
Predicting Transformed Audio Descriptors: A System
Design and Evaluation

Graham Coleman
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
graham.coleman@upf.edu

Fernando Villavicencio
Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
fernando.villavicencio@upf.edu

ABSTRACT
We propose and present an example system design for pre-
dicting changes in perceptually relevant audio properties
under the effects of common musical and sonic transforma-
tions. By building these predictive models, we may facilitate
descriptor-driven control of effects while avoiding queries to
the transformation itself. In this study we model spectral
descriptors of a limited class of sounds under the resampling
transformation with Support Vector Regression (SVR) and
report on the accuracy of the predictions, with an emphasis
on performance as a function of model parameters. On a
test set of resampled inputs, the statistical model predicts
an output filter bank within 3-4 times the mean absolute
error of a comparable analytical model.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Applications— signal process-
ing ; I.5 [Pattern Recognition]: Models—deterministic,
statistical, SVM, SVR

General Terms
Design, Experimentation, Performance

Keywords
descriptor-driven transformation, digital audio effects, spec-
tral models, support vector machines

1. INTRODUCTION
Descriptor-driven control is a strategy that can be applied

to sound synthesis as well as to transformations / sound ef-
fects, wherein control parameters for the process are selected
that steer the output towards desired target descriptors.

Several works [7, 13] in control of parametric synthesis by
descriptors have focused on the optimization of parameters,
using a trial and error approach. This involves an audio
synthesis/transformation followed by analysis of the result
directly in the search loop, which may require considerable
computational resources.

By modeling relationships between parameters and de-
scriptors, the need to synthesize/transform candidate pa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MML’10, October 25, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0161-9/10/10 ...$10.00.

rameters can be avoided. A type of model that we refer to
as ”predictive” predicts output descriptors given by certain
parameters. Work described in [2] uses evolutionary com-
puting to find a path of spectral envelopes that is smooth
in terms of spectral moments, and can be seen as employing
predictive models. A second type of ”selective” model maps
target descriptors directly to control parameters. For ex-
ample in [6] target descriptors fundamental frequency and
loudness are mapped to control parameters of an additive
synthesizer using SVR machines. This work deals with pre-
dictive rather than selective models.

As shown in [4], given a predictive model of a transfor-
mation, numerical programming techniques can be used to
find acceptable parameters for descriptor based control. If
an analytical predictive model can be derived for our trans-
formation, then great. In the absence of a derived model, a
model can be learned statistically from examples, which will
be the focus of this work.

We propose therefore to predict output descriptors in au-
dio transformations as a function of their input descriptors

and control parameters, or f(~din, ~p) = ~dtr. In this work we
present a study modeling resampling as a statistical black
box from input and output descriptors and the transforma-
tion parameter. We will generate a database of test signals
with certain characteristics (noisy, stationary, can be accu-
rately described and predicted by broad spectral features)
and model them with Support Vector Regression, a statisti-
cal technique, then measure the accuracy of the predictions
against a test set.

This article is structured as follows; in Section 2, we will
present the objects being modeled and the modeling tools.
In Section 3, we describe our specific experimental proce-
dure. In Section 4, we will report and discuss the results,
examining the effect of model parameters upon the accuracy
of the predictions. In Section 5, we will conclude.

2. SVR PREDICTION OF DESCRIPTORS
2.1 Average Magnitude of Bands (AMB)

As descriptors, we use a rough measure of the spectrum
obtained by averaging the magnitude values from the set of
DFT bins Kj that fall into a particular filter band j, where
]Kj is the number of bins spanned by band j.

AvgMagBand(j) =
1

]Kj

∑
k∈Kj

|Xk| (1)

for frequency bands j = 1 . . . B. These descriptors are linear
with respect to gain and summation of the input signal1 and

91as such, facilitate the analytic model of mean descriptors

should be adequate for describing noisy signals. We report
them in units of nAMB, normalized by the maximum band
value (7.30×10−3 AMB) in the input database.

2.2 Resampling Transformation
Resampling is a frequently used audio transformation in

which the signal speed (adjusted by a factor L2, relative
to a fixed sampling rate) and frequency scale (subsequently
pitch) are adjusted by interpolating audio samples in time.
Changes brought about by resampling are deterministic and
known [10, 9] yet nonlinear with respect to a filter bank
representation.

A typical descriptor extraction process divides an input
signal into uniform-size analysis frames (overlapping or non-
overlapping). Resampling changes the length of its input,
and as such, either the number or spacing of frames in anal-
ysis must change, i.e. under a fixed analysis frame rate, there
will be different numbers of input and output frames. Hence,
input and output frames can no longer be directly compared.

