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Abstract

We apply correspondence analysis for visualization of interdependence of
pitch class & key and key & composer. A co-occurrence matrix of key & pitch
class frequencies is extracted from score (Bach’s WTC). Keys are represented as
high-dimensional pitch class vectors. Correspondence analysis then projects
keys on a planar “keyscape”. Vice versa, on “pitchscapes” pitch classes can
also be embedded in the key space. In both scenarios a homogenous circle
of fifths emerges in the scapes. We employ biplots to embed keys and pitch
classes in the keyscape to visualize their interdependence. After a change of
co-ordinates the four-dimensional biplots can be interpreted as a configuration
on a torus, closely resembling results from music theory and experiments in
listener models.

In conjunction with spectral analysis, correspondence analysis constitutes a
cognitive auditory model. Correspondence analysis of the co-occurrence table
of intensities of keys and pitch classes lets the circle of fifths evolve in the
pitchscape. This model works on digitized recorded music, does not require
averaging or normalization of the data, and does not implicitly use circularity
inherent in the model.

Statistics on key preference in composers yields a composer & key co-
occurrence matrix. Then “stylescapes” visualize relations between musical
styles of particular composers and schools. The Biplotting technique links
stylistic characteristics to favored keys. Interdependence of composers and
schools is meaningfully visualized according to their key preferences.

1 Introduction
The correspondence of musical harmony and mathematical beauty has fasci-
nated mankind ever since the Pythagorean idea of the “harmony of the spheres”.
Of course, there exists a long tradition of analyzing music in mathematical
terms. Vice versa, many composers have been inspired by mathematics. In ad-
dition, psychophysical experiments have been conducted, e.g., by Krumhansl�
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and Kessler (1982) to establish the relation between different major and mi-
nor keys in human auditory perception by systematic presentation of Shepard
tones. The results of these experiments were visualized by a technique known
as multidimensional scaling which allows to construct a two-dimensional map
of keys with closely related keys close by. As a central result the circle of fifths
(CoF) as one of the most basic tonal structures could be reproduced. In re-
lated work, a self-organizing feature map (Kohonen, 1982) of adaptive ar-
tificial neurons was applied to similar data, and showed, how the circle of
fifths could be recovered by neural self-organization (Leman, 1995). In Leman
and Carreras (1997) cadential chord progressions were embedded in a self-
organizing feature map trained on Bach’s “Well-Tempered Clavier” (WTC I).
Based on that work, a cognitive model consisting of an averaged cq-profile 1

extraction (Purwins et al., 2000a) in combination with a self-organizing feature
map revealed the circle of fifths after training on Alfred Cortot’s recording of
Chopin’s Préludes.

In this paper we extend this general idea of embedding musical structure
in two-dimensional space by considering the Euclidean embedding of musical
entities whose relation is given in terms of a co-occurrence table. This gen-
eral approach enables us not only to analyze the relation between keys and
pitch-classes, but also of other musical entities including aspects of the style of
composers. We can, for instance, exploit the fact that composers show strong
preferences towards particular keys. This provides the basis for arranging the
composers by correspondence analysis reflecting their stylistic relations.

According to Greenacre (1984), the interest in studying co-occurrence ta-
bles emerged independently in different fields such as algebra (Hirschfeld,
1935), psychometrics (Horst, 1935; Guttman, 1941), biometrics (Fisher, 1940),
and linguistics (Benzécri, 1977). Correspondence analysis was discovered not
only in distinct research areas but also in different schools, namely the prag-
matic Anglo-American statistical schools as well as the geometric and alge-
braic French schools. Therefore, various techniques closely related to corre-
spondence analysis have been discussed under various names, e.g., “recipro-
cal averaging”, “optimal (or dual) scaling”, “canonical correlation analysis of
contingency tables”, “simultaneous linear regressions”.

We will first introduce the technique of correspondence analysis with a fo-
cus on the analysis of co-occurrences of keys and pitch-classes in Section 2. In
Section 3 we will present the results of our correspondence analysis of inter-
key relations in scores and recorded performances, that leads to the emergence
of the circle of fifths and to a toroidal model of inter-key relations. We show
how these results relate to a similar model from music theory (Chew, 2000) and
to earlier experiments with a different cognitive model (Purwins et al., 2000a).
In Section 4 we apply correspondence analysis to the problem of stylistic dis-
crimination of composers based on their key preference. Finally, in Section 5
we point out some relations of our results to previous work and discuss po-
tential application to other analysis tasks arising in music theory. Please note
that we provide a more technical perspective on correspondence analysis in
the Appendix, Section 6.

