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Abstract 
 

The aim of this work is to study how a pitch detection algorithm can help in the task of locating 
solos in a musical excerpt. Output parameters of the pitch detection algorithm are studied, and 
enhancements for the task of solo location are proposed.  A solo is defined as a section of a piece 
where an instrument is in foreground compared to the other instrument and to other section of the 
piece. 
 

 

1  Introduction 
 
Music browsing is a manifold activity that 
comprehends behavior as diverse as retrieving songs  
by different musical criteria, creating play lists that 
follow subjective criteria, selecting special excerpts, 
visualizing rhythmic or harmonic structures, etc. 
Recent advances and research projects on music 
content processing [1, 2, 3] give way to think that 
some of those activities will be performed soon in an 
automatic user-configurable way. 
 
Instrumental solos are interesting and characteristic 
parts of a musical piece with a special status not only 
for a musicologist but even for a home-listener. A 
music browser should then provide with some 
functionalities in order to allow the user: 
 
• to spot and fast browse solos inside music works; 
• to visualize relevant music information of the 

solo (i.e. the score); 
• to compile a list of solos by a given performer, or 

by a given instrument from the available music 
database; provided an adequate constraint 
satisfaction system, this mega-solo play list could 
follow some subjective and musical directions 
[4]. 

 
Besides the mentioned practical motivations, solo 
location has a research-related interest as a type of 
pre-processing intended to be useful for deriving 
instrumentation descriptions of complex music 
mixtures.  
 
As far as we have been able to trace, there is no 
specific literature on automatic solo location. 
Therefore we have started our study with a 

conceptual analysis of the possible acoustic 
differences between what we may consider a �solo� 
and what we may consider an �ensemble� 
performance. 
 
In this paper, a solo is defined as a section of a piece 
where an instrument is in foreground compared to the 
other instruments and to other sections of the piece. 
In physical terms, this means that spectra of solo 
sections should be dominated by one instrument. It is 
clear that the previous definition is highly debatable 
from the musicological point of view, but it should be 
accepted as a reasonable starting point from where 
some refinements can be done after careful study and 
testing. For a more formal definition of what can be 
considered a musical solo, the reader might consult 
the Grove Dictionary of Music [5]. 
 
One of the first approaches to getting some 
discriminative data for solo sections is looking at 
some spectral complexity measure. We assume that in 
audio segments where ensemble performance is 
predominant, the spectrum is more complex  (i.e. 
with larger variability of spectral peaks location and 
amplitudes). Given that in the context of music 
browsing some pitch information is required, we 
thought that the above-mentioned measurements 
could be obtained as a �side-effect� of a pitch 
extraction process (hence without increasing the 
computational load of a system). We argued that in 
solo sections, pitch could be reasonably tracked by a 
common monophonic pitch detection algorithm, the 
Two-Way Mismatch [6], and therefore the pitch error 
indexes to be found in solo sections would be smaller 
than those to be found in �ensemble� sections. As we 
will see, the error indexes did not show enough 
discriminative power, and further enhancements were 
attempted. 



2  TWM algorithm description 
 
The used pitch estimation algorithm is described at 
[6]. This algorithm tries to extract a fundamental 
frequency from a set of spectral maximum of the 
magnitude spectrum of the signal. These peaks can be 
compared to the predicted harmonics for each of the 
possible candidate note frequencies. A particular 
fitness measure is described in [6] as a �Two-Way 
Mismatch� procedure. For each candidate, 
mismatches between the harmonics generated and the 
measured partials frequencies are averaged over a 
fixed subset of the available partials. The discrepancy 
between the measured and predicted sequences of 
harmonic partials is referred as the mismatch error. 
The solution presented on [6] is to employ two 
mismatch error calculations.  
 
The first one is based on the frequency difference 
between each partial in the measured sequence and its 
nearest neighbor in the predicted sequence. The 
second is based on the mismatch between each 
harmonic in the predicted sequence and its nearest 
partial neighbor in the measured sequence.  
 
 

Illustration 0: TWM procedure 
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 The two error measurements are computed as 
following: 
 
o Predicted-to-measured mismatch error: 
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where  correspond to the amplitude and 
frequency of the predicted partial number n, A

nn fa ,
max is 

the maximum amplitude, and is the difference 
between the frequency of the predicted partial and its 
closest measured partial. 
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o Measured-to-predicted mismatch error: 
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where  correspond to the amplitude and 
frequency of the measured partial number k, A

kk fa ,
max is 

the maximum amplitude, and is the difference 
between the frequency of the measured partial and its 
closest predicted partial. 
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The total error for the predicted fundamental 
frequency is then given by: 
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The parameters p, m, r and ρ are set empirically and 
vary for each instrument.  

3  TWM Output Errors Behavior 

2.1  Errors 
 
The three errors are crucial for pitch detection. 
However, from its definition, the PM error will be of 
first interest for our purpose. Indeed, the PM matches 
a set of predicted peaks with the set of measured 
spectral peaks. Its values are therefore usually lower 
and less erratic than that of the MP error, which tries 
to match a great number of measured peaks with the 
predicted peaks. The total error, which is a weighted 
combination of both errors, does not need precise 
description. We will therefore focus our attention to 
the study of the PM error. 

