. 345.
• A two-dimensional representation (cf. Figure 3.47 a): Each point of the toroidal

surface is uniquely determined by two angles in Figure 1.20 and Figure 3.47 (b). So
another parameterization is given by the set [0, 2πr1[×[0, 2πr2[ endowed with the
toroidal metric C.7 on page 197.

Mathematical Remark: The 2- and the 3-dimensional representation are isomor-
phic to each other, but they are not isomorphic to the 4-dimensional version. But the
induced topological spaces are homeomorphic.

3.8.1 TOMIR Evolving in Topographic Ordering Map

In Section 1.2.7 on page 56 the curling of the strip of [Weber, 1817]’s chart of tone
centers leads to a torus. Let us simulate this process using a computer experiment.
The topographic ordering map (Section 3.7.2 on page 154) tries to find a toroidal
configuration of the keys according to a given set of close relationships, with the
understanding that closely related keys should become immediate neighbors in the
spatial formation. This set is the only external information about the keys and their
relations that is passed to the algorithm. For technical details on the used algorithm
see Section 3.7.2.

A Note on our Visualization of SOMs

A SOM (Section 2.3.4 on page 91) as well as the topographic ordering map give
rise to a mapping from the set of formal neurons to the set of input vectors by
selecting an input vector with minimum Euclidean distance to the given neuron
vector. A usual display of a SOM is a direct visualization of this mapping. To get a
smoother display we extend this mapping to the whole manifold that is outlined by
the neurons. The extension is done by usual interpolation. By this we associate with
each input vector a possibly unconnected region on the manifold. In the simulations
of Sections 3.8.2 and 3.8.3 that manifold is a toroidal surface and there are always
24 input vectors, each representing a major or minor key. We use 21 × 12 formal
neurons supplied with the toroidal metric, Equation C.7 on page 197. Neurons are
arranged in a mesh, gluing together opposite borders. A point is colored black if
the distance (of its projection) to the nearest input vector is not sufficiently smaller
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(a) Relationship V1 resembling the local
structure of Weber [1817]’s chart of tone
centers (Figure 1.14)
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(b) Relationship V2 yields a Krumhansl
like configuration (Figure 1.21)

Figure 3.48: Arrangement of keys evolving from sets of close relationships
by the topographic ordering map. (Cf. p. 157 for the visualization technique
used.)

than the distance to the second nearest. So each region gets a black border whose
thickness corresponds to uncertainty, in a relative measure. The placement of the
key name is determined by the position of the neuron with minimum distance to
the input vector that corresponds to that key.

Simulations

We simulate the toroid configuration derived in Section 1.2.7 on page 56 from tone
centers considered to be close to each other according to Weber [1817]. Those are the
dominant, subdominant, relative, and parallel kinships (see Figure 1.14 on page 56).
For the topographic ordering map, the appropriate set of close relations is

V1 := {C–G, C–F, C–a, C–c, c–g, c–f, c–E♭, . . . } (3.10)

where the dots stand for analogous relations between keys with different tonic
keynotes. Even in this setting, where the set V1 is the only information given about
the structure of inter-key relations, the algorithm ends up with the arrangement de-
picted in Figure 3.48 (a). We want to stress that in this simulation a global arrange-
ment of tone centers, like in Weber [1817]’s chart, Figure 1.14, evolves, but is not
presupposed.

In comparison, let us consider relations between tone centers resulting from max-
imization of common tones between adjacent scales as well as maximizing common
tones between their respective tonic triads. The tonic’s kin, the dominant, subdom-
inant, relative, and parallel, is now additionally joined by the mediant. Under this
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3.8 Toroidal Models of Inter-Key Relations

stipulation, e–minor is as well an immediate neighbor of C–major, as F–major, G–
major, and a–minor are. To integrate the strengthening of the mediant relation we
expand the set of close relationship to

V2 := V1 ∪ {C–e, c–G♯, . . . }.

This is consistent with Krumhansl’s probe tone ratings showing a strong correlation
of keys between the tonic and its mediant (Figure 1.21, Krumhansl [1990], p.39 & 46).
The resulting configuration shown in Figure 3.48 (b) is quite close to Krumhansl’s.
Of course, the small amount of information that is used in this simulation is not
sufficient to produce finer distinctions. In Krumhansl’s arrangement a–minor, for
example, is closer to C–major than e–minor.

3.8.2 TOMIR Evolving in a Neuromimetic Environment

The simple cadential chord progression, I − IV − V7 − I, in all major and minor keys
is used. The chords are sampled using Shepard tones (cf. Section 1.2.3 on page 48).
A signal is preprocessed by digital filters modeling the outer and middle ear, a filter
bank modeling the basilar membrane [Patterson et al., 1988], and the hair cell model
(Meddis and Hewitt [1991], Section 2.2.1). The perceptual principle of the missing
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Figure 3.49: Modeling of the basilar membrane as a band pass filter bank:
The discrete Fourier transform (e.g. FFT) gives a filter bank with a constant
band width (e.g. 50 Hz). The constant Q transform (cf. Section 2.1) gives
a filter bank with constant band width (minor third) in the logarithmic fre-
quency domain. Two equations approximate the results in psychophysics
experiments: 1) the critical bandwidth (Bark: Zwicker and Fastl [1990],
Equation 1.3 on page 34), 2) the equivalent rectangular bandwidth equation
(ERB, Moore and Glasberg [1983], Equation 1.2 on page 34). The equally
spaced discrete Fourier transform is an approximation for the auditory fil-
ter bank for center frequencies below 500 Hz. The constant Q filter bank
is an approximation above 500 Hz. It is a reasonable compromise between
psychoacoustic modeling and an efficient implementation.
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Par. Meaning in Model Value
A Permeability 100.00

B Permeability 6000.00

g Release rate in units per s 2000.00

y Replenishment rate in units per s 5.05

l Loss rate in units per s 2500.00

x Reprocessing rate in units per s 66.31

r Recovery rate in units per s 6580.00

m Max no. of transmitter packets in free
pool

1

Table 3.3: Parameters used in the hair cell model (Meddis [1988], Sec-
tion 2.2.1 on page 71).

fundamental (Section 1.1.6) is coarsely modeled by the application of autocorrelation
(Section 2.21 on page 79). For temporal processing, memory is simulated by an
exponentially weighted integration along the time axis (“leaky integrator”).

We employ the Development System for Auditory Modeling (DSAM) by O’Mard
et al. [1997]. For convenience we use the implementation as a Matlab function, by
Benjamin Blankertz [Purwins et al., 2000a]. Fourth order gamma tone filters [Moore
and Glasberg, 1983] for the filter bank, and the hair cell model [Meddis, 1988] are
employed.

The choice of the center frequencies as well as the post-auditory processing are
adopted from Leman [1995], with the exception of raising the downsampling rate
from 2500 Hz to 5000 Hz and canceling the parabolic attenuation (α = 0) in the
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(a) Compact profile of C–major
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(b) Toroidal arrangement of com-
pact profiles

Figure 3.50: Cadential chord progressions made of Shepard tones are fil-
tered by an auditory model and then autocorrelated (a). A toroidal SOM
arranges the compact profiles of the different keys similar to Figure 1.17 (b).
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3.8 Toroidal Models of Inter-Key Relations

windowed autocorrelation function. This is not necessary in view of the results but it
yields nicer tone center profiles. Since convergence is no problem in our simulations
we do not pay much attention to the control of the learning rate in the training of
the SOM (Figure 3.50 (b)). The learning parameter in the batch learning is linearly
decreased from 0.15 to 0.001 in 10000 iterations.

To obtain a relation to Krumhansl and Shepard’s probe tone ratings (cf. p. 61 f.),
we restrict the correlograms to components corresponding to the frequencies in the
octave range 64 Hz – 128 Hz, as seen in Figure 3.50 (a). This octave is so low that
the autocorrelation of all notes in the usual range have non-zero values within that
range.

3.8.3 TOMIR Evolving in a Cognitive Model from Averaged

Performance

For the sake of building a cognitive model for tone center perception, we use the con-
stant Q profile technique in combination with the SOM. Since cycles with pieces in all
keys are a suitable musical form for establishing tone centers, we choose Chopin’s
Préludes op. 28, for the calculation of a tonal reference set. To show stability of
CQ-profiles with respect to sound quality, we take the historical recording of Alfred
Cortot from 1933/34 (EMI References), in audio data format. We calculate the CQ-
transform (Section 3.3.1 on page 121), within short-time frames, with 36 bins per
octave. This corresponds to the basilar membrane filter bank. Then the constant Q
transform is compressed into a CQ-profile according to Equation 3.3 on page 122.
As a simple model of memory, the CQ-profile of a whole prelude is calculated by
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Figure 3.51: Emergence of inter-key relations. Inter-key relations are de-
rived from a setup including constant Q profile calculation and a toroidal
SOM trained by Chopin’s Préludes op. 28 recorded by A. Cortot in 1932/33,
in audio data format. The image shows a torus surface. Upper and lower,
left and right sides are to be glued together. Keys with dominant, ma-
jor/minor parallel, or relative relations are proximate. For color display
Scriabin’s key-color map is used. Cf. Figure 3.52 for other key-color maps.
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(a) Rimsky-Korsakov
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(b) The Rosicrucians

Figure 3.52: The key configuration from Figure 3.51 displayed in different
synesthetic key to color mappings (cf. Section 3.7.1 on page 152).

summing up CQ-profiles of short-time frames. The topographic principle in the
SOM corresponds to tonotopy [Schreiner and Langner, 1988] in the auditory do-
main. A toroidal SOM is trained with the average vectors from all single preludes in
Chopin op. 28. Convergence of the SOM does not critically depend on the learning
parameter. They are chosen as in Section 3.8.2.

The configuration resembles Krumhansl [1990]’s, and even more closely the one
derived from Weber [1817]’s chart of tone centers (Figure 1.14). The circle of fifths
wraps around the torus three times. Closely related keys according to Schönberg
[1969] are neighbors.