1 The abbreviation cq refers to constant Q, denoting a transformation with uniform resolution in the
logarithmic frequency domain with a resulting constant ratio between frequency and band-width.
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2 Analysis of Co-occurrence
Co-occurrence data frequently arise in various fields ranging from the co-
occurrences of words in documents (information retrieval) to the co-occurrence
of goods in shopping baskets (data mining). In the more general case, we con-
sider the co-occurrence of two different features. One feature � is described by
a vector that contains the frequencies how often it co-occurs with each specifi-
cation of the other feature � and vice versa. Correspondence analysis aims at
embedding the features � in a lower-dimensional space such that the spatial
relations in that space display the similarity of the features � as reflected by
their co-occurrences together with feature � .

Co-occurrence Table. Consider, as our running example, the co-occurrence
table ����� 	�
������� 	� ������������������! ��"�#� (1)

for keys ( � ) and pitch classes ( � ).

c $"$�$ $"$�$ b %'&
C ( &*) +, ) - $"$�$ ( &*) +, ) . ( & ,$�$�$ $"$�$ $�$�$
B $"$�$ ( & /
Cm $�$�$ ( & ,10$�$�$ $"$�$ $�$�$
Bm ( &*) +/ 0 ) - $"$�$ ( &*) +/ 0 ) . (2&/ 0%3+ (2+- $"$�$ (2+. n

Table
� ��� 	

reflects the relation between two sets � and � of features or
events (cf. Greenacre (1984)), in our case � 
547698;:<:<:=8?>98@62AB8C:<:<:=8?>2AED being
the set of different keys, and � 
F4;GH8;:<:<:=8�IJD

being the set of different pitch
classes. Then an entry

����� 	� � in the co-occurrence table would just be the num-
ber of occurrences of a particular pitch class KMLN� in musical pieces of keyO LM� . The frequency

� �� is the summation of occurrences of key
O

across all
pitch classes. The frequency of pitch class K accumulated across all keys is
denoted by

� 	� . The sum of the occurrences of all pitch classes in all keys is
denoted by P . From a co-occurrence table one can expect to gain information
about both sets of features, � and � , and about the relation between features
in � and � , i.e., between keys and pitch classes in the example above. The
relative frequency of the entries is denoted byQ ��� 	� � 
SRP �"��� 	� � :

(2)

It is the joint distribution of �UT�� . The relative frequency of column K isQ 	� 
WVX � 	� : It is the marginal distribution of
Q �1� 	� � . The diagonal matrix with



4 Perspectives in Mathematical Music TheoryY 	 on the diagonal is denoted Z 	[� 	 . The conditional relative frequency is
denoted by Q"	2\ �^]`_� 
 � �1� 	� �� �� 8

(3)

in matrix notation: Z 	2\ � 
a� Q 	2\ �^]cb� � �@� .
Instead of co-occurrence tables

� ��� 	
of frequencies of occurrences, in the

sequel, we will also consider co-occurrence tables of overall symbolic dura-
tions (cf. Section 3.1) as well as co-occurrence tables of accumulated intensities
(cf. Section 3.2).

Co−occurrence Table WTC II − Fugues (Gould)
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Figure 1: Co-occurrence table (cf. Table) of Bach’s “Well-Tempered Clavier”,
Fugues of Book II recorded by Glenn Gould. The keys of the 24 Fugues are la-
beled on the vertical axis. For each fugue the intensities are accumulated for each
pitch class, calculating cq-profiles (Purwins et al., 2000b). Light color indicates
high intensity. Dark color indicates low intensity. This table is analyzed in Sec-
tion 3.2.

2.1 Correspondence Analysis
Given a co-occurrence table

� ��� 	 8
for visualization purposes we aim at

displaying the features � and � in a two-dimensional space, such that aspects
of their tonal relation are reflected by their spatial configuration. In particular,
correspondence analysis can be thought of as a method that aims at finding a
new co-ordinate system that optimally preserves the d�e -distance between the
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Figure 2: Relative frequency of pitch classes fHg and keys fih of performed WTC
II, Fugues, accumulated from the co-occurrence table (Figure 1). It is remarkable
that the non-diatonic notes in C–Major are the most prominent notes, as if Bach
would have wanted to oppose to the emphasis of C–Major in mean tone tuning.
Upper: fig is the normalized vector of pitch class intensities accumulated across all
fugues in WTC II. Lower: fHh is the normalized vector of accumulated intensity of
each fugue.

frequency � -, and � -profiles, i.e., of columns and rows. For 12-dimensional
pitch class frequency vectors j and k the d�e -distance is defined byl jnmok l e	qp 
r j 8 jJs 	 mut r j 8 k�s 	wv r k 8 k�s 	 (4)

with a generalized inner product defined byr j 8 k�s 	 p 
 j"x � Z 	y� 	 �@z V k 8 (5)

where j x denotes the transpose of vector j . The d�e -distance is equal to the
Euclidean distance in this example if all pitch classes appear equally often.
The d1e -distance weights the components by the overall frequency of occur-
rence of pitch classes, i.e., rare pitch classes have a lower weight than more
frequent pitch classes. The d1e -distance satisfies the natural requirement that
pooling subsets of columns into a single column, respectively, does not distort
the overall embedding because the new column carries the combined weights
of its constituents. The same holds for rows.

