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Abstract

Audio classification is a Music Information Retrieval (MIR) area of interest, dedi-

cated to extract key features from music by means of automatic implementations.

On this research, nonlinear time series analysis techniques are used for the processing

of audio waveforms. The use of nonlinear time series analysis in audio classification

tasks is relatively new. These techniques are implemented with the assumption that

the temporal evolution of audio signals can be analyzed over a multidmensional

space, with the intention of finding additional information that usual audio analy-

sis tools, such as the Fourier Transform, might not bring. In particular, iterative

or recurrent patterns in audio signals over a multidimensional space is the desired

additional information to find. Some first evidence show these tools can be sensitive

to audio signal analysis.

In this thesis, two complementary sources for feature extraction based on non-

linear time series analysis are presented. The process consists in performing a recur-

rence analysis over framed audio signals and representing the output in two different

formats: the first, a histogram of the found recurrences at different times in the au-

dio frame. The second, a frequency histogram obtained by transforming and fitting

the recurrence time histogram into frequency values with the same resolution as

the correspondent frequency spectrum. A specific set of spectral features are then

extracted from both representations and used for classifier training and testing.

The reliability of new data obtained through these sources is tested by compar-

ing to a common automatic classification methodology, choosing music genre as the

target of classification. Among other results described, the combination of features

extracted from the Fourier frequency spectrum and features extracted from his-

tograms resulted in a 5.5% increment in the highest common classification accuracy,

raising it from 66.0% using common methodology to 71.5%. Moreover, the creation

of new specific features for these histograms and the maximization of parameters

used to perform the nonlinear analysis is suggested as future work on this research.
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Chapter 1

Introduction

Music is one of the most popular elements of the Internet. There are uncountable

online services dedicated to downloading, live-streaming, sharing or creating this

type of content. Given the increasing amount of information related to online music

databases over the past years, a new challenge in searching, retrieving and organiz-

ing music content is arising. On the present day, there are two different approaches

confronting these tasks: the first is manual labeling, which relies on cultural and mu-

sical knowledge about performers, instrumentation, tonality and genre, to mention a

few. The second is automatic classification, consisting in extraction of audio features

related to the music signal and its adaptation to predict a label. Since manually

labeling millions of songs on a given database can be temporally unfeasible, auto-

matic classification systems are receiving much attention in the musical community,

at the point of developing a relatively new research field called Music Information

Retrieval [9]. This field is dedicated to the development of signal processing tech-

niques, music perception models and audio files cataloging, among others, in order

to achieve tasks such as artist recognition, audio fingerprinting, genre classification,

music recomendation, cover song detection and many more [17].

An emerging MIR practice is related to the application of nonlinear time se-

ries analysis methods to obtain supplementary information about the audio signal.

There is evidence that this type of analysis is susceptible to audio signals in a

15



16 CHAPTER 1. INTRODUCTION

constructive way, meaning that reliable information can be obtained through these

methods [5].

The motivation for this thesis is to contribute with two additional sources of

information for automatic classification systems based on nonlinear analysis tools,

refered to as Recurrence Histogram and Frequency Histogram. The reliability of new

data will be tested by comparing to a common automatic classification methodology,

choosing music genre as the target of classification.

1.1 Goals

The goals of this research are the following:

1. Develop a genre classification system based on temporal and spectral features

extraction, using common methods of analysis.

2. Develop a nonlinear analysis module for audio features extraction, based on

four specific techniques:

• State-space embedding.

• Recurrence plot analysis.

• Recurrence time histogram (Ht).

• Recurrence frequency histogram (Hf ).

3. Test classification accuracy relying on music genre as the target of classifica-

tion, using different combinations of features obtained from the histograms

and features extracted from the classic methodology.

4. Compare the new accuracy results with the accuracy obtained through com-

mon classification methodology.

5. Conclude about the influence that new information from the nonlinear analysis

has on the classification accuracy.
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1.2 Structure of the thesis

The remainder of this document is organized as follows: chapter 2 reviews the state

of the art and basic principles in music classification tasks. Starting with a brief de-

finition of audio signals, it goes through different types of features usually extracted

from the frequency spectrum. In addition, an introduction to Music Information

Retrieval is given, explaining how it is related to classification and generation of

automatic classification tasks. Finally, a review of nonlinear time series analysis is

given, showing how these techniques have been used in other works as well. Chapter

3 describes the common classification methodology used in this thesis. Extracted

features, applied tools for audio analysis, and feature selection processes are de-

scribed in this chapter as well. On chapter 4 the nonlinear audio recurrence analysis

is explained, starting with a description of the state-space reconstruction, the re-

currence analysis of the resulting trajectory, and how this information is translated

into the final sources of information for feature extraction: the recurrence time

histogram and the recurrence frequency histogram. Chapter 5 shows the accuracy

results for several classifications, using different feature combinations extracted from

the common methodology and from the nonlinear audio recurrence analysis. It also

shows the changes in classification accuracies caused by modifying the parameters

of the nonlinear analysis tools. Finally, chapter 6 states the conclusions about this

research and suggests extensions of the nonlinear audio recurrence analysis to be

done in the future.
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Chapter 2

State of the Art

This chapter is a description of the basic principles used for the elaboration of this

thesis. It covers basic audio signal analysis, feature extraction for music information

retrieval, and an introduction to the nonlinear time series analysis used on audio

signals.

2.1 Overview of Digital Signals

2.1.1 The Audio Signal

An audio signal is an electrical representation of the acoustical energy produced by

sound. This type of energy is caused by continuous-time pressure variations on a

physical medium, usually air. Therefore, an audio signal is a continuous-time (CT)

signal, defined on a continuum of points over time [4].

2.1.2 Digital Representation of Signals

Nowadays, most audio signal processing and analysis is done using computers, mi-

crocontrollers, and other programmable devices based on digital circuitry. Since

digital processing requires the information to be presented as a numerical time se-

ries, digital equivalents must be created from the information given by original CT

19
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signals [21].

The digital signal representation of a CT signal is achieved by analog-to-digital

conversion (ADC). ADC systems perform sampling and quantization of the CT

signal. Sampling means capturing the values of a CT signal at discrete points in

time. A common practice is to define a sampling frequency (fs) to obtain values from

the signal at a fixed time rate. This type of signals are refered to as discrete-time

(DT) signals [21]. On the other hand, quantization means adjusting the amplitude

values of the DT signal to fixed values called levels. These quantization levels will

range from −2n−1 to 2n−1 − 1 where n is the number of quantization bits. Usually,

this range is normalized between -1 and 1 [36]. Common quantization values are 16

and 24 bits. An example of a CT signal and its equivalent digital signal can be seen

on figure 2.1.
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Figure 2.1: CT signal (red) and its equivalent digital signal (blue).

2.1.3 The Sampling Theorem

The Nyquist frequency fn is the highest frequency present on a defined CT signal.

The sampling theorem states that, if a CT signal is sampled with fs twice the value

of the Nyquist frequencyfn or more, the original CT can be reconstructed from its

samples. By having frequency content above fn, a phenomenon known as aliasing

takes place, where frequencies higher than fs
2

are reconstructed with lower frequency
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values [35].

Considering the human audible spectrum from 20 to 20,000 Hz, the minimum

fs for audio signals is 40,000 Hz. Nevertheless, a fs value of 20,000 Hz is also valid

for musical audio signals. Traditional music instruments produce defined sounds

called notes. Each note is characterized by having a fundamental frequency that is

perceived by the human ear as pitch. These fundamental frequencies, for traditional

instruments, are below 10,000 Hz1. Professional audio studios sample at 96,000 Hz

but downsample to 22,050 Hz or 44,100 Hz when transfering to CD or MP3 formats.

2.2 Time to Frequency Transformation

2.2.1 The Frequency Spectrum

The spectrum of a signal is a representation of its energy distribution across the

frequency range. The spectrum of a digital signal can be computed by the Discrete

Fourier Transform (DFT) [21]. For N consecutive samples taken from a digital signal

x(n), the DFT X(k) is calculated by:

X(k) = F {x(n)} =
N−1∑
n=0

x(n)e−j2π
nk
N (2.1)

where k is the number of frequency bins and goes from 0, ..., N − 1. The frequency

value for each bin is obtained by:

f(k) =
k

N
fs (2.2)

For real-valued signals, the sampling operation leads to repetitions of the spectrum

of the CT signal, as can be seen on figure 2.2. The original spectrum from the CT

signal goes from bin 0 to bin N
2
− 1[36]. The remaining part, which is a replicated

1 Independent Recording Network. Interactive frequency chart, 2006.
http://www.independentrecording.net/irn/resources/freqchart/main display.htm
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Figure 2.2: Frequency spectrum of a digital signal using N = 4096. The original
spectrum is below the red line, representing the bin where the Nyquist Frequency is
located.

reflection of the original spectrum, can be left out of the analysis for the purposes

of this thesis.

The Fast Fourier Transform (FFT) is the computational algorithm that calcu-

lates the DFT on power-of-two values of N [36]. It is widely used on digital signal

processing applications such as filtering, voice processing, and audio synthesis among

others [21].