Tone Center Dissimilarities: Theory – Model Figures 3.54 and 3.53 show the
dissimilarities implied by different music theory writings [Schönberg, 1969; Chew,
2001] compared to the dissimilarities implied by the SOM (Figure 3.51). Dissimi-
larities are given for major (Figures 3.53) as well as for minor (Figures 3.54). For
classes (two top Graphs) and regions (Graph 3 and 4 from top) in Schönberg [1969]
and in the model of Chew [2000] enharmonic spelling is ignored. The enharmonic
equivalence class is represented by the equivalent tone center closest to the tonic.
Schönberg [1969] makes a difference between a region of tone centers of a major (Fig-
ure 1.15) and minor key. He considers the region of tone centers of a minor key to be
smaller. The region is so small that certain keys lie outside that region. In Figure 3.54

the outsider position is indicated by an assigned rank of 12 in Graph 3 or rank 5 in
Graph 4. Graph 5 gives the Euclidean tone center distances in Chew [2001]’s model
(Figure 1.22 on page 65) with the parameter set suggested by her. For a given key,
tone center dissimilarities are qualitatively similar in Schönberg’s classes (Graph 1)
and regions (Graph 3). This holds in particular for minor tone centers. In Graph 6

the tone center distances are given on the surface of a 2-dimensional toroidal SOM
(Figure 3.51). Ranks and dissimilarities are highly similar for the SOM (Graph 6)
and Chew [2001] (Graph 5), especially for the minor tone centers. In Figure 3.54,
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Figure 3.53: Dissimilarities between C–major and all other keys on a SOM
compared to music theory. The five upper graphs show dissimilarities be-
tween tone centers implied by different music theory concepts. The lowest
graph shows the dissimilarities on the surface of a torus, resulting from
training a toroidal SOM with the Chopin preludes (cf. Figure 3.51 and Sec-
tion 3.8.3).

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0

0.05

0.1

2 3
6 5 5 6 6 5

3 2
5 4 5 5 6 6 6

4 4 5
2 1 2

6

Schoenberg Classes in Key c

Enharm. Tone Center Dissimilarities to c

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0

0.1

0.2

1 1 2
4 5

2 3
5 4

1 2 2 3 3 2
5 6 5

1 2 2 1 1 1Schoenberg Classes in Key c#

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0

0.05

0.1

4 5

12 10 11 12 12

3 5 4 5 5
6 7

12 12 12
9 8

12

2 1 2

12

Schoenberg Regions in Key c

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0.035

0.04
0.045

0.05
0.055 5 5

3 3 3 3 2 2 2

5

1 1 4 4

5

3 3 2

5

1 1

5 5 5

Schoenberg Regions in Key c#

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0

0.05

0.1

2 5 11 13 15 18 17 14 8 6 7 3 10 12 16 19 16 12 10 9 4
1

4 9
Toroidal Chew Model in any Key

C G D A E B F# Db Ab Eb Bb F a e b f# c# g# d# bb f c g d
0

0.05

0.1

3 6 9 12 14 13 11 10
5 2 4 6 7 8 12 15 12 8 7 9

3
1

3
9

SOM Trained with Chopin

Figure 3.54: Dissimilarities between c–minor and all other keys on a SOM
compared to music theory (cf. Figure 3.53 and Section 3.8.3).
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Graphs 1, 3, 5, and 6, there are local peaks for f ♯–minor and b♭–minor. In Weber
[1817]’s chart (Figure 1.14 on page 56) tone centers are spaced homogeneously. But
in Schönberg [1969]’s chart (Figure 1.15) tone centers are more squeezed together
farther away from the key. Dissimilarities of tone centers are relative to the key, e.g.
compare the first and the third line (c–minor and C–major) to the second and fourth
line (c♯–minor and D♭–major) in Figures 3.53 and 3.54. Consider a piece modulating
into a tone center far away from its key. Could the global key still be extracted from
the average CQ-profile of that passage? That is a question for future research.

3.8.4 TOMIR Emergence in Correspondence Analysis from Score

Figure 3.37 on page 142 displays the projection of keys and pitch classes onto the
plane spanned by the two most prominent factors. How can we visualize the projec-
tion onto the first four factors? We represent points on each of the planes spanned by
the first & second and third & fourth factor, respectively, in polar co-ordinates, i.e.,
by their polar angle and by their distance to the origin. We then plot their angle in
the 1-2-plane against their angle in the 3-4-plane (upper left Figure 3.55 on the facing
page). Topologically, we can think of the resulting body as the surface of a torus,
which can be parameterized by two angles. Upper left Figure 3.55 can be viewed as
a torus if we consider vertical and horizontal periodicity, i.e., we glue together the
upper and lower side as well as the right and left side. The three circles of fifths then
meander around the torus three times as indicated by the solid, dashed, and dotted
lines. In addition to the relationship regarding fifths in upper left Figure 3.55 we see
that the projection on the 3. and 4. factor contains information about the interrelation
between major keys and their parallel and relative minor keys.

Consistency with Chew’s Geometric Model. It is fruitful to compare the toroidal
interpretation (upper left Figure 3.55 on the next page) of the biplot of keys and
pitch classes (lower Figure 3.37) with Chew [2000] (upper right Figure 3.55). In
Chew [2000] heterogeneous musical quantities, in particular, tones, chords, and keys
are embedded in a three-dimensional space, thereby visualizing their inter-relations
(cf. Section 1.2.10 on page 64 and Appendix C.3.3 for technical details). We reduce
this model to pitch classes and keys, assuming that the intermediate level of chords
is implicitly given in the music.

Chew [2000] gives a set of parameters derived by optimization techniques from
musically meaningful constraints. We choose a different set of parameters to fit
the model to the result of our correspondence analysis as displayed in upper left
Figure 3.55. (Cf. Appendix C.3.3 for parameters.)

In order to facilitate comparison we choose a two-dimensional visualization of the
three-dimensional model in Chew [2000]. The projection of the model onto the X-Y-
plane is circular. Therefore we can parameterize it as angle and length. We plot the
vertical dimension (the elevation of the helix) versus the phase angle of the X-Y-plane
(upper right Figure 3.55). We interpret the phase angle of the X-Y-plane as the first
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Figure 3.55: The toroidal interpretation of the projection onto the first four
factors (upper left) is consistent with Chew [2000] (upper right) and Sec-
tion 3.8.3 (lower, same Figure as 3.51 and 3.52 in a different display). Capital
letters denote keys (“m” for minor). Small italics indicate pitch classes. A
torus can be described in terms of two angles, displayed on the horizon-
tal and vertical axis. Glue the upper/lower and right/left side of the plots
together to obtain a torus (cf. text).

angle of a torus, and the vertical height in the helix as the second angle of a torus.
The helix is mapped on the surface of a torus by applying modulo 12h to the height.
Here h is the distance on the vertical co-ordinate of two successive tones in the
circle of fifths. We observe that the upper Figures 3.55 are very similar: The circles
of fifths in major and minor keys and in pitch classes curl around the torus three
times. The only difference is that in the toroidal model derived from correspondence
analysis major keys and their relative minor keys are nearby, whereas in upper right
Figure 3.55 major keys are closer to their parallel minor keys.
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3.8.5 Discussion

We have seen how distances between tone centers are defined by the number of com-
mon notes in the corresponding scales and by the identity of scale degree meaning
of shared pitch classes (Section 1.2.5). From these distances, Weber [1817]’s chart of
tone centers is derived (Section 1.2.6). By synchromatic and enharmonic identifica-
tion a strip of the chart curls resulting in the toroidal model of inter-key relations
(TOMIR, Section 1.2.7). A TOMIR can be found in the MDS analysis of the psycho-
logical probe tone ratings (Section 1.2.9). A TOMIR appears also in correspondence
analysis of scores (WTC). The TOMIR emerges in a neuromimetic model consist-
ing of an auditory model and the SOM fed with audio (Chopin). Furthermore, the
TOMIR also emerges in other models (CQ-models) consisting of CQ-preprocessing
and SOM, correspondence analysis, or Isomap fed with audio. These experiments
support the hypothesis of psycho-physical parallelism that sees the “mental world as
an epiphenomenon of the physical world” (Leman [1995], p. 182). The TOMIR is
part of the mental world. That is indicated by the music theory considerations, the
curling of Weber’s chart resulting in a torus. Also the MDS analysis of probetone
ratings shows that the TOMIR is part of the mental world. The physical world is
represented by the neuromimetic model or the CQ-models operating on audio. In
the experiments, the TOMIR evolves in the model of the physical world.

The central result of this thesis is that the hypothesis of psycho-physical paral-
lelism for the TOMIR is supported in a generalized form, maintaining a compa-
rable level of biological relevance. First, the hypothesis is demonstrated based on
a broader variety of samples, actual recordings of performed music by Bach and
Chopin, instead of a limited number of cadential patterns, synthesized with artifi-
cially sounding Shepard tones. Second, fewer assumptions are needed to verify the
hypothesis. The toroidal structure is not stipulated in the architecture.

The neuromimetic model and the CQ-model are of comparable neuromimetic rel-
evance. The specific details of the auditory process, as implemented in an auditory
model, are not particularly relevant for the cognitive processing of inter-key rela-
tions (Section 2.2.2). One of the main functionalities of Meddis [1988]’s hair cell
model is the response to onset, sustain phase, and offset. These features are of mi-
nor relevance for the overall tonal content. Since for autocorrelation the biological
plausibility is questioned, we use CQ-profiles, without loosing confirmed biological
relevance. CQ-profiles are consistent with the Weber-Fechner rule (Equation 1.1) of
logarithmic perception of frequency and they reveal high coherence with probe tone
ratings in music psychology (Section 3.3.3).