We can explain correspondence analysis by a comparison to principal com-
ponent analysis. In principal component analysis eigenvalue decomposition
is used to rotate the co-ordinate system to a new one with the axes given by
the eigenvectors. The eigenvalue associated with each eigenvector quantifies
the prominence of the contribution of this particular co-ordinate for explaining
the variance of the data. The eigenvector with highest eigenvalue indicates the
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most important axis in the data space: the axis with highest projected variance.
Visualization in this framework amounts to projecting the high-dimensional
data (the 12-dimensional pitch class frequency space or, respectively, the 24-
dimensional key frequency space) onto a small number (typically 2 or 3) of
eigenvectors with high eigenvalues. Hereby only insignificant dimensions of
the data space are discarded, leading, effectively, to a plot of high-dimensional
data in 2d or 3d space.

In principal component analysis by rotating the co-ordinate system, the
Euclidean distances between data points are preserved. Correspondence anal-
ysis is a generalization of principal component analysis: The d e distance (a
generalization of the Euclidean distance) between data points is preserved.

If the data matrix is not singular and not even symmetric, generalized sin-
gular value decomposition instead of eigenvalue decomposition yields two
sets of factors { V 8<:;:C:`8 {`| and } V 8<:<:<:=8 }=| instead of one set of eigenvectors. So
either for the ~ -dimensional column vectors of the data matrix the co-ordinate
system can be rotated yielding a new co-ordinate system given by the column
factors { V 8<:C:<:`8 {`| , or the P -dimensional row vectors of the data matrix are ex-
pressed in terms of co-ordinates in the new co-ordinate system of row factors} V 8<:<:;:c8 } | . In principal component analysis each eigenvector is associated
with an eigenvalue. In the same sense for each pair of column and row vectors{1� and }�� , an associated singular value ���<� quantifies the amount of variance
explained by these factors (see the appendix, Section 6 for technical details).
Consider the conditional relative frequency of pitch classes Z 	2\ � being the
data matrix. If we project the 12-dimensional pitch class profile

Y 	2\ �`] �
into the

space spanned by all � vectors } V 8H:C:<: , }`| and represent each profile
Y 	2\ �`] �

by
its � -dimensional co-ordinate vector � � , then the d e m distance between

Y 	2\ �^] �
and

Y 	2\ �`]=�
equals the Euclidian distance between the co-ordinate vectors � �

and � � of their projections. But if we only use the two co-ordinates with highest
singular value, instead of all � co-ordinates, then all distances are contracted
and more or less distorted, depending on the singular values.

A biplot provides a simultaneous projection of features � and � into the
same space. Both the co-ordinates of a � -profile in the co-ordinate system of
the {1� ’s and the co-ordinates of a � -profile in the co-ordinate system of the} � ’s are displayed in the same co-ordinate system. Such a biplot may reveal
the inter-set relationships.

3 Circle of Fifths in the Keyscape
We will now investigate the set of Preludes & Fugues in Bach’s WTC. For each
part of WTC there is a one-to-one mapping between all 24 pairs of Preludes
& Fugues and all 24 Major and minor keys. The Table above shows how each
key - that implies each Prelude & Fugue pair also - can be represented by a
frequency profile of pitch classes. The pitch class frequency profiles can either
contain the overall symbolic durations from the score or the accumulated cq-
profiles from a performance of that piece. Correspondence analysis visualizes
inter-key relations on keyscapes based on pitch class profiles. The projection
of pitch classes homogeneously displays the circle of fifths for both score and
performance (Sections 3.1 and 3.2). The display of phases between projections
of the pitch class profiles from score can be interpreted as a regular Toroidal
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Model of Inter-Key Relations (Section 3.1), consistent with other models (Pur-
wins et al., 2000a; Chew, 2000).

3.1 Circle of Fifths from Score
Humdrum (CCARH, 2003) is a digital format that is aimed at fully and pre-
cisely representing the essential content of a composition as it is obvious from
notation in a score. All fugues of Bach’s WTC are encoded in Humdrum **kern
format. Instead of analyzing the co-occurrence table of frequencies of keys
and pitch classes we look at the overall symbolic duration of pieces in a particu-
lar key and the overall symbolic duration of pitch classes across all 24 Fugues
for WTC I and for WTC II. Symbolic duration means that it is measured in
multiples and fractions of quarter notes, rather than in seconds. Measuring
duration in seconds would imply that the results would vary a lot depending
on the choice of tempo. But the issue of tempo is highly discussed in Bach.