2.2.2 The Short-Time Fourier Transform

In practice, long digital signals such as recorded songs or audio tracks are processed

in small sections or frames, not only because it is more significant to the analysis of

its temporal evolution, but because it is computationally faster. A common way to

obtain the DFT locally on consecutive frames of a digital signal is by the Short-Time

Fourier Transform (STFT). The STFT is defined as:

Xl(k) =
N−1∑
n=0

w(n)x(n+ lH)e−j2π
nk
N (2.3)



2.3. MUSIC INFORMATION RETRIEVAL 23

Where Xl(k) is the DFT of frame l, w(n) is a window function of length N , and H

is the hop-size or number of samples the frame advances on x(n) [26].

The window function smoothens the spectrum by itself, but it can also modify

the frequency resolution by increasing its length to the next power of two. By doing

so, the missing values can be filled with zeros without affecting the outcome and

increasing the values of k, which translates intro a frequency resolution increment.

This technique is known as zero padding, and it is used to increase frequency reso-

lution without changing the frame length of the digital signal being analyzed [36].

Examples of windows are Rectangular, Hamming, Hanning and Blackman-Harris

windows. More information on the STFT and windowing processes can be found in

[36] and [26].

As explained before, the hop-sizeH is the number of samples each frame advances

on the digital signal for the DFT analysis. A different approach to H is known as

overlapping percentage, since it represents a portion of N that overlaps between one

frame analysis and the next one.

2.3 Music Information Retrieval

2.3.1 Definition

Music Information Retrieval (MIR) is an interdisciplinary science dedicated to ob-

tain representative features from music by automatic implementations. These fea-

tures may be related to meaningful dimensions of music such as timbre, melody,

harmony and rhythm [17]. Since musical pieces are presented in digital formats

nowadays, features are obtained from temporal evolution and frequency spectra of

digital music signals using the STFT. Given that they are obtained from the raw

information of the audio signal, they are known as low-level features. The analysis

of combined low-level features can define the dimensions of music mentioned earlier

in this paragraph [22].
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2.3.2 Temporal Features

Among the most common low-level temporal features for MIR are the following:

• Zero-Crossing Rate (ZCR): Number of temporal sign changes on the audio

signal. Commonly used to determine the noisiness of a signal. It is calculated

by:

Zt =
1

2

N−1∑
n=1

|sign(x(n))− sign(x(n− 1))| (2.4)

Where sign(x(n)) is 1when x(n) is positive, and 0 otherwise [31].

• Energy Envelope: Root Mean Squared (RMS) value of the audio signal, usually

performed over different frequency ranges, or bands, of the spectrum. Used as

intermediate process for onset detection or beat tracking [20].

• Periodicity Functions: Algorithms that find recurrent behaviors between frames

of the audio signal and periods of time when these recurrences occur. An ex-

ample is the autocorrelation function. Used to determine an estimate of the

tempo (speed) of a song [22].

2.3.3 Spectral Features

On the other hand, common low-level spectral features are the following:

• Brightness: Measurement of the spectral energy above a threshold frequency,

calculated by:

br =

∑N−1
k=0 X(k)−

∑kb
k=0X(k)∑N−1

k=0 X(k)
(2.5)

Where kb is the frequency bin correspondant to the threshold frequency. It is

used to provide aditional information about the pitch of a song and the overall

timbre of a music audio signal [19].
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• Roll-off: Calculation of the frequency value up to which a certain percentage

of the total spectral energy is located [31]. Given by:

kr∑
k=0

X2(k) = pr

N∑
k=0

X2(k) (2.6)

Where pr is the fraction of the total energy and kr is the frequency bin cor-

respondant to the roll-off frequency. It is used to describe the shape of the

spectrum [22] and to identify timbre, which is the characteristic sound of a

music instrument, in combination with other features [9].

• Spectral Centroid: Considering the spectrum as a distribution, the centroid is

the geometrical center of the spectrum. It gives information about where the

highest concentration of energy is [31]. Calculated by:

sc =

∑N−1
k=0 kX(k)

X(k)
(2.7)

• Spectral Spread: Based on the previous feature, is a measure of the dispersion,

or spread, of the distribution around the spectral centroid [12]. It is calculated

by:

ss =
1

N − 1

N−1∑
k=0

(X(k)− sc)2 (2.8)

• Spectral Flatness: Measurement of noise of a frequency spectrum. Values

range from 0 to 1, indicating less noisiness as the value increases. It is com-

puted for several frequency bands [19]. Calculated by:

sf =

N

√∏N−1
k=0 X(k)

1
N

∑N−1
k=0 X(k)

(2.9)

It is used to detect tonality on a music audio signal. Values close to 1 indicate
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a noisy signal and close to 0 indicate a signal made of pure tones or sinusoids.

• Mel-Frequency Cepstrum Coefficients (MFCC): The mel-cepstrum is the dis-

crete cosine Transform (DCT) of the logarithmic spectrum after a nonlinear

frequency warping onto a perceptual scale called the Mel scale [2]. A number

of l coefficients cl can be calculated by:

cl =

Q∑
q=1

χ(q)cos(l
π

Q
(q − 1

2
)) (2.10)

Where:

χ(q) = ln(
N−1∑
k=0

|X(k)| ·H(k, q)) (2.11)

Where q = 1, ..., Q, H(k, q) is the Mel Filter Bank, and Q is the filter bank

number.

Low order MFCC’s give information about smooth changes on the spectrum,

while high order MFCC’s give information about sudden variations. They are

widely used on speech recognition systems, musical instrument detection and

timbre modeling [27].

• Chromagram: The chromatic scale is a western musical scale with 12 equally

spaced pitches or notes. On a piano keyboard, repetitions of these 12 notes

are placed. Each repetition is called an octave. Among different octaves, the

names of the notes are kept the same, but the pitch of each note increases by

doubling the frequency of that same note on the previous octave.

The chromagram is a 12 bin histogram, each corresponding to a note on the

chromatic scale, not considering the octave it belongs to. A graphic reprensen-

tation of a chromagram is shown in figure 2.3. It can bring important informa-

tion about the melody, tonality and musical scale [3]. Chromagram features



2.4. GENRE CLASSIFICATION 27

are used for extracting musical key [18], for extracting general information

about tonality [6], and to detect cover songs [24].
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Figure 2.3: Graphic representation of a chromagram for a 30 seconds musical audio
signal.

2.4 Genre Classification

2.4.1 Background

Music genres are labels created by humans, used to identify songs based on the

instrumentation, rhythmic description and harmonic content of the music. To ca-

tegorize music, a list of common characteristics from songs that belong to a specific

genre must be elaborated to distinguish one genre from another. This group of

characteristic elements is called taxonomy [22]. In addition, recent changes in music

industry have forced the development of genre identification methods and techniques

to manage song databases, which have been growing during the last years thanks to

the appearance of digital formats.

Music software such as iTunes and browsers like Last.fm rely on typed informa-

tion known as metadata to gather similar artists, classify their content and analyze

similarities between users’ libraries to make future recommendations. Despite the

effectiveness this method has shown, it is based on cultural metadata, which shows

a dependency on musical experience and other non-music related knowledge such
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as capitalization and spelling. Web 2.0 applications have made metadata content

approval more democratic and generalized, but external elements such as cultural

background, geographic regions and the number of users make metadata-based clas-

sification a relative and complex task [22]. Even if music experts such as musicolo-

gists were to create metadata, it is physically unfeasible. It is reported on [1] that

the manual labeling of 100,000 songs on Microsofts MSN music search engine would

take 30 musicologists a year to do it.

2.4.2 Automatic Genre Classification

An alternative proposed by MIR is the automatic genre classification based on the

processing of the recorded audio waveform [9]. It basically consists of extracting

temporal and spectral low-level features from a large database of songs from different

genres by means of the STFT, described on section 2.2.2, and using machine learning

algorithms to train categorization systems known as classifiers. These systems find

structural patterns on data and organize them as a set of rules that allow making

predictions about new incoming data. The stage where the classifier learns about

patterns on available data is called training, while testing is the stage where new

data is given to the classifier to verify its accuracy.

Having a large number of features for genre classification does not necessarily

mean a better one. The use of high amounts of features might bring a very specific

system that would not work when the input dataset of songs is changed. Creating

this narrow margin on a classification system is called overfitting [32]. For this

reason, a limited number of features must be pre-selected for training and testing

the classifier. A common practice is to select a number of features below 5% of

the number of instances. An often used pre-processing technique is the principal

components analysis (PCA) [32]. It is a method that reduces data dimensionality

used to reveal tendencies on data [28]. The results of PCA are weighted sums of

grouped features, resulting in a reduced amount of total features used for training

and testing the classifier.
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Usually, 30 second segments of musical audio signals are used for genre classifi-

cation tasks, as well as a limited number of genres. The first is due to similarities

on instrumentation, rhythm and tonal characteristics throughout a complete song,

which can be detected over a short segment. The second is due to the lack of a

taxonomy that defines more specific genres than ‘Rock’ or ‘Pop’ and because over-

fitting is being avoided by not using large databases. In [7] song segments of 30

seconds and 8 different genres were used. In [16] 7 genres were used, while on [31]

the dataset consists of 20 musical genres.

