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Abstract

Current techniques for sound analysis and synthesis make powerful tools for de-
signing new music instruments. Yet, the tools for investigating the possibility of
creating new sounds from existing ones are rarely interactive by design, commonly
geared towards either scientific or commercial applications. As music instruments
need to be interactive in order to allow for expression, it is difficult to expand the
usability of these powerful tools in new directions.
A unique and exciting method is introduced within this thesis for exploring spec-
tra data created through the well-known and powerful analysis/synthesis methods
known as SMS (Spectral Modeling Synthesis). The system is designed to be as inter-
active as can be, exposing many low level parameters within an environment that
can be manipulated in real-time. The main reason why this system is unique is that
arbitrary time/frame specification is indefinitaly allowed. Modifications are then
performed on some or all of the data in any number of ways, while not requiring
a large analysis file to create realistic and interesting sounds. In order to make
this type of sound navigation intuitive, a real-time graphical interface is designed
as a method of visualizing the sound’s features. Within this system, one can use
a variety of types of sounds as material for a new music instrument, whether the
chosen sample is short, long, simple, or complex.
This thesis suggests a new system for researching music instrument design, based on
spectral data through real-time, interactive experimentation. A prototype instru-
ment and experimental variations are designed as proof of concept of the exploratory
nature of this system. Preliminary modifications are implemented and tested, lend-
ing insight into which methods seem valuable within a musical context.



Acknowledgments

To my thesis supervisors Xavier Serra and Günter Geiger, I am most thankful for
their availabilty and help before and during my thesis work at the MTG. Without
Xavier’s expert advice in the field I would have been without direction, unable to
navigate the many possibities open for exploration within sound and music com-
puting. Due to Günter’s guidance in technical issues that seemed to never have an
end, I am now a better engineer and craftsman.

I also must thank Xavier for starting my work at the MTG by directing the work I
did with libsms, picking up from his own source code for SMS analysis and synthe-
sis. I am grateful that I was given the opportunity to partake in the design of such
useful tools.

To everyone else at MTG who listened to my ideas and shared theirs with me, thank
you for the opportunity to take part in such a lively research group.

As I never had an opportunity to thank my old mentors from UCSD, well, this place
seems appropriate! Thank you Shlomo Dubnov for introducing me to the world of
audio analysis, Tom Erbe for training me in almost every thing I know related to
computer music, and Miller Puckette for training me in every thing else. You were a
great inspiration to me while I was an undergraduate who was still deciding whether
or not I could survive in this rewarding but difficult field of research.

To my family, especially my uncle James Eakin, thank you for believing in me.

To Rici, thank you for inspiring me with your kindness. I know it was too large of
a burden for you, but it is what made me succeed.



Contents

Abstract i

Acknowledgments ii

Contents iv

1 Introduction 3
1.1 Evolving Forms of Recorded Sound Manipulation . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Concepts of Spectral Analysis and Synthesis . . . . . . . . . . . . . 9

2.1.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Spectral Modeling . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Spectral Envelope . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Synthesis of Spectral Data . . . . . . . . . . . . . . . . . . . 15
2.1.5 Other Real-Time Concerns . . . . . . . . . . . . . . . . . . . 16

2.2 Software for Spectral Processing . . . . . . . . . . . . . . . . . . . . 17
2.2.1 The Original SMS and Child Applications . . . . . . . . . . 17
2.2.2 Additive Synthesis Within Max/MSP and Pure Data . . . . 18
2.2.3 libsms and Resulting Software . . . . . . . . . . . . . . . . 20

3 Interactive Manipulations 27
3.1 Manipulation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Low-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Mid-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 High-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 A Method for Real-Time Manipulations . . . . . . . . . . . . . . . 32
3.2.1 Continuity in Time . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Continuity in Modifications . . . . . . . . . . . . . . . . . . 35

iii



iv CONTENTS

3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Uncoupled Parameters . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Coupled Parameters . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Wacom Tablet as Controller . . . . . . . . . . . . . . . . . . 39

4 Interactive Visualization 41
4.1 Re-coupling the Sound and Representation . . . . . . . . . . . . . . 42
4.2 Towards a more Interactive SMS Interface . . . . . . . . . . . . . . 44
4.3 Displaying Time-Varying Spectral Data . . . . . . . . . . . . . . . . 45

4.3.1 A Higher-Level Spectral Data Representation . . . . . . . . 46
4.3.2 Computation and Visualization of Spectral Features . . . . . 48

4.4 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Implementation and Evaluation 55
5.1 Trax : A Pure-Pd Approach . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Evaluation of Trax . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Foreseen Possible Improvements . . . . . . . . . . . . . . . . 60

5.2 SmsPlayer Instrument Implementation . . . . . . . . . . . . . . . . 60
5.2.1 Creating the SMS Data . . . . . . . . . . . . . . . . . . . . 61
5.2.2 The Real-Time Synthesizer . . . . . . . . . . . . . . . . . . . 61
5.2.3 Control Mapping . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 The Graphical Interface: gSmsPlayer . . . . . . . . . . . . . 66
5.2.5 Linking Pd and Python . . . . . . . . . . . . . . . . . . . . 68

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Interactive Control of SMS Data . . . . . . . . . . . . . . . 69
5.3.2 Synthesis Improvements . . . . . . . . . . . . . . . . . . . . 69
5.3.3 Manipulation Experiments . . . . . . . . . . . . . . . . . . . 70

6 Conclusions and Future Prospects 73

A Sound Examples 75
A.1 Singing Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Ocarina Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3 Saxophone Melody . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.4 Shakuhachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.5 Bell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

List of Figures 87

References 94



CONTENTS 1

‘



2 CONTENTS



Chapter 1

Introduction

The ear is the musician’s most powerful tool. While science offers tools that aid in
analysis, processing and transformation of audio data, a trained ear is supreme in
detecting sound ‘features’, or characteristic details. One of the most promising and
diverse synthesis techniques today is based on spectral modeling, wherein a sound is
decomposed into time-varying spectral data such as with the SMS [Serra, 1989] sys-
tem. During re-synthesis of this spectral data, one can notice distinguishable sound
features with their ears alone, somehow existing within a set of low-level data. These
features have been given various names depending on the field of study (i.e., funda-
mental frequency versus pitch, loudness versus dynamics) and some (namely timbre)
are nearly impossible to localize by their popular definitions alone. A common un-
derstanding is that most musical sounds contain time-varying features, and that
these features are both a large contribution to the liveliness of acoustic instruments
and shortcoming in many electronic counterparts. Yet, further investigation is nec-
essary to capture and control these time-varying qualities in a synthetic application
that strives to become as lively as acoustic instruments. Scientific advancements in
acoustics and sound modeling most definitely open new avenues for investigation,
but in the end it is necessary for a musical instrument to be created through trial
and error, creating and listening, and using the instrument to make music.

This thesis focuses on interactive manipulations of spectral data that would lead
to the design of interesting musical instruments and compositional ideas. The im-
portance of the system remains in exploring interesting sounds with human senses,
searching for musically potent manipulations. However, ears are not the only useful
tools in discovering meaningful sound manipulations. Visualizing the data represen-
tation and how it varies in time is also key, allowing one to tie sound visualization
to gestures in an interactive environment. Reacting to the creation of sound, tak-
ing part in the sound as an interactive instrument, allows one to turn interesting
features of otherwise commonly recorded sound into music.

SMS techniques are now widely used in sound synthesis and transformations.

3



4 CHAPTER 1. INTRODUCTION

One main goal in these techniques has always been to find new and interesting
sounds not offered by natural instruments, yet derived from naturally rich sounds.
I approach this goal by exploring arbitrary spectral data within an open-ended,
interactive system that can be used to investigate a sound just as well as it can be
an instrument for live performance. There exists the possibility of either creating
new and interesting sounds, or the same possibility to create discordant, unpleasant
sounds. This concept is familiar among anyone who has tried to play any variety
of musical instruments such as horns or stringed instruments. At first, because of
the complexity of the instrument, it is difficult to discover how to simultaneously
manipulate the many parameters with musical control. With time, one can explore
musical phrases and ideas in a variety of ways, building control over their instru-
ment, and possibly striving to create their ‘personal sound’ - expressive playing
that makes the sound created by their instrument special. Through practice and
experimentation, expression is attainable.

Within the last one hundred years of music, most traditional musical instruments
have received new usage, commonly known as the ‘extended techniques’, wherein
performers use unorthodox methods to create new sounds from their instrument. In
this movement, the focus is not on traditionally important musical qualities such as
melody, harmony, or rhythm, but rather on timbrel changes to the instrument. For
example, by putting objects like screws or glass between the strings of a piano key,
composers were able to augment this standard instrument in ways that made certain
notes ‘brighter’ or ‘rougher’. The process of discovering these new sounds was
through experimentation; some things worked while others did not. The exploration
described in this paper has followed a similar approach by experimenting within a
real-time synthesis environment. A spectral data representation of sound reveals
features that lend themselves to musical manipulation, although it is up to the
instrument designer to create an environment for using the data to create interesting,
new, sounds, thereby augmenting what is already available.

1.1 Evolving Forms of Recorded Sound Manipu-

lation

In music playback systems, gestural control along with the dynamic nature and
complexity of (possibly many) acoustic instruments is forgotten. The system is
static, able to reproduce a sound only as good, although sometimes with less fidelity,
as the original source. Then, in the nature of music evolution, someone tries to see
what else this recorded audio can be made to do. It is true that natural sounds tend
to sound more ‘pleasant’ to the ear than those created by electronic techniques, and
are certainly both easier and safer to produce, but with electronics it is possible to
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Figure 1.1: Pierre Schaeffer’s
chromatic phonogéne, a novel
device for turning a sample
into a melodic instrument,
playable with a one-octave
keyboard.

do new things that acoustic instruments cannot accomplish on their own. Once the
system’s purpose changes from ‘exact playback’ to ‘modified playback’, the recorded
sound is once again apart of a music instrument, now with the help of electronics.

In 1951, one of the first electro-acoustic studios was built, Radiodiffusion [Palom-
bini, 1993], led by composer Pierre Schaeffer and the Musique Concréte movement.
The studio built devices for playing back modified, recorded audio, such as the
chromatic phonogéne, allowing for discrete pitch control of a sample based on an
one-octave keyboard (see fig 1.1), the continuous phonogéne, allowing continuous
pitch control of a sample, and even an early device for time-stretching called the
universal phonogéne. The results were rough and, of course, experimental, but the
instruments allowed for the creation of new music material in a time when music
for acoustic instruments had come to be known as ‘classical’.

Still it wasn’t until the 1990’s, more than seventy years after the creation of
the phonograph, that ‘turntablists’ began to perform with recorded audio in live
performances. These musicians created new sounds by quickly varying the speed of
the record and switching between two records playing simultaneously (see figure 1.2).
Through experimentation, a new musical vocabulary [Hansen, 2002] was created
that established a turntable as a new musical instrument, using existing audio as
material.