The auditory system is not yet well understood. Most auditory models cover only
roughly the first stages of auditory processing. The SOM [Kohonen, 1982], being
considered as a model of the cortex, is an extreme simplification, simulating just
topography. We think more knowledge about neural processing of sound is needed
to make a well grounded hypothesis on the exact representation of tone centers in
the cortex. Our auditory model/SOM setup in Section 3.8.2 is related to Leman
[1995], p. 92. But Leman uses Shepard tones, in effect a non-audio representation of
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a tone. In addition, Leman employs Terhardt’s simplified virtual pitch model. We
use a different auditory model [O’Mard et al., 1997].

In correspondence analysis (Section 3.8.4), we have shown how meaningful para-
meters in the complex structure of music can be visualized, thereby revealing the
interrelations of music looked upon in the perspective of a certain parameter. To
demonstrate the high potential of this approach we have given examples in the do-
main of inter-key relations based on the frequency of pitch class usage. The benefit
of the method is its simplicity. But nonetheless, it does require almost no assump-
tions, only the most rudimentary musical presuppositions, tuning and octave equiv-
alence and no special artificial data. In Leman [1995], artificially generated cadential
chord progressions constructed from Shepard tones are used as training data. In
the CQ-profile based model (Section 3.8.3, Purwins et al. [2000a]), we used pro-
files of digitized sound samples averaged across the entire cycle (Chopin’s Préludes

op. 28). In contrast, in Sections 3.5.3 (Isomap) and 3.8.4 (correspondence analysis)
we used the profiles of digitized sound samples of each piece separately (WTC). In
the neuromimetic model (Section 3.8.2 and Leman [1995]) and the CQ-profile based
model (Section 3.8.3, Purwins et al. [2000a]), the toroidal key structure is implic-
itly stipulated by training a toroidal self-organizing feature map. In the simulation
with correspondence analysis, in Section 3.8.4, the circularity emerges from the data
alone, without an implicit assumption of periodicity in the model. Likewise, the
circle of fifths emerges in the simulation with Isomap in Section 3.5.3. In this sense,
our analysis can be viewed as discovering a model of circular structure rather than
merely fitting such a model that has been stipulated before.

The available data has not been exhaustively analyzed. Projections to different
sub-planes could be explored and interpreted. Correspondence analysis can be used
to model an experienced listener exposed to a new piece of music. In correspon-
dence analysis, this would correspond to embedding the new pieces in a co-ordinate
system obtained from analyzing the pieces heard before. As an example, Bach’s
WTC can be used to generate a tonal co-ordinate system. In this co-ordinate system
other works can be embedded, such as Chopin’s Préludes, Alkan’s Préludes, Scri-
abin’s Preludes, Shostakovich’s Preludes, and Hindemith’s Ludus Tonalis. In this
way the method can be used to model how a listener who is familiar with Bach’s
WTC would perceive keys and pitches in the more recent works. In addition, al-
ternative concepts of inter-key relations underlying Hindemith and Scriabin may be
discovered.

We would like to emphasize that the use of correspondence analysis is by no
means limited to tonality analysis. The method is a universal and practical tool
for discovering and analyzing correspondences between various musical parameters
that are adequately represented by co-occurrences of certain musical events or ob-
jects. Examples include pitch class, key, instrumentation, rhythm, composer, and
style. Three-dimensional co-occurrence arrays, for instance of pitch class, key, and
metric position can be analyzed. In particular, it seems promising to extend our
analysis to temporal transitions in the space of musical parameters.

In an fMRI study, using the representation of a tone center parameterized by two
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toroidal angles on the TOMIR, Janata et al. [2002] 20 find evidence for localizing brain
activity related to tone center modulation. Text-book like modulations, synthesized
with artificially sounding FM-clarinets, are played to the subjects. Two toroidal an-
gles on the TOMIR seem to be a representation of tone centers preserving sufficient
information to identify voxels that are sensitive to tone center transitions. At this
stage of research, non-invasive brain imaging techniques seem to be not yet capa-
ble to indicate whether voxels that are sensitive to distinct tone centers are spatially
arranged in the brain in a certain manner, e.g. in a torus or in any other, for example
more dynamic, configuration. An actual neural correlate of a dynamic topography
may not give equal space to all of the tone centers, since e.g. tonic and dominant oc-
cur more often than remote keys. The modulation from one scale degree to another
one is not equally likely as the reverse transition. E.g. I − vi occurs more often than
vi − I.

3.9 Sketch – First Steps Toward Assignment of Tone

Center Transitions

Based on CQ-profiles we have investigated styles, keys, and visualizations of their
inter-relations. We have only considered average CQ-profiles across entire pieces,
neglecting sequential aspects. We will now analyze sequences of profiles averaged
over small sections of a piece. The segmentation is consistent with musical structure
apparent in beats or bars. Tone center transitions and modulations are assigned
on multiple time scales. They are displayed as trajectories on landscapes of tone
centers. Tonal ambiguity and polytonality is measured. The outlined framework for
assignment of tone center transitions is demonstrated for a couple of examples such
as Chopin’s Prélude op. 28 No. 20. The presented methods in this section should
be considered sketchy auxiliary results.

3.9.1 Timing and Tone Centers

We will describe a rudimentary way how to calculate onsets and beat weights.

Onset Detection The onset detection algorithm introduced here first calculates
the quotient of absolute intensities downsampled at different sampling rates (Equa-
tions 3.11 and 3.12). From the result recursively the discrete time derivative is thresh-
olded and fed to an indicator function twice (Equations 3.13 and 3.14). Finally clus-
ters of onset points are replaced by the last onset. An efficient method for onset
detection is suggested by Rodet and Jaillet [2001].

For a sound signal s with the original sampling rate at time t0 the relative intensity
irel is calculated as the quotient between the mean absolute intensities iw1 and iw2 of

20Petr Janata mentioned the employment of this particular representation in personal communica-
tion.
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Parameter Symbol Value
Sampling Rate fs 5512.5
Cut-off Threshold T∆ 0.1
Cut-off Threshold T∆2 0.3
JN Time Lag w1 0.05 s
Mean Window w2 1 s
Unification Distance d 3

Phase Correction p 0.15 s
Table 3.4: Parameters of onset analysis of Chopin’s op. 28 No. 20.

a short (w1) and a long time frame (w2)

irel[t] =
iw1 [t]

iw2 [t]
(3.11)

with

iw[t0] =
1
w

t0

∑
t=t0−w+1

|s[t]|. (3.12)

With the discrete time derivative ∆irel
∆t we extract what is above threshold T∆

i′ = 1{∆irel
∆t −T∆>0}. (3.13)

We calculate the onset o relative to threshold T∆2 with an indicator function

o = 1{∆i′
∆t −T

∆2>0}. (3.14)

For time t, o[t] indicates whether there is an onset (o[t] = 1) or not (o[t] = 0). By
Equation 3.14, from multiple consecutive onsets the first one is singled out. In a last
step accumulations of beats are unified: If o[t1] has a preceding onset o[t0] less than
d resolution steps before (on the time scale downsampled by w1), the preceding
onset o[t0] will be removed

If o[t1] = 1 and ∃t0 : t1 − d + 1 ≤ t0 ≤ t1 − 1 : o[t0] = 1
then o[t0] = 0.

In Figure 3.56, the beginning of the first prelude in C–major of WTC I, recorded
by Glenn Gould, is analyzed. A JN time lag w1 of 0.032 seconds and a mean window
w2 of 1 second are used in Equation 3.11. For Equations 3.12 – 3.14 parameters in
Table 3.9.1 are used. All onsets are captured correctly, except in two instances (red
arrows) the detected onset is distorted. The distortion is caused by piano pedaling
that erodes the sharp onsets.
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Figure 3.56: Automated onset detection in the first three and a half bars of
the prelude C–major of WTC I recorded by Glenn Gould. The vertical bars
indicate detected onsets. Numbers in the figure count the bar beginnings.
All onsets are captured correctly, except twice (arrows) the onset is detected
on a distorted position, since pedaling on the piano erodes the clear cut
onsets. As a comparison, the sixteenth notes in the second half of the first
half bar have sharp onsets in the time domain. The loudest notes do not
occur on the first beat of a bar.

Beat Strength Extraction Based on successfully extracted onsets, by periodicity
analysis it is possible to obtain further temporal information, for instance on beat
strength, meter, and tempo. A diagram of beat strengths indicates a hierarchy of cy-
cle durations. Fleischer [2002] proposes a model for the calculation of beat weights,
based on calculating local meters from annotated note onsets. Therefore her ap-
proach cannot extract beat strengths from expressively varied note onsets in real
performances. Also her model could not compensate for incorrectly extracted on-
sets. It is beyond the scope of this thesis to evaluate various beat weight calculation
methods such as Scheirer [1998] based on an oscillator model, Seppänen [2001];
Tzanetakis et al. [2002]; Gouyon and Herrera [2003]; Eisenberg et al. [2004], Uhle
and Dittmar [2004] using independent subspace analysis, and Lang and de Freitas
[2004] employing graphical models.

To calculate beat strength, the binary onsets o[t] are subject to autocorrelation
(Equation 2.21 on page 79) yielding xacf. A linearly increasing window w is then
multiplied component wise with xacf to compensate for the summation of a different
number of frames in the autocorrelation function resulting in the modified correlo-
gram

p[t] = xacf[t] · w[t]. (3.15)

To achieve an order of beat weight prominence, we sort the normed p[t] decreasingly.
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Figure 3.57: Periodogram of WTC I (Glenn Gould), first five seconds: The
most prominent period is the half bar length, then sixteenth’s length, then
bar length. The half bar length corresponds to the melodic pattern repeating
every half bar.

Again the beginning of the first prelude C–major in WTC I serves as an example.
In Figure 3.57 from previously analyzed onsets, beat weights are calculated in a
correlogram using Equations 2.21 and 3.15. Prominent cycle durations on different
time levels are revealed. They correspond to the minimal duration of notes ( 1

16 th
notes), beats, half bars, and bars. The half bars are most prominent, since the same
melodic pattern repeats every half bar. For longer sections of a piece also phrases
and formal parts may be indicated in the correlogram.

