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Abstract 

 
In this paper a method for extracting beat information of a piece of music is presented, a real-time 
analysis is performed while the music is played or recorded from any source and the system gives 
the beats per minute value at each moment and beat occurrences in time. It also becomes 
adaptative in case of a sudden or smooth change in the tempo. It deals with multiple hypotheses, 
and gives the most suitable results at each time. One of the most important applications linked to 
this work is the automatic classification of pieces in different musical genres or finding song 
similarities in terms of musical rhythm. 
 
 

1  Introduction 
 
To extract rhythm information from a piece of music 
has become a difficult task in the scope of computer 
music research. To achieve a musical representation 
of the rhythm of a song in a polyphonic recording 
including not only percussive instruments is not 
giving good results yet, although some research has 
been done and there are satisfactory results for drum 
loops, in terms of music transcription. One of the 
most important topics related to this work is the 
automatic classification of pieces in different musical 
genres or finding song similarities in terms of musical 
rhythm. One of the first steps to achieve a high level 
of rhythm description is the beat level. It means to 
detect beat occurrences in time, the beats that a 
listener usually tap with his foot while listening to a 
song, and derive BPM (beats per minute) information 
from it. Beat occurrences commonly match with 
points of maximum energy of the sound or at least 
correspond with points of high energy. In this article 
a method for extracting BPM information of a song is 
presented and some conclusions about applications 
and future work are discussed. 

2 Previous work 
 
Previous approaches related to rhythm tracking and 
beat induction include several approaches. 
 
Goto and Muraoka [1] [2] present a method, that 
works in real-time in a parallel-processing computer, 
that extracts drum patterns from a musical signal and 
uses a template-matching model to determine the beat 
of the song being analyzed. They also have presented 
a system that works with drum-less audio signals [3]. 
 

Scheirer [4] also presents a real-time beat-tracking 
system, which using a small number of band-pass 
filters and banks of parallel comb filters extracts the 
beat from musical signals of arbitrary polyphonic 
complexity. This system can be used to predict when 
beats will occur in the future. 
 
Dixon [6] presents a bottom-up approach to beat 
tracking from acoustic signals deriving time signature 
and approximate tempo from the timing patterns of 
detected note onsets. 
 
Desain and Honing [7] have made a lot of research in 
computational modeling of beat-tracking, their 
models begin looking for inter-onset intervals 
associating a rhythm pulse with the interval stream. 
 
Gouyon [8] have proposed a method for classification 
of drum-loops detecting the minimum inter-onset 
interval which he calls the tick, and looks for 
percussive templates in the most relevant ticks of the 
drum loop. 

3 System overview 
 
The flow diagram in figure 1 shows the functionality 
of the system and can be followed to easily 
understand the processing of the system. 
 
First of all we apply a smoothing window and zero-
padding to the sound source which is going to be 
analyzed and then we do the Short Time Fourier 
Transform that produces a Frame-by-Frame 
Frequency Spectrum of the input signal. Then we 
apply a bank of filters over the magnitude spectrum 
to calculate the energy evolution in time of each 
filter, and multiplying this energy evolution by an 
arbitrary factor for each filter we get a Total Average 
Energy that will be the basic information where to 



look for BPM candidates. A pseudo-correlation 
method that will be explained later in section five, 
searches for BPM candidates and adds them to a list 
of hypotheses from where we derive the most 
probable hypothesis at each moment. 
 
We also synthesize a perceptual rhythm from an 
important simplification of the input audio data and 
we display  what is called the BPM spectrum, that is 
explained in detail in sections four and six 
respectively. 
 
 

 
 
 
Figure 1 System overview of the beat-tracking 
system 

4 Perceptual beat energy extraction  
 
The system accepts any kind of audio data as input, 
including the compressed MP3 format, and this data 
is automatically converted to PCM raw audio with a 
quality that can be changed by the user: mono/stereo, 
8/16 bit, 22050/44100Hz. 
 
Good results are obtained dealing with mono, 16 bit, 
22050 Hz, PCM raw audio, so there is no need to 
work with better quality because the calculation time 
will increase a lot and the results will be more or less 
the same. 
 