The correspondence analysis of WTC (Figure 3) reveals a two–dimensional
structure which allows for an adequate representation in a plot based on the
first two factors corresponding to the two largest singular values (Figure 5).
The 24 pitch class frequency profiles are optimally projected onto a 2-dimensional
plane, such that the d1e7m distance between profiles is minimally distorted and
the d1e�m distance of the 2-dimensional projections matches the original profile
distance as well as possible. In the Fugues of WTC, the circle of fifths emerges
clearly and homogeneously (upper Figure 3). Even though in the upper Fig-
ure 3 some inter-key distances are smaller (D � –A � ) than others (D–A), due to
different d1e -distances between pitch class prominence profiles in these pieces.
In addition the minor keys form a circle of fifths inside the circle of fifths of the
major keys. This shows that the pitch prominence patterns for major keys are
more distinct than for minor keys according to the metric employed.

In the co-occurrence table above pitch classes are represented as columns
of accumulated symbolic durations in the different keys, that means accumu-
lated symbolic durations in each fugue of WTC I, since in WTC I a one-to-one
correspondence of Fugues and the 24 keys is given. The same factors with
maximal singular values as in the upper Figure 3 are used to optimally project
the 24-dimensional pitch class vectors upon a plane. We observe the pitch
classes forming a circle of fifths as well (middle Figure 3). We can now con-
sider the biplot (lower Figure 3) by putting the transparent plot of pitch classes
(middle Figure 3) on top of the plot of keys (upper Figure 3). We have three
circles of fifths, one each for the Major and minor keys and one for the pitch
classes. We change the co-ordinates of the factor plane to polar co-ordinates
in terms of a polar angle (on the circle of fifths) and the distance to the origin.
Consider the angles of both the Major and minor keys relative to the angles
of the fundamental pitch class (Figure 4). The plot shows two almost straight
parallel lines, reflecting that pitch classes and keys proceed through the circle
of fifths with almost constant offset. The graph for the minor keys is almost
the identity, indicating that pitch classes and keys are “in phase”: The pitch
classes can be identified with the fundamentals of the minor keys. The expla-
nation lies in the relatively high overall symbolic duration of the fundamental
pitch class in the symbolic duration profile in minor compared to Major. Also
the overall symbolic duration of the Fugues in minor is longer than the one in
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Figure 3: Symbolic durations of keys and pitch classes are derived from the score
of the Fugues of Bach’s WTC I and then projected onto the factors of correspon-
dence analysis. Upper: The emerged circle of fifths is lined out for Major (solid)
and minor (dashed) keys (”m” denoting minor). Middle: As above pitch classes
appear in the order of the circle of fifths. Lower: The biplot of keys and pitch
classes derived from putting both transparent upper graphs on top of each other.
We observe that the pitch classes are close to the corresponding minor keys.
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Major. We conclude that the minor keys induce the circle of fifths in the pitch
classes.

In Figure 5 the singular values to the factors are shown. They indicate
how much of the variance in the data is captured if correspondence analysis
projects the data onto the factors with highest singular values. It is interesting
that the explanatory values, e.g., the singular values, of the two most promi-
nent factors in WTC I (Fugues) are almost equal, in contrast to the other sin-
gular values, whose explanatory value is much smaller.

Toroidal Model of Inter-Key Relations. Figure 3 displays the projection
of keys and pitch classes onto the plane spanned by the two most prominent
factors. How can we visualize the projection onto the first four factors? We
represent points on each of the planes spanned by the first & second and third
& fourth factor, respectively, in polar co-ordinates, i.e., by their polar angle and
by their distance to the origin. We then plot their angle in the 1-2-plane against
their angle in the 3-4-plane (upper Figure 6). Topologically, we can think of
the resulting body as the surface of a torus, which can be parameterized by
two angles. Upper Figure 6 can be viewed as a torus if we consider vertical
and horizontal periodicity, i.e., we glue together the upper and lower side as
well as the right and left side. The three circles of fifths then meander around
the torus three times as indicated by the solid, dashed, and dotted lines. In
addition to the relationship regarding fifths in upper Figure 6 we see that the
projection on the 3. and 4. factor contains information about the inter relation
between Major keys and their parallel and relative minor keys.

Consistency with a Geometric Model (Chew, 2000). It is fruitful to
compare the toroidal interpretation (upper Figure 6) of the biplot of keys and
pitch classes (lower Figure 3) with Chew (2000) (middle Figure 6). In Chew
(2000) heterogeneous musical quantities, namely, tones, chords, and keys are
embedded in a three-dimensional space, thereby visualizing their inter rela-
tions (cf. Appendix 6.2 for technical details). The model is derived from the
tonnetz (Euler, 1926; Lewin, 1987). Tones are lined up on a helix along the circle
of fifths, circular in the X-Y-plane and elevating in the Z direction. For a triad
composed of three tones, construct the triangle whose vertices are given by
the tones constituting the triad. Then the triad is represented by the weighted
center of gravity of the triangle. In the same way a key is represented as the
center of gravity of the triangle whose vertices are the points given by the three
main triads (tonic, dominant, subdominant) of the key. We reduce this model
to pitch classes and keys, assuming that the intermediate level of chords is
implicitly given in the music.