2.2  PM Error Behavior 
 
The optimal parameters input to the pitch detection 
algorithm are set carrying out tests on monophonic 
recordings of the instrument considered. If the 
parameters are optimally set for this instrument, the 
algorithm estimates the pitch correctly and the PM 
error is usually minimal. Using the algorithm on 
polyphonic sounds does not enable good pitch 



estimation but leads to interesting output errors 
behavior. 
  
For example, if the parameters are set optimally for a 
saxophone, good pitch estimation occurs if the 
saxophone plays on its own. The PM error is at its 
lowest as there is an evident match between the 
predicted peaks and the peaks present in the 
spectrum. In the presence of other instruments, the 
error is high (due to the addition of spectral peaks 
that belong to different harmonic series and 
instruments) and pitch estimation is usually 
corrupted. But if the saxophone �dominates� enough, 
some of the pitch can still be estimated. In the 
spectrum, some of the harmonic peaks of the 
saxophone are detectable and sensible matching is 
possible.  The PM error in this case will be higher 
than in the monophonic case, but lower than when no 
instruments are in foreground. Moreover, the 
parameters being optimized for a given instrument - 
for example the saxophone-, it should give a lower 
error if the saxophone is in foreground than if an 
instrument with very different spectral characteristics 
is in foreground. 
 
Figure 1 below shows the PM error output to the 
analysis of an extract of a piece by a Miles Davis 
ensemble. In this extract, the background (piano, 
drum and bass) is very quiet, and the saxophone 
plays clear and relatively loud notes, making the 
example visually explicit (note that it is not always 
the case). 
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Figure 1: PM error against time for an extract of a piece by 
a jazz ensemble. The thick lines under the curve show the 
saxophone notes. Clear decreases can be observed when the 
saxophone plays. 

 
The PM error behavior described above can be 
observed. The PM error, high for the ensemble mode, 
decreases a lot when the saxophone presence is 
dominant. 
 

4  Solo Location 
 
This behavior of the PM error, which in turn gets 
reflected in the Total error, can be used as a sign of 
spectral complexity, and therefore help in the task of 
solo location. Theoretically, the discrimination 
between �ensemble� and �solo� mode should be 
possible by detecting long-term changes in the mean 
of, say the PM error �high values representing 
�ensemble� mode and low values, solos. 
  
From the statistical analysis of frame by frame data, it 
is clear that frames corresponding to solos have 
different average error values than frames 
corresponding to ensemble sections, and that both 
data distributions might have different origins (t-
student -for means- and Kolmogorov-Smirnov -for 
distribution- tests results are omitted for 
convenience). Notwithstanding, an attempt to use a 
linear classifier (PDA) with the three features as 
predictors of category (solo/ensemble) yielded a mere 
56% of success, after cross validation with a 
Jackknifed procedure. This was a disappointing result 
that could not be improved even using a quadratic 
classifier.  
 
It seems clear, then, that solo location using the error 
parameters for the discrimination cannot be made on 
a frame by frame basis, as the variability of the error 
is large compared to the change in the mean we want 
to detect. Also, the change in the mean is neither very 
large nor neat at the solo boundaries. Using the TWM 
output PM and Total error alone, does not enable 
proper solo location. 
 
A proposed way to tackle this problem was to use 
segmentation techniques such as Foote�s similarity 
matrix [7] prior to the discrimination. Using such a 
technique with appropriate descriptors should enable 
to locate the boundaries of the different �parts� of the 
piece. The ensemble/solo discrimination using the 
long-term PM error level changes can then be done 
on these pre-located segments. 
 
Studies were carried out in order to find relevant 
descriptors for locating these specific boundaries. 
Three ones were found to be particularly useful for 
this purpose: the spectral centroid, the skewness and 
the kurtosis. Adding the PM and Total error in the 
feature vector enabled better boundary location in a 
few cases where the spectral parameters were not 
sufficient for a good segmentation. However it 
sometimes misleads the segmentation result more 
than it helps. On 15 tests, adding these parameters 
helped 5 times (3 of which enabling segmentation 
when it was not previously possible), and corrupted 
the results importantly on only one occasion.  
 
 



A summary of the procedure is given below: 
 
1. The TWM input parameters, that are empirically 
set, are adapted to the solo instrument in order to 
improve the fundamental frequency estimation. In 
this step, monophonic sounds have been used.  
 
2. The algorithm is applied to polyphonic sounds and 
the spectral features are calculated (Spectral 
Centroid, Skewness, Kurtosis). The analysis is done 
by frames of 0.0161s (512 samples at 44.1 kHz). This 
short frame length is necessary for a good 
performance of the pitch detection algorithm. The 
PM error, Total error and the three spectral 
parameters are extracted. 
 
3. The features, averaged over segments of 50 
frames, are input to the Foote�s segmentation 
algorithm, and the candidates for Ensembles-Solos 
boundaries are automatically located according to the 
value of a �novelty score� (see figure 2) (the 
parameters for this step have to empirically set, 
although in the future the algorithm could adapt to 
the data). 
 
