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Abstract. This research focuses on the removal of the singing voice in
polyphonic audio recordings under real-time constraints. It is based on
time-frequency binary masks resulting from the combination of azimuth,
phase difference and absolute frequency spectral bin classification and
harmonic-derived masks. For the harmonic-derived masks, a pitch likeli-
hood estimation technique based on Tikhonov regularization is proposed.
A method for target instrument pitch tracking makes use of supervised
timbre models. This approach runs in real-time on off-the-shelf comput-
ers with latency below 250ms. The method was compared to a state of
the art Non-negative Matrix Factorization (NMF) offline technique and
to the ideal binary mask separation. For the evaluation we used a dataset
of multi-track versions of professional audio recordings.

Keywords: Source separation, Singing voice, Predominant pitch
tracking.

1 Introduction

Audio source separation consists in retrieving one or more audio sources given a
set of one or more observed signals in which the sources are mixed. In the field
of music processing, it has received special attention the past few decades. A
number of methods have been proposed, most of them based on time-frequency
masks. We differentiate between two main strategies in the creation of the time-
frequency mask depending on the constraints of the solution.

Realtime solutions are often based on binary masks, because of their simple
and inexpensive computation. These solutions assume the target sources are
orthogonal in the time-frequency domain. The most common binary mask used in
stereo music recordings is based on panning information of the sources [15,8,13].

Non-realtime approaches do not make such an orthogonality assumption, and
make use of a soft mask based on Wiener filtering [2] which requires estimating
all spectrograms of the constitutive sources. For harmonic sources this estima-
tion is often performed in two steps. First the pitch track of the target source is
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estimated and then the spectrum of that given pitch track is estimated. The first
step often relies on melody extraction algorithms [7,6]. Some methods estimate
the pitch of the components independently [10], while others perform a joint
estimation of the pitches in the spectrum [10,14]. Most joint pitch estimation
methods are computationally expensive since they evaluate a large number of
possible pitch combinations. NMF approaches to multipitch likelihood estima-
tion [11,5] address this pitfall by factoring the spectrogram into a multiplication
of two positive matrices, a set of spectral templates and a set of time-dependent
gains. In [4] and [9] the spectral templates are fixed to a set of comb filters rep-
resenting the spectra generated by each individual pitch spectrum. We propose
combining several sources of information for the creation of the binary mask
in order to raise the quality of currently existing methods while maintaining
low-latency. We propose two main sources of information for the creation of the
masks. Spectral bin classification based on measures such as lateralization (pan-
ning), phase difference between channels and absolute frequency is used to create
a first mask. Information gathered through a pitch-tracking system is used to
create a second mask for the harmonic part of the main melody instrument.

2 Spectral Bin Classification Masks

Panning information is one of the features that have been used successfully [15,8]
to separate sources in real-time. In [13] the pan and the IPD (inter-channel phase
difference) features are used to classify spectral bins. An interesting feature for
source separation is the actual frequency of each spectrum bin, which can be a
good complement when the panning information is insufficient. Using pan and
frequency descriptors we define a filter in the frequency domain using a binary
mask to mute a given source:

mpf
i [f ] =

{
0 if plow < pi[f ] < phigh and flow < f < fhigh,

1 otherwise.

where pi[f ] is the pan value of the spectral bin f at frame i. The parameters
plow and phigh are the pan boundaries and flow and fhigh are the frequency
boundaries fixed at −0.25, 0.25 and 60Hz and 6000Hz respectively, to keep the
method unsupervised.

The results show that this method produces acceptable results in some sit-
uations. The most obvious limitation being that it is not capable of isolating
sources that share the same pan/frequency region. This technique is also inef-
fective in the presence of strong reverberation or in mono recordings which have
no pan information.

3 Harmonic Mask

Harmonic mask creation is based on two assumptions: that the vocal component
is fully localized in the spectral bins around the position of the singing voice
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partials and that the singing voice is the only source present in these bins.
Under such assumptions an optimal mask to remove the singing voice consists
of zeros around the partials positions and ones elsewhere.

These assumptions are often violated. The singing voice is composed of other
components than the harmonic components such as consonants, fricatives or
breath. Additionally other sources may contribute significantly to the bins where
the singing voice is located. This becomes clear in the results where signal de-
composition methods such as Instantaneous Mixture Model (IMM) [4] that do
not rely on such assumptions perform better than our binary mask proposal.
However these assumptions allow us to greatly simplify the problem.

Under these assumptions we define the harmonic mask mh to mute a given
source as:

mh
i [f ] =

{
0 for (f0i · h)− L/2 < f < (f0i · h) + L/2, ∀h,
1 otherwise.

where f0i is the pitch of the ith frame, and L is the width in bins to be removed
around the partial position.We may also combine the harmonic and spectral bin
classification masks using a logical operation by defining a new mask mpfh

i as:

mpfh
i [f ] = mpf

i [f ] ∨mh
i [f ] (1)

Finally, we are also able to produce a soloing mask m̄i[f ] by inverting any of
the previously presented muting masks m̄i[f ] = ¬mi[f ].