As recorded audio merged towards discrete, digital representations, both gains
and drawbacks arose. For one, effects that could be achieved with scratching a vinyl
record sounded much worse when imitated with digital signal processing. Still, the
gains of a virtual library (hard-drive based audio collections)) and the flexibility of
interface selection led to novel instruments for improving the usability of DJ tech-
niques Andersen [2005], Alonso and Hansen [2008]. Likewise, digital audio worksta-
tions, sample-based software for organizing large amounts of audio, saw a similar
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Figure 1.2: Images of a live turntable performance by DJ 1210 Jazz, taken from the
article Hansen [2002]

phenomenon: the sound organization schemes found in programs like ProTools1 or
Ableton Live2 became the standard, but the sound representation is still based on
time-domain waveforms. The available manipulations within the programs are also
similar, though far better established than those that Pierre Schaeffer and company
had created more than fifty years past.

It is not until the advancement of spectral audio representation and process-
ing that a plethora of new sound manipulations again surfaced, arguably beginning
with the phase vocoder [Gordon and Strawn, 1987], a device capable of decoupling
frequency and time. Representations such as the sinusoids plus residual model (see
Serra [1989] and section 2.1.2) further parameterize a sound recording, produc-
ing a number of possible manipulations based on spectral features. Applications
for combining, or morphing, multiple sounds in the spectral domain were made
possible, which allowed for new, rich timbres impossible to create with acoustic
instruments [Tellman et al., 1995, Polansky and Erbe, 1996].

Following the progression of time-domain audio manipulation, the current step
is how to turn spectral data, and the parameters of manipulation it provides, into a
new and expressive instrument. It is clear that spectral domain manipulations are
capable of producing plenty of rich sounds, yet the extent to which spectral data

1Digidesign’s Protools: http://www.digidesign.com/
2Ableton Live: http://www.ableton.com/

http://www.digidesign.com/
http://www.ableton.com/


1.2. MOTIVATION 7

can expand music instrumentation is far from complete.

1.2 Motivation

One can pinpoint two main motivations behind the work presented in this thesis.
The first is a desire for creative exploration of sound using spectral techniques, in the
hope of improving an understanding of the musical features in audio. Current sound
modeling techniques reach high grounds in terms of understanding how humans
perceive sound, yet there is still much more to be discovered within the ‘timbre
wastebasket’. Julius Smith writes

What is the right “psychospectral model” for sound? We know that
the cochlea of the inner ear is a kind of real-time spectrum analyzer.
The question becomes how is the “ear’s spectrogram” processed and
represented at higher levels of audition, and how do we devise efficient
algorithms for achieving comparable results? [Smith, 2008]:3

There are many approaches to the question posed here, stemming from varying
areas of research. I believe that an exciting approach is to create real-time music
instruments that expose various levels of abstraction and allow one to experiment
with a wide range of manipulations.

The second motivation is to create a uniquely sounding instrument for music
performance and composition. To this aim, this thesis is premised on the believe
that one need not start not start from scratch, but the exact opposite; start from
something that sounds interesting and dissect it into usable substances for music.
Again, many have approached this dissection, from various standpoints. I choose
to use all scientific means possible, yet still maintain that achievement lays in what
sounds most interesting to the ear.

Lastly, as an advocate of improvisation, I find it valuable to allow for quick exper-
imentation with various algorithms and mapping schemes. Often, musician/programmers
end up designing intricate computer music instruments based on theories developed
in computer science applications. This is not the traditional manner in which music
instruments have been designed, and although a tradition is not the rule, it warrants
evaluation. Long-lasting music instruments start with an innovation, then adapt of
the course of usage in order to allow for more expression. I consider the SMS tech-
niques used in this paper the original innovation, laid out over twenty years ago. It
appears that my job is to find how to adapt those techniques to allow for musical
expression. I believe that first creating an environment which allows for interactive
exploration of the data is key in discovering new possibilities.

3http://ccrma.stanford.edu/~jos/sasp/Future_Prospects.html

http://ccrma.stanford.edu/~jos/sasp/Future_Prospects.html
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1.3 Thesis Goals

This thesis attempts to increase the potential for interactive manipulations of spec-
tral data. In order for this to happen, a major goal is to make a closer connection
between the processing and perception of sound data. For this reason, manipula-
tions are performed in real-time, with immediate audible results.

Visualizing sound and parameters during performance is becoming necessary in
systems with large sound databases. This thesis also contributes towards better
data visualization by extracted spectral features, in an attempt to display a repre-
sentation closer to how the human ear condenses sound information while listening
to music.

It should also be mentioned that making an easy-to-play instrument is not a
goal. While some believe that computers should do all the hard work and make
playing music easy, I find that expression becomes difficult and the instrument
becomes boring to play quite fast in such an environment. Instead, I aim to make
an instrument possible of creating new expressions from existing audio through
gestures that are learned through practice, similar to the learning curve associated
in many traditional instruments.



Chapter 2

Background

This chapter provides an overview of the fundamentals in spectral processing, focus-
ing on the main tools used later for creating sound data and visual representations.
It is by no means exhaustive, but aims to suffice for understanding the process
of data extraction and abstraction using spectra, as well as providing reference to
original publications of the mentioned concepts.

The practical usage of spectral analysis differs greatly from spectral synthesis.
While one comes from and necessarily depends on the other, in most cases the pro-
cesses must take place with their own independent time constraints. Furthermore,
the focus of this thesis resides in how to use the data to create interesting sounds,
ideally different from the original. Hence, a close look is given to the strengths
and weaknesses of synthesis options concerning how to best support real-time ma-
nipulations. On the other hand, the detailed parameters of frequency analysis are
not crucial to understanding the following chapters in this thesis, so only the basic
concepts are provided here.

2.1 Concepts of Spectral Analysis and Synthesis

Digital sound is first recorded as a time-varying waveform, but much can be gained
in terms of manipulation by transforming the signal to a spectral representation.
In this section, I will review the various levels of sound representations discovered
through frequency analysis of an audio signal. Each abstraction level brings the
sound representation closer to our perceptual understanding of the sound, which is
explained thoroughly along with Matlab examples in [Amatriain et al., 2002]. In
order to fully understand the complicated nature of spectral sound representations
and how to choose parameters that will lead to good results, it is helpful to visualize
the analysis process. SMSTools by Jordi Bonada is shown in Figure 2.1, which
contains a variety of analysis visualizations, each giving insight into different aspects

9
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of the overall process1.

Figure 2.1: SMSTools2 is a tool for visualizing the analysis process in sinusoids plus
residual modeling. The top displays the current windowed frame of sound samples,
while the bottom displays the magnitude spectrum (green), detected sinusoidal
peaks (red), and subtracted residual (blue). The middle display shows time-varying
sinusoidal tracks up to 15khz. The sample used here is of a singing voice.

2.1.1 Fourier Analysis

The conversion from a time-domain waveform into a time-frequency is achieved with
Fourier Analysis, now a common too for almost every type of signal processing, as
it breaks down a complex waveform into a summation of simple sinusoids with a
frequency range. As we are nowadays only dealing with discrete signals, the Discrete
Fourier Transform (and its optimized version, the Fast Fourier Transform or FFT)
becomes the basis for spectral processing. The standard mathematical definition,
derived in [Smith, 2007] is2

1SMSTools2 can be downloaded here: http://mtg.upf.edu/technologies/sms/
2Full definition of the DFT: http://ccrma-www.stanford.edu/~jos/mdft/DFT_Definition.

html

http://mtg.upf.edu/technologies/sms/
http://ccrma-www.stanford.edu/~jos/mdft/DFT_Definition.html
http://ccrma-www.stanford.edu/~jos/mdft/DFT_Definition.html
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X(ωk) =
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, ..., N − 1 (2.1)

where x(tn) is the input time-domain signal, N is the number of samples in the
signal, and X(ωk) is the output frequency domain spectrum, a set of magnitudes
and phases at discrete pitch intervals dependent on the sampling rate. When ana-
lyzing time-varying sounds, the signal is sectioned into consecutive windows with a
specific function that will accentuate spectral peaks, known as Short-Time Fourier
Transform (STFT) [Allen, 1977]. The top portion of Figure 2.1 shows this window-
ing, herein using one of several Blackman-Harris windows, and the resulting spectral
magnitudes on the bottom. The method in entirety is described in [Smith et al.,
1987].

In audio applications, it is most common to convert the resulting complex
sine/cosine pairs into polar form: magnitude and phase pairs. As sound is in-
terpreted on a logarithmic scale, it is then useful to convert the magnitudes into
decibels.

2.1.2 Spectral Modeling

Spectral modeling consists of various methods for decomposing short time spectra
into data more perceptually meaningful [Serra, 1997, Amatriain et al., 2002]. Spec-
tral Modeling Synthesis (SMS), presented by Xavier Serra in [Serra, 1989], is one
of the most successful of these methods because the resulting data representation
lends nicely to transformation of a wide variety of musical signals. The first step
is to detect peaks in the magnitude spectrum and organize them into sinusoids
represented as {frequency, magnitude, phase} sets and then track the sinusoids
from frame to frame. To overcome the limitation of frequency resolution in Fourier
Analysis, parabolic interpolation is computed from each peak and its neighbors.
It was shown in [McAulay and Quatieri, 1986] that reconstructing a time-domain
waveform from only these sinusoidal tracks could produce a synthetic sound nearly
identical in perception to the original sound, yet offered more control over frequency
components of the sound.

If a sound is known to be harmonic, which suggests that sinusoidal peaks are all
multiples of a fundamental frequency, one can further abstract the sinusoidal tracks
into time-varying harmonics. There exist many approaches for determining the fun-
damental frequency (f0) of a set of harmonics[Beauchamp, 1993, de Cheveigne and
Kawahara, 2002]. Once the fundamental frequency is determined, sinusoidal track-
ing becomes much easier and more accurate if spurious peaks in the spectrum are
discouraged during the peak-picking process. The resulting time-varying sinusoidal
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tracks are visualized in the middle portion of Figure 2.1, a display scheme similar
to the popular sonogram.

While sinusoidal tracking goes a long way in modeling acoustic instruments,
many sounds contain a noise-like component that is not easily reproduced with
sinusoids. The sinusoids plus residual model [Serra, 1989]3 takes care of this lacking
sound component by subtracting the re-synthesized deterministic component and
subtracting the resulting waveform from the original, thereby creating a ’residual’
waveform. As spectral phases in the residuum tend to be stochastic, provided
that sinusoidal analysis and subtraction has been successful, one can generalize the
model by disregarding phases and using a random number generator to produce
a new stochastic phase spectrum during re-synthesis. This is essentially filtered
white-noise, where the filter is derived from the magnitude spectrum of the residual.
Figure 2.2 shows a block diagram of this analysis process.

Figure 2.2: Diagram of the analysis process in the sinusoids plus noise resid-
ual [Serra, 1997].