A subset from the whole collection of songs must be used for training and a

different subset for testing. These subsets are chosen using stratification, which

selects random songs keeping the proportionality of the genres from the whole set

on the chosen subsets [32]. If this process is repeated several times, the effect

of particular subsets on the classification system will be reduced, mitigating the

overfitting explained on the previous paragraph. This whole process is called M-fold

validation, where M stands for the number of iterations and subsets created for the

training and testing processes. On every iteration, a number of M − 1 subsets is

used to train the classifier, while the remaning subset is used to test it.

2.4.3 Classifiers

Among the most common classifiers used for automatic genre classification the fol-

lowing are found:

• Support Vector Machines (SVM): learning algorithm that selects a few critical

instances from a specific genre called support vectors. The support vectors are

located on a hyperplane, which can be seen as a multidimensional plot where

each axis corresponds to an extracted low-level feature. From the position

of the support vectors on the hyperplane, boundaries can be calculated by

quadratic, cubic, or high order functions known as kernels. These boundaries

are known as maximum margins, which separate groups of songs belonging to
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a specific genre from others belonging to a different genre [22].

• Nearest Neighbors (KNN): instance-based learning algorithm based on vicinity.

Each new song is compared to the training subset of songs by a distance metric.

The classification is done by labeling the new song with the same genre as the

majority of training songs that have the closest distance to it [1].

• Gaussian Mixture Models (GMM): algorithm that calculates the probability

density of a genre on a space created by the values of extracted low-level

features [22]. The probability density is a mixture of multidimensional Gaus-

sian distributions, where each dimension corresponds to weighted probability

functions of extracted low-level features [31].

2.4.4 Common Methodology on Genre Classification

Figure 2.4 represents a common methodology on genre classification tasks. First, the

audio signal is framed, windowed and transformed into its frequency representation

using the FFT. These 3 processes are done by the STFT. Temporal features are

extracted from each frame, while spectral features are extracted from the frequency

spectrum of each frame. To have meaningful values of the whole audio file, the

mean and variance of each time series of features are calculated. Then, the set of

means and variances is used to train and test the classifier. The accuracy results

are obtained after testing.

2.5 Nonlinear Time Series Analysis

A very recent approach in MIR is the use of Nonlinear Time Series Analysis (NTSA)

techniques to extract new features from the audio signal itself. These techniques

are used with the assumption that the temporal description of an event is a variable

which affects the development of a more complex time-evolving system.
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Figure 2.4: Common analysis for genre classification tasks: the dotted square rep-
resents the processes done by the STFT. Temporal features are extracted from the
audio frames, while spectral features are taken from the frequency spectrum of the
audio frames, obtained by the FFT. These features are used to train a classifier and
test for its accuracy in predicting a target label.
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2.5.1 Nonlinear Time Series Analysis Techniques

One common nonlinear time series analysis technique is known as State-Space Em-

bedding. In real-world physical systems, all the factors or variables that contribute

to the temporal evolution or dynamics of the system cannot be accessed straightfor-

wardly. State-space embedding consists in creating a multidimensional space from

delayed sets of a time series that defines the temporal evolution of a variable, giving

a topological similarity to the dynamics of the system where all the variables are

full-known [34].

Assuming that musical audio signals are time series describing a physical system

allows to create a different representation of its temporal evolution. As a conse-

quence, information describing its nonlinearities, which might not be given by usual

audio analysis tools such as the FFT, can be obtained. State-space embedding

is scantily suggested by [15] to discriminate between rock/pop songs and classical

songs, where the state variables have smoother changes in the latter case. In [16], the

state-space embedding is used on time series of low-level features to obtain NTSA

features, based on the resulting trajectory of the state-space.

Another important NTSA tool is the Recurrence Plot [23]. It is a technique

implemented to measure patterns or repetitive behaviors on the trajectory defined

by a state-space embedding [14]. This technique has been used in [25] as a method to

detect cover songs, which are versions of a previously existent songs possibly made

by a different artist from the original, usually with the same musical arrangements

and tonality.

A speech recognition application is explained in [29], where a periodicity his-

togram is built with recurrence information extracted from the state-space. By

knowing the time when this recurrences occur, an estimate of the fundamental fre-

quency of the audio can be found [5]. In [33], a combination of the state-space

embedding followed by recurrence plot analysis is done over time series of extracted

chromagrams to create new visualization tools that help users to identify structure

in music.
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The application of these techniques on this research is described in chapter 4.

Additional information on nonlinear time series analysis techniques can be found on

[10], [34] and [23].

There is little work done in this audio anaysis approach, but it has been shown

that NTSA applied over audio signals can bring interesting new results in the feature

extraction and audio classification fields of MIR.
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Chapter 3

Methodology

This chapter describes the audio files processing scheme used in this research for

evaluating common classification methodology. It also details the feature selection

procedure, and lists the classifiers used for accuracy evaluation.

3.1 Database

The audio files used for the evaluation come from a specific database provided by

George Tzanetakis. It is divided in 10 genres: Rock, Pop, Reggae, Metal, Hip Hop,

Classic, Country, Jazz, Disco and Blues. Each genre consists of 100 song excerpts of

30 seconds in duration, excepting Reggae genre with 93 excerpts, making a total of

993 audio files. The files were provided in wav format, mono channel and sampled

at 22,050 Hz.

3.2 Audio Processing

The process described in this section is done for both common classification method-

ology (based on frequency spectrum features) and the nonlinear audio recurrence

analysis (described on the next chapter) independently. For the common methodol-

ogy, the STFT is applied over the audio files with the following parameters: frames

35
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of 2048 samples long, using 50% of overlapping between frames, zero padding of 2048

samples and a Blackman-Harris 92dB window. The FFT is then applied on 4096

samples, intented to create a frequency spectrum of 2048 bins for the frequencies up

to the Nyquist frequency fn.

The STFT is calculated using MIRtoolbox for MATLAB [13]. Developed at

the University of Jyväskylä by members of the Finnish Centre of Excellence in

Interdisciplinary Music Research, MIRtoolbox is a set of functions developed for

MATLAB, dedicated to the extraction of low-level and high-level features from audio

for Music Information Retrieval tasks. It is designed as a modular framework where

each block develops a particular duty. These blocks can be parametrized by the user

and can be interconnected to achieve different purposes. MIRtoolbox version 1.2.3

is used on MATLAB R2009a. On this methodology, the functions used to calculate

the STFT of an audio file are subsequently mentioned. Unless stated otherwise, the

default parameters of MIRtoolbox functions are used:

1. miraudio(). Extracts the audio from a ‘wav’ file as samples.

2. mirframe(). Divides the audio samples into frames of length and overlap

given as parameters.

3. mirspectrum(). Calculates the spectrum of every frame, applying the win-

dow given as a parameter and using the MATLAB FFT algorithm. The zero

padding is added by this function internally. The frequency resolution ob-

tained using the FFT parameters described above is 5.3833 Hz/bin.

3.3 Spectral Features

The following features, described in section 2.3.3, are extracted from the frequency

spectrum on common methodology, and from the histograms described on sections

4.5 and 4.6 for the nonlinear audio recurrence analysis. The feature extraction is
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done using particularly created functions for each feature, contained in MIRtoolbox

for MATLAB [12]:

• Statistical moments: mean, variance, skewness and kurtosis.

• Mel Frequency Cepstrum Coefficients (MFCC): the Discrete Cosine Transform

of the logarithm of the spectrum, calculated over Mel bands. Represents the

shape of the spectrum in a few coefficients. Using a bank of 50 filters, 20

coefficients are computed for the evaluation.

• Chromagram: distribution of the spectral energy on the 12 semitones of the

chromatic scale, without discrimination of the octave they belong to. Conse-

quently, 12 values are computed.

• Brightness: percentage of the spectral energy located above a certain frequency

threshold. Employed value is 3000 Hz.

• Roll off: frequency value up to which 85% of the spectrum energy is located.

• Spectral Centroid: geometric center of the spectral distribution.

• Spectral Spread: also known as standard deviation, it measures the dispersion

of the spectrum around the spectral centroid.

• Spectral Flatness: determines the smoothness of the spectrum. Values close

to 1 indicate a noisy signal and close to 0 indicate pure tonality.

A total of 41 features are computed for each frame. To obtain values significant

to the whole audio file, the mean and the variance of each time series of features is

calculated, giving a total of 82 features per audio file. This setup remains the same

for both common methodology and nonlinear audio recurrence analysis.
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3.4 Feature Selection and Classification

The processes from this section are done over the dataset of features extracted from

common methodology and over the datasets of features extracted from the nonlinear

audio recurrence analysis in different combinations, as will be seen on chapter 5.

In the order they are mentioned, three feature selection processes are applied on

the dataset of spectral features to achieve effective results on the classification task.

This feature selection is achieved via the filter implementations on WEKA Explorer.

WEKA is a collection of machine learning algorithms for data mining. It contains

tools for data pre-processing, classification and clustering, among others [8]. For

this methodology, version 3.6.2 is used. The functions used for feature selection are

mentioned next. Unless stated otherwise, the default parameters of these functions

are used:

1. Attribute Selection: Supervised processing where the most correlated features

to a genre are selected. Using the following parameters:

(a) Evaluator: cfsSubsetEval. Evaluates the features by considering indi-

vidual predictability and global redundancy.