Assuming that beat occurrences usually match with 
maximum energy points of the waveform or at least 
points with high energy, we can rely on energy to 

find beats in a musical excerpt. We perform a 
perceptual simplification of the audio data in order to 
work with few data but with enough perceptual 
information to perceive the rhythm of the song. The 
perceptual simplification is done in the frequency 
domain, so first of all an smoothing analysis window 
is applied to each frame of audio data (512 samples - 
23 ms), with half overlap so we have a minimum time 
resolution of 11,5 ms, and then the Short Time 
Fourier Transform (STFT) of each frame is done 
applying zero padding to get an smoother spectrum 
with 1024 bins. Once in the frequency domain, a 
bank of filters like the one presented in [4] is 
calculated. One low-pass (0-200Hz), one high-pass 
(3200-22050Hz) and four band-pass filters (200-
400Hz, 400-800Hz, 800-1600Hz, 1600-3200Hz) are 
created and the Average Energy of each filter (AEj) is 
calculated in this way:  
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where nFilters is the number of filters, in our case six, 
left and right are the left and right bins corresponding 
to the frequency cut-offs of each filter’s spectrum and 
MagSpectrum[i] is the magnitude value of the i-th 
bin. If we listen to the synthesized sound calculated 
computing the inverse fft of an spectrum with six 
peaks, each one representing the middle frequency of 
each filter, modulated to the average amplitude of the 
filter that it represents, we can perceive a sound that 
inherits a reliable representation of the rhythm of the 
original sound. So an important simplification of the 
original data has been done preserving the necessary 
rhythm information for later processing. 
 
 

 
 



Figure 2 TAE and ponderated AE Graph Evolution 
for each filter, peaks in the TAE graph represent 
beats, we can see that high beats are equally 
separated, representing a constant BPM value. 
In figure 2 we can see a graphical representation of 
the evolution of the energy for each filter along the 
time, so high peaks in the y-axis represent instants of 
time where the average energy of the filter is very 
high and these points are good candidates for beats. 
 
The Total Average Energy (TAE) also shown in 
figure 2, is calculated as the ponderated sum of each 
filters’ average, divided by the number of filters, in 
our case six. 
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In order to extract the BPM (Beats Per Minute) 
information, we will focus in the Total Average 
Energy evolution along the time.  

5 Maximum Beat Correlation 
 
Once we have the beat information along the time 
(energy graph evolution, see figure 2), we try to find 
equally distant beats in time in order to find the 
correct BPM for the part of the song being analyzed. 
We search for candidates only when a high energy 
beat value is detected, this will happen only when the 
energy of the current beat is at least twice the average 
of some previous frames (last 100 frames in this 
implementation). To find the BPM value we use 
some kind of time-domain Comb-Filtering algorithm 
over the energy graph evolution (beats along the 
time) to obtain high energy and equally distant beat 
repetitions that will determine the most adequate 
BPM of the musical excerpt being analyzed. 
 
We calculate the sum of some equally separated time-
positions’ energy, and then varying the separation 
between points into a limited range, determined by 
the maximum and minimum BPM value that we 
accept (between 50 and 200 BPM), we obtain a list of 
values each one representing the score of each 
possible BPM, then we store these values in an array, 
that once sorted will show the more probable and less 
probable BPM values at each time. This method gives 
the number of frames between high beats, this value 
is converted to a BPM value with the next 
conversion: 
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where GAPFRAMES is the number of frames 
between high beats, SIZE is the number of samples in 
a frame (512) and SAMPLINGRATE is the sampling 
rate of the sound (22050/44100 Hz). 

6 BPM Spectrogram 
 
In order to represent graphically the results of the 
previous analysis, so a user can derive BPM 
information from it, several graphics have been 
represented showing values of energy, time position 
and distance between beats. In a two dimensional 
space we can only represent the best BPM value 
calculated at each moment, so y-axis will represent 
the distance between beats (from where we can 
derive BPM), and x-axis will represent the evolution 
in time, the problem with this representation is that 
we are discarding BPM values calculated with lower 
score but very close to the maximum that could be 
the correct tempo value at this moment. So the best 
way consists in displaying three parameters in a 3-
axis representation, similar to the Beat Spectrum idea 
presented by Foote [5]. X-axis will represent time, y-
axis will represent the BPM value or distance 
between high beats and z-axis, the importance of this 
BPM value in terms of correlation of an equally 
distant peaks template with the energy values at an 
interval of time assuming this BPM. (score of this 
BPM). 
 
In figure 3 we can see this graphical representation in 
2-D while representing the third axis with color depth 
as a gray-scale, where white represents the lowest 
value and black the highest value. We can see the 
darker horizontal line that represents the most 
probable BPM for the song; other lines represent half 
and double tempo or beats that follow a constant 
pattern of repetition but do not match with the 
multiples or submultiples of the main beat. 
 
 



 
 

Figure 3 In this BPM spectrogram, we can see the 
darker horizontal line representing the correct bpm 
(99bpm) and other lines representing double tempo 
(198bpm) and 2/3 of tempo (66bpm). 

