
CLAM, Yet Another Library for Audio and Music
Processing?

Xavier Amatriain
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
xamat@iua.upf.es

Pau Arumí
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
parumi@iua.upf.es

Miguel Ramírez
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
mramirez@iua.upf.es

ABSTRACT
CLAM (C++ Library for Audio and Music) is a framework that
aims to offer extensible, generic and efficient design and
implementation solutions for developing Audio and Music
applications as well as for doing more complex research related
with the field. Although similar libraries exist, some
particularities make CLAM of high interest for anyone interested
in the field.

Keywords
Development framework, DSP, audio, GPL, Free Software,
XML

1. INTRODUCTION: OO DOES NOT
MEAN INEFFICIENT
The Music Technology Group of the Pompeu Fabra University
[1] is a research group where more than forty engineers and
programmers are involved in different projects focused on the
development of algorithms and applications for Signal and
Music Processing. Most of these are implemented in C++.

Two years ago, it was clear that the amount and quality of the
lines of code related with different projects was becoming hardly
manageable. Although the code had been written using an OO-
might-be language[2] and some classes existed here and there,
basic design principles had not been observed and the result was
highly unstructured, difficult to understand and hardly reusable.
Flexibility and reusability had been sacrificed in the sake of
performance efficiency. This fact made extremely difficult and
time-consuming to integrate newcomers or new projects into the
group. Bearing those ideas in mind, the CLAM project was
started [3]. Since then, an average of six programmers-
developers have been working on it.

For designing the framework we had to fight against an idea that
still has high acceptance in the DSP community: unstructured C-
like code assures high performance at run-time. One of the main
goals of our work has been to prove that a clean and structured
design in general, and OO techniques in particular, do not have
to imply an overhead in computational efficiency nor a
limitation in flexibility for implementing different models
belonging to a particular domain.

The framework has been already used successfully for a number
of internal projects – some of them with high run-time
performance requirements- like high quality time-stretching, sax
synthesizer and high-level feature analysis[4], and it seems to
have reached a somewhat mature stage. The project is also due

to see its first public release in November 2002, in the course of
the AGNULA IST European project[5].

2. ANOTHER AUDIO LIBRARY ?
What makes CLAM different from other similar solutions that
already exist? (see references [6] thru [10] to find out about
“related” projects)

To begin with, CLAM is truly object oriented. Extensive
software engineering techniques [11] have been applied in order
to design a framework that is both highly (re)usable and
understandable. Although the term “sound object” has been
around for many years[12], and OO techniques have also been
applied in many audio and music related applications[13], none
of these have conceptually applied the “everything is an object”
maxima[14]. In our framework, all data types and processing or
flow control entities are objects (see [15] for a conceptual
background of the CLAM framework).

CLAM is comprehensive since it not only includes classes for
processing but also for audio and MIDI input/output, XML
serialization services, algorithm and data visualization and
interaction, and multithreading handling.

CLAM deals with a wide variety of extensible data types that
range from low-level signals (such as audio or spectrum) to
higher-level semantic structures (such as musical phrase or
segment).

The framework is cross-platform. All the code is ANSI C++ and
it is regularly compiled under Linux, Windows and MacOS
using the most commonly used compilers. Even the code for
input/output, visualization and multithreading is cross-platform
down to the lowest possible layer.

The project is licensed under the GPL (GNU Public License)
terms and conditions[16]. Although we maintain the option of
double licensing the framework (i.e. offering an alternative
commercial license), everything offered in the public version
will be GPL and the project will thus become free software,
open-source, and collaborative.

CLAM is bound to survive. Even though its public success is by
no means guaranteed, CLAM will surely remain the basis for all
future developments in the MTG and thus will be maintained
and updated on a regular basis.

CLAM is designed to offer two different modes. In the non-
supervised mode CLAM is used as a regular C++ library
allowing extension, flexibility and user-controlled optimization.
The other mode (supervised) is intended to work as a rapid

prototyping application with automatic scheduling and flow
control. Although the latter is still not fully functional, many
design decisions have been driven by its compatibility.