Chew (2000) gives a set of parameters derived by optimization techniques
from musically meaningful constraints. We choose a different set of parame-
ters to fit the model to the result of our correspondence analysis as displayed
in upper Figure 6. (Cf. Appendix 6.2 for parameters.)

In order to facilitate comparison we choose a two-dimensional visualiza-
tion of the three-dimensional model in Chew (2000). The projection of the
model onto the X-Y-plane is circular. Therefore we can parameterize it as angle
and length. We plot the vertical dimension (the elevation of the helix) versus
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the phase angle of the X-Y-plane (middle Figure 6). We interpret the phase an-
gle of the X-Y-plane as the first angle of a torus, and the vertical height in the
helix as the second angle of a torus. The helix is mapped on the surface of a
torus by applying modulo R t � to the height. Here

�
is the distance on the ver-

tical co-ordinate of two successive tones in the circle of fifths. We observe that
upper and middle Figure 6 are very similar: The circles of fifths in Major and
minor keys and in pitch classes curl around the torus three times. The only
difference is that in the toroidal model derived from correspondence analy-
sis Major keys and their relative minor keys are nearby, whereas in middle
Figure 6 Major keys are closer to their parallel minor keys.

Consistency with a Cognitive Model (Purwins et al., 2000a). A very
simple listener model comprises the following five stages:

1. Frequency analysis with uniform resolution on a logarithmic scale (con-
stant Q transform of Brown (1991))

2. Compression into pitch class profiles by octave identification

3. Averaging of profiles across each piece

4. Generation of a reference set of profiles, one for each Major and minor
key

5. Spatial arrangement of the reference set on a toroidal self-organizing fea-
ture map (Purwins et al., 2000b; Kohonen, 1982).

In this scheme, stage 1 can be considered a coarse model of auditory pe-
riphery. Stage 5 may be seen as a rough model of cortical feature maps (Ober-
mayer et al., 1990). The constant Q transform is calculated from a digitized
1933/34 recording of Chopin’s Préludes Op. 28 performed by Alfred Cortot.
The average cq-profiles for each single prelude are used as a training set for
a toroidal self-organizing feature map (Purwins et al., 2000b; Kohonen, 1982).
Again the resulting configuration (lower Figure 6) shows the circle of fifths
and closely resembles the other configurations in Figure 6.

3.2 Circle of Fifths in Performance
We choose a recording of Glenn Gould playing the Preludes and Fugues of
Bach’s WTC, Book II. We calculate accumulated cq-profiles (Purwins et al.,
2000b) from the set of the 24 Fugues of WTC II in all Major and minor keys
(cf. Figure 1). Instead of containing frequencies of co-occurrences (cf. Table
above) or symbolic durations (cf. Section 3.1 and Figure 3), the co-occurrence
table now consists of the intensities of each pitch class accumulated for each
of the 24 Fugues in all 24 Major and minor keys (Figure 1).

Pitch classes are represented by 24-dimensional key intensity vectors. In
the same way as in Section 3.1, in correspondence analysis a singular value
decomposition is performed yielding the factors as a new co-ordinate sys-
tem. As in middle Figure 3, the pitch class vectors are projected onto a two-
dimensional plane, spanned by the two most prominent factors. The circle of
fifths evolves in pitch classes embedded in the keyspace in performance data
as well. The two factors of performed WTC II (lower Figure 7) capture an even
higher percentage (88.54 %) of the variance of the data, than those for the score
data of WTC I (cf. Figure 5). Both factors are high and almost equal. Therefore
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Figure 7: The circle of fifths (lined out) appears also in performed WTC (upper).
The analyzed data are the overall intensities of pitch classes in the Fugues of
Bach’s WTC II in the recording of Glenn Gould shown in Figure 1. The same
procedure as in Figure 3 (middle) is applied to project the 24-dimensional pitch
class vectors onto a two-dimensional plane, spanned by the two most prominent
factors. These two factors of performed WTC II capture an even higher percentage
(88.54 %, lower) of the variance of the data than those for the score data of WTC I
(cf. Figure 5).
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the two–dimensional projection appears to be a very appropriate representa-
tion of pitch classes.

Comparisons have been made with other cycles of musical pieces like Chopin’s
Préludes Op. 28 and Hindemith’s “ludus tonalis”: In these cycles one singular
value alone is by far most prominent. That means that key frequency space as
well as pitch class space can be reduced to one dimension still being able to
explain the majority of the data.