Lastly, many methods exist for improving the data produced in SMS analysis,
which can greatly improve the fidelity of synthesis. These methods exist because real
world sounds can not be modeled perfectly with these techniques, yet in many cases

3Also called sinusoids plus noise, deterministic plus residual, or deterministic plus stochastic,
with little difference in the underlying model.
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analysis flaws can be fixed or greatly improved ‘by hand’. One common improve-
ment for reducing high-pitched artifacts is known as ‘track cleaning’; combining
short sinusoidal tracks into longer ones, or removing those which vary too rapidly.
Another useful method is to ‘meld’ or ‘fuse’ the sinusoidal and residual components
processing the residual with a time-domain comb filter [Amatriain et al., 2002].
This is especially useful when modifying one of the components separately from
the other, as the filtering helps to ‘fill in’ gaps in the residual magnitude spectrum.
Furthermore, if sinusoidal analysis does not detect all deterministic components,
the stochastic residual tends to sound much louder than it should. Many intuitive
techniques are used to fix these problems, such as high pass filtering or matching the
amplitude of the synthetic sound to the original [Serra, 1997]. These post-processes
are mentioned here because they all greatly increase the fidelity of manipulations
presented later in this thesis (Chapter 3)

2.1.3 Spectral Envelope

The spectral envelope, or spectral shape, is a curve that describes the amplitude
variation over a frequency spectrum. The spectral shape of a sound contributes im-
mensely to its perceived timbre, especially in voice and other formant-based sounds.
A stochastic residual is in itself a spectral envelope, while creating an envelope of
the sinusoidal data takes a little more work.

There are many ways to compute and represent spectral envelopes. One of the
first methods for computing the spectral envelope was through the use of linear
prediction analysis [Rodet and Ph, 1986], although it has been shown to neglect
sinusoidal peaks in the spectrum (see [Schwarz and Rodet, 1999] for a comparison
of this and other enveloping techniques). For the purposes of this work, I will only
present here the Discrete Cepstrum Spectral Envelop (DCSE), introduced in [Galas
and Rodet, 1991] and implemented according to [Cappe and Moulines, 1996]. A
newer, recursive technique is presented in [Robel and Rodet, 2005], is left for future
investigation within the context of this thesis.

DCSE is especially useful when trying to envelope sinusoidal peaks, as it almost
guarantees that the envelope will intersect every peak. Figure 2.3 displays one frame
of magnitude spectra, extracted peaks, and the deterministic envelope created using
the DCSE.

DCSE requires as input a frame of sinusoidal peak frequencies and amplitudes,
conveniently acquired through sinusoidal modeling analysis 2.1. The frequencies are
scaled from 0 to 0.5, where 0.5 corresponds to half the maximum frequency desired
to be covered by the resulting spectral envelope (and is also the Nyquist freqyency
expressed in radians). Computing the discrete cepstrum can be seen as fitting a
curve to the data set by using cosines as the basis functions. This is achieved by
computing a least squares solution in the ’log-spectral domain’, expressed in the
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Figure 2.3: A plot of the magnitude spectrum, detected peaks, and the generalized
spectral envelope that can be used to maintain or modify the spectral shape.

following squared error:

ε =
L∑

k=1

‖ log ak − log|S(fk; c)|‖2 + λR[S(f ; c)] (2.2)

where ak and fk are linear amplitudes and normalized frequencies, respectively,
at peak k within the magnitude spectrum S. The second term is the regularizing
function

R[S(f ; c)] =

∫ 1/2

−1/2

[log |S(f ; c)|]2δf (2.3)

that penalizes rapid variations according to the parameter λ (higher values will
create a smoother curve). In the end, the cepstrum coefficients c describe the
changes in magnitude over the frequency spectrum. The number of coefficients also
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effects the smoothness of the curve; less creates a more generalized curve, while
more ensures a more accurate envelope. Methods for numerically computing c are
provided by Cappe and Moulines [1996].

Lastly, the cepstrum coefficients need to be converted back to frequency in order
to create the envelope. This is efficiently computed with the FFT and taking the
exponential of the result, thereby giving a curve in the spectral domain.

It may seem at first unnecessary to compute the spectral envelope through many
additional steps when the magnitude spectrum, from which sinusoidal peaks are
derived, is in itself an envelope. Yet, this envelope tends to be more erratic due to
fluctuations in noise and transients and therefor does not very well define the shape
specifically related to deterministic data of the sound frame. As will be shown
in chapter 3, computing the spectral envelope opens up the possibility for many
higher-level manipulations while retaining high fidelity sound synthesis.

2.1.4 Synthesis of Spectral Data

Depending on the underlying model, synthesis of spectral data varies in complexity.
A nice aspect of the sinusoids plus residual model is that synthesis is performed on
a frame by frame basis, only requiring one frame of history to smoothly connect the
frames together. Components are linearly interpolated between frames to create
the illusion of evolving partial tracks and noise envelopes (Wright and III [2005]
implements other, more sophisticated methods of interpolation). Figure 2.4 shows
a block diagram that conceptually explains the synthesis of one frame.

A reconstruction of the deterministic data is known as additive synthesis [Moorer,
1977], traditionally implemented with an oscillator bank that constructs an array
of sinusoidal data into waveforms by looking up phase information in a table. The
resulting waveforms are successively summed into one complex waveform. A more
efficient method is to sum the partials in the frequency domain and use the inverse-
FFT algorithm to convert all partials to a complex waveform at once [Freed et al.,
1993].

When utilizing spectral envelopes, sinusoidal track magnitudes can be obtained
by using the corresponding frequency as an index into the envelope. If no mod-
ifications are performed before resynthesis, and provided the sinusoidal data and
spectral envelope is correctly computed, this will still create a perceptually identi-
cal sound reconstruction. At the same time, manipulations using spectral envelope
information rather than discrete sinusoidal magnitudes are much easier to perform,
with more control over various aspects of the timbre (see chapter 3).

As already mentioned, reconstruction of the stochastic component can be thought
of as “performing a time-varying filtering of white noise” [Serra, 1997], shown as
subtractive synthesis in the figure. As with the deterministic component however, a
more efficient approach is to generate a waveform with the inverse-FFT of the spec-
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tral magnitude coefficients and randomly generated phases. The two time-domain
waveforms are then summed together to construct the final signal.

Figure 2.4: Diagram of the synthesis process in the sinusoids plus noise
model [Serra, 1997].

2.1.5 Other Real-Time Concerns

Some additional concepts of organizing the spectral data in a manner that sim-
plifies real-time synthesis and manipulation is worth mentioning, as the available
manipulations depend greatly on the ease of sound recreation from the data. Many
advancements to improve the accuracy of spectral analysis and resynthesis exist yet
either quickly become too computationally expensive for real-time usage or com-
promise the ability to modify data before synthesis.

A large problem in frame based analysis is that transients do not fit well within
one single frame. This important and distinct sound component is difficult to model
as sinusoids because they frequency and magnitude evolution is too erratic for the
framerate, yet not stochastic enough to be modeled as a stochastic residual. One
approach to fitting transients into a sinusoidal model suggests to resample the frames
where frequencies are varying rapidly to capture the evolution of the transients [Fitz
et al., 2000]. The problem then is how to efficiently re-synthesize frames that need
to be accessed at an irregular rate, as the most efficient known method for additive
synthesis, inverse-FFT (see 2.1.4), depends on a steady frame rate. Another method
extracts the transient events into a third component [Verma and Meng, 2000] before
sinusoidal decomposition, and then during resynthesis tries to make the phases of
the transients naturally lead to into the phases of the sinusoidal tracks. Yet, then
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the exact phases of the sinusoids are required before the transient is reconstructed,
thereby blocking the possibility of magnitude or frequency adjustments during this
short time. Without a much more complicated system than the one presented in
this work, both of these techniques would make all of the manipulations presented in
chapter 3 unfeasible in real-time. While SMS is in itself highly manipulable in real-
time, applying some basic restrictions to the data further opens doors to many new
manipulations. The sacrifice is that more complicated sounds cannot be accurately
reconstructed, even if most sounds will offer interesting results in this system.

Many types of sounds, especially those with smooth evolution, do not benefit
from using original phase values in re-synthesis [Serra, 1989]. If original phases
are disregarded in the sinusoidal model, new ones can be calculated from a given
frequency/amplitude pair. The first frame synthesized starts with randomly gener-
ated phases, then at the end of each frame the phase values of each partial track
are stored so the next frame picks up where the last one left off. It is a similar
case in the stochastic residual model, where phases are disregarded and randomly
regenerated when needed.

Modifications in time are trivial if phases are generated at the time of synthe-
sis. A constant interpolation time from frame to frame is first provided (in the
inverse-FFT resynthesis method, this is the hop size) and then any frame can oc-
cur before the next with a smooth result. Furthermore, all or individual frequency
and magnitude values can be modified without creating clicks or pops from phase
discontinuity.

2.2 Software for Spectral Processing

This section describes the software used for spectral processing in the rest of this
thesis, specifically using the techniques reviewed in Section 2.1. There is a short
review of the history of SMS applications, followed by a description of libsms, a
general purpose library in C with extensions for scripting and real-time processing.

2.2.1 The Original SMS and Child Applications

SMS was originally used in terminal-based applications that were controlled and
tested with bash scripts. In the original SMS C package, MusicKit Jaffe and Boynton
[1989] was used to create modifications over time with envelopes.4 A score file was
read that directed functions for time stretching, amplitude, frequency and hybrid
modifications.

4sound examples from the SMS website:
http://mtg.upf.edu/technologies/sms?p=Sound%20examples

http://mtg.upf.edu/technologies/sms?p=Sound%20examples
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Eduard Resina later created the Windows application SMS-Composer Resina
[1998], introducing a graphical user interface and sequencer for the available modifi-
cations. Many useful elements were incorporated, such as a clef for the pitch range
and an envelope visualizer, that made composing with an SMS model more natural
than what a script file can offer. More recently, the CLAM framework Amatriain
and Arumi [2005], containing the original SMSTools, has been developed to allow
for a collection of effects combined with SMS processing. Data transformations can
be configured through ‘transformation scores’; an XML script or with a graphical
XY grid that allows one to set breakpoints for various parameters.

Many applications have been designed to take advantage of sophisticated audio
processing techniques alongside SMS in order to achieve certain application’s neces-
sities. One example is presented in Loscos et al. [2000], where a system for singing
karaoke impersonation is implemented by using parameters of an input voice to
control the spectral models created from a professional singer. The singers’ voice
is analyzed for pitch, spectral envelope, and formant structure. This information is
used to align the real-time signal with the stored analysis files, with the additional
help of a score with melodic and lyrical information.

2.2.2 Additive Synthesis Within Max/MSP and Pure Data

The main tools for synthesis and modifications within this thesis were created with
Puckette’s second patcher Pure Data [Puckette, 1996]5, an open-source and gener-
ally more open-to-anything child of Max/MSP [Puckette, 1991]. I provide here an
introduction to this type of programming environment and list some approaches to
additive synthesis within Max and Pure Data.

Introduction to Graphical Programming

The Max paradigm [Puckette, 1988] is a real-time, graphical programming environ-
ment geared towards, although not limited to, sound and music applications. The
system is based around connecting various processing and control objects together
with wires that portray dataflow, hence the common name ‘dataflow programming’.
This type of application began in the 1980’s with Miller Puckette’s Patcher, which
has since been commercialized and made famous as Max/MSP. Since then, Puckette
has created an open-source version of Max/MSP called Pure Data (hereafter simply
referred to by its community name, Pd) that aimed to fix some of the original ap-
plication’s flaws and remain within an experimental community6. Puckette [2007]
provides an extensive tutorial in programming audio software with this environment

5Pure Data website: http://crca.ucsd.edu/~msp/software.html
6Pure Data community website: http://puredata.info

http://crca.ucsd.edu/~msp/software.html
http://puredata.info
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with examples. Within this document, framed words represent Pd objects, com-
piled methods written in C, usable in real-time via the graphical ‘patching’ interface
(see Figure 2.6, an example Pd patch that will be explained in Section 2.2.3). Those
with a ‘∼’ represent objects that process audio streams.