One approach to predicting descriptors under varying
length would be to restrict the input to single centered frames,
and the resampling factor L from 0.5 to 2. Another approach
is to predict descriptors of frames in aggregate (e.g. mean)
rather than for each frame. This is the approach chosen for
this study; input sounds are stationary and mean output
descriptors are predicted from mean input descriptors.

2.2.1 Analytic Model
An analytic model for resampling (for comparing with

learned models) can be derived based on the observation
that resampling is equivalent to spectral interpolation [10]:

f(~fbin, L) = Lα · INTERP(~fbin, L) (2)

and gains per band are scaled according to the change in
length, and α is a constant that minimizes error on the train-
ing database (α ≈ 0.5). However, the ratio of mean output
to mean input seems to vary quite a bit by L and instance
(between 0.8 and 1.4), so this could be improved.

2.3 SVRs for Descriptor Prediction
Support Vector Machines are a supervised learning tech-

nique frequently used for classification and regression [12]
(referred to as Support Vector Regression, or SVR). These
techniques rely on a formulation of linear regression gener-
alized by a mapping into a higher dimensional space (the
kernel trick) and solved as a quadratic programming prob-
lem. Support vectors refer to a subset of input patterns
selected and weighted by a training process. As suggested
in a practical guide to SVMs [8], we use the Radial Basis
Function (RBF) kernel, which maps examples to a space
corresponding to their distance from the support vectors.

Predicting our vector of descriptors entails predicting out-
put descriptors for all filter bands. There exist formulations
of SVRs for the vector-valued case [1], but implementations
are not widespread. Fortunately, aggregating single SVRs
for each output are equivalent under some criteria and have
been reported to give similar performance [1].

Finding an optimal model with SVRs typically consists in
training and evaluating models in search for the best model
parameters, usually using a grid search. Besides the train-
ing size, which is an implicit (and important) parameter,

92At times as log2 L, negative transposition in octaves

there are three parameters that strongly affect the model
performance: C, the complexity parameter, is a regulariza-
tion parameter of classic support machines; it determines
the tradeoff between models that fit the data closely and
flatter models (hyperplanes closer to zero). Some regression
machines also have an additional parameter, ε (or precision),
that determines the width of the insensitive-tube in the er-
ror function, informing the model which scales of details are
considered significant. The optimal value of this parame-
ter should be related to the inherent noise level in the data
[11] (and thus sensitive to the scale of the labels). Finally,
we must optimize any kernel parameters, in this case γ, the
radius of the RBF kernel (a spherical gaussian), which deter-
mines the selectivity of the model; how many of the support
vectors are used to determine the label of the query instance.

3. EXPERIMENTAL PROCEDURE
First, we generated a database of 400 input sounds by tak-

ing uniform white noise samples of 0.5 seconds each (44.1k)
and filtering them by a spectral distribution described by a
Hann window surrounded by stop regions a) covering a cer-
tain width of frequency from 5% to 90% (20 values) b) with
the non-stop section shifted to different positions, from hard
left to hard right (20 values). Once generated, input sounds
were randomly partitioned into training and test with an
80% training split.

3.1 Learning Database
Next, we resampled each input sound under different re-

sampling factors L; a uniformly-spaced grid of parameters
with 41 values of log2L i.e. (−1,−.95, .., 0, .., .95, 1) or be-
tween 0.5 and 2 in terms of L. From each of the input and
output sounds we averaged the magnitude spectrum of all
frames, dropping silent frames at the edges, using an Hann
window of 2048 points, an overlap factor of 2, and a zero-
padding factor of 4. Then, from each time-averaged spec-
trum we took a magnitude average over 16 bands uniformly
divided by frequency. We export these features as training
and test databases to the Weka ARFF format [5] for the
learning tasks and build and evaluate LibSVM models [3].

To summarize, we have two databases, a train and test,
which consist of 320 and 80 input sounds. Each input sound
has 41 corresponding output sounds, each of which is de-
scribed by a transformation parameter log2L, an input en-
velope of 16 bands, and an output envelope of 16 bands.

3.2 Selection of Learning Parameters
Model parameters are evaluated by exhaustive search over

a coarse grid. For simplicity, all features are used as inputs,
and a global set of model parameters is used, though these
should be updated (i.e. per band model parameters and fea-
ture selection) in future work.

A grid of parameters (such as in Figure 1) for training size,
C, ε, and γ is iterated over. For each set of model parame-
ters we store corresponding predictions on the test examples
and a subset of the training examples. Once generated, we
can compare the predictions with the actual transformed
descriptors and generate error statistics. We describe per-
formance as well as select the best performing model with
the mean of absolute residual (|r|) over all bands.

