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ABSTRACT

We propose an expressive performance model for celtic
fiddle based on the analysis of audio and bowing ges-
tures of real performances. Existing expressivity models
deal with perceptual features such as timing deviations or
dynamics, but in some cases perceptual features are not
enough. We propose a model not only informed with
perceptual features but also with bowing gestures which
are acquired by means of a 3D motion tracker system.
Based on a set of expressive audio features and control
gestures we apply machine learning techniques in order
to induce an expressive performance model. We use the
model to synthesize expressive celtic violin performances
from inexpressive score descriptions. In this paper we
describe the process of acquiring expressive performance
features (both audio and gestures), we detail the automatic
performance-score alignment and segmentation, we show
how the model is induced, and finally we evaluate the re-
sults using a sample based concatenative synthesizer.

1. INTRODUCTION

Modeling expressive performances is an active research
topic. Fryden[5] tries an analysis-by-synthesis approach,
consisting of a set of proposed expressive rules that are
validated by synthesis. In [3] mathematical formulae is
proposed to model certain expressive ornaments. Bresin[2]
and Widmer[11] make use of machine learning in order
to extract expressive patterns from musical performances.
In [8] they use Case Based Reasoning, that is, a database
of performances that conform the knowledge of the sys-
tem. In this work we follow the work done by [10], also
using machine learning techniques and more specifically
inductive logic programming (ILP from now on), that has
the advantage of automatically finding expressive patterns
without the need of an expert in musical expressivity.

In general this techniques try to model expressive fea-
tures such as timing deviations, dynamics or pitch in a
perceptual domain, that is, they try to model how we lis-
ten an expressive performance. Here we propose to in-
form the model not only with perceptual features but also
with bowing gestures controlling the violin, that is, try to
model what is the violinist doing in order to perform ex-
pressively.

It is also important to give a mean of evaluating the
model. Predicted features of the model feed a sample

based concatenative synthesizer so that listening tests can
be carried out.

In this work we focus on the analysis on Irish Jigs and
we concentrate on modeling note-level deviations, namely
timing and energy as well as bowing (bow direction changes)
and two expressive ornaments that appear often in Irish
fiddling: mordents and bowed triplets.

In the following sections we introduce Irish fiddling,
we describe how audio and gestural data is acquired and
aligned in order to find performance deviations from score,
we present the model, indicating how is it induced and
what is predicting, we explain the synthesis stage and we
conclude by giving some guidelines for future work.

2. FIDDLING IN IRISH MUSIC

Irish music comprises lots of different styles (Donegal,
Sligo, etc.), musical forms (Reels, Jigs, Hornpipes, etc.)
and expressive ornaments that can be performed by fin-
gering (cut notes, rolls, hammer-ons, slides, etc.) or by
bowing (slurs, dynamics, accents doublestops, shuffle pat-
terns, bowed triplets, etc.). Most of the expressivity is
controlled with the bow and that is the reason of inform-
ing the model with bowing motion acquired during real
performances.

In this work we are focused on Jigs, fast tunes but
slower that reels that usually consist of eighth notes in a
ternary time signature, with strong accents at each beat.
Regarding ornaments we will concentrate on: a fingering
ornament, mordent, thought of as a rapid single alterna-
tion between an indicated note, a note one semitone above
and the indicated note again; and on a bowing ornament,
bowed triplet, similar to a triplet but consisting of three
very short and fast notes with the same pitch and different
bow direction.

3. DATA ACQUISITION

The training data used in our experimental investigations
are monophonic recordings of nine celtic jigs performed
by a professional musician. Apart from the tempo (he was
following a metronome), the musician was not given any
particular instructions on how to perform the pieces.

A set of audio and bowing features is extracted from
the recordings and stored in a structured format. The per-
formances are then compared to their corresponding scores



in order to automatically compute the performed transfor-
mations.

Audio is captured with a violin pickup and bowing with
a 3D motion measuring system based on a commercial
Polhemus 1 device. The main advantage compared to other
expressivity models is that of having motion information.
It is important in order to learn the model as well as for
the alignment and segmentation of the performances with
the scores.

3.1. Scores

Scores are represented as a series of notes with onset,
pitch(in semitones) and duration. They represent the nom-
inal attributes of the tune, and are used as a guide to seg-
ment the performance and find deviations from the score.