Max/MSP Objects

In 1999, the members of the CNMAT research group designed Max/MSP objects for
interpreting and synthesizing sinusoidal tracks stored within SDIF [Wright et al.,
1999a,b] files. The system reads and buffers analysis data processed with an external
application, thereafter assessable by time index. This will send out sinusoidal data
in a list, which is then routed to an oscillator bank called sinusoids∼ . While
this was one of the early real-time additive synthesizers that aimed at high-fidelity
sound re-construction, CNMAT has since extended their tools for Max/MSP in
many different ways. They provide tutorials in spectral synthesis on their website7

for learning how to use these tools [Wright et al., 2007].

The IRCAM research institute also provides a suite of analysis/synthesis software
for Max/MSP within the FTM 8 library, called Gabor Schnell and Schwarz [2005].
This system processes audio among a group of high-level objects that handle data
vectors and matrices specifically for the library, but also closely related to SDIF
data. Many advanced processing techniques are available within the library, such
as sinusoidal and spectral envelope extraction (see Section 2.1.3).

Pd Objects

As such tools for additive synthesis were missing from Pd when I began my research,
I wrote an external called sdiflists for importing SDIF 1TRC frames to be used

as raw additive data, and oscbank∼ for reconstructing this data into a waveform.
Though based on the CNMAT method of additive synthesis described above, I
took a more flexible approach than the implementation found in Max/MSP by not
restricting the order of frames, thereby loosing some sound fidelity (various problems
arose during the notorious ’births’ and ’deaths’ of the sinusoidal tracks), and also
allowed for the wavetable to exist directly in Pd. The data was buffered using Pd
internal and as such could be manipulated quite easily. I released the overall system
as Trax, which later (Section 5.1) will be analyzed in in further detail.

7CNMAT Spectral Tutorials: http://cnmat.berkeley.edu/patch/2741
8FTM: http://ftm.ircam.fr/

http://cnmat.berkeley.edu/patch/2741
http://ftm.ircam.fr/
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2.2.3 libsms and Resulting Software

libsms9 is an open-source, cross-platform C library for spectral analysis, synthesis
and modifications. The code originates from the SMS C package (Section 2.2.1)
that Serra wrote in support of his PhD thesis [Serra, 1989] twenty years ago. The
quality of analysis and synthesis was quite high using this software with only a
few alterations to make it usable on a modern-day Linux computer, even without
newer analysis advancements. A few other applications had stemmed from this same
original SMS code, although they were either heavily entrenched in a programming
API (CLAM) or closed source (SMSTools). Thus, libsms was born out of a need
for a more general purpose, open to the public tool set for SMS processing.

After removing the code for NeXT and switching to Erik de Castro Lopo’s
libsndfile10 library for sound file input/output, I was able to achieve analysis
and re-synthesis of many monophonic samples of musical instruments. The next
step was turning the code into a general purpose library: changing to floating-point
computation, revamping memory allocation, and prefixing namespaces. Documen-
tation was improved with manpages, and Doxygen11, making it easy for a new user
to navigate through the code.12.

While there have been many advancements to SMS analysis since 1990, the syn-
thesis algorithms are virtually the same. The additive synthesizer uses the Inverse-
FFT method (see Section 2.1.4), which uses very little CPU power on modern day
computers. Synthesis routines are completely frame based, only needing one frame
in history in order to compute linear interpolation of the data. On the other hand,
the analysis routines in libsms require many frames of data due of a circular buffer
that aids in finding the correct analysis window size. If a good window size is found
quickly (possibly by manually setting it) then analysis is feasible in real-time. How-
ever, this isn’t always the case and it would require a sophisticated, less general
analysis system that would be a project in itself to build.

Many additional features have been incorporated into libsms. Discrete Cep-
strum Spectral Enveloping (see Section 2.1.3) has been incorporated into the anal-
ysis system, which opens a world of modifications and feature extraction. Other
simpler things were necessary, such decoupling the timescale and samplerate (it
was most likely the case that only 44.1k and lower samplerates were used in 1990).
Ongoing work is underway in order to modularize analysis components hoping to in-
crease the integrity of the analysis through unit testing as well as pedagogical value.
Other features, such as the ability to read multi-channel sound files, allow for many

9libsms: http://mtg.upf.edu/static/libsms/
10libsndfile homepage: http://www.mega-nerd.com/libsndfile/
11Doxygen: http://www.stack.nl/~dimitri/doxygen/
12A more complete list of changes is packaged along with the library, in the folder

./doc/changes.txt.

http://mtg.upf.edu/static/libsms/
http://www.mega-nerd.com/libsndfile/
http://www.stack.nl/~dimitri/doxygen/


2.2. SOFTWARE FOR SPECTRAL PROCESSING 21

different applications to take advantage of SMS techniques. For the specific pur-
poses of this, thesis, a substantial set of experimental envelope modifications have
been added to the source. libsms depends on a few other open-source libraries,
such as random number generation, matrix operations, or FFT’s. These details can
be found within the library’s included documentation.

There are currently 3 types of programs that use libsms: command-line tools,
a SWIG-wrapped python module (with examples), and Pd externals. The following
sections briefly describe these programs, while there is more documentation included
within the packages.

Command-line Tools

The command line tools are refactored and enhanced versions of the tools Serra
original included in his SMS package.

smsAnal is a program for sinusoids plus residual analysis that originally contained
twenty-four possible command-line arguments. More have since been added
related to sound file reading (choosing which channel) and spectral envelope
estimation. Consequently, it is most convenient to use the program in bash
scripts, such as the examples included within the library package.

smsSynth is a program for synthesizing analysis data. There were original version
contained arguments for choosing the output samplerate (although limited to
44,100 or 22,050) and which components to synthesize. Additional options
have since been included for choosing between synthesis type (oscillator bank
or Inverse-FFT), hop size, time scaling, stochastic gain, frequency transpose,
and output file types.

smsPrint is used to print the analysis data. The format now prints using YAML13,
an easy to read markup specification, with an option to save to file. This
was originally useful for importing in other applications, although it has been
superseded by the python module explained in the next section. It is still a
nice way to look at the data in text format.

smsResample adjusts the framerate of an analysis file. It has only been changed to
stay consistent with the library.

smsClean tries to combine short tracks into longer, smoother tracks. It also has
only been changed to keep up to date with the library.

13YAML: http://www.yaml.org/

http://www.yaml.org/
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pysms

pysms is a promising python 14 module for spectral analysis and synthesis techniques.
Its quick and easy syntax, object orientation, and third-party modules make it a
powerful tool for both prototype applications and script-based programs.

The module is created via a SWIG wrapper [Beazley, 1996] and NumpY15 bind-
ings for fast array processing. A common complaint about digital signal processing
in python is that it is slow at processing arrays in comparison to C or other compiled
programming languages. Yet, NumPy aims to help this in every way possibly, espe-
cially by providing a SWIG interface file that effectively typemaps C array pointers
so it is possible to pass NumPy arrays into C functions and vice versa. pysms takes
full advantage of all that SWIG provides in order to make libsms functionality
both scriptable and usable in the python interpreter. SWIG actually makes pro-
gramming with libsms similar to C++. Exception handling is automatic; if an
error in libsms is detected, an exception will be thrown that can be ‘caught’ within
python, else the program terminates, without any additional python code. The
main structures for analysis and synthesis automatically call an initializing method
to set sane parameters and functions can be overloaded to allow different numbers
of arguments. It usually takes less than a tenth of the programming lines and time
in order to create both simple and complex applications, with or without graphical
interfaces.

Within the context of this thesis, pysms is mostly used to visualize the data and
its features created through SMS analysis. Figure 2.5 shows two programs that I
have created for visualizing spectral data. On top is an image of the traditional
sonogram representation of a voice sample and on bottom is the same sample of the
SMS decomposition into sinusoids and noise. As later explained in more detail (see
chapter 4), sophisticated visual interfaces can use pysms along with two more pow-
erful graphical API’s: the combination of PyGame16 and PyOpenGL17 streamline
high resolution prototyping, creating vivid interactive visualizations of SMS data
with reasonably short scripts.

New code is normally prototyped in python, then ported to C and immediately
wrapped back into python. Tests are included within the main library package,
some of which compare the same methods in pure python and libsms. There are
also examples of how to use some modifications, enveloping and viewing the data
with matplotlib18, now a common and powerful scientific plotting module.

14Python: http://www.python.org/
15NumpY: http://numpy.scipy.org/
16PyGame: http://www.pygame.org/
17PyOpenGL: http://pyopengl.sourceforge.net/
18matplotlib: http://matplotlib.sourceforge.net/

http://www.python.org/
http://numpy.scipy.org/
http://www.pygame.org/
http://pyopengl.sourceforge.net/
http://matplotlib.sourceforge.net/
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smspd

There are 4 externals that all operate on a common smsbuf buffer, similar to how

Pd’s delread∼ and dealwrite∼ : a unique symbol is given as the object’s first
argument, which is then stored in a global list of symbols. This symbol, along with
the globally declared smsbuf class, is then used to pass around a pointer with
a structure of SMS data to other objects that contain the same symbol as a first
argument. An example Pd patch illustrating this system is shown in figure 2.6.
Here is a brief description of the current objects:

smsbuf is a buffer for storing, recalling or viewing SMS data. It can read and
save data to file, print analysis information, and send out data to Pd in lists.

Figure 2.5: (top) 3 second long sample of singing voice, represented as a time-
varying magnitude spectrum. (bottom) The same voice sample, represented as
sinusoids (colored lines) and residual magnitude spectrum (gray-scale background),
extracted using libsms and visualized using PyGame/OpenGL.
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smsanal can analyze either a file or Pd array with audio data in a separate thread,

storing the analysis data in an smsbuf .

smssynth∼ synthesizes SMS data within an smsbuf into a time-domain wave-
form. The object reads a floating point index at the beginning of every block
(the IFFT hop size, independent of Pd’s block-rate) and interpolates between
two concurrent data frames.

smsedit permanently modifies the data in an smsbuf . The edits are frame-
based19.

Figure 2.6: Example Pd patch for using smspd for analysis/synthesis. First, either

load a sound file or put audio in an array and analysis that with smsanal . The

data ends up in smsbuf , which can also load and save analysis data. Then initialize

the smssynth∼ and synthesize the data via frame index. Notice that all smspd
objects use a common buffer name as first argument.