(b) Search: BestFirst. Searches the best features in descending order, start-

ing with the first extracted feature to the last one.

2. Principal Components: Linear and weighted combinations of selected features

that reduce multidimensionality of data. Each combination is called a ‘com-

ponent’ [28]. Using the following parameters:

(a) Maximum Attributes: -1. Indicates no limit in the number of features

taken for creating each component.

(b) Variance Covered: between 0.96 and 0.99. The value is changed inside

this range until 30 principal components are created, which is the number

of principal components taken to analyze the baseline.
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3. Normalization: The values of a given feature are normalized from a maximum

of 1 to a minimum of 0.

After this stage, the number of selected features for classification is 30. The

classification task is done on WEKA Experimenter using the dataset of selected

features. Then, different classifiers are employed to ensure the results are not based

on one specific classification technique. The default parameters of each classifier are

kept unless stated otherwise:

1. Zero Rule Classifier (0R): Algorithm that classifies according to the majority

genre. The result of this classifier corresponds to a classification based on a

random guess. Thus, it represents a theoretical baseline to be surpassed by

any other classifier.

2. One Rule Classifier (1R): Classification based on a single feature, character-

ized for having the minimum prediction error. The feature that individually

discriminates the most between genres is selected for the task1.

3. Näıve Bayes (Bayes): Probabilistic classifier based on Bayes’ theorem. As-

sumes the presence of a particular feature on a genre as completely unrelated

to the presence of any other feature [32]. The classification is based on a

combination of individual feature probabilities2.

4. K Nearest Neighbors (IBk): It is an algorithm whose classification is based

on the vicinity of genres for a given combination of features. The parameter

KNN (Number of taken nearest neighbors) is set to 5.

5. Multilayer Perceptron (MP): Classifier constructed over a back-propagation

neural network. Depending on the inputs, each element of the network, called

a neuron, is altered with a learning rate parameter in order to fit a given

output. The order in which neurons are modified is from the last layer (closer

1 Sael Sayad. Classication - basic methods, 2010. http://chem-eng.utoronto.ca/∼datamining/
2 Näıve Bayes Classifier, September 2002. http://en.wikipedia.org/wiki/naive bayes classifier
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to the output) to the first layer (closer to the input). The ‘back-propagation’

term is originated from this characteristic of the network [32]. The learning

rate parameter is modified to 0.6.

6. Random Forest (Forest): Classification based on a group of decision trees,

where groups of features are randomly selected at each node. The final output

is the mode of the individual tree output 3. The number of trees used in the

classifier is modified to 100.

7. Support Vector Machines : It is an instance-based algorithm that selects

boundary points, known as support vectors, to differentiate one genre from

another [32]. Two different kernels are used to create different functions that

maximally separates genres:

• PolyKernel (SVP): Polynomial function.

• RBFKernel (SVR): Radial-based function. Parameter gamma=0.6 4.

8. Linear Logistic Model (SL): found on WEKA as SimpleLogistic, is a classifier

that fits the data of the selected features into a sigmoid curve or logistic

function, to calculate the probability of a genre to be predicted [32]. The

parameter useAIC is set to True.

The classifier training and testing is executed using a 3-fold cross validation,

iterating 10 times for each classifier. This setup remains the same for both common

classification methodology and nonlinear audio recurrence analysis.

3 Random forest, January 2005. http://en.wikipedia.org/wiki/Random forest
4 Radial basis function, July 2005. http://en.wikipedia.org/wiki/Radial basis function



Chapter 4

Nonlinear Audio Recurrence

Analysis

On this chapter, the nonlinear time series analysis of the audio signal is presented.

The different parts conforming this analysis are described as well. Finally, the

development of the time recurrence and frequency recurrence histograms is exposed.

4.1 Nonlinear Time Series Analysis Module

The nonlinear time series analysis module replaces the windowing and the FFT

stages from the common methodology used for feature extraction. The sequential

processing followed inside the module is: audio framing, state-space reconstruction,

computation of the recurrence plot, calculation of the recurrence time histogram, and

its transformation into the correspondant recurrence frequency histogram. Figure

4.1 shows a graphic version of this module. The following sections will explain in

detail the signal processing each step performs on the audio waveform.

41
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Figure 4.1: The nonlinear analysis module, delimited by the black dotted line,
replaces the windowing and the FFT stages to extract features from the resulting
recurrence time histogram and recurrence frequency histogram.
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4.2 Audio Framing

The FFT calculation from the MIR Toolbox uses zero-padded frames to have the

same number of positive frequency bins as number of samples on the original audio

frame. This is 2048 frequency bins up to the Nyquist Frequency bin for 2048 samples

on the audio frame. Therefore, the audio waveform is divided into frames of 2048

samples to keep the same bin reference when extracting the features. A value of

50% overlapping between frames is used. Different from common methodology, the

frames are not windowed. As mentioned in [26] the windowing process tappers

the ends of the analyzed data, making the spectrum a smooth function. Since the

nonlinear analysis is done over the unaltered audio frame, this step is not needed.

4.3 State-Space Embedding

As primary step to recurrence analysis, a technique known as State-Space Embed-

ding is applied to each audio frame. The process consists in converting each sample

of the audio signal into a vectorial form whose dimensions are given as a parameter.

This parameter is known as embedding dimension. Each vector is known as a state,

and it describes a point in the multidimensional space. The temporal evolution of

states in the multidimensional space results in the development of a trajectory which

describes the behavior of the audio signal at specific points in time. The resultant

trajectory allows modeling, prediction, and pattern analysis in the signal. This pro-

cess is applied to individual audio frames, meaning that a state-space reconstruction

(and the subsequent processes applied onto it) will be calculated framewise.

For a j -th sample on an audio waveform frame S(j), the resulting m-dimensional

state-space v is calculated by:

v = [S(j), ..., S(j − (m− 1)τ)] (4.1)

for j = η, ..., N where η = (m − 1)τ , m is the embedding dimension and τ is the
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Figure 4.2: State-space reconstruction on a sinusoidal signal using m=3 and τ =
20. The components of each dimension are shown on the left, while the resultant
trajectory is shown on the right.

delay time in samples.

A simple example of the construction of the state-space is provided for a sinu-

soidal signal using m=3 and τ = 20. Figure 4.2 shows the individual components,

being c1(j) the original audio frame, and c2(j) and c3(j) the delayed components.

The same figure shows the state-space reconstruction on a three-dimensional space.

As can be seen, the trajectory of the sinusoidal signal is a circle, which has a periodic

behavior due to the periodicity of the signal.

An example that represents the processing done on a musical excerpt using m=3

and τ = 20 is provided on figure 4.3. This state-space diagram corresponds to an

audio frame from a song belonging to the Blues genre of the analyzed database.

The same method using a different audio frame from a song belonging to the Metal

genre is shown on figure 4.4. Thanks to the defined trajectories on the state-space,

predictions of future states and recurrence analysis can be achieved easily than

analyzing the audio signal per se. The resulting trajectories for the audio frames

are not as straightforward as the circle for the sinusoidal signal, so the recurrence

analysis is done through a recurrence plot, which is introduced in the following
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Figure 4.3: State-space reconstruction on a Blues genre audio frame using m=3
and τ = 20. The components of each dimension are shown on the left, while the
resultant trajectory is shown on the right.

sections.

Several techniques for obtaining suitable values of m and τ can be found and

implemented. Examples of these techniques are false nearest neighbors for m, which

is described on [11], and auto-correlation function or the mutual information function

for τ , mentioned on [14]. Since one of the goals of this research is to verify how

changes on these parameters affect the classification accuracy, the techniques for

obtaining suitable values of these two parameters are not applied.

4.4 Distance Matrix

If two points of the state-space trajectory have a small distance value, it is said they

correspond to similar states. Therefore, the state similarity between two points can

be defined as a recurrence in the signal.

From the state-space embedding, squared Euclidean distance is calculated be-

tween pairs of points that conform the trajectory. The intention is to know how

close these points are from one another. To calculate the squared Euclidean dis-
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Figure 4.4: State-space reconstruction on a Metal genre audio frame using m=3
and τ = 20. The components of each dimension are shown on the left, while the
resultant trajectory is shown on the right

tance between two points the following equation is used:

Da,b =
m∑
r=1

(vb,r − va,r)2 (4.2)

where Da,b is the distance matrix holding the distance values between all the a-th and

b-th positions on the phase-space trajectory. A consideration to take when making

this calculation is that small distance values are also valid for consecutive points

on the same trajectory of the dynamics, which cannot be considered as recurrences

since they belong to the development of close states. As a consequence, a window

that excludes the processing of adjacent points on the trajectory must be applied. A

parameter known as the Theiler correction window can be introduced on equation

4.2, by restricting the values of b from a+1+w, where w is the value of rejected

consecutive points on the trajectory, to N, the audio frame length. These values of

b are kept throughout this chapter. Figure 4.5 shows the distance matrix for the

Blues genre audio frame and the Metal genre audio frame.
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Figure 4.5: Distance matrices for the Blues genre audio frame on the left and for
the Metal genre audio frame on the right. A repetitive behavior or pattern can be
seen on both audio frames by the overall shape and diagonal lines of each distance
matrix.