4. RESULTS
For the model with best performance, we predict the trans-

formed descriptors of the test set with a mean residual per

-1
-0.5

0
0.5

1
-3

-2
-1

0
1

0.05

0.1

0.15

log10 γ

test, ε=1e-6, ts=2000

log10 C

|r|
 n

A
M

B

Figure 1: Coarse grid search for acceptable ranges
of γ and C.
band of 0.0326 nAMB which is around 16.2% of the mean
output value (0.206 nAMB). We achieve this performance
using a training set of 12k input-param-output tuples, com-
plexity C of 3.162, kernel γ of 4.642, and a model precision
ε of 1×10−6. By contrast, the analytic model in Section
2.2.1 achieves an average residual per band of 0.0103 nAMB,
which is around 5.14% of the mean output value.

At first, we overlooked the importance of the ε parameter
causing our model to fail to attend to the finer details of the
regression. Using typical values of the other parameters we
found a more suitable value that improved the performance
by an order of magnitude (effect shown in Figure 4).

Figure 1 depicts the major trends in the coarse grid search.
We see a roughly paraboloid shape, as well as a trend point-
ing towards greater γ and lesser C in on the test set. For
this training size, it appears that the best solutions could be
found in log10 γ: [0, 2], log10C: [-3, 0], or overlapping with
the corner facing us in the figure (region partially shown).

Along an axis of constant C, we see individual minima
with respect to γ that shift slightly according to C. In our
formulation of the RBF kernel, γ is inverse to the radial

distance of the kernel (K(x, y) = e−γ·<x−y,x−y>
2

) so that
smaller γ means a less exclusive kernel that covers many of
the training examples and that larger γ means a more exclu-
sive kernel that covers only a few close training examples.

By contrast, we see the trend with respect to C to be more
subtle and more sensitive to the other parameters such as γ.
Nonetheless, when C is less than the optimal value it would
correspond to underfitting the data, and when C is greater
than the optimal value it would correspond to overfitting
the data, C seems to be sensitive to the training size, while
the optimal value of γ seems less so.

From subsequently larger training sets we can show that
the optimal value of γ doesn’t change much with training
size, and that optimal value of C increases with the increase
in training size (more data allows a more complex and less
smooth model).

trainsize best (|r| nAMB) best γ best C
12000 0.0326 4.6 3.16
8000 0.0369 4.6 1
4000 0.0460 4.6 0.316
2000 0.0594 3.59 -1*

Table 1: Optimal values of γ and C for different
training sizes. * minimum for coarse grid was on
edge, hence may not be optimum.

By examining the local behavior of the performance at

0 2000 4000 6000 8000 10000 12000
0.02

0.04

0.06

0.08

0.1

0.12

training size

|r|
 n

A
M

B

performance on training sizes, test and train

test
train

Figure 2: System performance with respect to tri-
aning size. As training data increases, test perfor-
mance approaches training performance.

the largest training size, we can show that the behavior is
parabolic with respect to γ and C.

To argue that we have sufficient data for learning to con-
verge, we can examine the performance on the test set with
respect to the amount of training data. While we haven’t
reached a point where the performance flattens out, we come
quite close to the performance on the training set, (as seen
in Figure 2) with the error on the test set flattening out as
training size increases.

4.1 On the Learning Parameters
In the following section, we illustrate the effect of each

model parameters on the vector-valued prediction result,
showing how changes in those parameters affect the predic-
tions produced. We illustrate this with triads of plots: the
true values after transformation, a predictive model with
suboptimal parameters (we attend to this to see the effect
of the parameters), and a model with good parameters. In
each plot the colored lines show the descriptor vector (filter
bank) at different values of the resampling parameter be-
tween 0.5 and 2. The bold line is the transformation with
resampling factor L=1, also equivalent to the input.

Training Size For an insufficient training size, it seems
that test examples don’t converge, i.e. there are insufficient
training patterns within the neighborhood of the RBF kernel
for a particular query point (not shown).

γ As stated earlier, small γ means large promiscuous ker-
nel (many training patterns are active for a query pattern)
and large γ means a small and selective kernel (few training
patterns are active for a query pattern). As such, overly
small gamma will result in overly smooth approximations.
By contrast, an overly large and selective γ will result in not
enough training patterns for a query, so some examples will
fail to converge. See Figure 3.