The choice to make smsbuf an object within Pd, and therefore globally accessi-
ble, was made hoping that it would simplify further advancements in data modifica-
tions. While smsedit is currently a fairly basic external for low level modifications,

19 smsedit constitutes the first attempt at modifying the SMS data within Pd, but as it soon
became clear that a system based on editing frames would be difficult to make interactive, data
modifications shifted to smssynth∼ . The prior method of frame editing still shows promise in
the realm of composition, although outside the scope of this thesis.
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it requires very little code to access SMS data. Furthermore, there are certain types
of manipulations where multiple data files are necessary. For example, smssynth∼
can create ‘hybrids’ of two data sets by imposing a spectral envelope of one sound
onto the partials of another [Serra, 1994], requiring access to two separate data
buffers. On the other hand, some effects, such as polyphony and harmonization,
are easily created with multiple smssynth∼ objects that all have access to a single

smsbuf .
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Chapter 3

Interactive Manipulations

While the flexibility of spectral modeling continuously yields new and exciting trans-
formation possibilities, the task of meaningfully manipulating the analysis data is
not simple. It may be due to how easy one can ruin a good sound by either buggy
programming or nonsense transformations that few successes are heard based on
spectral modeling synthesis or similar techniques. Moreover, most commercial suc-
cesses that use SMS aim to replicate the acoustic abilities of natural music instru-
ments. There is much ongoing research in this area, yet surely the full potential
has not yet been reached concerning how to manipulate spectral data in ways that
extend the abilities to manipulate sound.

This chapter introduces some basic concepts for exploring new possibilities in
sound transformations through interactive manipulation. Many research projects
and resulting applications have led to advancements in non-interactive sound trans-
formations that use scripts, possibly that contain graphical front-ends ([Amatriain
and Arumi, 2005, Park et al., 2007] are just two of many examples). Yet, it is
difficult to discover new manipulations with these attempts because the amount
of time spent creating sound files, analyzing output statistics, etc., along with the
vast number of transformational dimensions ends up overwhelming the possibilty of
creative transformations.

As the approach taken here aims to be interactive and with a feeling similar to
the control of acoustic instruments, I will lastly discuss mapping strategies that lead
towards a responsive and expressively capable electronic instrument. The ultimate
goal is to create a system that allows one to quickly experiment and ‘hear’ interesting
results.

27
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3.1 Manipulation Levels

While the classification of manipulation levels presented here may be debatable,
it is clear that some are quite simple while others require a level of complexity
delving into psycho-acoustic models. I will try to provide a simple taxonomy for
different types of spectral manipulations in use today , all of which propose real-
time capabilities, in order to clarify the approach of manipulation taken within this
thesis.

3.1.1 Low-Level

By far, the most common modifications to spectral data deal with time and fre-
quency scaling, which were taken advantage of even at the birth of sinusoidal mod-
eling [McAulay and Quatieri, 1986, Smith et al., 1987]. While time and frequency
are probably the most important axes of control within any music instrument, they
are considered low level manipulations within the case of spectral data because there
is no further parametrization necessary.

Multiplying the frequency of every partial track by a constant will transpose the
sound while retaining harmonicity, if it exists. To manipulate this as pitch with a
‘western’ sense of melody, that is based on the equal tempered scale (see 4.3.2), it
is useful to specify the frequency scalar in semitones:

y = 12
√
x (3.1)

so that scaling the frequencies by a factor of x = 1 will transpose the data 100 cents,
the equivalent of one key on a piano. This type of manipulation has no knowledge
of spectral characteristics such as envelope or tilt, or even fundamental frequency.

Time stretching or compressing is easily accomplished by re-sampling the syn-
thesis frame rate. In a real-time SMS synthesizer, phases are usually ignored for
both sinusoidal and residual data in favor of generating what ever is necessary to
produce a contiguous sound at the moment of synthesis (see 2.2.3). Once again,
frame resampling completely ignores sound events that should not be stretched in
time, well-known as ‘transient smearing’.

Amplitude modification is also trivial and can be applied to both sinusoidal
and noise components separately. Otherwise, amplification is very similar in the
time-domain.

Filtering can be accomplished by increasing or increasing the amplitude of a
range of the spectral data. Frequency modifications to individual sinusoidal com-
ponents or a harmonic sound distinguish that frequency range from the rest of the
unitary sound. Doing this on one or just a few partials results is an electronic
effect, in the form of a pure sine tone, yet transposing a larger set creates an inter-
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esting juxtaposition between the original data and the altered set, each containing
a separate harmonic structure.

3.1.2 Mid-Level

With further parametrization of the sinusoidal and residual data, it is possible to
change qualities of the sound commonly described as timbre. Interesting manipula-
tions in this category are discovered through research in acoustics, instrumentation,
physical models, and many times through plane experimentation.

If a fundamental frequency (f0) is assumed as the first sinusoidal track, some
basic manipulations can be performed by deviating the harmonics according to this
estimation. Perfect harmonics of a fundamental frequency would be at exact integer
multiples of this frequency, but this is really only possible within synthetic sounds.
In many cases, the exact cause of inharmonicity is not well-known as it is hard to
analyze due to compacting causes. One understood cause of inharmonicity is with
plucked or struck strings, such as those of a guitar or piano. These instruments
are known to exhibit a harmonic ‘stretch’ factor, especially in extremely high and
low frequency ranges where there is an increase in the string tension [Fletcher and
Rossing, 1991]. This can be replicated by first calculating the harmonic deviance
from a perfect harmonic and then adding this value back to the ‘stretched’ har-
monic, based on a stretch factor. Another related possibility is to simply scale the
value of inharmonicity for each partial, making it vary from perfectly harmonic,
either more or less in the same direction. These two manipulations are displayed in
figure 3.1. Many other possibilities can be discovered through experimentation with
manipulating the spectral data in attempts to recreate similar effects that may be
suggested by the patterns found in extracted harmonic sinusoidal tracks. Precise
manipulation of inharmonicity, possibly yielding more interesting results, would re-
quire in-depth research using precise samples (see [Dubnov and Rodet, 2003] for a
proposed model of the harmonic deviance in a bowed cello).

An effective way to manipulate the sound without changing its harmonicity is
to only modify the magnitudes of the harmonics. It is most helpful to first compute
the spectral envelope of the harmonics, as explained in section 2.1.3. One then has
a generalized curve that can be shifted, expanded, contracted, or tilted, in order
to give emphasis to certain spectral regions in a sound (see figure 3.2). Using the
spectral envelope in this way can be seen as frequency domain filtering, where the
frequency response of the filter is derived from a natural sound. As the residual
component is also defined by a spectral envelope, the same effects can be performed
to manipulate the frequency distribution of noise within the signal.

Other modifications are suggested through research in acoustics or other scien-
tific fields. For example, it is well-known that reducing the magnitude of all even
harmonics will create a spectral quality characteristic of clarinet and other ‘closed
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Figure 3.1: Simple examples of modifying harmonic locations. The top example
‘stretches’ the harmonic ratio by adding a factor of .05 of the fundamental frequency
to each harmonic location. The bottom example scales the harmonic deviance by a
factor of .5, making the harmonics closer to the ideal locations.
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Figure 3.2: Possible methods for reshaping a spectral envelope in order to assign
new magnitudes to harmonic partials. The diamonds show the original harmonic
frequencies and the solid blue line represents the harmonic spectral envelope. By
shifting or tilting the envelope, one can then use the original frequency locations
(grey vertical lines) to find new magnitudes.

pipe’ instruments [Fletcher and Rossing, 1991].

3.1.3 High-Level

While the effects mentioned in the previous section give good control over timbrel
characteristics, they are not completely uncoupled. Either manipulating partial
locations or magnitudes will change the spectral envelope. Moreover, increasing
magnitudes in spectral regions more sensitive to the ear will increase the overall
loudness of the sound. Spectral characteristics are coupled in acoustic instruments
as well; in fact this coupling is what gives each instrument its unique strengths
in creating some sounds, yet drawbacks in others. The key to successful music
instruments is not their uncoupled control of sound quality, but the exact opposite;
how to couple the controls in ways that allow for a unique and interesting sound from
the instrument. One can view the high-level of sound manipulation in electronic
instruments as a strive for an intuitive and expressive control of sound features.

In recent works, there have been many attempts to control spectral data based
on its ‘musical content’ [Amatriain et al., 2003]. Some of these types of effects
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may include converting from male to female voice, dark to bright intensity, or
smooth to rough texture. Most types of content-based manipulations tend to as-
sume metaphors stemming from a traditional understanding of musical instrument
qualities. Moreover, most methods for transitioning from one of these qualities to an-
other is by annotating sounds and running batch descriptor processing to find other
sounds that exhibit similar spectral characteristics. Then, one assigns a method to
‘morph’ [Serra, 1994, Fitz et al., 2002] between multiple analysis files in order to
match the characteristics of the target timbre (recent examples using real-time SMS
synthesis include [Verfaille et al., 2006, Grill, 2008].

The limitation within the content-based arena of manipulations is that one must
define the content. If the target timbre is that of an acoustic instrument, the
maximal result will always similar to what you could create without a computer.
While a high fidelity acoustic instrument synthesizer has definite uses (i.e. removing
the need to own the instruments and/or orchestra), it remains to be seen whether
such techniques have the ability to expand in the direction of sound expressitivity.
In other words, it is difficult to find new sounds if one is targeting the timbre of
existing sounds.

In specific cases, there are other alternatives to creating high-fidelity synthesis by
using existing knowledge of natural sounds. One case is to manipulate the spectral
envelope with formants. Schwarz [1998] proposes to represent the spectral envelope
as fuzzy formants, or a formant region within the magnitude spectrum defined by a
center, lower, and upper point. He then suggests that one can shift the formant up
or down in frequency with reasonably good results.

3.2 A Method for Real-Time Manipulations

In this section I will present an approach to gaining high-level control of spectral
data through parametrization and real-time manipulations of many low to mid
level controls. Similar concepts parallel some acoustic instruments that possibly
take years to achieve control over what can be considered ‘basic’ manipulations in
many electronic music instruments. For example, learning to play major scales in
key on a violin remains the focus of any beginner violinist, yet after mastering this
ability they have commanding control over possibly the most melodically expressive
instrument ever created. It is clear that expressive parameters of the violin, such as
bow position and speed, are closed tied to both melodic and rhythmic control as well,
even more so because the violinist is forced to control all parameters simultaneously
to play anything.

High-level manipulations, like those mentioned in section 3.1.3, seem to neces-
sitate an intermediate mapping layer, usually drawing directly from the control
mechanisms of acoustic instruments. SSynth [Verfaille et al., 2006] is a real-time
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SMS instrument aimed at emulating the control found in acoustic instruments by
mapping synthesis parameters, such as time index and file (including morphs be-
tween multiple files, consisting of wood, wind, and brass instruments) according
to a database of time-changing spectral features such as pitch, intensity and spec-
tral centroid. A physical controller is then mapped to a manipulation result, after
handing the task of finding the necessary modifications in order to achieve this up
to machine learning and musical feature annotations. This technique of creating
expressive control is promising in acoustic instrument emulations, yet does not offer
advice for controlling the sound analysis data ‘outside’ the acoustic instrument.

On the other hand, low- to mid-level manipulations can be manipulated as cou-
pled or independent of each other in real-time, requiring minimal parameters of
control within reasonably well known ranges. The resulting sounds from real-time
‘fiddling’ with spectral parameters varies between interesting, not so interesting,
and irritating. While the best mappings of parameters for controlling spectral data
is not yet know and likewise hard to concretely define, a logical method for discov-
ering workable combinations is to expose many parameters at once and experiment
in real-time. Through usage within a greater musical context, one can find innova-
tive ways to combine basic manipulations into instruments with complex control of
melody, loudness, and timbre, yet different from familiar acoustic instruments.