7 Multiple Hypotheses 
 
With a graphical representation like the so-called 
BPM Spectrogram that we have presented before, it’s 
quite easy for a human to decide what BPM mostly 
identifies a song, but for a computer it’s a more 
difficult task, the idea is to work with multiple 
hypotheses during the analysis process, and decide 
which one of the hypotheses is the best at each 
moment, because we’re trying to get the BPM of the 
song in real-time when the song is being recorded or 
played. We deal with multiple BPM hypotheses in 
order to give a reliable result. In case of a changing 
tempo in a small interval of time that should be 
considered as artefacts instead of a tempo change, the 
system is conservative and robust enough to consider 
the most possible hypothesis as the correct one, we 
use a different approach as the one presented in [2]. 
 
Each time that a high beat occurs, the system 
calculates the best BPM candidates with the method 
described before and new hypotheses are added to the 
system, that decides which hypotheses are consistent, 
or what hypotheses are no longer valid. 
 
The algorithm used to decide what hypothesis should 
be considered valid or wrong can be easily adapted in 
order to make the system more robust or more 
flexible to tempo changes, and also to tune the 
accuracy of the system, but this is always a 
compromise between quality and functionality. 
 
For each hypothesis we have six properties: The 
BPMvalue, Value, Hits, HowOften, Duration and 
Score. BPMvalue is the number of beats per minute, 
Value represents the average correlation value for all 
the times that this hypothesis has appeared, Hits is the 
number of total apparitions, HowOften is the 

frequency of appearance in the last 100 calculations, 
Duration is the time since the first appearance of the 
hypothesis and Score is the score given to the 
hypothesis calculated from the rest of properties. 
 
When an hypothesis comes up, first of all it’s 
compared with the existing and if it’s similar to one 
in the list, its score is recalculated or if it’s new, it’s 
added to the list replacing the worst one. The Score 
of the hypotheses is calculated multiplying their 
average value (Value property) with the HowOften 
value. Other properties like Hits and Duration are 
important to know if an hypothesis is new or old or if 
it’s active. 
 
At the same time that we calculate the score of the 
hypotheses, we decide which one is the worst, that 
will be replaced when a new one comes out. 
 
Some assumptions are made that affect the scoring of 
the hypotheses: 
 
• A very recently added hypothesis is scored 

higher than an old hypothesis. 
• A very active hypothesis is never discarded even 

if it gets a low score. 
 
So we try to never reject the new or very active 
hypotheses, even if they get bad punctuation. In these 
cases, these hypotheses remain in the list, and the 
next bad hypothesis is replaced by the new one. 

8 Beat occurrences in time 
 
Once the tempo of the song is “correctly” detected, 
the next step is to extract higher level information 
about the rhythm patterns of the song. This is a 
difficult task because if we work with different 
genres, it’s not helpful to try to find spectral shapes to 
discriminate an instrument because a snare drum or 
tom sound has a different sound across genres and 
also different spectral shape from one style to 
another. 
 
We have to deal even with music with no drums or 
even without any percussive instrument, which 
doesn’t mean that it has no rhythm, it’s just that the 
rhythm is more present in the bass lines, guitar chord 
progressions or in any other instrument. This is one 
of the problems that systems based in pattern 
matching [2] [8] encounter when there is no snare or 
bass drum to search for. 
 
In the actual implementation we have information 
about when the beat occurs, so the deviation between 
the predicted beat and the real beat can be easily 
calculated and derive the level of expressivity, in this 
case the rubato. We have also information about 
secondary beats, often with less energy than the main 



beats, which doesn’t occur at the beat level but at 
half, quarter or third tempo. This information 
characterize the rhythm pattern of the song and is the 
basic information to extract high level attributes that 
will make it easy to find, with this rhythm 
information, similarities between songs. 

9 Conclusions and future work 
 
The beat-tracking system has not still been 
systematically tested. There are a lot of parameters 
that can be adjusted to tune the accuracy or 
functionality of the system like filters’ width, scaling 
factors, high beat threshold, frame size, type of 
window, zero-padding and overlap factors, 
hypotheses decisions, etc. Many of these parameters 
can be adjusted in real-time by using a complete GUI.  
 
With a large song’s database including several genres 
and styles, the system will be fully tested and these 
parameters adapted to achieve the best results for all 
the songs or even adapt the system during the 
analysis process to improve the results depending on 
the song that is being tracked. 
  
Once that the BPM of a song is correctly detected, 
the next step is to find more information about the 
rhythm of the song, rhythm descriptors, transcription, 
finding patterns of repetition, and another high level 
attributes that give information about the kind of 
rhythm that is being analyzed. It would also be 
important to focus in other aspects like chord 
detection or changes in the melody and harmony to 
help the system to find similarities between songs, 
and not only looking for rhythm similarity but also 
close harmonic or melodic structures. This is part of 
the current work, that will lead to an extensible 
content based analysis system. 
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