4.5 Recurrence Plot

A threshold is then defined as a discriminator for high distance values. The calcu-

lation of the threshold allows it to change dynamically depending on the distance

values for a specific frame. To obtain the threshold, a percentage of the mean of all

distances on the signal frame (shown on the recurrence plot) is taken:

ε = p

∑N
a=1

∑N
b=a+1+wDa,b

N(N − 1− w)
(4.3)

Where ε is the threshold value and p is the proportion of the mean of the distance

matrix, whose value can be adjusted as a parameter from 0 to 1.

Since the time separation between points in the trajectory can be given in sam-

ples, the recurrences can be compared to integer-valued sample lags in what is known

as a recurrence plot. The recurrence plot is a visual aid to identify the repetitive

points in a given state-space representation. It is useful to detect a recurrent be-

havior in the analyzed signal. The recurrences are shown in a squared matrix form
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where the axes represent the a-th and b-th positions on the trajectory.

A comparison between the distance matrix and the threshold value outputs a

new matrix given by:

Ra,b = Θ(ε−Da,b) (4.4)

Where Ra,b is a matrix holding the recurrences taken and Θ is the Heaviside function,

where Θ(y) = 1 when y > 0 and 0 otherwise.

The previous processing will return the recurrence plot filled with ones and zeros

exclusively. It indicates which pairs of points in the trajectory are taken as recur-

rences and which ones are left apart respectively. Graphic examples of recurrence

plots can be seen on figure 4.6, where the same audio frames analyzed so far are

being used. The parameters used for plotting these figures are m=3, τ=20, w=10

and p=0.3. Further analysis on the variation of these parameters and its influence

on the recurrence plot is done on chapter 5.
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Figure 4.6: Examples of recurrence plots for the Blues genre audio frame on the
left and for the Metal genre audio frame on the right. The binary nature of the
matrices indicate whether a pair of points is taken as a recurrence (white) or if it
is left out of the analysis due to high distance between the points (black). The
repetitive behavior is seen clearer than in the distance matrices.
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4.6 Recurrence Time Histogram

Following the guidelines stated in [29] and [30], a recurrence time histogram Ht is

built as a previous step towards a recurrence frequency histogram creation:

Ht(k) =
N−k∑
a=1

Ra,a+k (4.5)

Where k is the number of bins on the histogram, which also represents the time

difference in samples between two points in the trajectory considered as a recurrence.

This value will be refered as sample lag on future sections.

Since the limits of the summation in equation 4.5 decrease when k increases,

normalization must be done in order to eliminate the decreasing tendency on the

histogram. This can be achieved by dividing the recurrence counts on each bin by

the number of total possible counts on that bin. The normalized histogram is then

calculated as:

H̄t(k) =
1

N − k

N−k∑
a=1

Ra,a+k (4.6)

Figure 4.7 shows examples of the recurrence time histogram without normaliza-

tion and after it has been normalized. The same methods used for obtaining spectral

features described on section 3.3 will be used on the recurrence time histogram.

4.7 Recurrence Frequency Histogram

The building of a recurrence frequency histogram (Hf ) departs from knowing two

fundamental parameters: the sampling frequency of the audio signal and the sample

lag of the found recurrences. The former is given by the audio files, while the latter is

obtained from the k -th bin of the recurrence time histogram as explained on section

4.6. To obtain the corresponding frequency of a sample lag k having a sampling
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(a) Unnormalized Ht
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(b) Normalized Ht

Figure 4.7: The recurrence time histograms before normalization (a) and after nor-
malization (b) are shown. The decreasing tendency of Ht caused by the increasing
k is eliminated when dividing by all possible recurrence on the correspondant bins.
Tne normalized values go from 0 to 1.

frequency fs , we use:

f(k) =
fs
k

(4.7)

Two facts can be observed from the last equation: first, high sample lags cor-

respond to small values of frequency and vice versa. Second, the function has an

inverse proportional behavior, meaning low frequencies will be spaced closer than

high frequencies, which translates into a better resolution for high sample lags. Fig-

ure 4.8 shows the behavior of the function for the correspondent values of k .

As mentioned in section 2.2, the frequency binning of the FFT is a proportion

of the frame length, equivalent to dividing the sampling frequency by the number of

bins. On Hf , the binding is an inverse proportion of the sample lag, equivalent to

dividing the sampling frequency by the sample lagk. Since the features to extract

are developed for frequency spectrums obtained through FFT analysis, a frequency

fitting is required. This frequency fitting consists in changing frequency values

from the inverse proportionality given by equation 4.7 into equally-spaced frequency

binding given by the FFT.
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Figure 4.8: Frequency values as a function of k. The high frequency values are
narrowed into a small area of the function, meaning these will have lower resolution
than low frequencies when making the fitting on the recurrence frequency histogram.

The proposed fitting can be achieved by obtaining the frequency f(k) from the

sample lag of a found recurrence, and comparing it to the frequency values of the

FFT binding. The smallest difference between f(k) and the FFT frequency values

will indicate the FH bin where f(k) fits the best. Steps taken towards the frequency

fitting are described next:

1. A vector Hf of length N is first initialized to zero. Since the value of N does

not change over the analysis, this is calculated only once.

2. All the possible FFT positive frequency values for N bins can be calculated

by:

Fi =
fs
2N

i (4.8)

where the FFT bin index i = 1, ..., N . Since the value of N does not change

over the analysis, this is calculated only once.

3. Starting from a recurrence on Ra,b, the value of k can be obtained by:

k = b− a (4.9)
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By equation 4.7, the frequency value for this recurrence is known.

4. The comparison between Fi and f(k) is done to obtain all the differences

between the FFT frequency binning values and the frequency as a function of

the sample lag:

Ii = |Fi − f(k)| (4.10)

5. The smallest value in I represents the closest location on the FFT frequency

values where the frequency f(k) can be adjusted to. Therefore, the Hf bin α

is retrieved by:

α : Iα = min(I) (4.11)

6. The element Hf [α] is incremented by 1, meaning a recurrence with a frequency

f(k) has been fitted on binα of an FFT frequency binding.

The previous process is then repeated for all recurrences. The normalization

function follows the same procedure, but instead of using recurrences only, all the

values from R are taken into account, whether being recurrences or not. The output

for the normalization curve will be a vector S, so the normalized recurrence frequency

histogram is calculated by:

H̄f [α] =
Hf [α]

S[α]
(4.12)

The frequency binning on the recurrence histogram, as in the frequency spec-

trum, is initially defined by the sampling frequency of the data. On the former, the

values are given by an inverse proportionality, while the latter is equally divided into

the number of samples used in the frame. Since the calculation of the frequencies
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(a) Hf before normalization.
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(b) Zoom on low frequencies in (a).
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(c) Normalized Hf .
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(d) Zoom on low frequencies in (c).

Figure 4.9: The recurrence time histogram translation into frequency outputs the
frequency recurrence histogram on (a). By zooming at the low frequency section of
the histogram a continuous behavior can be seen, which spreads out as the frequency
increases and eventually creating peaks. When normalizing Hf , the high frequency
peaks rise, due to the low resolution and the high amount of recurrences assigned to
those specific bins. On the other hand, the continuous low frequency section, after
normalization, show peaks similar to those of a frequency spectrum.
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using sample lags might not derive in an exact frequency bin on the spectrum and

can only be done with integer numbers, the rounding of the values will leave empty

frequency bins for every calculated frame. For example: using 22,050 Hz as fs and

N = 2048, bin number 71 on the spectrum corresponds to 376.8311 Hz, which cor-

responds to a sample lag of 58.5143 samples. Since only integer values can be taken,

58 samples correspond to 380.1724 Hz, whose closest value in the spectrum values is

bin number 72 (382.2144). On the other hand, taking 59 as sample delay (373.7288

Hz) results in assigning the recurrence on bin 70 (371.4478), which is the closest dif-

ference between the recurrence frequency and the equally spaced frequency values.

The efect of the rounding can be observed in figure 4.9.

Given the high resolution of low frequency values given by equation 4.8, more

values of f(k) will be fitted to the first bins of Hf . Therefore, Hf will present a

continuous behavior on low frequencies and a spread non-continuous behavior as

the frequency increases. To eliminate this effect, a random value ranging from -

0.5 to 0.5 is added to k in equation 4.7. This action will spread the values of f(k)

horizontally, distributing the high frequency peaks in broader bin ranges and keeping

low frequency peaks in shorter ranges. Consequently, Hf will have a continuous

aspect on all fequencies.

Even if the same process is applied on the normalization function, the number

of total possible recurrences on a bin will not be proportional to the considered

recurrences belonging to that same bin, due to different random values added to k

and to the normalization function. This effect is more influential on high frequencies,

where the spread of the peaks is wider and the uncertainty of matching the same

bin is higher. Therefore, the high frequencies are eliminated from the normalized

Hf using a high value of w, taking into consideration the analyzed frame length and

the time equivalent this length represents.

In figure 4.10a the effect of the added random vaue can be seen as a dispersion

of the high frequency peaks in figure 4.9a. When normalizing this distributed Hf in

figure 4.10b, the high frequency region rises with a random behavior due to the rea-
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sons stated on the previous paragraph. Finally, when applying a Theiler correction

window of 30, the high frequency values are eliminated, keeping the continuous low

frequency region to be used on feature extraction.