3.2.1 Continuity in Time

It is well known that the manner in which natural sounds vary in time contributes
largely to their unique timbre. There are always subtle variances when playing
acoustic instruments that will cause a flux in the spectral features we extract and
use to recreate the original sound. The bow and finger pressure, resonances in the
body, or even spatial variances are all complications within a violin recording that
lend to the intricacies of harmonics that are now used within a system where the
violin is abstracted.

There is still much to learn about the source of these minute details and how
to recreate similar effects, which is a large focus of physical modeling techniques.
Yet, there is little that can be discovered from looking at the low level spectral data
one acquires through sinusoidal decomposition. An exact reconstruction of spectral
data will maintain these intricacies by traversing the frames in the same order they
were created. Furthermore, in many cases it is unnecessary to start at the beginning
of a sound and stop at the end, maintain a constant speed, or even direction when
indexing the frame-based data, in order reproduce sounds resembling the original
acoustic instrument.

Any smooth curve, provided the region indexed has stable features, will maintain
the original timbre to a high degree of fidelity. Figure 3.3 shows two examples of
smooth time indexing and the resulting progression of sinusoidal tracks. The first
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Figure 3.3: A crude example of re-ordering the time progression of sinusoidal
tracks. On the top is the normal, beginning to end, time indexing. The bottom
shows the same file traversed using a growing cosine shape, still maintaining frame-
to-frame smoothness (although becoming more erratic as the oscillation magnitude
increases).
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is a normal beginning to end traversal, while the second traversal oscillates with
increasing speed in either direction over time. Although it is difficult to see the
minute details of the evolution in these sinusoidal tracks, those extracted from a
wind instrument sample, the synthesis of both traversals sounds almost identical.

The sinusoidal tracks in the bottom of figure 3.3 were created from only the data
within eighty milliseconds of the original file, about twenty-four spectral frames at
three hundred frames per second. The traversal begins in the middle of the analysis
data, which will create an abrupt sound unless a smooth amplitude fade is imposed.

Lastly, flexibility of traversing the sound data with arbitrary time indexing is
greatly increases by removing the limitation of integer frames through interpolation.
Any index curve with only integer values will not provide a traversal smooth enough
to create the illusion of the original timbre if the index is slowly advancing. Research
has shown that in all but extremely fast changing sounds, linear interpolation of
spectral data results in a synthesis almost identical in perception to a synthesis with
a more complicated interpolation scheme [Wright and III, 2005]1 On the other hand,
using interpolation between frames and moving back and forth within only a short
segment reproduces the time-varying qualities of the original sound quite well.

3.2.2 Continuity in Modifications

For the same reasons that time traversal needs to be smoothly changing, modifica-
tions should also ensure a gradual change if aspects of the original timbre should re-
main. Although low to mid level manipulations, like those mentioned in section 3.1,
are changing the data, the hidden intricacies are for the most part preserved as a
whole provided one does not change anything too much, too fast.

Park et al. [2007] proposes to perform spectral modifications that evolve smoothly
by first extracting features from the sound and then defining methods for altering
the feature. Modifications are performed by gradually interpolating in time from the
feature-extracted parameter to the target parameter. The system is implemented in
Matlab with a toolbox that allows for visualizing the modifications. The so called
Feature Based Synthesis thus requires a target value before any modification can
occur, resulting in a modification of many data frames. When manipulating the
spectra in real-time, it may be more difficult to define a ‘target’ feature parameter,
as every feature is also varying in time. Furthermore, not all features are directly
manipulable (ex. spectral centroid 4.3.2) but would necessitate one of many possible
schemes for altering the value.

The approach taken in this paper is much simpler, as it does not require feature
analysis or parametrization. Instead of starting from an extracted feature value,

1Extremely fast changing sounds are not very well modeled as sinusoids or residuum any way,
but should probably be modeled as transients.
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Figure 3.4: An example showing time / frequency flexibility. On the top is a
representation of singing voice about 3 seconds long. The middle two x/y plots are
10 seconds recorded from the stylus pen, controlling time (index into the model)
and frequency as described. The bottom plot shows the resulting tracks that were
synthesized according to these manipulations, containing intricacies similar to the
original.
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one can introduce an addition, subtraction, or other simple operation gradually in
time to the data frame. This will allow the spectral data to begin synthesis with its
original values and become increasingly modified as parameters are increased.

Figure 3.4 is a example application for displaying the resulting sinusoidal tracks
that are manipulated in real-time with continuous time, frequency and amplitude
control2. The sinusoidal tracks extracted from a singing voice sample are displayed
in the top section, which was traversed for ten seconds according to the recorded
curves in the middle. The output data values were recorded and displayed in the
bottom section. In the beginning of the recorded traversal, it is apparent that the
region synthesized was varying rapidly (the first formant of the sample), but in the
later section the track evolution is quite smooth. The frequency transpose has much
less effect on the resulting tracks than the time index, as the pitch of this sample
is varying rapidly as well. Yet, by reducing the speed of the traversal (in about
the middle of the ten second recording, the traversal was near stationary), one can
smoothly control the pitch transpose.

The other types of manipulations mentioned in section 3.1 also produce smoother
results of the region of data traversed is stable. Manipulations such as spectral en-
velope shifting, harmonic stretching, or even envelope morphing can be combined to
create complicated manipulations, but one must experiment with parameter values
in order to find pleasing results.

3.3 Mapping

In order to make any digital sound representation interactive, it is necessary to
abstract the underlining computational processes by mapping manipulation param-
eters to gestural input. Gestures can be captured by any type of digital signal,
nowadays only restricted to the imagination and budget of an instrument designer.

Jordà [2005] provides an in depth theoretical overview of mapping concepts
and ergonomics, as well as surveying the history of devices that have been used
in controlling digital music instruments. I will discuss here those instruments and
fundamental mapping concepts involved in controlling arbitrary spectral data as
instrument. One important concept throughout Jordá’s work is that digital instru-
ment design is better considered a craft rather than science, as many of the decisions
involved depend on the experience and motivation of the designer.

2The graphical interface and synthesis engine for creating this plot will be discussed in chapter 5,
however it is useful for displaying what happens to sinusoidal tracks when they are manipulated
in the manner discussed within this section
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3.3.1 Uncoupled Parameters

The obvious and most common mapping in computer systems is simply one-to-one,
where one controller is mapped to one parameter. For reasons of experimentation,
it is valuable to be able to manipulate one parameter without effecting others, pro-
viding a feeling of the perceptional results of a given manipulation. Many of the
possible methods of altering spectral data are not common to acoustic instruments,
nor are their results. Moreover, some manipulations, such as harmonic deviation
schemes, may produce very subtle results that will be indistinguishable if manipu-
lated in conjunction with more manipulations that tend to have, perceptually, more
extreme effects.

Within the context of this work, there is one parameter which seems to be so
perceptually important that it needs an isolated method of control. Because of the
manner in which time indexing is given arbitrary control, moving in any direction
within a sound that may contain various types of spectral content can cause drastic
changes in the resulting synthesis. Thus, the data indexing parameter needs precise
control because it has the possibility to alter every perceptually relevant feature of
the sound, regardless of whether or not the feature is well-defined.

Another parameter, pitch, might seems so perceptually potent that it needs to
be have a solitary control as well. It is indeed common in electronic music to hear
melody controlled independent of any other musical dimension, yet this is probably
one of the least favorable characteristics of electronic music from the opinion of
acoustic musicians. It is well known that melodic expression is created by more
than pitch content, but with concepts of rhythm and phrasing, largely depending
on dynamics. Timbrel control in piano melodies is expressed through chord voicing
and in violin with the position and speed of the bow.

It is clear that electronic music instruments, including the one focused within
this thesis, contain too many parameters of control for interactive manipulation
via one-to-one mapping. While it is useful for attaining familiarity of the certain
manipulations and their effects, one must move to more complex mapping schemes
in order to increase control of musical expression.

3.3.2 Coupled Parameters

While one-to-one mapping this is a good choice for many scientific applications that
require a precise control environment, the complex timbres of music instruments are
usually due to their coupled nature of controls:

Blowing harder on many wind instruments not only affects dynamics
but also influences pitch, in such control difficulties is where, in fact, the
expressiveness may lie for many acoustic instruments [Jordà, 2005].
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Moreover, most acoustic instruments rarely contain more than two or three in-
dependent control mechanisms that require simultaneous manipulation. As already
mentioned, something even as basic as pitch manipulation will usually effect other
parameters of the timbre, such as brightness or dynamics. In acoustic instruments,
these coupled controls usually evolve through centuries of design experimenting.

Yet, this aspect of mapping is something that an electronic music designer has
much more control over. Intuitive coupling, such as pitch and brightness or dynamics
and harmonic distortion, undergo experimentation and fine-tuning at a much faster
rate, especially within a real-time programming environment (see 2.2.2). Likewise,
absurd or unnatural coupling is feasible, which may lead to unexpected results, good
or bad.

Throughout this work the main goal has been to create an environment for ex-
perimenting with new timbres through spectral manipulations. As such, the details
of coupled mappings can only be discovered through practising with the instrument
and using a variety of mapping schemes.

3.3.3 Wacom Tablet as Controller

While the choice for controller is largely up to the user and concepts which they
are familiar with, the Wacom Tablet3 has been used as the main musical controller
throughout this work. The primary reason for this choice has always been due to
the precision of the stylus; a pen-like object with absolute, continuous control of six
couple controls (absolute x, absolute y, x-tilt, y-tilt, pressure, and distance from the
surface) and one trigger (touch)4. Some of these controls naturally seem fit for our
available parameters; pressure, or force, is a common controller of dynamics, and
is thus mapped to the overall amplitude of the synthesis. Pitch is commonly por-
trayed on a vertical axis, such as in various music notation schemes, and is likewise
intuitively mapped to the vertical location of the pen5. Most importantly to the
data we are manipulating, frame indexes, representing original time of the analysis
sound, are mapped from left to right along the absolute x axis, a tradition most
likely leading back to the organization of text. This standard has been used almost
exclusively in organizing musical material; trying to find new ways of representing
time flow using other dimensions usually only clutters the coherence of the display.

These days, as anyone who searches the internet for videos related to music and
a tablet, it seems the usefulness of this device meant for graphics applications has

3Wacom Intuos website: http://www.wacom.com/intuos/
4There are other also buttons on the stylus and tablet, along with sliders of various types

depending on the model, but these rarely seem as fit for musical control as the main controls
mentioned above.

5Section 5.3 will discuss both the drawbacks and gains for mapping a pitch transpose to a
continuous controller such as absolute y position of the stylus.

http://www.wacom.com/intuos/
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Figure 3.5: The Wacom In-
tuos 3 Graphics Tablet and
Stylus (pen).

proved its worthiness as a sound controller. Even using a Wacom Tablet to control
additive synthesis is now a relatively old concept Zbyszynski et al. [2007]: Matthew
Wright has been performing with sinusoidal models in Max/MSP for almost 10
years now. While he uses a tablet for similar reasons - it has precise, absolute, and
coupled parameters - the mapping scheme presented here is much different. Wright
decides to map many sounds to the tablet surface, hand-annotated in a grid-like
fashion. This gives him access to many sounds at any moment, yet with far less
concentration on time or frequency accuracy. In the implementation presented in
this paper, one complete analysis sound is mapped across the length of the tablet,
usually kept short enough so that distinct sections in the data can be consistently
located by the stylus tip without much effort. In this manner, the tablet is a very
appropriate controller for the sound data dealt with in this thesis.