3.2. Audio acquisition

Audio is captured by means of a violin bridge pickup 2 .
This way we get a signal with much lower effect of the
resonances of the violin acoustic box and the room which
makes segmentation much easier than for a recording from
a microphone. From the captured audio stream we ex-
tract the audio perceptual features: frame-by-frame en-
ergy, fundamental frequency estimation and aperiodicity
function.

3.3. Gesture acquisition and parameter calculation

Bowing motion data is acquired by means of two 3d-motion
tracker sensors, one mounted on the violin and the other
on the bow as we already described in [6]. We are able to
estimate with great precision and accuracy the position of
the strings, the bridge and the bow. With the collected
data we compute, among others, the following bowing
performance parameters: bow distance to the bridge, bow
transversal position, velocity and acceleration, bow force
and string being played. Two bowing descriptors, bow di-
rection change and playing string change, are used for the
segmentation.

4. DATA ANALYSIS

4.1. Score-Performance Alignment

Performances are represented with the same symbolic de-
scription as the score so that they can be aligned and de-
viations from the score obtained. An automatic alignment
is carried out following a similar method to the one that
we already described in [6] which we briefly introduce
here. The procedure uses score time information in order
to search for note onset/offset times around their nomi-
nal values, allowing for timing deviations up to the max-
imum duration of the notes involved in the transition into
consideration. Phrase-starting and phrase-ending notes
are treated differently, by applying a simple energy-based

1 www.polhemus.com
2 www.lrbaggs.com

Figure 1. Schematic view of the score-performance alignment
procedure

onset/offset detector. For score-performance alignment
we use bowing data (bow speed profile), estimation of
string being played, sound aperiodicity function provided
by YIN [4] and sound energy envelope. Within a time
window around the nominal note time values, we collect
possible candidates positions of note change by detecting:
(1) bow direction changes by looking for zero-crossings
of the bow speed profile, (2) string changes by looking
for steps in the string detection function, (3) a local max-
imum of the aperiodicity function, and (4) a local min-
ima of energy envelope or energy envelope high curvature
points (second derivative extrema). Then, we compute a
weighted cost function (weights are set empirically) based
on the position of the candidates and their nature, and
the minimum of such function is considered as the note
change time. See an illustration of the of the alignment
procedure in fig.1. We had to manually correct some mi-
nor alignment errors due mainly to pitch changes inside
a note when the performer made use of some pitch-based
ornaments (see next sections).

4.2. Bow direction detection

It is not enough to use detected zero-crossings of bow
speed for extracting bow direction because of the possi-
ble performed bowed triplets. Instead, we compute bow
speed histograms for each of the note segments after align-
ment, and get the sign of the histogram maximum as the
indicator for the bow direction.

4.3. Ornaments detection

Two types of ornaments are recognized: mordents and
bowed triplets. Detection of mordents is carried out after
note segmentation based on based the work in [9] and can
be summarized as follows: For each segmented note, pitch
and aperiodicity function is calculated. Pitch curve seg-
ments with high aperiodicity or very short segments are
not considered for the detection. The remaining intranote
pitch curve is then quantized to semitones and notes with
changes of one tone or semitone inside the note are con-
sidered to be part of an ornament. In Figure 2 a mordent
is detected in a note. Bowed triplets are detected when
three consecutive bow position changes occur in a short
analysis frame.



Figure 2. Mordent detection: Intranote pitch(bold) is quan-
tized(dashed). Changes of quantized pitch respect to score
pitch(thin) of one or two semitones indicate a fingering orna-
ment inside the note. Parts without pitch have high values of
aperiodicity.

Figure 3. Contextual predicates

5. LEARNING THE EXPRESSIVE
PERFORMANCE MODEL

In this section we describe our inductive approach for learn-
ing the model by applying ILP techniques. After the align-
ment and segmentation, scores and expressive deviations
of the performance are defined in a structured way using
first order logic predicates.