In order to estimate the pitch contour f0i of the chosen instrument, we follow a
three-step procedure: pitch likelihood estimation, timbre classification and pitch
tracking.

3.1 Pitch Likelihood Estimation

The pitch likelihood estimation method proposed is a linear signal decompo-
sition model. Similar to NMF, this method allows us to perform a joint pitch
likelihood estimation. The main strengths of the presented method are low la-
tency, implementation simplicity and robustness in multiple pitch scenarios with
overlapping partials. This technique performed better than a simple harmonic
summation method in our preliminary tests.

The main assumption is that the spectrum Xi ∈ R
NS×1 at a given frame i, is a

linear combination ofNC elementary spectra, also named basis components. This
can be expressed as Xi = BGi, NS being the size of the spectrum. B ∈ R

NS×NC

is the basis matrix, whose columns are the basis components. Gi ∈ R
NC×1 is a

vector of component gains for frame i.
We set the spectra components as filter combs in the following way:

ϕ[m,n] = 2πflHNP
2

iH−F/2+n
HNP − 1

Sr ln (2)

Bm[k] =

F∑
n=0

wa[n]

(
Nh∑
h=1

sin (hϕ[m,n])

)
e−j2πnk/N (2)
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with H = (1 − α)F . Where α is a coefficient to control the frequency overlap
between the components, F is the frame size, Sr the sample rate, wa[n] is the
analysis window, Nh is the number of harmonics of our components, Bm is the
spectrum of size N of the component of mth pitch. Flat harmonic combs have
been used in order to estimate the pitch likelihoods of different types of sources.

The condition number of the basis matrix B defined in Equation 2 is very
high (κ(B) ≈ 3.3 · 1016), possibly due to the harmonic structure and correlation
between the components in our basis matrix. For this ill-posed problem we pro-
pose using the well-known Tikhonov regularization method to find an estimate
of the components gains vector Ĝi given the spectrum Xi. This consists in the
minimization of the following objective function:

Φ(Gi) = |BGi −Xi|2 + λ |Gi|2 (3)

where λ is a positive scalar parameter that controls the effect of the regularization
on the solution. Under the assumption of gaussian errors, the problem has the
closed-form solution Ĝi = RXi where R is defined as:

R = Bt[BBt + λINS ]
+ (4)

and [Z]+ denotes the MoorePenrose pseudoinverse of Z. The calculation of R is
computationally costly, however R only depends on B, which is defined by the
parameters of the analysis process, therefore the only operation that is performed
at each frame is Ĝi = RXi.

We must note that in contrast to NMF, our gains Ĝi can take negative values.
In order to have a proper likelihood we we define the pitch likelihood as:

Pi = [Ĝi]+/sum([Ĝi]+) (5)

where [Z]+ denotes the operation of setting to 0 all the negative values of a given
vector Z.

3.2 Timbre Classification

Estimating the pitch track of the target instrument requires determining when
the instrument is not active or not producing a harmonic signal (e.g. in fricative
phonemes).

We select a limited number of pitch candidates nd by finding the largest local
maxima of the pitch likelihood function Pi 5. For each candidate a feature vector
c is calculated from its harmonic spectral envelope eh(f) and a classification
algorithm predicts the probability of it being a voiced envelope of the target
instrument. The feature vector c of each of the candidates is classified using
Support Vector Machines (SVM). The envelope computation eh(f) results from
the Akima interpolation [1] between the magnitude at harmonic frequencies bins.
The timbre features c are a variant of the Mel-Frequency Cepstrum Coefficients
(MFCC), where the input spectrum is replaced by an interpolated harmonic
spectral envelope eh(f). This way the spectrum values between the harmonics,
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Fig. 1. Spectrum magnitude (solid black line) and the harmonic spectral envelopes
(colored dashed lines) of three pitch candidates

where the target instrument is often not predominant, have no influence on the
classification task. Figure 1 shows an example of a spectrum Xi[f ] (in black) of
a singing voice signal, and the interpolated harmonic spectral envelopes eh,1(f),
eh,2(f) and eh,3(f) (in magenta, blue and orange respectively), of three different
pitch candidates.