Other authors and researchers who have used the tablet as controller have done
so because it is seen as a ‘low-cost’ or ‘off-the-shelf’ controller. Both of these terms
are true to the device, yet it remains most valuable to interactive spectral manipu-
lations because of the precise sampling in the absolute x and y coordinates of the
flat surface. These effectively give control of precise locations within the data and,
simultaneously, the possibility for micro-tonal pitch control. Yet, the fact that the
device uses the usb protocol warrants some precaution to ensure that control data
is consistent, as usb guarantees no real-time consistency. To this aim, the device is
sampled at an audio block-rate to ensure that short or long bursts of usb data do
not degrade the granularity of controlling the instrument.



Chapter 4

Interactive Visualization

Unlike acoustic instruments, a digital computer processes information in a manner
incomprehensible to a musician, whether it be binary numbers or text in a pro-
gramming language. At the same time that a computer processes sound data in
a completely non-artistic medium, it can produce vibrant images and animation
through precise geometric shapes, textures, and color scales, with the same data.
So then, a viable method for revealing what is ‘under the hood’ is to think of cre-
ative methods for data visualization, and as of late this has become a crucial aspect
in computer music systems.

This chapter focuses on visualizing techniques of spectral data in order to solve
two problems within the realm of real-time manipulations. The ultimate goal is
to reveal the secrets hidden within a complicated set of sound data to a human
performing with a sound. Both operate by receiving the same control parameters
handled by the synthesizer in real-time

First, a visual interface depicting ‘what the synthesizer is doing’ is introduced.
This provides an informative view of the synthesis process, aids in experimenting
with new types of data modifications, and facilitates brainstorming new possible
data modifications.

Second, methods are proposed for representing an entire sound sample in a
visualization that informs a performer what musical content is within the sound; a
feature representation. It seems that as more computation is necessary to convert
sound parameters to sound, the system tends to mask possible ways to manipulate
the sound within its automated tasks. A computer is, by design, efficient and
consistent with data reproduction. Yet, a computer can hardly determine what is
artistically meaningful or useful, as this subjectivity is unique to the artist. This is
the case in most common displays of spectral data, in which remain at a level easy
for a computer to interpret yet far from how a human actually hears the sound.
The sonogram, although it is clearly more informative than a waveform, seems to
contain too much information to use as an aid in controlling a musical instrument.

41
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If one can visualize the content of the sound before deciding how to manipulate
the sound as an instrument, in a manner that reveals the musical potential of the
sound, they gain intuition and control in their performances.

While visualization options may appear limitless, it is difficult to create sound to
visual mappings that make sense from a musician’s, or listener’s, viewpoint. Spectral
Data visualization has a rich history for as long as there has been digital spectral
analysis (the first sonograms were created even before digital computation [Potter,
1945]), probably due to its dense nature. For this reason, my main goal here to
use represent the data in a way that gives insight into the ‘content’ of the sound
by further abstracting spectral data into spectral features. The visuals are kept
simple and few numerical cues are utilized, as exact numbers do not help musical
manipulations in most cases.

My overall approach to the visual aspects of this thesis is towards using the in-
terface interactively and intuitively while manipulating sound. Chapter 3 discussees
the type of manipulations possible, which suggests using additive or multiplicative
modifications to the spectral data, controlled with continuously sampled parame-
ters. It is clear that not all the manipulations will create good sound results all the
time. Some modifications will work better depending on the sound content, which
is, in this system, constantly changing. These uncertainties are lessened within the
visual interface presented here.

4.1 Re-coupling the Sound and Representation

The high level sound representations used within the scope of this thesis (specifi-
cally the techniques reviewed in section 2.1.2), are in themselves disconnected from
music. In the process of developing the representations through analysis software,
the concern normally focuses on creating data perceptually identical to the analysis
sound. At the point of entrance of this work, which concerns how to manipulate
this data as a music instrument, the data requires a more interactive interfacing
approach in order to be playable. A fundamental requirement is to control the syn-
thesis in real-time. Then, an actions are immediately tied to sound production as
in the natural world once again; the user feels like he/she is creating the sound.
When trying to discover new sounds with spectral data by simply turning knobs
and faders, it is difficult to understand what effects are useful because the data
content is hidden from the user.

Acoustic instruments tend to depend on a functional control layout, while feed-
back is provided in various haptic forms. This would be hard to replicate in an
instrument based on arbitrary spectral data. How could you physically distinguish
the differences between bright and dark sounds, harmonic and inharmonic? A more
practical way to re-couple this type of synthesizer is to use real-time visual feedback.
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Figure 4.1: (Left) FMOL’s first visual interface, called Bamboo. This visual inter-
face attempts to reveal just about everything going on in the sound engine [Jordà,
2005]. (Right) Freewheeling, an interactive application for loop-based music impro-
visation. The spinning wheels represent time-domain samples (one revolution makes
one loop).

The ‘audio’ feedback presented to the performer in an interactive visual
form, intuitively helps the understanding and the mastery of the inter-
face, enabling the simultaneous control of a high number of parameters
that could not be possible without this visual feedback Jordà [2005].

Providing a functional visual layout is important when learning any new instru-
ment; it helps a beginner make a connection between gestures and sound and an
experienced user think of new possibilities. In Jordä’s own instrument, FMOL (see
left figure in 4.1) he aims to reveal all the controls of a sophisticated 8-track sound
engine, with each track having a large set of audio plugins and parameters. The
interface contains vertical lines representing the tracks and horizontal lines repre-
senting the effects that manipulate the tracks. When a track is causing sound, its
corresponding vertical line oscillates as a visual cue that helps to connect the sounds
a performer hears and the manipulations performed with input controllers.

In instruments that are based on sound samples, the same gesture can result in
a multitude of sounds, so it is therefore most helpful to display some information
about the sound before it is synthesized. Freewheeling1 is an innovative approach to
displaying samples in a manner conducive to improvisation (see right figure in 4.1).
The following quote from the application’s website describes the design philosophy:

It works because, down to the core, it’s built around improv. We leave
mice and menus, and dive into our own process of making sound.

1Freewheeling : http://freewheeling.sourceforge.net/

http://freewheeling.sourceforge.net/
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While the display is quite simple, the features of the sample are portrayed well in
the revolving ‘wheels’. This waveform display accompanied by a descriptive name
are enough to allow a performer to interactively start and stop a set of samples
via simple trigger gestures. As the waveforms revolve, it is easy to localize each
component of a performance that may contain many simultaneous samples looping
at the same time. Very little text is necessary in this setting, as one quickly adapts
to the interface with a few performances.

Freewheeling, along with most other sound applications, are designed to give a
user simultaneous access to a set of samples in order to create music (in this case
improvised, although most others are based more on composition).. Applications
based on spectral analysis/synthesis techniques do not need many sounds. While
some have decided to go this route, using a large data base of pre-analyzed sounds
as in [Verfaille et al., 2006] and[Grill, 2008], I find that there is plenty of creative and
exploratory potential within one spectral representation, provided the sound source
is interesting to start. Still, real-time spectral synthesizers have not seen the such
informative interfaces as waveform-based systems; most designers tend to either
disregard the interface and hide the underlining computations or display everything
in a scientifically oriented interface.

4.2 Towards a more Interactive SMS Interface

The SMS-based instrument presented within this thesis further necessitates the need
for visual feedback, as the resulting sound not only depends on which sample is used,
but also where in the sample one is currently playing and what features this section
contains. Manipulating with one section of an analysis can result in a completely
different sound than another section, along with any modifications such as those
proposed in chapter 3. Yet, gestural control remains identical. This system benefits
from revealing how the data varies in time as one performs manipulations in order
to distinguish how different manipulations work in different sounds..

The first step in creating an interface more conducive to interaction is to reveal
what the synthesizer is synthesizing. Within the SMS data structure, as computed in
section 2.1.2, there are three distinct components in every frame; sinusoidal tracks,
a deterministic spectral envelope (an extra computation step to facilitate manipula-
tions), and a stochastic spectral envelope. Figure 4.2 shows a minimalist display of
this data within a single window. There is no grid because exact frequency or am-
plitude values are not necessary in this view; the ear does not process sound based
on exact values (unless this ear belongs to a classically trained pianist). Instead, a
value for the maximum frequency is displayed, while the maximum magnitude is re-
alized to be ranging from 0 to 100 decibels, (100 corresponding to a linear amplitude
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of one)2.

Figure 4.2: Spectral data of one SMS frame: sinusoidal tracks (red vertical lines),
deterministic spectral envelope (blue curve), and stochastic spectral envelope (gray
shape in back).

This frame display is meant as an interface to reveal, in real-time, a visual de-
piction of the data within the current synthesis buffer. This includes modifications;
if harmonics are transposed, they should be shifted in the display interface. If either
component’s gain is adjusted, the color should change to reveal this. Modifying the
spectral envelope, harmonic deviance, or other features should be revealed within
this plot. In this way, the reason why a certain manipulation is pleasing or abrupt
may become apparent via properties of the visual representation. Furthermore, in
such a display it is easy to see when a sound’s data components are changing errat-
ically from frame to frame, which would usually cause an odd sounding synthesis.

4.3 Displaying Time-Varying Spectral Data

Common methods for displaying time-varying spectral data are quite dense. SM-
STools (see figure 2.1) and popular sonogram tools display the content of each

2This decibel normalization is one of many that happens to simplify many computations. It
seems most scientific applications normalize a linear amplitude of one to zero dB and everything
else below, but this is not the case in the software I primarily deal with (libsms and pd) so it is
convenient to push everything above zero.
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frame vertically, using colors to represent magnitudes, so that left to right depicts
how data changes in time. The data resolution is usually limited by the available
pixel resolution and as such many times there is not enough resolution to show all
the data. Some choose to display the third dimension as another axis instead of
color [Bécares, 1998, Bresson and Agon, 2004], commonly known as a waterfall plot.
Yet, although it is aesthetically pleasing to see complex three-dimensional shapes,
they are both slow to render and complicated to navigate in real-time.

In the system developed within this thesis, there has always been a need for
displaying how the data changes over time in order to better understand how to
intuitively navigate the sound in real-time. A sonogram view was the first to be used,
for practical and traditional reasons, yet it always seemed to display unnecessary or
redundant information as an instrument. For example, harmonic sounds will have
up to forty or so partials to display, yet the pitch is determined according to only
the fundamental frequency. Intricacies in spectral envelope, either deterministic
or stochastic, take on the form of a color variation within a region, but the exact
region boundaries are hard to determine or understand when manipulating the data
in real-time. Harmonic deviance are completely unexplained in the sonogram view;
all that can be deduced is that there is deviance.

The rest of this section will discuss some experiments of abstracting the time-
varying spectral data into a visual representation more related to how the ‘sound
data is heard’.