Comparisons between the frequency spectrum obtained through the FFT and

the frequency recurrence histogram can be observed in figure 4.11. The same audio

frames used to create the state-space embedding in section 4.3 are used for this

purpose. It can be seen peaks are positioned on similar frequency values, while

additional peak information can be found on the RH description of the audio frame.

These are examples of recurrence frequency histograms where features described on

section 3.3 will be extracted from.
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(a) Unnormalized distributed Hf .
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(b) Normalized distributed Hf .
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(c) Normalized distributed Hf with w=30.
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(d) Zoom on low frequencies in (c).

Figure 4.10: Adding a small random value at the sample lag when calculating the fre-
quency fitting results in the distribution of high frequency peaks along the histogram
distribution. However, different random values are added to the normalization func-
tion, which results in a random behavior on high frequencies after normalization.
A considerable value in the Theiler correction window parameter w eliminates all
the information from this part of Hf , making the continuous low frequency section,
which remains the same, the only part of Hf providing concrete information about
the audio signal.
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(a) Metal genre frequency spectrum.
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(b) Metal genre Hf .
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(c) Blues genre frequency spectrum.
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(d) Blues genre Hf .

Figure 4.11: Comparison between frequency spectra and frequency recurrence his-
tograms from Metal and Blues genre audio frames. The x-axis on four figures is a
zoom on the low frequency region. The same range of low frequencies is compared,
showing high peaks at similar frequency values, while showing different information
on the rest of the frequency range, specially below the highest peaks.
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Chapter 5

Results

This chapter explains the selected parameters for the classification task based on

the effects they have towards the construction of the recurrence time and recurrence

frequency histograms. It also presents and compares the accuracy percentages of the

baseline-trained classifiers, as well as the ones trained using the extracted features

from the proposed nonlinear time series analysis, and different combinations of them.

5.1 Parameter Assesment

Two important parameters for the construction of the recurrence plot are: the pro-

portion p of the distance matrix mean, used for calculating the distance threshold,

and the Theiler correction window w. If the parameter p is high, more pairs will

be taken as recurrences. In addition, if w is high, more consecutive points will be

left apart of the analysis. Examples of the effects of these parameters can be seen

on figures 5.1 and 5.2 respectively, where the process is applied on the Metal genre

audio frame analyzed in the previous chapter. The parameters used on each plot

are indicated on the caption of each subfigure, using bold highlights on the changed

parameters.

Figures 5.3 and 5.4 show different calculated recurrence time histograms for the

Metal genre audio frame. The parameters used on each plot are indicated on the

59
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(a) m=3, τ = 20, w=30, p=0.2.

(b) m=3, τ = 20, w=30, p=0.3.

(c) m=3, τ = 20, w=30, p=0.7.

Figure 5.1: Effects of the threshold parameter p on the recurrence plot. As the value
increases more pairs of points are taken as recurrences, disrupting a clear view of
patterns or repetitive behaviors.
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(a) m=3, τ = 20, w=10, p=0.2.

(b) m=3, τ = 20, w=30, p=0.2.

(c) m=3, τ = 20, w=100, p=0.2.

Figure 5.2: Effects of the Theiler window parameter w on the recurrence plot. As
the value increases, more consecutive points are taken out of the analysis, creting a
black diagonal line representing the non-taken pairs of points.



62 CHAPTER 5. RESULTS

caption of each subfigure, using bold highlights on the changed parameters. Figure

5.4 shows that changes in τ and m do not considerably affect the shape of the

recurrence time histogram. The only noticeable variations can be seen on high-

valued bins, where recurrences are not taken into account, and in the average value

of the recurrence histogram, which tends to decrease as m increases; both are due to

the effect of N −η as an upper limit value when creating the state-space. Figure 5.4

shows examples of recurrence time histograms where features described on section

3.3 are extracted from.

After visual inspection of the influence of different parameter values on several

audio frames and based on the amount of useful information those parameters bring

to the extracted features, the selected parameter values for the recurrence histogram

and frequency histogram processes are the following:

• m: 3, 7, 12.

• τ : 1, 3, 7.

• p: 0.2, 0.3, 0.7.

• w : 30.

On the following sections, the effect of chosen parameter values on the classifiers

training and testing will be shown. Classifiers are trained and tested in six different

and independent ways: using features extracted from recurrence time histogram

(Ht) only, from frequency time histogram (Hf ) only, from the combination of these

two, from the combination of each Ht and Hf features with the features obtained

through common methodology (CM), and a complete combination of all Ht, Hf

and common methodology features. The keywords used to identify each classifier

have been defined on section 3.4. On every classification section, the shown results

are the average of the 10 iterations of the 3-fold cross validation performed on each

classifier.



5.1. PARAMETER ASSESMENT 63

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recurrence Histogram

bins

N
o
rm

a
liz

e
d
 R

e
c
u
rr

e
n
c
e
s

(a) m=3, τ = 20, w=30, p=0.05.
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(b) m=3, τ = 20, w=0, p=0.2.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recurrence Histogram

bins

N
o
rm

a
liz

e
d
 R

e
c
u
rr

e
n
c
e
s

(c) m=3, τ = 20, w=30, p=0.2.
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(d) m=3, τ = 20, w=30, p=0.2.
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(e) m=3, τ = 20, w=30, p=0.7.
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(f) m=3, τ = 20, w=100, p=0.2.

Figure 5.3: A comparison between normalized and non-normalized Ht can be seen
on (a) and (b). The increment in parameter p brings an increment in the average
value of Ht, caused by raising the distance threshold and taking more recurrences
consequently. The increment in parameter w causes the rejection of close points
from the analysis, resulting in elemination of recurrences on the first bins.
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(a) m=4, τ = 20, w=30, p=0.2.
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(b) m=3, τ = 7, w=30, p=0.2.
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(c) m=7, τ = 20, w=30, p=0.2.
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(d) m=3, τ = 30, w=30, p=0.2.
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(e) m=12, τ = 20, w=30, p=0.2.
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(f) m=3, τ = 50, w=30, p=0.2.

Figure 5.4: Effect of state-space parameter variations on Ht. When the embedding
dimension m is increased, the average value of the Ht decreases, showing an analo-
gous effect such as of incrementing p; this is caused by the limit of samples N − η
taken from the audio frame when creating the state-space. The increment of τ does
not considerably affect the average value, but remains ignoring recurrences from the
higher bins given the η samples not taken from the audio signal.
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5.2 CM Classification

The accuracy of the trained classifiers using common methodology features is shown

on table 5.1.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL

- - - 10.0 23.5 56.4 50.4 62.00 62.3 63.2 66.0 66.0

Table 5.1: Accuracy results for common methodology classification.

5.3 Ht Features Classification

The accuracy of the trained classifiers using features extracted from the recurrence

time histogram is shown in table 5.2. Bold highlights indicate the top three classi-

fication accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 23.6 41.3 38.9 46.5 52.8 45.3 48.1 52.3
3 7 0.20 10.0 24.0 45.6 48.1 51.5 56.1 51.7 53.5 54.6
3 1 0.30 10.0 23.9 45.2 40.7 49.6 55.1 47.9 51.5 53.4
3 1 0.70 10.0 24.8 44.9 39.6 51.2 54.8 48.5 52.2 55.1
3 7 0.70 10.0 24.5 49.5 49.9 51.7 59.4 54.9 57.5 56.5
7 1 0.20 10.0 21.5 41.5 38.5 46.7 51.9 44.4 46.6 53.0
7 1 0.30 10.0 19.5 43.3 38.9 49.6 54.3 46.6 49.9 55.5
7 1 0.70 10.0 24.0 45.6 48.1 51.5 56.1 51.7 53.5 54.6
7 3 0.30 10.0 24.0 42.1 42.3 47.5 53.0 47.4 49.8 51.7
7 3 0.70 10.0 23.8 46.1 45.7 49.2 56.0 52.3 54.5 54.6
12 1 0.30 10.0 19.8 40.2 38.7 48.1 49.7 45.5 49.0 53.4
12 1 0.70 10.0 21.5 43.4 42.0 50.5 52.2 49.0 52.2 54.5
12 3 0.70 10.0 21.7 46.2 6.9 51.9 56.7 53.3 55.5 57.4
12 7 0.70 10.0 23.0 47.7 45.9 53.4 56.8 55.9 57.5 57.0

Table 5.2: Accuracy results for Ht features classification.

As can be seen, the overall percentage is reduced when comparing to the baseline

values. Values drop between 11% and 17 % depending on the classifier. One should
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note that the spectral features used on Ht are not designed to describe the behavior

of this type of information, they are designed to describe the frequency spectrum.

Consequently, the classification using the Ht features by themselves could be ex-

pected not to be as accurate as the baseline classification. Another tendency is the

increment of classification accuracy when m is increased. As seen on figure 5.4b

the increment on this parameter leads to a reduction in the number of compared

points, reducing the average value of the Ht. this leads to a better definition of the

Ht, without rejecting too much information. The increment of p leads to a better

classification on low values of m by increasing between 1 and 2%. The increment of

τ in small steps insignificantly reduces the classification acurracy.