3. CLAM’S COMPONENTS
CLAM brings the world of software design and engineering to
DSP developers who could care less about it. For doing so, it
offers some general infrastructure like ADT’s, XML
serialization, or a GUI module. But, most importantly, it forces
users to follow some “good coding principles” and it provides a
general model for easy (re)usability.
Nevertheless, the main trait of CLAM is the ability to process
multiple data types related to the audio and music domain. All
these data types are subclasses of the ProcessingData class. The
main goals when designing this class hierarchy can be
summarized in: (1) Force and automatically derive a common
interface for all data classes without much programmer’s effort;
(2) Implement a tree-like structure or composite pattern[17] in
order to offer automatic serialization services; (3) Allow class
attributes to be dynamically instantiated at run-time without
forcing the use of less-efficient and more error prone C++
pointers.
The solution was to implement a base class that combines the
use of C macros with OO techniques like template meta-
programming and static dispatching. This way, all the above
objectives are accomplished with a minimum programmer’s
effort. On the other hand, object serialization has been
accomplished using XML as a general-purpose format[18]. The
decision of using this format has mainly been influenced by the
recent upcoming of the MPEG-7 standard for multimedia
description[19].
ProcessingData objects are used as the only possible inputs and
outputs to Processing objects. All processing in CLAM is
performed inside a Processing object. The Processing classes
encapsulate DSP algorithms and the available base class
hierarchy offers services for synchronous data flow and
asynchronous event-driven flow, scalability, interconnection and
state queries, hiding most of the complexity from the library
user.
Finally, the GUI module implements a model abstraction based
on a modified version of the MVC called Model-View-
Presentation. The decoupling between the view and the
presentation is accomplished through the implementation of a
template functor based callback library[20]. It also implements
some particular presentations for basic data types (like audio or
spectrum) using FLTK[21] and OpenGL.

4. ACKNOWLEDGEMENTS
The work reported in this paper has been partially funded by the
IST European programs AGNULA and CUIDADO.

5. REFERENCES
[1] UPF’s MTG homepage: http://www.iua.upf.es/mtg

[2] Stroustrup, Bjarne. Why C++ is not only an object-oriented
programming language. In OOPSLA'95 Proceedings

[3] CLAM website: http://www.iua.upf.es/mtg/clam

[4] Amatriain, X.; de Boer, M.; Robledo, E.; García, D.
CLAM: An OO Framework for Developing Audio and
Music Applications. In OOPSLA 2002 Proceedings
(Companion Material). Seattle, 2002.

[5] AGNULA website: http://www.agnula.org

[6] Pope, S. T. The Siren Music/Sound Package for Squeak
Smalltalk. In OOPSLA’98 Proceedings.

[7] The SndObj homepage:
http://www.may.ie/academic/music/musictec/SndObj/

[8] OSW: Open Sound World homepage:
http://osw.sourceforge.net/

[9] Jmax homepage:
http://www.ircam.fr/equipes/temps-reel/jmax/

[10] Pure Data (PD) homepage: http://www.pure-data.org/
[11] Sommerville, I. Software Enginnering 6th Edition. Pearson

Ed. August 2000.

[12] Schaeffer, Pierre; Traité des Objets Musicaux. Editions Du
Seuil. 1966.

[13] Pope, Stephen Travis (ed). The well-tempered object,
Musical Applications of Object-Oriented Technology. MIT
Press. 1991.

[14] Kay, A. The Early History of Smalltalk. In Proceedings of
2nd ACM SIGPLAN History of Programming Languages
Conference. ACM SIGPLAN Notices 28(3): 69-75. 1993

[15] Amatriain, X.; Herrera, P. Transmitting Audio Content as
Sound Objects. In Proceedings of AES 22nd Conference on
Virtual, Synthetic, and Entertainment Audio. Helsinki,
2001.

[16] Free Software Foundation. Gnu general public license (gpl)
terms and conditions.
http://www.gnu.org/copyleft/gpl.html.

[17] Gamma, E., Helm R., Johnson, R., and Vlissides, J. Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[18] Garcia, David; Amatriain, Xavier. XML as a means of
control for audio processing, synthesis and analysis. In
Proceedings of the MOSART Workshop on Current
Research Directions in Computer Music. Barcelona, Spain,
2001.

[19] Martínez, Jose M., Overview of the MPEG-7 Standard,
document number: ISO/IEC JTC1/SC29/WG11 N4031.
 http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm

[20] Hickey, R. Callbacks in c++: Using template functors. C++
Report (1995).

[21] Fast Light Toolkit Homepage: http://www.fltk.org

Copyright is held by the author/owner(s).

OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.

2002 ACM 02/0011.