We have developed only a rudimentary tool to aid the analysis of tone center se-
quences. It is beyond the scope of this thesis to optimize these tools in various ways,
such as: 1) Onset detection can be performed on the outcome of a filter bank. 2) The
artifacts of taking a discrete derivative of a previously thresholded function are to be
discussed. 3) The binary onsets fed to the autocorrelation may be replaced by Gaus-
sians centered at the onset in order to improve the capturing of tempo changes. 21

4) The problem has to be explored that autocorrelation captures half of the speed
of a given pulse but not double speed. This increases the difficulty of detecting fast
tempi.

3.9.2 Chopin’s c–Minor Prélude

Containing several modulations with clear cadences, Chopin’s c–minor Prélude

op. 28 No. 20 is well suited as a running example for the assignment of tone cen-
ter transitions. In the score (Figure 3.58 on the following page) tone centers are

21Personal communication with Klaus Frieler.
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marked. They were determined by a musicologist. Tone centers in parentheses in-
dicate tonicizations on a very short time scale. The prelude is written in the key
of c–minor. Each of the first four bars contains a cadences. A descending line fol-
lows in bars 5–9, echoed in bars 9–12 at pp, before the final chord in bar 13. The
piece gives the impression of a withdrawing funeral march [Koczalski, 1909; Le-
ichtentritt, 1921]. The same rhythmic pattern is maintained throughout the entire
piece. A detailed scale degree analysis reveals: bar 1 (c): I − IV − V

87
65 − I, bar 2 (A♭):

I − IV − V
87
65 − I, bar 3 (c): V7 − I♭7 − iv87 − i(I), bar 4 (G): V7 − I − V

7
65 − I, bar 5 (c):

i − VI − VII
♮7
♯5
♮7 − v, bar 6 (G): ii

7
65 − V

7
♭5
♭5 − I

54
32 − I7

7, bar 7 (c): i3 − iv − V87
3 − i, bar 8:

VI − II♭ − V
7
65 − I. In bar 1 there is a stereotype cadence in c–minor. In bar 2 as well

there is a clear cadence, in A♭–major. A plagal cadence in c–minor occurs in bar 3.
But the tone center here is less clear. Due to the interdominant C7 (2nd beat) there
is a short tonicization for f–minor. It is debated whether the last chord in bar 3

should be a C–major (e′) or a c–minor chord (e♭’).22 However, in the recording that
we will analyze Alfred Cortot plays the C–major chord. Again a clear cadence, in
G–major, occurs in bar 4. From bar 5 beat 2 until bar 6 beat 3 the bass line descends,
doubled in octaves, in chromatic steps every quarter note, while the leading voice

22In bar 3 on the last beat there is an e′. Zimmermann [1969] considers this a typo in Chopin’s
manuscript. He argues for replacing e′ by e♭′, because major and minor keys should alternate
within the first four bars. In Chopin [1957] it is mentioned that Chopin himself manually corrected
this in Jane Stirling’s copy.

107

5

cc

c

A♭ (c) (f) (C) G

A♭ c A♭c

c

c

Figure 3.58: Chopin’s c–minor Prélude op. 28 No. 20. Tone center analysis
is given by a musicologist. Tone centers in parentheses indicate tonicizations
on a very short time scale.

172



3.9 Outlook – Tone Center Transitions

follows an ornamented line descending in seconds on the 1st and 3rd beat. In bar 7,
there is a clear cadence in c–minor. The A♭–major and D♭–major chords in bar 8 (1st
and 2nd beat) give a flavor of A♭–major. But the perception is ambiguous, since the
D♭–major chord can be associated with the Neapolitan chord in c–minor, although
the fundamental is in the bass.23 Therefore, the perceived tone center oscillates from
c–minor (bar 7) to ambiguous A♭/c–minor (1st and 2nd beat of bar 8) and back to
c–minor (bar 8, 3rd and 4th beat).

3.9.3 Moving Average Analysis

In the simplest scenario for the assignment of tone center transitions, the moving
average of a sequence of CQ-profiles is matched against a set of key prototypes,
the reference set, employing an appropriate distance measure. From a recording of
Chopin’s Prélude op. 28 No. 20 in audio data format, performed by Alfred Cortot,
a sequence of 20 CQ-profiles per s is calculated. CQ-profiles are averaged across a
time frame of 4 s length using a cosine window. A reference set (Section 3.3.1 on
page 123) is yielded as follows. For each mode an average NCQ-profile of all Chopin
Préludes is generated. In turn, these average CQ-profiles are transposed to all keys
of the same mode. Then each of the short-term average CQ-profiles is assigned to
the key whose reference vector is closest according to maximal correlation.

23Cf. the footnote on p. 56.
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Figure 3.59: Moving average analysis of Chopin’s c–minor Prélude op. 28

No. 20. Gray indicates minor, black indicates major. If there is neither black
nor gray at a certain time, the significance of a particular key is below a
given threshold. Vertical lines indicate bars with the number on top of the
figure. There is no distinction between enharmonically equivalent keys. The
analysis is highly consistent with a musicologist’s analysis in Figure 3.58 on
the facing page. (Cf. text for details.)
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In general, the automated analysis of tone center transitions is highly consistent
with the musicologist’s assignment in Figure 3.58 on page 172. Some spontaneous
misclassifications occur, i.e. before bar 1, A♭–major in bar 1, E♭–major in bar 2, f–
minor and c–minor in bar 8. In bar 1 c–minor is captured, interrupted by a short
f–minor misclassification. A♭–major is recognized correctly in bar 2. In bar 3 a
D♭–major misclassification occurs in the beginning. Successfully the tonicization of
f–minor and the tone center c–minor are recognized. In bar 4 in the beginning, C–
major and c–minor are falsely identified, but later G–major is correctly assigned. In
the beginning of bar 5 g–minor is assigned incorrectly. But later the right tone center
c–minor is found. The chromatic descend in bar 6 misleads the algorithm to falsely
identify G–major and g–minor. In bar 7 c–minor is correctly captured. In bar 8 the
A♭–major tonicization is recognized, but not the tone center c–minor.

This is a good classification result, taking into account that we provide almost no
explicit musical knowledge to the system except the concept of pitch classes, as a
representation of the piece. The system receives musical knowledge only implicitly
from the pieces of music providing the reference vectors. The choice of the analysis
window does not depend on onset, rhythmical, and metrical structure.

3.9.4 Multiple Time Scale Analysis

Instead of determining a tone center within a rigid moving average window it is
desirable to calculate harmony and tone center of musically meaningful segments,
such as chords, bars, or formal sections of a piece. For this purpose, we first calcu-
late onsets (Section 3.9.1 on page 168). Then through beat weights (Section 3.9.1 on
page 170) we generate a musically motivated segmentation on multiple time scales.
The CQ-profiles averaged across these segments are matched with the key proto-
types of the reference set in order to assign a tone center to them. Finally the tone
center progressions on various time scales are displayed. For this purpose, we first
determine onsets and beat weights according to Equations 3.11 – 3.14 using the para-
meter settings in Table 3.9.1 on page 169. The results are displayed in Figure 3.60 (a).
Then we use autocorrelation in Equations 2.21 on page 79 and 3.15. The autocorre-
lation is calculated in a maximal time window of 6.5 seconds, for window w a linear
function is employed, and cycle durations up to the order of 20 are considered. Time
window step sizes from fine-grained to coarse temporal resolution are calculated in
Figure 3.60 (b). The strongest beat weights are on time lags associated with bar, 3

4
bar, half bar, and beat.

High beat strength in the correlogram in Figure 3.60 on the facing page gives rise
to a temporal segmentation based on the referring time lag. Starting from onsets,
recursively, temporal segmentation layers from fine to coarse resolution are con-
structed. Let us select a small time lag with high associated beat strength in the
correlogram. The first onset is chosen to be the first segmentation mark. The next
segmentation mark is given by the onset that lies in approximately a time lag dis-
tance to the first one. In the same way the third segmentation mark is constructed
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Figure 3.60: Onset extraction (a) and correlogram (b) of Chopin’s op. 28

No. 20. The onset extraction (a) works entirely correct. Time lags of high
beat weights (b) can be related to musically meaningful cycle durations,
such as beat, bar, and fractions thereof. Cf. Section 3.9.4 on the facing page
for details.

from the second one, and so forth. From this segmentation a segmentation with
coarser resolution is constructed. We yield segmentations on three levels of tem-
poral resolution, for onsets, beats, and bars. Each segment defines a time window.
Weighted by a cosine, CQ-profiles within this window are averaged. The average
CQ-profiles of these segments are matched with the key prototypes from the ref-
erence set in the same way as in Section 3.9.3 on page 173, thereby assigning tone
centers. For Chopin’s Préludes op. 28 No. 20, automatically detected tone center
transitions on various time scales are shown in Figure 3.61, using Scriabin’s key-color
map (cf. Section 3.7.1 on page 152). The top row indicates the tone center analysis
on the bar level. It coincides with the analysis of a musicologist, except in bar 6

(cf. Section 3.9.2, Figure 3.58 on page 172). In this bar, C–major is falsely indicated
due to the chromaticism in the descent. Segmentations in the lowest (onsets) and the
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Figure 3.61: Analysis of tone center progression on multiple time scales, on
the onset, beat, and bar level (from bottom to top). Vertical lines and num-
bers on top indicate bars. On the bar level, the analysis is always correct,
except in bar 6. On the beat and onset level, often the correct chords are
identified. (Cf. Section 3.9.4 and the score in Figure 3.58 on page 172.)

second lowest row (beats) in Figure 3.61 are almost the same, since the rhythm is the
main beat, except on the 3rd beat a quarter note is replaced by a dotted eighth and
a sixteenth note. In further refinement of this approach, both on onset and beat time
level it would be more appropriate to use chord prototypes instead of tone center
prototypes. However, the reference set generated from the averaged Préludes gives
a reasonable approximation. Most chords, on the beat and onset level in bars 1, 2, 4,
and 7, are assigned to the tone center suggested by the musicologist. The harmony
of the chord is identified correctly in other instances, in bar 5 beat 2 & 4,bar 7 beat 2,
and bar 8 beat 2. Sometimes suspension (bar 8 beat 3) misleads the harmonic analy-
sis. It also occurs that a harmony closely related to the chord is indicated, such as the
relative minor in bar 1 beat 2, the tonic of the 7th chord interpreted as a dominant
in bar 3 beat 2 and bar 6 beat 2, and the parallel minor in bar 4 beat 4.

