
  
 

Low-Delay Singing Voice Alignment to Text  
 

Alex Loscos,  Pedro Cano, Jordi Bonada 
Audiovisual Institute, Pompeu Fabra University  

Rambla 31, 08002 Barcelona, Spain 
{aloscos, pcano, jboni }@iua.upf.es      http://www.iua.upf.es 

 
[Published in the Proceedings of the ICMC99] 

 
Abstract 

 
In this paper we present some ideas and preliminary results on how to move phoneme recognition 
techniques from speech to the singing voice to solve the low-delay alignment problem. The work 
focus mainly on searching the most appropriate Hidden Markov Model (HMM) architecture and 
suitable input features for the singing voice, and reducing the delay of the phonetic aligner 
without reducing its accuracy.  

 
1 Introduction 
 
An aligner is a system that automatically time aligns 
speech signals with the corresponding text. This 
application emerges from the need of building large 
time-aligned and phonetically labeled speech 
databases for Automatic Speech Recognition (ASR) 
systems. The most extended and successful way to do 
this alignment is by creating a phonetic transcription 
of the word sequence comprising the text and 
aligning the phone sequence with the speech using a 
Hidden Markov Model (HMM) speech recognizer 
[1].  
 
The phoneme alignment can be considered speech 
recognition without a large portion of the search 
problem. Since we know the string of spoken words 
the possible paths are restricted to just one string of 
phonemes. This leaves time as the only degree of 
freedom and the only thing of interest then is to 
place the start and end points of each phoneme to be 
aligned. For the case of aligning singing voice to the 
text of a song, more data is available out of the 
musical information: the time at which the phoneme 
is supposed to be sung, its approximate duration, and 
its associated pitch. 
 
We have implemented a system that can align the 
singing voice signal to the lyrics in real time. Thus, 
as the singer performs, the signal can be processed 
and different specific audio effects applied depending 
on which phoneme of the lyrics is currently being 
sung. This pursues the idea of content based 
processing. 
 
 

2 Singing voice to text aligner 
 

In this section, we consider the main differences 
between speech and singing voice, and present our 
proposal for the singing voice to text aligner by 
searching the most appropriate HMM architecture 
and suitable input features for the singing voice. 
Finally we show how to build the composite Finite 
State Network (FSN) of the song. 

2.1 Speech and Singing Voice 
 
Although speech and singing voice sounds have 
many properties in common because they originate 
from the same production physiology, there are some 
differences to bear in mind.  
 
-Voiced/unvoiced ratio: The ratio between voiced, 
unvoiced sounds, and silence is about (60%, 25%, 
15%) in the case of normal speech. In singing, the 
percentage of phonation time can increase up to 95% 
in the case of opera music.  
 
-Dynamic: The dynamic range as well as the average 
loudness is greater in singing than in speech. The 
spectral characteristics of a voiced sound change 
with the loudness [2]. 
 
-Fundamental frequency: In speech, the 
fundamental frequency variations express an 
emotional state of the speaker or add intelligibility to 
the spoken words. This frequency range of f0 is very 
small compared to singing where it can be up to 
three octaves.  
 
-Vibrato: Two types of vibrato exist in singing. The 
classical vibrato in opera music corresponds to 
periodic modulation of the phonation frequency, and 
in popular music the vibrato implies an added 
amplitude modulation of the voice source [3]. In 
speech, no vibrato exists.  



  
 

 
-Formants: Because in singing the intelligibility of 
the phonemic message is often secondary to the 
intonation and musical expression qualities of the 
voice, in cases like high pitch singing, wide 
excursion vibratos, hoarse and aggressive attacks or 
very loud singing, there is an alteration of the 
formants position, and therefore the perceived vowel 
is slightly modified. 

2.2 HMM Architecture  
 
As the task of the alignment can be considered as a 
simplified speech recognition, it is natural to adopt a 
successful paradigm of the ASR, namely HMM, for 
the alignment. Our approach attempts to use this 
model for the singing voice case and tune its 
parameters to make the model singing voice case 
specific. This tuning has to take into account the 
following considerations: 
 
(a) No large singing voice database is available to 

train the model.  
(b) The final system will have to align with the 

minimum possible delay. 
(c) The alignment will have phoneme resolution. 
 