5.4 Hf Features Classification

The accuracy of the trained classifiers using features extracted from the recurrence

frequency histogram is shown in table 5.3. Bold highlights indicate the top three

classification accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 21.7 43.0 40.2 46.5 49.0 45.9 48.9 49.5
3 7 0.20 10.0 23.7 38.1 34.2 42.6 46.2 41.8 44.2 47.2
3 1 0.30 10.0 21.0 42.8 40.2 47.0 50.6 45.2 48.7 50.3
3 1 0.70 10.0 21.2 44.4 41.8 46.8 51.6 47.3 51.2 50.7
3 7 0.70 10.0 23.7 39.8 34.9 43.0 45.5 38.1 41.1 46.9
7 1 0.20 10.0 21.8 41.8 38.1 44.4 49.2 44.8 47.1 47.2
7 1 0.30 10.0 20.9 43.4 38.8 45.2 48.5 45.0 47.6 47.6
7 1 0.70 10.0 21.5 38.3 34.2 44.3 45.8 39.4 42.7 48.4
7 3 0.30 10.0 21.2 37.2 36.4 42.6 44.8 41.0 43.7 45.7
7 3 0.70 10.0 17.9 38.2 34.2 42.3 45.7 40.6 43.6 45.5
12 1 0.30 10.0 20.1 40.7 35.1 42.3 45.3 42.4 44.9 46.6
12 1 0.70 10.0 20.2 41.4 37.6 45.0 47.4 43.1 46.1 48.7
12 3 0.70 10.0 21.8 34.6 30.2 39.5 41.7 36.9 39.6 41.9
12 7 0.70 10.0 21.3 36.0 34.8 40.9 44.9 39.0 42.2 44.1

Table 5.3: Accuracy results for Hf features classification.
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On this case, the overall accuracy with respect to the baseline is reduced by

12% on SL and almost 16% on classifiers such as SVP and SVR when compared

to the Ht accuracies. Contrary to what can be seen on the previous section, the

increasing m reduces the accuracy of this type of classification, making the worst

Hf feature-based classification the best Ht feature-based classification for almost all

classifiers. The effect of p and τ is similar than in Ht feature-based classification.

The recurrence frequency histogram compresses the sample lags into very delimited

frequency regions, which might cause a loss of information compared to the FFT.

5.5 Ht + Hf Features Classification

The accuracy of the trained classifiers using a combination of features from the

recurrence time histogram and from the recurrence frequency histogram is shown in

table 5.4. Bold highlights indicate the top three classification accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 23.1 46.6 44.8 50.7 57.1 50.5 53.0 55.4
3 7 0.20 10.0 24.4 47.5 48.2 51.3 56.8 51.2 54.2 54.8
3 1 0.30 10.0 24.6 46.8 43.6 50.6 58.4 51.3 54.0 56.3
3 1 0.70 10.0 25.8 47.1 45.4 52.9 56.8 53.4 55.9 57.1
3 7 0.70 10.0 23.5 48.8 47.6 51.4 58.0 53.7 57.0 55.0
7 1 0.20 10.0 24.4 45.0 42.6 48.0 55.6 47.8 49.8 53.5
7 1 0.30 10.0 24.2 43.8 42.9 50.6 55.7 48.4 50.7 54.5
7 1 0.70 10.0 23.8 45.1 43.2 50.6 55.9 52.1 54.3 55.2
7 3 0.30 10.0 21.1 38.4 39.3 43.2 45.8 42.2 44.2 47.2
7 3 0.70 10.0 24.9 47.1 45.9 50.1 56.6 52.0 55.1 54.1
12 1 0.30 10.0 23.2 45.3 44.6 49.5 55.4 48.5 52.0 55.1
12 1 0.70 10.0 22.9 43.2 42.6 48.4 53.6 47.3 49.5 52.6
12 3 0.70 10.0 25.7 48.4 47.4 52.5 57.5 54.0 55.5 57.3
12 7 0.70 10.0 23.5 49.8 49.1 53.8 59.3 56.0 58.5 58.0

Table 5.4: Accuracy results for Ht + Hf features classification.

The accuracy percentages of this type of classification does not reach the baseline

percentages, but are above Hf classification by 5% on low m and p values and almost
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16% on high m values; they are also above Ht classification by 1% on high m and

p values, while reaching an increment around 5% on low m values. While selecting

the features by means of the Attribute Selection, an average of 74% of the selected

attributes is provided by Ht features, while the remaining 26% is provided by Hf

features.

5.6 CM + Ht Features Classification

The accuracy of the trained classifiers using a combination of common methodology

features and time recurrence histogram features is shown in table 5.5. Bold highlights

indicate the top three classification accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 28.0 58.2 55.3 65.6 67.2 65. 3 68.1 70.3
3 7 0.20 10.0 26.0 59.8 55.4 66.7 67.2 66.4 68.0 69.6
3 1 0.30 10.0 27.0 58.1 54.5 65.6 66.29 64.5 67.5 69.7
3 1 0.70 10.0 26.8 57.8 55.3 65.2 65.8 65.1 68.3 69.5
3 7 0.70 10.0 24.9 60.0 57.6 65.9 67.1 66.0 69.7 68.7
7 1 0.20 10.0 25.1 57.6 53.0 64.7 65.1 63.9 67.0 68.6
7 1 0.30 10.0 26.6 57.4 53.2 65.9 65.6 64.7 67.1 70.1
7 1 0.70 10.0 26.8 57.1 52.9 64.5 65.5 63.6 67.3 68.8
7 3 0.30 10.0 24.8 59.3 54.6 64.6 64.8 64.6 67.6 68.9
7 3 0.70 10.0 24.7 60.8 55.6 64.9 65.8 64.9 68.4 69.4
12 1 0.30 10.0 26.9 54.5 50.6 64.3 63.7 61.0 64.7 67.8
12 1 0.70 10.0 25.7 57.0 52.6 64.9 64.5 61.9 66.4 68.4
12 3 0.70 10.0 26.5 61.9 55.8 65.5 66.7 66.9 69.5 69.1
12 7 0.70 10.0 26.0 62.2 57.8 67.7 69.0 68.5 70.9 70.5

Table 5.5: Accuracy results for CM + Ht features classification.

The accuracy percentage increments by almost 5% on MP, Forest, SVR and

SL compared to the baseline percentages when high values of m are used. This is

due to the combination of the best Ht features and baseline features to train and test

the classifier. When selecting these features on WEKA by means of the Selection,

described on section 3.4, an average of 60% of the selected attributes is provided
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CM baseline, while the other 40% is provided by Ht extracted features. This means

Ht features help the baseline features to increase the classification accuracy.

5.7 CM + Hf Features Classification

The accuracy of the trained classifiers using a combination of common methodology

features and recurrence frequency histogram features is shown in table 5.6. Bold

highlights indicate the top three classification accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 24.9 57.5 50.1 61.6 65.2 62.4 65.8 66.4
3 7 0.20 10.0 26.9 56.2 49.6 61.5 64.8 61.4 64.6 64.5
3 1 0.30 10.0 25.6 58.2 49.2 60.9 65.3 62.8 66.6 65.8
3 1 0.70 10.0 25.8 58.4 53.0 62.3 64.2 63.7 67.1 66.0
3 7 0.70 10.0 28.2 56.8 49.5 61.4 65.3 62.5 65.7 65.3
7 1 0.20 10.0 26.8 58.2 51.1 61.9 64.3 62.3 65.9 65.8
7 1 0.30 10.0 26.1 57.7 52.9 62.2 64.3 63.1 66.5 66.7
7 1 0.70 10.0 25.2 58.9 51.9 61.7 65.1 61.7 64.1 64.4
7 3 0.30 10.0 25.6 58.0 52.5 64.1 64.7 62.6 66.0 66.6
7 3 0.70 10.0 24.0 55.6 50.1 61.8 64.5 61.1 64.6 64.8
12 1 0.30 10.0 26.4 56.4 51.2 61.2 64.2 61.8 65.5 65.7
12 1 0.70 10.0 25.1 58.3 50.4 61.8 64.8 62.9 66.1 65.3
12 3 0.70 10.0 25.6 54.6 49.8 61.1 62.9 59.6 62.4 63.7
12 7 0.70 10.0 24.0 57.6 51.8 63.1 63.9 63.6 67.1 66.2

Table 5.6: Accuracy results for CM + Hf features classification.

In this case, the accuracy percentage increases by 1% or less on MP, Forest and

SVP , and by 2% on SVR. When selecting the features by means of the Attribute

Selection in WEKA, an average of 72% of the selected attributes is provided by

CM features, while the other 28% is provided by Hf extracted features. It can

be seen that the effect of the Hf features is not a big impact on the classification

accuracies, given the fact that Hf features have lower classification results when used

by themselves, translating to lack of effective information on these features. It must

be considered as well the high frequency random behavior eliminated by the Theiler
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correction window parameter w, which completely erases unrelevant information

from the FH representation of the audio signal.