3.9.5 Ambiguity and Poly Tone Center Analysis

Instead of just considering the best matching tone center, we can gain additional
information from the second, third, fourth, and so forth . . . most prominent tone
center.24 In late romanticism and in polytonality several tonal references exist simul-
taneously. How clear or rather ambiguous is the best matching tone center? We will

24Leman [1995] in his tone center attractor dynamics, based on the concept of elastic snails, speaks
of “attractors.”
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suggest a measure for tonal ambiguity.
For both poly tone center and ambiguity analysis we consider CQ-profiles aver-

aged across bar segments such as in the top row in Figure 3.61 on the preceding
page. Poly tone center analysis displays the n tone centers with the lowest dissimi-
larity values with respect to the sample at hand. Figure 3.62 displays the four most
prominent tone centers in the first eight bars of Chopin’s op. 28 No. 20.

Ambiguity a is calculated by dividing the dissimilarity value (d1) of the closest
tone center by the dissimilarity (d2) of the second closest tone center relative to the
analyzed sample

a =
d1

d2
. (3.16)

In Figure 3.63 on the next page, high ambiguity is found in bars 3, 5, and 6. In bar 3

the chords g7, c7 induce tonicizations of c–minor and f–minor. From there the tone
center is switched to C–major. In bars 5 and 6, chromaticism makes tonality unclear.

Sapp [2001] introduces the idea of ambiguity and poly tone center analysis, but
without explicitly stating Equation 3.16. His analysis is based on MIDI rather than
audio, not using content-driven segmentation.

3.9.6 Tone Center Path on the Torus

How can we spatially visualize the tonal content of a piece, including tone center
progressions, ambiguity, and tonicization? We need to line out the topography of
tone centers. The strength of a tone center in the piece appears as the height of a
mountain elevating from the tone center’s location in the tonal topography. A tonal
modulation is viewed as a path across the mountains. A toroidal model of inter-key
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of Chopin’s op. 28 No. 20. The lower the dissimilarity, the better the bar
matches with the particular tone center. The lowest tone centers are identical
with the ones in the top row of Figure 3.61 on the facing page.
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Figure 3.63: Tonal Ambiguity. Each level corresponds to a bar in Chopin’s
op. 28 No. 20. The bars are indicated by numbers. High ambiguity prevails
in bar 3, and in the beginning of the chromatic descending passage in bar 5

and 6.

relations provides a tonal topography, e.g. the SOM trained with Chopin reference
vectors (Figure 3.51 on page 161). We consider the four most prominent tone centers
(Figure 3.62 on the preceding page) in each bar in order to incorporate tonal ambi-
guities. To build the mountains representing the tonal content, we accumulate the
prominences, the inverse dissimilarity in Figure 3.62, of each tone center. The overall
prominence of a tone center is encoded by a relief, contour lines, and a color scale
from grey (low) to white (high). 25

How can we read the musical landscape of Prélude No. 20 in Figure 3.64 on the
facing page? The top of the mountain is at c–minor, the key of the piece. The crest
at A♭-major reflects the two modulations towards this tone center. There are minor
elevations for f–minor and C–major, reflecting short tonicizations in bar 3 and the
C–major misclassification in bar 6. Low elevations appear at E♭–major, g–minor,
G–major, F–major, D♭–major, and B♭–major.

3.9.7 Error Function

How can we measure the quality of the assignment of tone center transitions? We
define a dissimilarity between the suggestion by a musicologist and the best match-
ing tone center. These dissimilarities are then integrated over time.

For time t, be ktheo[t] the tone center assigned by a musicologist. kemp[t] be the
best matching tone center provided by automated analysis. Accordance of the mu-
sicologist’s suggestion and the best matching tone center is indicated by

1ktheo[t](kemp[t]) =

{

1 if ktheo[t] = kemp[t]

0 otherwise
. (3.17)

25Note that in Figure 3.51 on page 161 colors redundantly encode the position of a tone center on the
TOMIR. But in Figure 3.64 the colors encode the strength of the tone center at that position.
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3.9 Outlook – Tone Center Transitions

Figure 3.64: The path of tone center progression on the tonality “moun-
tains” of Chopin’s Prélude No. 20. The topography is provided by the SOM
trained by average Chopin profiles (Figure 3.51 on page 161).The color scale
brown-red-orange-white encodes low to high strength of tone centers. The
numbers indicate bars. For each bar the strength of the four most prominent
tone centers is accumulated. (Cf. text.)

A simple error function at time t0 integrating over a back-looking time window ∆t
is given by

E =
t0

∑
t=t0−∆t+1

(1 − 1ktheo[t](kemp[t])). (3.18)

A more refined misclassification analysis can be derived from integrating the dis-
tance (Equation C.7) on the torus, e.g. on Figure 3.51, between the musicologist’s
assignment and the best matching tone center. However, the slight refinement of
error analysis by the latter concept can be compensated for by the simplicity of
Equation 3.17.

3.9.8 Moving Average Analysis of Simple Modulations

The potential of moving average tone center analysis (Section 3.9.3 on page 173) is
further explored. Textbook examples [Schneider, 1987] of a simple diatonic and a
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chromatic modulation are played on a piano by Young-Woo Lee and recorded by
Joo-Kyong Kim in the recording studio of Berlin University of the Arts.

The score in Figure 3.65 (Schneider [1987], p. 168) displays a diatonic modula-
tion from C–major to G–major. Within the first two bars, a stereotype cadence
I − IV − V − I in C–major occurs. In bar 2, the second chord (C–major) is employed
as a pivot chord. This chord acts as the tonic in preceding C–major and as the sub-
dominant in subsequent G–major. From the third chord until the end we observe
a cadence IV − V4−3 − I. Moving average tone center analysis (Figure 3.66 on the
facing page) yields the following. In the beginning, tone center C–major is correctly
captured. In the end, the final tone center G–major is recognized correctly after a
small delay. For short moments, misclassifications occur in the beginning (F–major)
and towards the end (D–major). For the second chord tonicization for F–major oc-
curs.

A musicologist’s detailed analysis of the chromatic modulation from C–major to
A–major in Figure 3.68 on page 182 (Schneider [1987], p. 172) reveals the following.
From the first chord (C–major) the second chord is derived by altering the c to
leading note c♯ and adding the fundamental a. Thereby, this chord is turned into a
dominant seventh chord on a, leading to the subdominant D–major (first chord in
bar 2) of A–major. A IV − V7 − I cadence confirms the tone center A–major in bar
2 and 3. Moving average analysis in Figure 3.68 on page 182 grasps the D–major
tonicization on the first chord in bar 2. Little errors occur in the beginning with
short false F–major/f–minor and in the end with false D–major classification.

In general, the modulations are captured with some short spontaneous misclassifi-
cations and a delay. This could be compensated for by correcting size and weighting
of the analysis window.

3.9.9 Discussion

In the tracking of tone center transitions, temporal aspects of changing CQ-profiles
come into play. For simple temporal processing, we employ moving average. We
have experimented also with the temporal Kohonen map [Chappell and Taylor,
1993]. But the algorithm is not practically useful for reasonably quantized input
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Figure 3.65: Textbook example of a diatonic modulation from C–major to
G–major (from Schneider [1987], p. 168 bottom). In the second bar, the
second (pivot) chord can be either heard as the tonic in preceding C–major
or as the subdominant in subsequent G–major.
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Automatic Tone Center Extraction of Diatonic Modulation C−G 
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Figure 3.66: Moving average tone center analysis of the diatonic modula-
tion in Figure 3.66 from C–major to G–major. All found tone centers are
major. The dotted vertical line indicates the onset of the pivot C–major
chord. Overall, the tone centers are captured correctly, but delayed and in-
terrupted by short spontaneous misclassifications and a tonicization of the
second chord.

data. Harmony is partly organized syntactically (Section 1.2.4 on page 53). If we
can further reduce successive CQ-profiles to a short sequence of a limited number
of states, hidden Markov models can be useful. [Sheh and Ellis, 2003] Multiple cues,
e.g. tonal rhetoric (p. 61), characteristic dissonances, and other idiomatic patterns,
can be extracted to further improve tone center transition analysis. Tonal rhetoric
can be taken into account by weighting the CQ-profiles of the entire piece with an
inverted cosine window emphasizing the beginning and the end of the piece and
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Figure 3.67: Chromatic modulation from C–major to A–major (from Schnei-
der [1987], p. 172 top). By high alteration c(♯) of the keynote and addition
of the fundamental a, the second chord functions as a dominant seventh
chord to the subsequent D–major chord. The new tone center A–major is
confirmed by a IV − V7 − I cadence.
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Automatic Tone Center Extraction of Chromatic Modulation C−A
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Figure 3.68: Moving average tone center analysis of the chromatic modula-
tion in Figure 3.67. The dotted vertical line indicates the onset of the pivot
chord, the dominant seventh chord on a. The analysis works well, except a
tonicization on the third (D–major) chord and short misclassifications in the
beginning and in the end.

deemphasizing the middle section.
Another problem is the availability of reliable tone center labels for supervised

learning, for several reasons: (1) Historically, western harmony becomes more am-
biguous towards the end of the 19th century. (2) Sometimes there is no “correct”
label. The tonal interpretation of a musical excerpt is debated among musicologists
applying different concepts of harmony. (3) Labeled music in digital form is not pub-
licly available in high quantities. Labeling of musical data, e.g. with tone centers, is
expensive. A workaround is to generate labels automatically. E.g. with a functioning
MIDI-to-audio alignment at hand, one could automatically extract label information
from music in MIDI format, align MIDI to audio, and then use the labels for audio
also.
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Summary