The aligner will be a phoneme-based system (c). In 
this type of systems, contextual effects cause large 
variations in the way that different sounds are 
produced. Although training different phoneme 
HMMs for different phoneme contexts (i.e. 
triphonemes) would present better phonetic 
discrimination, this is not recommended in the case 
(a) no large database is available.  
 
HMMs can have different types of distribution 
functions: discrete, continuous, and semi continuous. 
Discrete distribution HMMs match better with small 
train database and are more efficient computationally 
[4]. Because of this and considerations (a) and (b), in 
this first approach, the nature of the elements of the 
output distribution matrix will be discrete.  
 
The most popular way in which speech is modeled is 
as a left-to-right HMM with 3 states. We also fit 3 
states to most of the phonemes (except for the 
plosives) as an approach to mimic the attack, steady 
state and release stages of a note. The plosives are 
modeled with 2 states to take into consideration 
somehow their intrinsic briefness, and the silence is 
modeled with 1 state as it is in speech. 

 2.3 Front-end Parameterization 
 
The function of this stage is to extract the features 
that will be used as the observations of the HMMs. 

To do so the input signal is divided into blocks and 
from each block the features are extracted. For the 
singing voice we keep the speech assumption that the 
signal can be regarded as stationary over an interval 
of a few milliseconds. Various possible choices of 
vectors together with their impact on recognition 
performance are discussed in [5]. Our choice of 
features to be extracted from the sound in the front-
end is the following: 
 
Mel Cepstrum: 12 coefficients 
Delta Mel Cepstrum: 12 coefficients 
Energy: 1 coefficient 
Delta Energy: 1 coefficient 
Voiceness: 2 coefficients  
 
With: 
 
Window Displacement: 5.8 ms 
Window Size: 20 ms 
Window Type: Hamming 
Sampling Rate: 22050 Hz 
 
To compute the Mel frequency cepstral coefficients 
(MFCC) the Fourier spectrum is smoothed 
integrating the spectral coefficients within triangular 
frequency bins arranged on the non-linear Mel-scale. 
The system uses 24 of these triangular frequency bins 
(from 40 to 5000 Hz). In order to make statistics of 
the estimated speech power spectrum approximately 
gaussian, log compression is applied to the filter-
bank output. The final processing stage is to apply 
the Discrete Cosine Transform to the log filter-bank 
coefficients.  
 
The voiceness vector consists of a Pitch Error 
measure and the Zero Crossing rate. The Pitch Error 
component is a byproduct from the fundamental 
frequency analysis, which is based on [6].  The zero 
crossing rate is calculated by dividing the number of 
consecutive samples with different signs by the 
number of samples of the frame.  
 
The acoustic modeling assumes that each acoustic 
vector is uncorrelated with its neighbors. This is a 
rather poor assumption since the physical constraints 
of the human vocal apparatus ensure that there is 
continuity between successive spectral estimates. 
However, considering differentials to the basic static 
coefficients greatly reduces the problem. This 
differential ponders up to two frames in the future 
and two frames in the past. 

2.4 Composite FSN 
 
The alignment process starts with the generation of a 
phonetic transcription out of the lyrics text. This 



  
 

phonetic transcription is used to build the composite 
song FSN concatenating the models of the phonemes 
transcribed. 
 
The phonetic transcription previous to the alignment 
process has to be flexible and general enough to 
account for all the possible realizations of the singer. 
It is very important to bear in mind the non-
linguistic units silence and aspiration as their 
appearance cannot be predicted. Different singers 
place silences and aspirations in different places. 
This is why while building the FSN, between each 
pair of phoneme models, we insert both silence and 
aspiration models. In the transition probability 
matrix of the FSN, the jump probability aij from each 
speech phonetic unit to the next silence, aspiration or 
speech phonetic unit will be the same as shown in 
figure 1. 
 

 

Figure 1:  Concatenation of silences and aspirations 
in the FSN 

The aspiration is problematic since in singing its 
dynamic is more significant. This causes that the 
aspiration can be easily confused with a fricative. 
 
Moreover, different singers not only sing differently 
but also, as in speech, pronounce differently. To take 
into account these different pronunciations we 
modify the FSN to add parallel paths as shown in 
figure 2. 

 

Figure 2: Representation of a phonetic equivalence 
in the FSN 

The alignment resultant from the Viterbi decoding 
will follow the most likely path, so it will decide if it 
is more probable that it was phoneme [a] or phoneme 
[œ] the one sang. 