5.8 Baseline + Ht + Hf Features Classification

The accuracy of the trained classifiers using a combination of all features from

baseline, recurrence histogram and frequency histogram is shown in table 5.7. Bold

highlights indicate the top three classification accuracies.

m τ p 0R 1R IBk Bayes MP Forest SVP SVR SL
3 1 0.20 10.0 27.0 59.2 54.8 66.7 66.4 65.2 68.6 69.5
3 7 0.20 10.0 24.2 61.4 56.3 65.9 67.5 65.1 67.7 69.5
3 1 0.30 10.0 28.6 59.5 54.8 66.5 67.6 65.8 68.9 69.5
3 1 0.70 10.0 26.2 63.1 57.2 65.8 68.5 64.9 68.3 69.1
3 7 0.70 10.0 26.0 61.1 58.4 66.1 68.1 67.4 70.7 70.1
7 1 0.20 10.0 26.5 60.7 52.2 65.3 66.4 65.2 68.3 67.9
7 1 0.30 10.0 26.8 60.8 55.4 67.1 66.7 66.4 69.4 70.1
7 1 0.70 10.0 26.8 59.4 54.4 65.3 67.0 65.0 68.6 68.4
7 3 0.30 10.0 27.7 60.8 54.3 66.4 66.7 67.1 70.0 69.6
7 3 0.70 10.0 27.2 60.6 54.9 64.9 67.0 64.8 68.5 68.8
12 1 0.30 10.0 27.5 58.5 52.1 65.9 65.2 63.4 66.4 67.9
12 1 0.70 10.0 27.2 58.0 52.2 65.0 65.0 62.4 66.6 67.7
12 3 0.70 10.0 26.2 63.2 53.8 64.1 64.9 61.8 66.0 67.1
12 7 0.70 10.0 26.3 63.8 58.6 66.6 68.6 69.9 71.5 69.8

Table 5.7: Accuracy results for Baseline + Ht + Hf .

The percentages shown are not too different from the percentages from section

5.6, changing in less than 1%. From the Attribute Selection, an average of 53% of

the selected features is provided by CM features, 36% is provided by Ht features

and 11% is provided by Hf features. It is clear that the influence of Hf features in

this case brings no consistent change in the accuracy of the classifiers.

The highest classification accuracy is achieved by the combination of all features,

resulting in a 71.5% for the Support Vector Machines classifier using a Radial Basis

Function as kernel. This represents a 5.5% increment above the highest common
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methodology classification, given by the same classifier.

5.9 Summary

A final table gathering the best classification accuracies is shown. Numbers in bold

on table 5.8 represent the top three percentages of each classifier above CM classi-

fication accuracy. From the same table, it can be seen that the best classifications

are achieved when combining the features extracted from Ht and/or Hf with the

CM features rather than by themselves. When combining features from Ht with

features from Hf , the classification accuracy does not reach the baseline percentage.

In terms of parameters, a common value for high accuracies is p=0.7, which indi-

cates the selection of an elevated number of recurrences due to a high threshold on

the recurrence plot. Another common parameter value on high accuracies is either

a low embedding dimension (m=3) or a very high value of it (m=12). Since low

values of τ are used for the whole analysis, nothing concrete can be developed as

how it influences the classification on higher values.

Features m τ p 1R IBk Bayes MP Forest SVP SVR SL

CM - - - 23.5 56.4 50.4 62.0 62.3 63.3 66.0 66.0

Ht 3 7 0.70 24.5 49.5 49.9 51.7 59.4 54.9 57.5 56.5

Ht 12 7 0.70 23.0 47.6 45.9 53.4 56.8 55.9 57.5 57.0

Hf 3 1 0.30 21.0 42.8 40.2 47.0 50.6 45.2 48.7 50.3

Hf 3 1 0.70 21.2 44.4 41.8 46.8 51.6 47.3 51.2 50.7

Ht+Hf 12 3 0.70 25.7 48.4 47.4 52.5 57.6 54.0 55.5 57.3

Ht+Hf 12 7 0.70 23.5 49.8 49.1 53.8 59.3 56.0 58.5 58.0

CM+Ht 3 7 0.70 24.9 60.0 57.6 65.9 67.1 66.0 69.7 68.7

CM+Ht 12 7 0.70 26.0 62.2 57.8 67.7 69.0 68.5 70.9 70.5

CM+Hf 3 1 0.70 25.8 58.4 53.0 62.3 64.2 63.7 67.1 66.0

CM+Hf 7 1 0.30 26.1 57.7 52.9 62.2 64.3 63.0 66.5 66.7

CM+Hf 12 7 0.70 24.0 57.6 51.8 63.1 63.9 63.6 67.1 66.2

ALL 3 7 0.70 26.0 61.1 58.4 66.0 68.1 67.4 70.7 70.1

ALL 12 7 0.70 26.3 63.8 58.6 66.6 68.6 68.9 71.5 69.8

Table 5.8: Summary of the best classification accuracies for a given set of extracted
features and parameter combination.
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Chapter 6

Conclusions

This work was focused on the development of new information sources for music

classification based on nonlinear recurrence analysis tools. The Recurrence Time

Histogram is obtained by transforming the matrix output of a nonlinear time se-

ries analysis technique known as Recurrence Plot into a histogram, where each bin

represents the sample delay between recurrent states. The Recurrence Frequency

Histogram comes after a frequency fitting from the inverse of the recurrence his-

togram sample delays to the frequency binning of the frequency spectrum, obtained

by means of the FFT. These histograms are obtained from segments of audio signal

called frames, which have a fixed length and fixed analysis parameters that are kept

the same for all the songs from a given database; this gives information about how

the variation of parameters affect the outcome of both histograms, and settles a

reference for future classification analysis.

The frequency adjustment from the recurrence time histogram and the low den-

sity of high frequency bins, derive in low frequency continuity and high frequency

peaks on the recurrence frequency histogram. The distribution of the peaks by

adding a small random value and the consequent normalization bring an increment

on high frequency values, which are eliminated by an extended Theiler correction

window. This action will remove apparently unrelevant information above a certain

frequency value.

73
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Since the objective of this research is to provide the tools where features for

music classification could be extracted from, the same spectral features used to

obtain information from the frequency spectrum are used on both recurrence time

histogram and recurrence frequency histogram for classification purposes, which

include classifier training and testing.

The combination of common methodology features and histogram features re-

sulted in a higher classification accuracy than the common methodology and indi-

vidual histogram classifications. Features extracted from the recurrence frequency

histogram in combination with common methodology features provide an increased

classification accuracy, but when combined with recurrence time histogram features

they do not reflect a consistent change in the classification accuracy. This supports

the idea that the increment in classification accuracies does not come from providing

more data about the audio signal, but from providing new and reliable information

about it. However, it can be seen that the nonlinear audio recurrence analysis pro-

vides additional information that supports the common classification methodology

by increasing its accuracy percentage. The best classification resulted in a 5.5%

accuracy increment in the highest common methodology acurracy, raising it from

66.0% using common methodology to 71.5%.

In terms of parameters, the highest classifications on each combination of fea-

tures came from high embedding dimensions, high percentages of the distance matrix

mean and considerably low time delay values. Another combination that provided

high accuracies was a low embedding dimension, low percentage of the distance ma-

trix and a small time delay. Both of these combinations result in a better definition

of the recurrence time histogram, whether by not comparing pairs of points on the

state-space trajectory or by taking less recurrences due to threshold restrictions re-

spectively. For a single classifier, the percentage of accuracy varies between 3% and

6%, making the combination of adequate parameters and the best combination of

extracted features the key factors for an improved classification.
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6.1 Future Work

This research has shown interesting results regarding the possibility of analyzing

raw audio signals by nonlinear time series analysis techniques; some of these ideas

can be developed in the future for extended applications or by increasing depth in

specific sections of this work. Some points that can be addressed as extentions or

complements of this thesis are the following:

• Validation of parameters using a different database: the use of a differ-

ent database than the one used in this research is a viable alternative to verify

the increment of classification accuracy with a given combination of parame-

ters. To do so, the whole methodology must be applied on this new database,

beginning with common methodology classification. A database with a similar

number of genres but including complete songs is suggested.

• Development of specific histogram features: since the extracted features

from both histograms are designed for frequency spectra, and even though the

frequency histogram has the same frequency reference as the correspondent

spectrum, the methodology by which these are extracted may not fit correctly

in decribing its behavior. The creation of features implemented specifically for

these histograms is a promising option to extract more meaningful information

from the sources here provided.

• Alternative frequency fitting reference: the frequency histogram is cre-

ated with the Fourier spectrum as reference for its frequency values. Because

of this, the information extracted from the recurrence histogram appears com-

pressed on the frequency histogram, creating peaks and non-continuous be-

havior on certain frequency bins. The frequency reference could be changed in

order to spread the information on the frequency histogram and extract better

information from it. As a consequence, the development of features specifically

made for frequency histograms will be required.
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• Frequency fitting without random values: as seen before, the distribution

of the frequency histogram relies on adding random values for the fitting into

equally-spaced frequency bins, which leads to the elimination of high frequency

values. An alternative in the fitting of these values can be considered to provide

more information on the frequency histogram and increase the reliability of the

extracted features.

• Maximization of the recurrence analysis parameters: the embedding

dimension, the time delay, and the distance matrix threshold control a con-

siderable variation of the classification accuracy for a given classifier under

certain combination of features. A maximization of these parameters might

bring a better accuracy when combining baseline features with recurrence his-

togram features or when combining all features together; a special emphasis

is done on this two cases given that they provided the highest percentages on

this research.
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