We have investigated various aspects of circular perception of relative pitch, CQ-
profiles, and inter-key relations. The work in this thesis contributes to the conver-
gence of distinct disciplines towards a unifying cognitive musicology. The results
can be summarized under two areas as follows:

1. Circular perception of relative pitch

a) generalization to harmonic complex tones (more natural in a musical con-
text)

b) verification in a psychoacoustic experiment

c) theory in the framework of gestalt principles and perceptual quantization

d) formalization and implementation as a computational psychoacoustic
model

e) design of an acoustical stimulus that is circularly perceived as ascending
and descending in pitch at the same time

f) analysis of music with respect to circularly perceived pitch, tempo, and
loudness

2. CQ-profiles and visualizations

a) fast, robust real time method of calculating CQ-profiles

b) significance of pitch class profile or particular pitch class intensities for the
composer and mode discrimination in a testing and classification frame-
work

c) clustering and visualization of inter-mode and inter-composer relations

d) sketch of decomposition of pitch class profiles into components referring
to composer, cycle, and piece

e) identification of the circle of fifths in various cognitive modeling scenarios

f) evolving toroidal models of inter-key relations (TOMIR) in various mod-
els of interaction between early auditory processing, schema, and music
samples

g) gathering of key preference statistics and the visualization of composer
inter-relations based upon them
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h) algorithm inducing a global topology from a stipulated local topology

i) first steps toward sound based assignment of tone center transitions

j) the latter also in conjunction with varying temporal resolution and beat
weights.

We have provided a computational model simulating the perception of pitch dif-
ferences and a framework for tone center perception established by previous expo-
sure to tonal music.

Music analysis tools are built for style investigation and for tone center tracking.
In traditional musicology, harmonic modulation tracking as well as stylistic differen-
tiation require a thorough understanding of music theory. The methods presented
here attack the problems in an elegant, nevertheless surprisingly effective, bottom-
up approach.

The following links are shown between distinct aspects of cognitive musicology.
A surprising correspondence between a particular digital filter bank and results in
experimental work in music psychology is discovered: The CQ-profiles of cadential
chord progressions played on the piano match very well with the spectrally weighted
probe tone ratings.

Normalized constant Q profiles based on the audio signal are a significant indi-
cator, revealing a lot about the stylistic characteristics of the music. The stylistic
analysis by means of average CQ-profiles can be extended to other music, e.g. late
romanticism, neo-baroque, and in a more limited fashion, to atonal, polytonal, and
micro-tonal music. The method opens the door to the analysis of non-written music
traditions, like Jazz, and perhaps also non-Western music (particularly of the South
and Southeast Asian varieties).

An operational model for the acquisition of inter-key relations is exposed to pieces
of tonal music. The circle of fifths and a homogeneous toroidal configuration of
keys evolve. The model’s basic assumptions are reduced to (1) Logarithmic fre-
quency resolution grounded in the Weber-Fechner law, reflected in various aspects
of the auditory periphery, (2) Contextual formation of semantics of tone centers, by
application of the proximity gestalt principle in algorithms like Isomap and corre-
spondence analysis, serving as a metaphor for a schema, (3) Identification of octave
components based on the projection of pitch onto the pitch class circle in the he-
lix model, and (4) Consideration of semi-tones. The explanatory power of Leman
[1995]’s TOMIR is increased, first, by substantially extending the corpus of data it
operates on, and, second, by omission of strong presumptions: (1) The sensory data
that forms the internal representation of inter-key relations consists of a broad cor-
pus of actual performances of pieces of music, e.g. Chopin’s Préludes, instead of a
very limited number of textbook-like examples in the artificially sounding timbre of
Shepard tones. Due to the timbral simplicity of Shepard tones, the latter present a
quasi symbolic score-like representation. (2) The toroidal topology is not presumed
by using a toroidal SOM as an implementation of the schema. Instead, the circle of
fifths and a homogeneous toroidal configuration evolve in correspondence analysis
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and Isomap, neither of them assuming a toroidal topology a priori. In contrast to
Leman [1995], the model used here does not rely on features which are of small
relevance to inter-key perception and whose relation to biology is not clear, e.g.
autocorrelation and the global comparison necessary in the SOM algorithm.

CQ-profiles in conjunction with SOMs, CA, or fuzzy distance are suited to au-
tomatically track tone center modulations. Such an approach yields a very cheap,
elegant, and powerful method. It can easily be applied to different tunings. As
a built-in analysis module it forms the backbone of automatic accompaniment of
recorded audio sources in real time.

First and foremost, we have concentrated on the analysis of circular pitch and
pitch class profiles. We emphasize, however, that for organization of large data
bases the given methods of classification, clustering, and visualization are by no
means restricted to pitch classes. The employed machine learning techniques for
significance testing (t-test, sparse linear programming machine), classification (sup-
port vector machine, regularized discriminant analysis), clustering, and visualiza-
tion (self-organizing feature map, SOM; topographic ordering map, correspondence
analysis, CA; Isomap) are not at all limited to CQ-profile analysis. The methods
are universal and provide a practical tool for discovering and analyzing correspon-
dences among various musical parameters that are adequately represented by co-
occurrences of certain musical events or objects: e.g. pitch classes, keys, instrumen-
tation, rhythm, composers, and styles. In particular, it seems promising to extend
our analysis to temporal transitions in the space of musical parameters.

An increasing problem in music technology is the management of huge databases
of music, including elaborated searching methods. The labeling of music with vari-
ous features facilitates navigation in the database. From recorded music, numerous
distinct features are automatically extracted yielding information about pitch (class),
tonality, and rhythm. As a result, engines searching for the appropriate matching
sample for a music arrangement, a sound track, or other particular requirements
are constituted or enhanced. These methods are embedded in the MPEG-7 frame-
work. The request for such technology in music (industry) and research is apparent,
as a workbench for musicology, a psychologically based composition environment,
interactive music making (like DJ-tools, music minus one, and karaoke systems),
compression methods, content retrieval, music recommendation systems, and hear-
ing aids.

In opposition to a purely Platonic approach in music theory, our findings are
supported by physics, psychoacoustics, statistics, and auditory neuroscience. The
strongest evidence for our results is given by psychological experiments. Biologi-
cally inspired algorithms are employed to such an extent as they are available at the
current (early) state of auditory neuroscience and relevant to the modeled problem,
and in particular the modeling of some features of the auditory periphery and the
design of schemata. The models are operational and act on the raw sound signal,
instead of a high-level symbolic representation. The main algorithms are capable of
working in real time and can react to the input signal. The core results are based on
the analysis of a statistically significant number of music samples. The great number
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of pieces that can be processed in a data base and the help of statistics and machine
learning enables musicology hypothesis testing with defined levels of statistical sig-
nificance instead of musical discussion based on isolated musical case studies.

Although here and there landscapes become apparent, wide areas on the map of
the mysterious topography of music remain white, attracting adventurous explorers:

Überhaupt bleibt hier dem sinnigen, von höherem Geiste beseelten
Physiker und Mechaniker noch ein weites Feld offen, und ich glaube,
daß bei dem Schwunge, den die Naturwissenschaft erhalten, auch tieferes
Forschen in das heilige Geheimnis der Natur eindringen, und manches,
was nur noch geahnet, in das rege Leben sichtlich und vernehmbar brin-
gen wird. 26 (E. T. A. Hoffmann [1821]: Die Automate)

26Generally a wide domain of research remains open to the witted physicist and mechanic who is
animated by a higher spirit. Due to the drive that science receives, in addition, I think that more
profound research will penetrate into the holy mystery of nature and some that merely has been
divined will visibly and audibly be brought into brisk being.
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A Theory and Solution Ideas of the

Binding Problem

The binding problem is the general formulation of the task to group partials to a
holistic tone perception (cf. Section 1.1.7 and its relevance for Shepard tones, Sec-
tion 1.2.3). Two hypotheses regarding the neural implementation of the binding
problem are given. Independent component analysis (ICA) and possible applica-
tions to the cocktail party problem are briefly introduced.

The first hypothetical solution to the binding problem, hierarchical organization,
works via integration by anatomic convergence. This model assumes that at an early
stage, basic object features such as frequency components are detected. Through
progressive convergence of the connections, cells emerge with more specific re-
sponse properties on a higher processing level. For example, they respond to tones,
chords, harmonies, and keys. This corresponds to hierarchical artificial intelligence
approaches (cf. context-free grammars and Section 1.2.4 on page 51). Even though
hierarchical structures in the brain are joined by lateral connections, in practice a
strictly hierarchical concept is successful, e.g. within a framework of a knowledge
database and a Bayesian network [Kashino et al., 1998].

Another way of trying to explain feature binding is through neural synchroniza-
tion. The temporal binding model assumes that assemblies of synchronously fir-
ing neurons represent objects in the cortex. For example, such an assembly would
represent a particular speaker. These assemblies comprise neurons, which detect
specific frequencies or amplitude modulation frequencies. The relationship between
the partials can then be encoded by the temporal correlation among these neurons.
The model assumes that neurons, which are part of the same assembly, fire in syn-
chrony whereas no consistent temporal relation is found between cells belonging to
representations of different speakers. Evidence for feature binding by neural syn-
chronization in the visual cortex is given by Engel et al. [1997].

Terman and Wang [1995]; Wang [1996]; Brown and Cooke [1998] supply an im-
plementation based on time log-frequency representation of music. Their model
consists of a set of oscillators in the time frequency domain or the correlogram (Sec-
tion 2.2 on page 71). Oscillators which are close to each other are coupled strongly
(Hebbian rule and principle of proximity). An additional global inhibitor stops os-
cillators belonging to different streams being active at the same time. This approach
can be used for vowel segregation and also for segregation of different voices ac-
cording to the proximity principle (Cooke and Brown [1999], Figure 1.6). A more
promising approach is based on the “integrate and fire” model [Maass, 1997]. An
ensemble of such models displays synchronous spike patterns.
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A.1 Implementations of Acoustical Source Separation

A mixture of several sound sources (speech, music, other sounds) is recorded by
one or several microphones. The aim is the decomposition into the original sources.
Since an important application is the development of hearing aids, the goal is demix-
ing with at most two microphones.