 

3 Low delay alignment 
 

In this section we modify the Viterbi algorithm to 
allow low-delay. To compensate the loss of 
robustness caused by this, some strategies on 
discarding phony candidates are introduced to 
preserve a good accuracy.   

3.1 Low-delay Viterbi decoding 
 
The usual decoding choice in the text to speech 
alignment problem is the Viterbi algorithm [7]. This 
algorithm gives as a result the most probable path 
through the models, giving the points in time for 
every transition from one phoneme model to the 
following.  
 
Most applications perform the backtracking at the 
end of the utterance. In the case of a limited 
decoding delay, backtracking has to be adapted in 
order to determine the best path at each frame 
iteration. If we consider a decoding delay of � m 
frames, we will have to follow the backtracking 
pointers of the selected best path to determine the 
associated phone index in the FSN � m frames 
before. Strategies for low delay backtracking are 
discussed in [8] for the analogous case of 
recognition.  
 
In general, the best path at frame m will be different 
from the best path at the end of the utterance.  As a 
general rule, the reduction in the delay causes an 
important degradation in performance. However, 
since we want to be able to offer real time audio 
effects, we will work with the most extreme case, 
deciding for each input frame the current singer 
position in the lyrics with a decoding delay of � m=0. 
To avoid a large amount of jumps from one path to a 
complete different one, we introduce some strategies. 

3.2 Strategies for discarding candidates 
 
During the low-delay alignment we have several 
hypothesis on our location in the song with similar 
probability. We use heuristic rules as well as musical 
information from the score to discard candidates. 
 
An example of a rule for discarding candidates is 
that once we have decided we are in a certain 
fricative of the phonetic transcription, since the 
fricatives are aligned very reliably, the only 
candidates we consider are the fricative and the 
phonemes that comes next in the phonetic 
transcription.  



  
 

 
Figure 3:  Function of the factor applied to the 

Viterbi probability 
 

We have also implemented routines that use the 
information that we have apart from the lyrics. Since 
we are aligning to a song, we know that the phoneme 
corresponding to a note in the score is supposed to 
have certain duration. Moreover, the user, 
supposedly, sings following the tempo so we take 
advantage of this fact to better choose a phoneme 
from the phonetic transcription by modifying the 
output Viterbi probabilities by the function shown in 
figure 3. 

 
In this figure 3 ts is the time at which the phoneme 
happens in the singer performance, tm is the time at 
which this phoneme happens in the song score, 
parameters a and b are tempo and duration 

This function can be defined differently for the case 
in which the singer comes from silence and attacks 
the beginning of a word, and for the case the singer 
has already started a word, due to the very different 
behaviors of these two situations. 
 
 

4 Results 
 
The aligner has been tested over a set of songs and it 
has proved to be quite accurate and robust for all 
kind of singers. In order to check the performance of 
the system, we have implemented a graphical 
interface where the results of the alignments can be 
displayed as shown in figure 4.  
 

 

Figure 4:  View of the real-time alignment results in 
the graphical interface 

The Time Delay (TD) of the system has been 
computed from the formulation done in [8], in which 

only the intrinsic delay of the alignment algorithm is 
taken into account. Therefore, the following delays 
are considered: 10 ms due to the Window Size (WS), 
and 11.6 ms due the Window Displacement (WD) 
and the Delta Frames (DF). No delay is due to 
second derivatives, as we are not using acceleration 
feature computations (AF=0), neither any delay is 
introduced in the Viterbi decoding step (DD=0).  
This is: 
 

 ) DD  AF  DF (  WD 
2

WS
  TD +++=  

 
This makes a delay of 21 ms, which has to be added 
to the hardware delay to get the total delay of the 
system. 
 
 

5 Conclusions 
 
Certainly the system can be improved, especially in 
certain phone transitions. We believe taking into 
consideration the pitch information could bring 
about some improvements. In the system, the pitch 
information has been discarded so that singers could 
be aligned regardless in how in tune they sing. 
However, if we can rely on the singer’s pitch, this 
information can be very useful to improve the 
accuracy of the phone boundaries. We can even think 
of a hybrid system where two parallel alignments, 
phonetic and musical [9], would merge to 
complement each other. 
 
We believe that using context dependent phoneme 
models and using non-discrete symbol probability 
distributions would bring better results. This is why 
part of our efforts have to focus on building a large 
singing voice database, which at this point in time is 
22 minutes long.  
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