4 Stylescapes Based on Key Preference
In the following experiment the interplay of key preference and composer,
rather than the interplay of key duration and pitch class duration is consid-
ered. For seven composers the frequencies are provided, how many pieces
each composer wrote in each of the 24 Major and minor keys. We will discuss
key preference in the light of key character and display the relations between
different composers and between composers and keys.

Key Preference Statistics. For each key and for each composer the co-
occurrence table now contains the number of pieces written in that particu-
lar key by that particular composer. We identify enharmonically equivalent
keys. Key preference statistics is counted in the following composers: J. S. Bach
(JSB, only works for keyboard), L. v. Beethoven (LvB), J. Brahms (JB, non-vocal
works), F. Chopin (FC), J. Haydn (JH), W. A. Mozart (WAM), A. Vivaldi (AV). If
not stated otherwise, all works of the composer are considered, provided they
contain the key name in the title of either the entire work or of single pieces,
in case the work consists of a cycle of several pieces. For instance, a sonata
in C–Major is accounted for once, but WTC, Book I is accounted for 24 times.
These key preference statistics (Figures 8 and 9) were generated from complete
work lists of these composers found on the Internet. Auhagen (1983) counts
the keys of every single movement in a set of works by Chopin. Enharmon-
ically equivalent keys are counted separately. The most frequently used key
is A � –Major in our statistics as well as in Auhagen (1983). Also the six most
frequent keys are the same in our statistics and in Auhagen (1983).

Key Character and Key Statistics. Key character is determined by sev-
eral factors. One is the complex aspect of keyboard tuning. The composers
considered here strongly differ in their preference for A � –Major. Exemplarily
we will inspect the key character of this key and consider its impact on key
preference.

In mean tone tuning w.r.t. C, the wolf fifth g � – e � sounds very rough,
since this fifth is 35.7 Cent higher than the just fifth (Meister (1991) p. 81 cited
in Grönewald (2003)). Bach used Neidhardt’s tuning (Lindley, 2001). Even
though in Neidhardt’s tuning the wolf is eliminated, Bach used A � –Major and
g � –minor only in WTC. Bach’s avoidance of these keys could be due to the
reminiscence that these keys would have sounded odd in a tuning with the
wolf on a � /g � .

On the other hand A � –Major was the favored key of Chopin. What did
make Chopin prefer this key? Did A � –Major have a special key character for
Chopin? Lindley (2003) points out “the tradition of tender affects” for this key
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Figure 8: Key preference statistics in complete works of Vivaldi and Chopin, and
the keyboard works of Bach. In this and the two subsequent Figures, small letters
indicate minor keys. Vivaldi prefers C–Major and D–Major, Bach prefers a–minor,
c–minor, and C–major. Some rare keys are only used in the WTC: F � –Major,B–
Major, A � –Major, c � –minor, g � –minor, b � –minor. ���J����� of the pieces are written in
a Major key. The most frequent keys in Chopin are A � –Major, a–minor, C–Major,
E � –Major, and c � –minor. There are only two pieces in d � –minor. �"��� of the pieces
are in Major.
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Figure 9: Beethoven prefers the “heroic” E � –Major and D–Major. As in Vivaldi
(cf. Figure 8) the key preference of Mozart and Haydn takes the “Cologne Dome”
shape, favoring C–Major and D–Major. ����� of the keys are in Major.
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which may have appealed to Chopin’s character. Chopin used equal tempera-
ment. So all intervals relative to the tonic were the same for all Major keys. For
Chopin the key character may have been influenced by 18th century keyboard
tuning, that preceded equal temperament. In tunings common at time when
“Clementi was flourishing and Beethoven was not yet deaf”, A � –Major had
characteristic differences to tunings of keys with none or only few accidentals,
e. g. C–Major. First the Major third a � -c in A � –Major is stretched compared to
c-e in C-Major, second the leading note - tonic step g-a � is squeezed compared
to b-c. Therefore this tuning endows A � –Major with a more nervous character
and C–Major with a more solid one. 2

Analysis. Correspondence analysis is performed on the key preferences of
the seven composers. It noteworthy that correspondence analysis contributes
to the varying amount of data available for the different composers. E. g. low
number of available pieces for Brahms is not as important for correspondence
analysis as the big number of pieces by Haydn. The projection of the com-
posers into the 2-dimensional plane spanned by the two most prominent fac-
tors provides a stylescape: stylistically related composers are close to each
other on this plane (cf. Figure 4). In the biplot composers/keys in Figure 4
composers are related to keys: Due to their shared “Cologne Dome” prefer-
ence for C–Major and D–Major, Haydn and Mozart are very close and Vivaldi
is not so far off. Beethoven is close to his favored E � –Major and near to Haydn
and Mozart. Brahms and Bach are positioned in their favored minor keys.
Chopin maintains his outlier position due to the outlier position of his favored� � –Major key. The explanatory value for the first (63.23 %) and the first two
factors (88 %) in correspondence analysis is high. The most important factor is
very dominant.