There are some successful applications of source separation for artificial mixtures
(sources are recorded separately and are then digitally mixed by weighted addition).
On the other hand, mixtures in real environments are more difficult to demix. The
different approaches can be roughly divided into two categories:

1. Mimicking the auditory system and

2. Employment of techniques of digital signal processing without reference to
biology.

Okuno et al. [1999] aims to combine (1) and (2) synergetically. A possible treatment
similar to (1) is as follows: An auditory model is used for preprocessing. From the
output of the auditory model (cochleagrams and correlograms) harmonic substruc-
tures are extracted. By the use of gestalt principles spectral units are built from this.
From these separated units sound can be resynthesized [Nakatani et al., 1995]. In
another approach the spectral units are determined as a sequence of correlograms,
and the auditory transformation is inversely calculated [Slaney, 1994, 1998].

The larger portion of methods according to (2) deals with the realization of the
independent component analysis (ICA, Comon [1994]; Cardoso [1998]; Müller et al.
[1999]). Sanger [1989] indicates a reference to biological systems. But his approach
is largely a purely statistical model. So we need at least as many microphones as
sound sources. It is a problem that the model does not account for real reverberation.
So decomposition of mixtures in a real acoustic environment works only under very
special conditions. First approaches are Lee et al. [1998]; Casey and Westner [2000];
Parra and Spence [2000]; Murata et al. [2000]. In addition, it is still a tough prob-
lem to separate one speaker from a cocktail party environment with several sound
sources using only two microphones, as all applicable algorithms up to now require
as many microphones as sound sources.
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B More, Explicit CQ-Profiles

First we will present some more CQ-profiles, of Chopin and Alkan, in addition to
Bach’s WTC (Figures 3.24 on page 127 and 3.25 on page 128). Then we will sketch
out very coarsely an idea how to decompose a profile into portions that can be
attributed to mode, the composer’s style manifested in the cycle, and the individual
character of the particular piece.
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Figure B.1: CQ-profiles of Chopin’s Préludes op. 28 (major) played by
Alfred Cortot.
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Figure B.2: CQ-profiles of Chopin’s Préludes op. 28 (minor) played by
Alfred Cortot.
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Figure B.3: Scriabin’s Preludes op. 11 (minor), played by various pianists
(cf. Section 3.3.4 on page 125).
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B.1 Profile Decomposition

B.1 Coarse Sketch of Profile Decomposition

We have studied what a CQ-profile can reveal about key and composer (Sec-
tions 3.3.1 - 3.5, and 3.8). However, a CQ-profile contains more information, e.g.
about the stylistic characteristics of a particular piece. In order to single out the
information that can be attributed to mode, the composer’s style (as manifested in
a musical cyle), and the individual piece we decompose an average NCQ-profile of
a piece into following components:

profile = mode prototype + cycle residuum + individual residuum.
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Figure B.4: The cycle residua in major, calculated from normalized CQ-
profiles, transposed to tone center c. The various cycles show specific
shapes.

The major mode prototype (not shown here) is calculated from Bach, Chopin,
Alkan, and Scriabin. The mode prototype displays two peaks located at the dom-
inant in the middle and the major third on the left. The shape of the major mode
prototype can be approximately thought of as a sum of two Gaussians or triangles
centered at the dominant (“g”, dominant blob) and the major third (“e”, (major) third
blob). Refering to blobs instead of peaks is motivated by the observation that the
average CQ-profiles are relatively smooth due to the fifth relation, effective both
musically and acoustically, because of the strength of the third partial. In the cy-
cle residua for major, Figure B.4, one can observe the following. For Bach (cf. also
CQ-profiles, Figure 3.24 on page 127) the left side is decreased. The valley between
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More, Explicit CQ-Profiles

Residua Histogram: Statistical Features in Major

WTC I
Preludes

WTC II
Preludes

Chopin
Op. 28

Alkan
Preludes

Scriabin
Op. 11

Hindemith:
Ludus
Tonalis

Std. 0.19 0.39 0.18 0.23 0.2 1.5
Skew. 0.086 -0.016 0.86 0.46 0.2 1.1
Kurt. 3.2 2.8 3 2.1 1.7 4.6
Range 0.42 0.77 0.49 0.57 0.65 2

Table B.1: Skewness (“Skew.”) and kurtosis (“Kurt.”) are normed by the
standard deviation (“Std.”). Hindemith has by far the broadest standard
deviation and the widest range. Apart from Hindemith, Chopin stands out
w.r.t. skewness. WTC has very low skewness.

dominant blob and major third blob is almost eroded. For Chopin the opposite is the
case (cf. also CQ-profiles, Figure B.1 on page 189). In major, the valley between the
dominant and the right major third blob is deepened. In addition on the left side,
the minor third blob (at “eb”) occurs. This indicates an “androgynous” major-minor
mode flavor. Therefore, major and minor do not separate so clearly in clustering
(Figure 3.29 on page 133) and visualization (Figure 3.32 on page 136). Similarly, for
Alkan the dominant and the major third blob are separated by a wide gap. Also an
additional left minor third blob occurs. Scriabin has a high value at scale degree IV
(“f”, Figure B.3). Hindemith equalizes the distribution of pitch class intensities. But
his fugues are not considered in the mode prototype calculation, since stylistically
Hindemith is on the edge of major-minor tonality.

A look at the residua of the individual pieces (Figures B.5-B.6) indicates why in
Section 3.4.1 classification according to the composer sometimes fails. At the same
time, these individual residua reveal characteristics of the particular pieces. E.g.
for the major preludes of Bach’s WTC I, Figure B.5 (a), we observe three different
groups of pieces, emphasizing the falling leading note, the rising leading note, or
the dominant.

Can we describe the residua of the individual pieces statistically? Table B.1 indi-
cates that range, standard derivation, and skewness are significant for distinguishing
between various cycles.

Decomposition of CQ-profiles into mode prototype, cycle residuum, and individ-
ual residuum helps to understand classification, clustering, and visualization results
in Section 3.4. We have indicated how to use CQ-profile decomposition for refined
quantitative music analysis, discovering, for instance, the characteristics of a piece.
However, the method and its musical interpretation are by no means thoroughly
investigated yet.
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Figure B.5: Individual residua revealing characteristics of the particular
pieces. (a) In the major preludes of WTC I (Gould), three patterns can be
observed: the emphasis of the falling leading note( D♭–major, E–major, B♭–
major, B–major), the rising leading note (F♯–major, G–major, A♭–major), or
the dominant (C–major, D–major, F–major). Cf. Figure 3.24 on page 127

for the original CQ-profiles. (b) Preludes of Chopin’s op. 28 performed by
Alfred Cortot. Cf. Figure B.1 on page 189 for the original CQ-profiles.
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Figure B.6: Individual residua for the major preludes of Alkan (a) and the
Hindemith fugues (b).The range for Hindemith is much wider than for the
other composers.
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C Technical Details of

Dissimilarities, Classification, and

Visualization

After explaining the difference between categorical, ordinal, and interval data, we
will introduce the notions of dissimilarity and metric, and give examples of the
latter. Then we will provide technical details of the support vector machine, cor-
respondence analysis, Isomap, and Chew’s geometric model of tones, triads, and
keys.

C.1 Data and Metrices

Data may be accessed as categorical, ordinal, or interval variables. Let a categorical
variable “musician” have the value “violin player”, “singer”, or “piano player”.
But there is no straightforward way to order the values from highest to lowest, in
contrast to ordinal variables. An example for the latter is “musical education” with
a value “no musical education”, “some musical training”, or “professional musical
training”. Such variables can be compared by the “≥” relation. If the order is equally
spaced the variable is an interval variable, e.g. “income” measured in dollars. The
order of the variables can be quantified, e.g. by specifying “10 000 $ more”. It
is sometimes useful to “convert” between different variable types, e.g. to consider
only the order of interval data given in a dissimilarity matrix, or to induce interval
relations on categorical data by comparing associated feature vectors. For metrical
data we require additional conditions, such as the triangle inequality (Equation C.3).

Keys are in itself categorical data. How can we relate two keys to each other?
To two keys, denoted by integers i, j ∈ K, we assign a number by a dissimilarity
dK(i, .) : K → R. Thereby we endow the keys with interval relations. How can we
derive a dissimilarity? One way is to explicitly stipulate it, e.g. dK(1, j) = 0, if keys
1, j ∈ K are “closely related” and dK(1, j) = 1 otherwise. We apply such a stipulated
neighborhood relation in Section 3.7.2. Another way is to characterize keys i, j ∈ K
by particular profiles x, y in an n-dimensional feature space Rn. The axes of the
feature space may represent psychological variables as well as the output of a filter
bank or a music theoretic description. We can then derive the dissimilarity by a
function on Rn, d(x, y) : Rn ×Rn → R.