ε (Precision) controls the width of insensitive-tube for the
error function. Thus, if it is too large, the regression will
ignore the smaller details in the target function. By contrast,
if it is too small, it will expend lots of computational effort
overfitting to noise. See Figure 4

4.2 Distribution of Test Error
By Input Sample In the discussions of model parame-

ters above (Section 4.1), we develop the intuition that there
were model parameters under which the approximation did
not “converge”. By averaging performance for each of the
test input sounds, we can show how different inputs have
vastly different average performance. Examining the sorted
performance curve shows two subsets of test examples with
respect to performance divided by an inflection point: a
broad section of about 70% of examples with relatively uni-

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
trans. observations for instance 30

|r|
 n

A
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
test predictions for instance 30, γ=0.01, C=3.16228, ts=12000, ε=1e-006

|r|
 n

A
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
test predictions for instance, γ=4.64159, C=3.16228, ts=12000, ε=1e-006

|r|
 n

A
M

B

0.5
0.55
0.62
0.68
0.76
0.84
0.93
1
1
1.1
1.3
1.4
1.6
1.7
1.9

Figure 3: With smaller γ (middle) we produce an
overly smooth approximation.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
trans. observations for instance 30

|r|
 n

A
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
 test predictions for instance 30, γ=4.64159, C=3.16228, ts=12000, ε=1e-006

|r|
 n

A
M

B

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
 test predictions for instance 30, γ=4.64159, C=3.16228, ts=12000, ε=0.001

|r|
 n

A
M

B

0.5
0.55
0.62
0.68
0.76
0.84
0.93
1
1
1.1
1.3
1.4
1.6
1.7
1.9

Figure 4: With overly large ε (bottom) we fail to
attend to the details of the target function.

form (low) error, and the other 30% of examples with a
sharper performance difference. These examples seem not
to converge (not yet known why), and contribute a propor-
tionally higher amount of error to the approximation (that
perhaps merits further investigation).

By Transformation Parameter (L) We examine av-
erage performance by resampling parameter value, but we
see that it is relatively flat (varies between 0.027 and 0.041
nAMB) especially compared to the difference among test
input sounds as above. This could be because the training
database had an equal amount of examples for each param-
eter value (test distribution equal to training distribution).

5. CONCLUSIONS
Using a model only generated from data produced by the

transformation itself, we are able to achieve performance al-
most to factor 3 of an analytic model, informed by knowledge
of the transformation. As such, it opens up the possibility
of building accurate models of transformations for which we
don’t have such knowledge or insight. In addition, we have
in some way characterized the failure modes of SVRs for
vector prediction of transformed audio descriptors.

We thank Esteban Maestre and Ferdinand Fuhrmann for
their helpful suggestions on the paper.

0 10 20 30 40 50 60 70 80
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
avg. error in band by input sound (test)

test input #

|r|
 n

A
M

B

sorted
unsorted

Figure 5: Sorted examples 1-25 vary more in terms
of average error and contribute more error propor-
tionally than the majority of examples.

6. REFERENCES
[1] M. Brudnak. Vector-Valued support vector regression.

In Neural Networks, 2006. IJCNN’06. International
Joint Conference on, pages 1562–1569. International
Neural Network Society, July 2006.

[2] M. Caetano and X. Rodet. Evolutionary spectral
envelope morphing by spectral shape descriptors. In
Proceedings of ICMC2009, August 2009.

[3] C. C. Chang and C. J. Lin. LIBSVM: a library for
support vector machines. 2001.

[4] G. Coleman and J. Bonada. Sound transformation by
descriptor using an analytic domain. In Proceedings of
DAFx 2008, pages 341–347. DAFx Conferences,
September 2008.

[5] S. R. Garner. Weka: The waikato environment for
knowledge analysis. In In Proc. of the New Zealand
Computer Science Research Students Conference,
pages 57–64, 1995.

[6] S. L. Groux and P. F. Verschure. Perceptsynth:
mapping perceptual musical features to sound
synthesis parameters. In IEEE International
Conference on Acoustics, Speech and Signal
Processing, 2008., pages 125–128, March 2008.

[7] M. Hoffman and P. Cook. The Featsynth framework
for feature-based synthesis: Design and applications.
In Proc. International Computer Music Conference
(ICMC-07), pages 184–187, August 2007.

[8] C. W. Hsu, C. C. Chang, and C. J. Lin. A Practical
Guide to Support Vector Classification.
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/, 2003.

[9] J. O. Smith. Digital Audio Resampling Home Page.
http://www-ccrma.stanford.edu/˜jos/resample/,
January 28, 2002.

[10] J. O. Smith. Mathematics of the Discrete Fourier
Transform (DFT).
http://ccrma.stanford.edu/˜jos/mdft/, 2007.

[11] A. Smola, N. Murata, B. Schölkopf, and K. R. Muller.
Asymptotically optimal choice of ε-loss for support
vector machines. In Proceedings of the International
Conference on Artificial Neural Networks, Perspectives
in Neural Computing, pages 105–110, September 1998.

[12] A. J. Smola and B. Schölkopf. A tutorial on support
vector regression. Statistics and computing,
14(3):199–222, September 2003.

[13] M. Yee-King and M. Roth. Synthbot: An
unsupervised software synthesizer programmer. In
Proc. International Computer Music Conference
(ICMC-08), pages 184–187, August 2008.