5 Discussion
In this paper we have shown how meaningful parameters in the complex
structure of music can be visualized, by this revealing the inter relations of
music looked upon in the perspective of a certain parameter. To demonstrate
the high potential of this approach we have given examples in the domain of
inter-key relations based on the perspective of looking at the frequency of pitch
class usage and in the domain of stylistic categorization based on a view of the
key preference of the different composers. The benefit of the method reveals
since the approach is simple but non the less does require almost no assump-
tions, neither musical knowledge, nor special artificial data. The emergence
of the circle of fifths has been observed in previous work on cognitive mod-
els. In Leman (1995) artificially generated cadential chord progressions con-
structed from Shepard tones are used as training data. Purwins et al. (2000a)
used overall averaged digitized sound samples (Chopin’s Préludes op. 28) for
training. In contrast, in the present work we used accumulated vectors of each
single digitized recording of the pieces in WTC as training vectors. In both
Leman (1995) and Purwins et al. (2000a) the circular key structure is implic-
itly stipulated by the training of a toroidal self-organizing feature map. In the

2 The arguments in this subparagraph are from Lindley (2001, 2003) and from personal communi-
cation with Mark Lindley.
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Figure 10: Based on the key preference profiles (cf. Figures 8 and 9) for differ-
ent composers the stylescape (upper) and the biplot of composers/keys (middle)
with associated singular values are shown. Capital letters indicate Major keys,
small ones minor keys, italics indicate composers. Upper: Haydn (JH) and Mozart
(WAM) are very close. Beethoven (LvB) is nearby. Brahms (JB) and Bach (JSB)
can be considered a group. Chopin (FC) is an outlier. Middle: In the biplot com-
posers/keys we observe that the Viennese classic (JH, WAM, LvB) gather in the
region of D–Major and G–Major. Chopin (FC) maintains his outlier position due
to the distant position of his favored A � –Major key. Lower: The explanatory values
for the first (63.23 %) and the two most prominent factors (88 %) in correspondence
analysis are high.
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simulation discussed here the circularity emerges from the data alone, without
an implicit assumption of periodicity in the model. In this sense, our analysis
can be viewed as discovering a model of circular structure rather than merely
fitting such a model.

The available data has not been exhaustively analyzed. Projections to dif-
ferent sub-planes could be explored and interpreted. The method can be used
to model an experienced listener exposed to a new piece of music, and the
listening experience in the context of a body of reference pieces. In correspon-
dence analysis this would correspond to embedding the new pieces in a co-
ordinate system obtained from analyzing the reference data. As an example,
Bach’s WTC has been used to generate a tonal co-ordinate system which then
served to embed a number of other works including the Chopin’s Préludes
Op. 28, Alkan’s Préludes, Scriabin’s Préludes, Shostakovich’s Préludes, and
Hindemith’s “ludus tonalis”. In this way the method can be used to model
how a listener who is familiar with Bach’s WTC would perceive these keys
and pitches in these more recent works. In addition, concepts of inter-key re-
lations underlying Hindemith and Scriabin may be discovered.

We would like to emphasize that the use of correspondence analysis is by
no means limited to tonality analysis. The method is a universal and practical
tool for discovering and analyzing correspondences between various musical
parameters that are adequately represented by co-occurrences of certain mu-
sical events or objects. Examples include pitch classes, keys, instrumentation,
rhythm, composers, and styles. Three-dimensional co-occurrence arrays, for
instance of pitch classes, keys, and metric positions can be analyzed. In partic-
ular, it seems promising to extend our analysis to temporal transitions in the
space of musical parameters.
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6 Appendix

6.1 Technical Details of Correspondence Analysis
In this appendix we provide some more technical details relating singular
value decomposition and correspondence analysis (Greenacre, 1984; Kockelkorn,
2000). The following theorem is crucial for analyzing the co-occurrence matrix
in correspondence analysis:

Theorem 1 (Generalized Singular Value Decomposition) Let � be a positive
definite symmetric ~ T�~ matrix and � a positive definite symmetric P�TWP
matrix. For any real-valued ~�T5P matrix Z of rank � there exist an ~FT�� matrix��
a� {�� 8C:<:<:=8 { | � 8 a ��T2P matrix � 
a� }1� 8<:C:<:`8 } | � x with

� x � ��
 � x ��� 
N  | ,
and a diagonal �¡TE� matrix ¢ 
a� � � � � so that:

Z 
N� ¢��Bx 
 |£� ] V ���<�7{1�7}`x� : (6)
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Cf. Greenacre (1984) for a proof. For � 
¤ <¥¦8 � 
§  X , Theorem 1 yields the
ordinary singular value decomposition. If furthermore Z is symmetric, we get
the familiar eigendecomposition.