195



Technical Details

A metric d on Rn = Rn is a dissimilarity so that for x, y ∈ Rn:

x = y ⇔ d(x, y) = 0, (C.1)
d(x, y) = d(y, x) (symmetry), (C.2)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). (C.3)

Typically we define a metric by a positive-semidefinite matrix A ∈ Mat(n × n,R)
by

d(x, y) = 〈a, b〉A := atA−1b (C.4)

where a, b ∈ Rn are derived from columns x = (x1, . . . , xn), y = (y1, . . . , yn) of a
data matrix X ∈ Mat(n × l,R) (i.e. l n-dimensional feature vectors), for instance, in
one of the following ways:

1. a = b = (
√

|xi − yi|)1≤i≤n, A : unity matrix, (absolute distance)
for d restricted on Rn = {0, 1}n being the Hamming distance,

2. a = b = x − y, A unity matrix, (squared Euclidean distance)

3. for F ∈ Mat(n × n,R) being the diagonal matrix of the marginal distribution
of the n features in X across all l samples (cf. Section 2.3.2):

a = b =
x

‖x‖ − y

‖y‖ , A = F−1, (χ2−distance) (C.5)

4. a = b = x − y, A = COV(X) covariance matrix of X; x, y with 0 mean,
(Mahalanobis distance)

5. a = b = (
√

|xi − yi|)1≤i≤n, A = diag(d) diagonal matrix with diagonal com-
ponents

di,i =
1
n

(
1 − σi

|xi − yi| + σi
e
− |xi−yi |2

2σ2
i

)
(fuzzy distance) (C.6)

with σ being the variance vector in the n features of X across samples (cf. Sec-
tion 3.3.2).

The χ2-distance has the advantage that it does not sensitively depend on whether
samples are represented by many features or whether the features are gathered to a
smaller number of feature groups, since the unification of several dimensions in the
feature space is compensated by addition of the respective components in the mar-
ginal distribution on the diagonal of F. Considering components with high variance
less significant, Mahalanobis as well as fuzzy distance weight them less. Avoiding
the calculation of the full covariance matrix, fuzzy distance leads to good results in
tracking of tone centers transitions (cf. Section 3.9).
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C.2 Support Vector Machine

We can define a distance measure operating on a manifold, e.g. on a torus T =
[0, 2πr1[×[0, 2πr2[. For (x, y) ∈ T the toroidal distance yields

dT (x, y) :=
√

∑
2
i=1 min(|xi − yi|, ri − |xi − yi|)2. (C.7)

The rank order for columns x, x′ of X with respect to a dissimilarity d is defined as

rkd(x, x′) = #{y column of X : y 6= x, d(x, y) ≤ d(x, x′)} (C.8)

rkd(x, x′) = 1 means that x′ is the vector closest to x among the columns of X.
rkd(x, x′) = 2 indicates that x′ is the second closest, and so forth. In general, rkd is
not symmetric. A rank order rkd(x, .) with fixed x reduces an interval variable to an
ordinal one.

C.2 Support Vector Machine

After having outlined the basic idea of the support vector machine (SVM, Vapnik
[1998]) in Section 2.3.1 we will now give a more technical description. The SVM
provides a means for learning labeled data, e.g. training vectors xi ∈ Rn, i = 1, . . . , l
with a label vector y ∈ {1,−1}l. The algorithm learns the classification by minimiz-
ing Equation C.9 under the constraints C.10 and C.11:

min
w,b,ξ

1
2

w′w + c
l

∑
i=1

ξi, (C.9)

yi(w′φ(xi) + b) ≥ 1 − ξi, (C.10)

ξi ≥ 0 (i = 1, . . . , l) (C.11)

with vector e containing only ones, penalty constant c, some unknown function φ,
and parameters w, b, ξ1, . . . , ξl. We cannot solve this problem directly, but we can
minimize the dual formulation, Equation C.12 under constraints C.13 and C.14, if
there exists a kernel function K(xi, xj) = φ(xi)

′φ(xj) and vector α:

min
α

1
2

α′Qα − e′α, (C.12)

0 ≤ αi ≤ c (i = 1, . . . , l), (C.13)

y′α = 0 (C.14)

with positive semidefinite Q = (yiyjK(xi, xj)) 1≤i≤l
1≤j≤l

. For more details cf. Müller

et al. [2001].
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C.3 Visualization

In some high dimensional feature space Rn, it may be desirable to visualize the
columns x, x′ of a data matrix X ∈ Mat(n × l,R) in one or two dimensions, pre-
serving the rank order rkd (Equation C.8). Then at a glance, one could grasp the
rank orders of items represented by the feature vectors x, x′. The question of scaling
down to a lower dimension and of visualization can be formulated as follows. We
look for a mapping π : Rn → M, with given dissimilarities dn on Rn and dM on
the low dimensional manifold M, so that the rank order rkdn

(x, x′) is maintained by
rkdM(π(x), π(x′)) in M. A good overview on embedding and clustering algorithms
is given by Ripley [1996].

C.3.1 Correspondence Analysis

We now provide some more technical details of singular value decomposition and
correspondence analysis (Greenacre [1984]; Kockelkorn [2000], cf. Sections 2.3.2 and
2.3.4). The following theorem is crucial for analyzing the co-occurrence matrix in
correspondence analysis:

Theorem 1 (Generalized Singular Value Decomposition) Let A be a positive definite
symmetric m × m matrix and B a positive definite symmetric n × n matrix. For any
real-valued m × n matrix F of rank d there exist an m × d matrix U = (u1, . . . , ud), a
n × d matrix V = (v1, . . . , vd) with U′AU = V′BV = Id, and a diagonal d × d matrix
∆ = (δij) so that

F = U∆V′ =
d

∑
k=1

δkkukv′
k. (C.15)

Cf. Greenacre [1984] for a proof. For A = Im, B = In, Theorem 1 yields the ordinary
singular value decomposition. If furthermore F is symmetric, we get the familiar
eigenvalue decomposition.

The columns uk of U can be viewed as the column factors with singular values δkk.
Vice versa the rows vk of V are the row factors with the same singular values δkk.
The magnitude of F in each of the d dimensions in the co-ordinate system spanned
by the factors uk is then given by δkk.

For the matrix of relative frequencies FP ,K = ( fP ,K
ij ) and positive definite diagonal

matrices (FP ,P )−1 and (FK,K)−1 with the inverted relative frequencies of row and
column features, respectively, on their diagonal Theorem 1 yields:

FP ,K = U∆V′ , (C.16)

with

U′(FP ,P )−1U = V′(FK,K)−1V = Id. (C.17)
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C.3 Visualization

Defining

S = (sij) := ∆V′
(

FK,K
)−1

(C.18)

we get

FP|K = FP ,K
(

FK,K
)−1

= U∆V′
(

FK,K
)−1

= US. (C.19)

Taking the i-th column on both sides of Equation C.19 we get

fP|K=i =
d

∑
k=1

ukski. (C.20)

The profile fP|K=i is described in terms of co-ordinates ski on the axes uk. ski is the
projection – in the χ2-metric – of profile fP|K=i onto the axis uk.
Vice versa we have

FK|P = V∆U′
(

FP ,P
)−1

︸ ︷︷ ︸

=:Z=(zij)

= VZ. (C.21)

The profile fK|P=j is described in terms of co-ordinates zkj on the axes vk.
Each key i ∈ K is given by its pitch class profile fP|K=i. In Figure 3.37 on page 142

key i is represented by its first two coordinates (s1i, s2i) .
Each pitch class j ∈ P is given by its key profile fK|P=j. In Figures 3.37 on

page 142 and 3.40 on page 145, pitch class j is represented by its first two coor-
dinates

(
z1j, z2j

)
.

C.3.2 Isomap

For an intuitive description of the Isomap [Tenenbaum et al., 2000] cf. Section 2.3.4
on page 91. Be X a n × l-matrix, with l vectors of dimension n. For D = (dij)1≤i,j≤l

be dij = ‖xi − xj‖ the Euclidean distance between columns xi, xj of X. Generate a
dissimilarity matrix T in the following way: Initialize T = (tij)1≤i,j≤l by

tij :=

{

dij for xi ∈ Gxj
(k)

∞ otherwise
(C.22)

with Gxj
(k) being the set of k nearest neighbors to xj (Equation 2.23 on page 85).

Enforcing the triangle inequality, iterate

tij = min
k∈{1,...,l}\{i,j}

(tij, tik + tkj). (C.23)

Finally perform multidimensional scaling τ(T) on T and project X onto the most
prominent eigenvectors of τ(T).
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C.3.3 Chew’s Model with Choice of Parameters

We use a simplified instance of Chew’s more general model (Section 1.2.10, Chew
[2000]). It proposes a spatial arrangement such that tones, triads and keys are repre-
sented as vectors in three-dimensional space. Tones j ∈ N proceed in steps of fifths,
that is j ∼ c, j + 1 ∼ g, and so forth. The tones’ spatial location is denoted by
t(j) ∈ R3, the location of major and minor triads by cM(j), cm(j) ∈ R3, and of major
and minor keys by kM(j), km(j) ∈ R3. The tones are arranged in a helix turning by
π/2 and rising by a factor of h per fifth:

t(j) =

(

sin
(

jπ

2

)

, cos
(

jπ

2

)

, jh

)

. (C.24)

Spiraling up (Figure 1.22 on page 65), every four fifths t(j) returns to the same X-Y
co-ordinates. Both major and minor triads are represented as the weighted mean of
their constituent tones:

cM(j) = m1t(j) + m2t(j + 1) + m3t(j + 4), (C.25)
cm(j) = m1t(j) + m2t(j + 1) + m3t(j − 3). (C.26)

The keys are represented as weighted combinations of tonic, dominant, and sub-
dominant triads, with the minor keys additionally incorporating some of the parallel
major triads:

kM(j) = m1cM(j) + m2cM(j + 1) + m3cM(j − 1) (C.27)

km(j) = m1cm(j) + m2

(
3
4

cM(j + 1) +
1
4

cm(j + 1)

)

(C.28)

+ m3

(
3
4

cm(j − 1) +
1
4

cM(j − 1)

)

. (C.29)

We choose the parameters so as to obtain a good fit with the data from Bach’s
WTC I (fugues), resulting in the following parameter settings:

m = (m1, m2, m3) = (
1
2

,
1
4

,
1
4
) and h =

π

6
. (C.30)

The general model of Chew [2000] allows the weights to be independent from each
other for cM, cm, kM, km. In this application, weights m are set equal, across major
and minor chords and keys (cf. Chew [2001]). In our instance of the model, we have
only m and h as free parameters. We use values different from Chew [2001].
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