The features vector c contains the first 13 coefficients of the Discrete Cosine
Transform (DCT), which are computed from the interpolated envelope eh(f) as:

c = DCT (10 · log (E[k])) (6)

where E[k] =
∑fk,high

fk,low
eh(f)

2, and fk,low and fk,high are the low and high fre-

quencies of the kth band in the Mel scale. We consider 25 Mel bands in a range
[0...5kHz]. Given an audio signal sampled at 44.1kHz, we use a window size of
4096 and a hop size of 512 samples. The workflow of our supervised training
method is shown in Figure 2. Two classes are defined: voiced and unvoiced in
a frame-based process1. Voiced frames contain pitched frames from monophonic
singing voice recordings (i.e. only a vocal source). Pitched frames have been

Fig. 2. In the training stage, the eh(f) is based on the annotated pitch if it exists
if (ref. f0), and on the estimated pitch otherwise

1 The original training and test datasets consist of 384, 152 (160, 779/223, 373)
and 100, 047 (46, 779/53, 268) instances respectively. Sub-sampled datasets contain
50, 000 and 10, 000 respectively. Values in brackets are given for the voiced and
unvoiced instances respectively.
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manually annotated. In order to generalize well to real audio mixtures, we also
include audio examples composed of an annotated vocal track mixed artificially
with background music. Unvoiced frames come from three different sources: a)
non-pitched frames from monophonic singing voice recordings (e.g. fricatives,
plosive, aspirations, silences, etc.); b) other monophonic instrument recordings
(sax, violin, bass, drums); and c) polyphonic instrumental recordings not con-
taining vocals. We employ a radial basis function (RBF) kernel for the SVM
algorithm [3]. As a pre-process step, we apply standardization to the dataset by
subtracting the mean and dividing by the standard deviation. We also perform
a random subsampling to reduce model complexity. We obtain an accuracy of
83.54%, when evaluating the model against the test dataset.

3.3 Instrument Pitch Tracking

The instrument pitch tracking step is a dynamic programming algorithm divided
into two processes. First a Viterbi is used to find the optimal pitch track in the
past C frames, using pitch likelihood Pi for the state probability. Then a second
Viterbi allows us to determine the optimal sequence of voiced and unvoiced
frames using the probability found on the timbre classification step for the state.
In both cases frequency differences larger than 0.5 semitones between consecutive
frames are used to compute transition probabilities. Our implementation works
on an online manner with a latency of C = 20 frames (232 ms). Due to lack of
space the details of the implementation are not presented here.

4 Evaluation

The material used in the evaluation of the source separation method consists of
15 multitrack recordings of song excerpts with vocals, compiled from publicly
available resources (MASS2, SiSEC3, BSS Oracle4)

Using the well known BSSEval toolkit [12], we compare the Signal to Distor-
tion Ratio (SDR) error (difference from the ideal binary mask SDR) of several
versions of our algorithm and the IMM approach [4]. The evaluation is per-
formed on the ”all-minus-vocals” mix versions of the excerpts. Table 1 presents
the SDR results averaged over 15 audio files in the dataset. We also plot the
results of individual audio examples and the average in Figure 4. Pan-freq mask
method results in applying the mpf mask from Equation (1). The quality of our
low-latency approach to source separation is not as high as for off-line meth-
ods such as IMM, which shows an SDR almost 3 dBs higher. However, our
LLIS-SVM method shows an increase of 2.2 dBs in the SDR compared to the
LLIS-noSVM method. Moreover, adding azimuth information to the multiplica-
tive mask (method LLIS-SVM-pan) increases the SDR by 0.7 dBs.

2 http://www.mtg.upf.edu/static/mass
3 http://sisec.wiki.irisa.fr/
4 http://bass-db.gforge.inria.fr/bss_oracle/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
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Fig. 3. SDR Error for four methods: pan-frequency mask, LLIS and IMM

Table 1. Signal-To-Distortion Ratio (in dB) for the evaluated methods. The Ideal
column shows the results of applying an ideal binary mask with zeros in the bins where
the target source is predominant and ones elsewhere.

Method pan-freq LLIS-noSVM LLIS-SVM LLIS-SVM-pan IMM Ideal

SDR-vocals 0.21 0.47 2.70 3.43 6.31 12.00

SDR-accomp 4.79 5.05 7.28 8.01 10.70 16.58

5 Conclusions

We present a source separation approach well suited to low-latency applications.
The separation quality of the method is inferior to offline approaches, such as
NMF-based algorithms, but it performs significantly better than other existing
real-time systems. Maintaining low-latency (232 ms), an implementation of the
method runs in real-time on current, consumer-grade computers. The method
only targets the harmonic component of a source and therefore does not remove
other components such as the unvoiced consonants of the singing voice. Addition-
ally it does not remove the reverberation component of sources. However these
are limitations common to other state-of-the-art source separation techniques
and are out of the scope of our study.

We propose a method with a simple implementation for low-latency pitch
likelihood estimation. It performs joint multipitch estimation, making it well-
adapted for polyphonic signals. We also introduce a technique for detecting and
tracking a pitched instrument of choice in an online manner by means of a
classification algorithm. This study applies the method to the human singing
voice, but it is general enough to be extended to other instruments.

Finally, we show how the combination of several sources of information can
enhance binary masks in source separation tasks. The results produced by the
ideal binary mask show that there are still improvements to be made.
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