The columns { � of
�

can be viewed as the column factors with singular
values ���<� . Vice versa the rows }1� of � are the row factors with the same
singular values ���<� . The magnitude of Z in each of the � dimensions in the
co-ordinate system spanned by the factors {�� is then given by ���<� .

For the matrix of relative frequencies Z 	y� � 
¨� Q 	y� �� � � and positive definite
diagonal matrices

� Z 	y� 	 � z V and
� Z ��� � � z V with the inverted relative frequen-

cies of row and column features, respectively, on their diagonal, Theorem 1
yields: Z 	[� �©
N� ¢��Bx 8 (7)

with � x � Z 	[� 	 � z � ��
 � x � Z ��� � � z � � 
N  | : (8)

Defining ª 
a�#« � � � p 
 ¢��Ex`¬<Z �1� �1 z V (9)

we get

Z 	y\ �®
 Z 	[� � ¬;Z ��� �� z V 
N� ¢��Bx=¬;Z �1� �� z V 
¯� ª : (10)

Taking the
O
-th column on both sides of Equation 10 we getY 	y\ �`] � 
 |£� ] V {1� « � � (11)

The profile
Y 	2\ �^] �

is described in terms of co-ordinates
« � � on the axes {�� :i« � �

is the projection – in the d�e -metric – of profile
Y 	y\ �`] �

onto the axis {1� :
Vice versa we have Z �[\ 	u
 �°¢ � x ¬ Z 	[� 	  z V± ²@³ ´]1µ ¶�]�·¹¸ �¹ »º


 ��¼ : (12)

The profile
Y ��\ 	1] �

is described in terms of co-ordinates ½ � � on the axes } � :
Each key � 
 O

is given by its pitch class profile
Y 	2\ �^] � :

In Figure 3 key� 
 O is represented by its first two coordinates
�#« V � 8»« e � � :

Each pitch class � 
 K is given by its key profile
Y ��\ 	�] � :

In Figures 3 and 7,
pitch class � 
 K is represented by its first two coordinates

� ½ V � 8 ½ e � � :
6.2 Details of Chew’s Model with Choice of Parameters
We use a simplified instance of Chew’s more general model (Chew, 2000). It
proposes a spatial arrangement such that tones, triads and keys are repre-
sented as vectors in three-dimensional space. For K¾LÀ¿ Á tones are denoted
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by Â � K � LM¿ Ã*Ä , proceeding in steps of one fifth interval from index K to indexK v R . We denote major and minor triads by Å!Æ � K � 8 ÅÈÇ � K � L�¿ Ã Ä , and Major and
minor keys by É^Æ � K � 8 É`Ç � K � LB¿ Ã Ä , respectively.

The tones are arranged in a helix turning by Ê�Ëit and rising by a factor of
�

per fifth:

Â � K � 
ÍÌ�Î�Ï¹Ð°Ì KHÊtBÑ 8�G<ÒiÎ*Ì KHÊtBÑ 8 K � Ñ (13)

Both Major and minor triads are represented as the weighted mean of their
constituent tones:ÅÓÆ � K � 
 ~ V Â � K � v ~ e Â � K v R � v ~ Ä Â � K v�Ô � (14)ÅÈÇ � K � 
 ~ V Â � K � v ~ e Â � K v R � v ~ Ä Â � K'm®Õ � (15)

The keys are represented as weighted combinations of tonic, dominant, and
subdominant, with the minor keys additionally incorporating some of the Ma-
jor chords:É Æ � K � 
 ~ V Å Æ � K � v ~ e Å Æ � K v R � v ~ Ä Å Æ � K3m R � (16)É Ç � K � 
 ~ V Å Ç � K � v ~ e Ì ÕÔ Å Æ � K v R � v RÔ Å Ç � K v R � Ñ (17)

v ~ Ä Ì ÕÔ ÅÈÇ � K'm R � v RÔ ÅÓÆ � KÖm R � Ñ : (18)

We choose the parameters so as to obtain a good fit with the data from
Bach’s WTC I (Fugues), resulting in the following parameter settings:× 
a� ~ V 8 ~ e 8 ~ Ä � 
a� Rt 8 RÔ 8 RÔ � and

�Ø
 Ê Ù :
(19)

The general model of Chew (2000) allows the weights to be independent
from each other for ÅÓÆ 8 ÅÈÇ 8 É^Æ 8 É`Ç . In this application, weights × are set
equal, across Major and minor chords and keys (cf. Chew (2001)). In our in-
stance of the model, we have only × and

�
as free parameters. But we use

values different from Chew (2001).
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