4. The PM error is averaged over these pre-located 
segments and a decision taken for Solo or Ensemble 
mode. 

5  A Case Study 
 
As our initial database for testing is still rather small 
(15 songs), no significant and robust numerical data 
can be provided. Anyway, a case study will illustrate 
some specificities, pros, and cons of the procedure.  
 
The following example illustrates the analysis for a 
piece by a John Coltrane ensemble. The ensemble is 
formed of alto saxophone, trumpet, piano, drum and 
bass. The piece starts with the ensemble until a 
saxophone solo starts around 37 seconds into the 
piece. The following parameters were input to the 
algorithm: 
 
TWM input parameters (Optimal saxophone 
parameters): 
 
• Window length of 0.0161 s (512 samples at 

sampling rate of 44100 Hz); 
• Pitch range: the pitch detection analysis was 

carried out  between 1000 and 3000 Hz; 
• TWM parameters: p=0.5, q=1.4, r=0.5 in 

Equations (1) and (2), ρ=0.33 in Equation (3). 
 

Segmentation parameters: 
 
• Features were averaged over segments of 50 

samples; 

• Mahalanobis distances were calculated between 
feature vectors; 

• Size of kernel: 30 averaged segments; 
• Threshold for peak picking in Novelty Score 

curve: 3000 (empirically set). 
    
 

 

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time 

Novelty 
Score

Novely Score, automatically found segments  
and corresponding avged PM error 

 
Figure 2: Novelty Score against time, with automatically 
found segments and corresponding PM error levels for an 
extract of �Blue Train� by John Coltrane. The transition 
form the theme to the solo was accurately found, and the 
error levels enable good discrimination. 

 
The analysis of this piece showed to be particularly 
successful. The theme/solo boundary, located at 37 
seconds into the piece was automatically found at 
37.2 s, and the change in the mean of the PM error 
goes from 8.8 during the theme to 11.2 during the 
solo, enabling good discrimination. It can be noted 
that the good performance of the algorithm is very 
dependent on the piece, and that this piece is 
particularly suited for this purpose. There is a clear 
spectral change from the theme to the solo enabling a 
good boundary location. The solo is clear and 
continuous against a quite background giving easy 
ensemble/solo discrimination. This is not the case for 
all pieces.  

6  Discussion and further work 
 
First of all, problems with the TWM algorithm 
performance were encountered when dealing with 
instruments whose spectra do not show clear 
harmonic behavior. For example, very good results 
were obtained with quite harmonic solo instruments 
as saxophone, trumpet and violin, but with guitar and 
piano, the TWM could not give reliable results. A 
solution proposed to this problem is to use pre-
processing techniques, such as the �noise 
suppression� technique (to remove additive and 
convolutive noise) proposed by A. Klapuri [8]. This 
technique enables to boost the spectral peaks, 
possibly enhancing the TWM performance. Including 



an inharmonicity factor to correct for the stretched 
harmonics of the piano could also be beneficial.  
 
Another problem resides in the automatic 
segmentation, whose input parameters vary from 
pieces to pieces (i.e. threshold for peak detection in 
novelty score curve, size of kernel, etc.). Studies have 
to be carried out in order to find ways to adapt the 
algorithm to the data. Also, more features should be 
added to the segmentation algorithm in order to get 
more robust boundaries location. Measures of 
spectral peak variability and amplitude modulation 
patterns (in order to detect beatings) are under current 
scrutiny. 
 
Finally, the main problem resides in the concept we 
want to extract. This algorithm is basic and uses low-
level descriptors to extract a rather abstract concept. 
This causes a number of inconsistencies and limits 
the robustness of the algorithm. First of all, the 
location is done from low-level features, which 
enables to locate solos with respect to these features 
only. That is, in order for a solo to be detected as 
such, it has to be: 
 
• 

• 

clear: relatively loud solo instrument compared 
to the background; 
continuous: if the solo consists of solo 
instrument lines with short ensemble intervention 
in between each solo lines, the level of the PM 
error will be raised considerably and the 
discrimination might be corrupted; 

 
The ensemble mode parts have to be very 
characteristic as well: for example, either if the theme 
is played by one single instrument or by two 
instruments at unison, it might be considered as a 
solo.  
 
This raises the problem of extracting a musical 
concept with low-level descriptors. It shows to work 
well in a lot of cases, but in reality, what is extracted 
is a �physical� concept of a solo (an instrument 
dominating the spectra) rather than a solo in a 
musical sense of the term. The variability of the 
abstract concept is too high for low-level physical 
features to describe it in its entirety. Higher-level 
descriptors and more powerful classification 
techniques could be used to take into account musical 
knowledge on solo location. For example, we know 
that it is statically more robust to detect ensembles 
than solos. Post-processing techniques could be used 
to correct the uncertain chunks of data with respect to 
these observations. Finally, recent studies were made 
on spectral flatness and the associated coefficient of 
tonality [9]. First tests showed this feature to be 
potentially useful in the task of locating solos [10], 
especially in the discrimination step. It could be 

added to the PM error feature in order to increase the 
discrimination robustness.   
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