5.1. Data Description

The musical context of each note is defined with the fol-
lowing predicates (Figure 3): context note specifies infor-
mation both about the note itself and the local context in
which it appears. Information about intrinsic properties
of the note includes note duration and note’s metrical po-
sition, while information about its context includes the
duration of previous and following notes, extension and
direction of the intervals between the note and both the
previous and the subsequent note, and tempo of the piece
in which the note appears; context narmour specifies the
Narmour groups to which a particular note belongs, along
with its position within a particular group. The tempo-
ral aspect of music is encoded via the predicates pred and
succ. For instance, succ(A,B,C,D) indicates that note in
position D in the excerpt indexed by the tuple (A,B) fol-
lows note C.

Expressive deviations in the performances are encoded

Figure 4. Induction and Prediction predicates

using 4 predicates (Figure 4): stretch specifies the stretch
factor of a given note with regard to its duration in the
score; bowdirchange identifies points of change in bow di-
rection; ornament specifies whether a note is ornamented
in the performance; and dynamics specifies the mean en-
ergy of a given note. These 4 predicates are also used for
model prediction.

The use of first order logic for specifying the musical
context of each note is much more convenient than using
traditional attribute-value (propositional) representations.
Encoding both the notion of successor notes and Narmour
group membership would be cumbersome using a propo-
sitional representation. In order to mine the structured
data we used Tilde’s top-down decision tree induction al-
gorithm ([1]). Tilde can be considered as a first order logic
extension of the C4.5 decision tree algorithm: instead of
testing attribute values at the nodes of the tree, Tilde tests
logical predicates. This provides the advantages of both
propositional decision trees (i.e. efficiency and pruning
techniques) and the use of first order logic (i.e. increased
expressiveness). The increased expressiveness of first or-
der logic not only provides a more elegant and efficient
specification of the musical context of a note, but it pro-
vides a more accurate predictive model.

We obtained correlation coefficients of 0.88 and 0.83
for the duration transformation and note dynamics predic-
tion tasks, respectively and we obtained a correctly clas-
sified instances percentage of 92% and 86% for the bow
direction and ornamentation prediction. These numbers
were obtained by performing 10-fold cross-validation on
the training data.

The induced models seem to capture accurately the ex-
pressive transformations the musician introduces in the
performances. Figure 5 contrasts the note duration devia-
tions predicted by the model and the deviations performed
by the violinist. Similar results were obtained for the dy-
namics model.

6. EVALUATION BY SYNTHESIS

Although we give an estimation of the model performance
errors, listening tests are necessary in order to asses the
validity of the prediction. For this we feed a violin syn-



Figure 5. Note deviation ratio for a tune with 89 notes. Com-
parison between performed and predicted.

Figure 6. Mordent synthesis: Figure shows first 10 harmonic
tracks of three notes. In the middle of note A a pitch shift of one
semitone is done (dashed line). When resynthesizing we obtain
a synthetic mordent at note A.

thesizer with the prediction results of the model. We make
use of a sample-based spectral concatenative synthesizer,
that uses an annotated database of samples from real per-
formances recorded and segmented using the techniques
described above. The database consist of several musical
phrases combining different dynamics, durations, pitch and
articulations. Note annotations include bowing informa-
tion (note bow direction and whether a note is slurred or
tied). Sample selection is based on a weighted Euclidean
distance measure with strict matching for bow direction
in a similar way as presented in [7]. After the sample se-
lection stage, pitch shift and time stretch transformations
are applied in order to match note characteristics in the
model’s output.

Regarding ornaments, mordents are synthesized by ap-
plying a one semitone intranote pitch shift simulating a
short note (Figure6). Bowed triplets are synthesized by
selecting prerecorded ones from the database depending
on pitch and applying pitch shift.

7. CONCLUSIONS AND FURTHER WORK

We presented a model for expressive performances based
not only on perceptual features but also informed with
bowing and the procedure to acquire the data, learn the
model and synthesize its predictions. The results seem to
capture the expressive features performed. We obtained
high prediction correlation coefficients and realistic syn-

thesis of predicted performances.
A small subset of perceptual and bowing features was

modeled but the modeling procedure could be easily ex-
trapolated to other ornaments, forms and styles in the fu-
ture.

Although we are using high level gesture features (bow-
ing) for this work, the potential of acquiring gesture con-
trol data with the described system is enormous. In the
future we will extend the analysis of expressivity to low
level features such as bow pressing force, bow velocity or
bow-bridge distance.
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