4.3.1 A Higher-Level Spectral Data Representation

As a sound representation increases in its level of abstraction, its data becomes
closer to how we naturally perceive the sound. Serra writes:

The auditory system functions as a spectrum analyzer, detecting the
frequencies present in the incoming sound at every moment in time Serra
[1989].

To take this analogy further, the human auditory system also abstracts features
of the detected frequencies into high-level information used to recognize the sound.
It is clear that the brain condenses this information into features useful in identify-
ing various sounds in musical and everyday situations. Thus, It seems to be useful
to present a visual representation that abstracts from the low-level, time-changing
partial frequencies to higher-level, time-changing spectral features. Visually repre-
senting the data as time-varying features can possibly facilitate an understanding
of manipulations, how they are audibly perceived.

For facilitating navigation of samples within a large online database, The FreeSound
Project3 displays sounds as a combination of time and frequency content. Figure 4.3

3The FreeSound Project: http://www.freesound.org

http://www.freesound.org
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shows a sample of melody played on saxophone, thus having time-varying spectra.
With this visualization, one can see the overall amplitude shape of the sound and,
at the same time, get a good idea of whether the frequency spectrum is relatively
high, low, or fluctuating. Waveforms are normally varying too rapidly to display a
time-varying line and are instead generalized as a ‘blob’ created by the low and high
amplitudes, sampled at a pixel resolution. As this blob is normally just filled with
a constant color, this approach is much more informative in revealing what content
is in the sample without hearing it.

Figure 4.3: Waveform view of a saxophone sound sample, colorized according to the
spectral centroid, used to create the waveform images for The FreeSound Project.

When dealing with spectral data, one can go much further in revealing the
content of the sound through data visualization. Figure 4.4 is a diagram representing
the process of abstracting the data and its common visualization at each step,
until we reach spectral features. One starts with a waveform that reveals how
amplitude fluctuates in time, but otherwise masks perceptual information. After a
transformation via the STFT, it is clear the sample is harmonic with a time-varying
pitch. Next, SMS analysis extracts the harmonics and reveals that there is high
pitched noise information (the gray background). Finally, the time-varying spectra
is broken down into features with a single value each frame, each contributing to a
unique characteristic of the image.4

While the computation time increases and becomes more problematic high up
on the ‘abstraction ladder’, it also significantly decreases the amount of data. In

4The resulting display is provided here to suggest a possible visualization of the features, among
many. An evaluation of its effectiveness and possible alternatives are discussed in section 5.3.
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Figure 4.4: Diagram of extracted features detectable in one frame of sinusoidal and
noise data.

contrast to plotting every sinusoidal track in a frame, mapping extracted features to
an alternative visual representation can immensely reduce visual clutter and compu-
tation time in order to display the sound representation. Each extracted feature in
figure 4.4 is represented by one value per frame, whereas there are somewhere around
40 sinusoidal tracks and 256 residual coefficients in each frame of the visualization
one step below. Still, some features inherit straightforward visual representations
(such as pitch) while others remain largely experimental (how does one visually con-
ceive harmonic deviance?). In the end, it will take interacting with many sounds
and discovering how each feature should be visually represented according to the
ease of connection between the audio and visual feedback.

4.3.2 Computation and Visualization of Spectral Features

The following is a non-extensive list of frame-based spectral features that I have
experimented with for visualizing the time-varying perceptual qualities contained
in a sinusoids plus residual sound representation. The computation of the features
is explained along with perceptual significance and how this can be linked to a
visualization, an easy task in some cases while problematic in others. The features
presented here can accurately be computed from a ‘successful’ sinusoids plus noise
decomposition has already been computed, yet may create a bogus visual otherwise.

The time axis is not discussed here because it is created by displaying the frames
consecutively, thereby revealing time-varying features from left to right. Spectral
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envelope is also left out, as it is difficult to describe with few parameters. Further
abstracting the spectral envelope into a more condense visualization is beyond the
constraints of this thesis, although it would surely be most useful.

Amplitude

Amplitude is arguably the most fundamental feature of a sound in any domain.
Within a sinusoids plus noise decomposition, it can be computed for each individual
components. Serra and Bonada [1998] calculate the amplitude of the sinusoidal
component, Asin, by summing the magnitudes and expressing as dB:

Asin = 20 log10

(
I∑

i=1

ai

)
(4.1)

where ai is the linear amplitude of the ith partial track and I is the total number of
tracks. The amplitude of the residual is summed in the same manner by summing
the linear magnitude of I bins and representing as dB.

In order to calculate the total amplitude, one sums the amplitudes of the indi-
vidual components before converting to dB.

Amatriain et al. [2003] suggest to represent the amplitude on a power scale in
dB:

Psin = 10 log10

(
I∑

i=1

a2
i

)
(4.2)

Loudness has been considered as one of three ‘main axes in a sound transfor-
mation’, although it is clear that amplitude does not completely describe loudness.
Still, representing amplitude in a logarithmic scale largely describes this most basic
feature of a sound.

Visualizing the amplitude as a feature is probably best in the time-domain repre-
sentation; that is, the louder the sound, the larger the image. This can be replicated
with spectral data as well, although one can portray the ratio of the two component
amplitudes by dividing the overall shape according to the respective calculated am-
plitudes. One other remark is that a time-domain sound representation is usually
near symmetric around the horizontal axis. This information is redundant and un-
necessary in the frequency-domain portrayal of a waveform, although some might
find it familiar. Still, that the information is different (the representation is not
a waveform), it seems that breaking from the tradition of symmetrical amplitude
seems appropriate.
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Pitch

Pitch is the perceived fundamental frequency of a harmonic sound. The fundamental
frequency is the Within SMS data, it is the first sinusoidal track. The algorithms
for obtaining this data vary (see Section 2.1.2) between implementations and an
in-depth explanation of the scheme used within this work is described in [Cano,
1998].

In musical applications, it is useful to represent the pitch frequency based on the
Western musical scale, which divides octave into twelve equal semitones [Puckette,
2007]. It is furthermore useful to express pitch logarithmically, as in the MIDI
specification:

m = 69 + 12log2(f/440) (4.3)

where f is the input frequency of the pitch and m is the output MIDI value. 69
represents the ‘A-440’, the concert pitch of an A note above middle C. This can
then be mapped to a line that vertically varies in a linear fashion.

Without a well-defined layout scheme of the pitch, especially since the pitch
is arbitrarily changing within the data we are dealing with, it becomes extremely
difficult to created meaningful melodies. Jordà [2005] takes note of Jeff Pressing’s
opinion on the varying ability for different instruments to improvise melodically:

The design of some instruments allows more precise visual feedback and
more categorical kinesthesic feedback than others. This is almost cer-
tainly why sophisticated improvisation using advanced pitch material is
more difficult on the violin than the piano, and extremely challenging
for the vocalist [Pressing, 1988].

Figure 4.5: The time-varying fundamental frequency extracted from an SMS anal-
ysis, then mapped onto a MIDI grid in order to reveal precise pitch content.
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The piano contains possibly the most intuitive interface for melodic creation
because of its precise, repeating style and clean layout in space. In order to draw
on these strengths, a powerful method of revealing exactly what the pitch is at
any frame in our spectral data is to map the fundamental frequency to pianoroll,
symbolic of the piano keyboard and what is commonly used to display MIDI in-
formation. Figure 4.5 shows this mapping, along with the MIDI note numbers of
each key on the far left. One significant difference is that our spectral data does
not contain discrete pitch values, nor should it. So, the integer fundamental value
is correlated with the lower edge of each ‘key’, or horizontal bar. The keyboard is
positioned by calculating the mean fundamental frequency, then centering the keys
and pitch around this.

Spectral Centroid

The spectral centroid defines the ‘balance point’ of the magnitude spectrum, defined
in Serra and Bonada [1998] as:

Centroid =
N−1∑
k=0

k

N
fs ×

|X(k)|∑N−1
k=0 |X(k)|

(4.4)

where X(k) is the magnitude of spectral bin k, N is the number of spectral bins,
and fs is the sampling frequency.

For the residual component, the spectral centroid is immediately computed from
the above formula. For sinusoidal data, it is easier to replace k

N
fs with discrete

sinusoidal frequencies and Xk with discrete sinusoidal amplitudes.
Spectral centroid is known to be closely correlated the musical perception of

brightness [McAdams et al., 1995] and is invaluable for distinguishing between
different timbres. As such, it makes sense to represent spectral centroid with
color, brighter colors signifying higher frequency content within the frame (as in
Freesound’s display: 4.3. When visualizing the amplitudes of sinusoidal and resid-
ual components separately, it is logical to use their respective spectral centroids as
a color fill. One difficulty arises in deciding what scale of frequency to use, as the
sinusoidal and residual components tend to have very different ranges of spectral
centroids. Furthermore, if a linear frequency scale is used, high frequency content
may show a drastic variance in color that is largely unperceptive.

Harmonicity

A harmonicity measurement describes how far a the data is from purely harmonic.
That is, how much the harmonics stray from the perfect, ratio locations. Peeters
[2004] defines the harmonicity factor as:
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inharmo =
2

F0

∑I
i=1 |fi − (F0 × i)| × a2

i∑I
i=1 a

2
i

(4.5)

where F0 is the estimated fundamental frequency of the f, a partials. The second
term weights the partial distortion by the energy of the frame. A resulting value of
zero would indicate a perfectly harmonic sound, while a value of one should indicate
that the average deviance is directly in-between the ideal harmonic locations.

Representing harmonicity as a visual is a difficult task. One would ideally want a
generalized and reduced display, yet a line or color hardly seems fit. A texture visual
seems appropriate (ex., crosshatch), where the density or regularity of the texture
is mapped to the calculated harmonicity. For simplicity in computation and as a
first step, I have mapped harmonicity to either the color or alpha (transparency)
component of the fundamental frequency, although neither fit well.

4.4 Future Prospects

This section has introduced a concept of visualizing sound data based on its features
with a single graphical object, which seems to be largely unexplored within the field
of research. It is a promising method for displaying the sound within an application
that is geared towards real-time usage, where in a sonogram data representation
may contain too many graphical objects to quickly comprehend. This most certainly
seems like a creative way to visualize the sound and may lend some help within the
artistic processes of improvisation and composition. Furthermore, it helps one to
hear components of the sound that are otherwise congested into a whole; to aid in
bringing the subliminal to the conscious.

The features described here are far from complete. Serra and Bonada [1998],
Amatriain et al. [2003], and Peeters [2004] define and discuss many more features
that could be correlated to a descriptive image of the sound. Yet, before these
can be incorporated, more experimentation needs to be conducted with the few but
powerful features described in this chapter. Mapping boundaries, scales, with which
sounds each feature is more likely to be descriptive, and making sure bogus data
is not misinterpreted are all issues that need further investigation before one can
move forward with a more sophisticated visual.

It is tempting to begin annotating some of the sound features based on qualities
that are easy to recognize by a human yet still hard to describe computationally. For
example, describing all the harmonics of a saxophone by an analyzed fundamental
frequency and some image resembling the sound of a saxophone (say, shining brass).
Yet while this may provide at first a more useful way to distinguish harmonics of
one sound from another, it seems that further scientific research will lead to better
results in the long run. By comparing statistics of the spectral features in different
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sounds and how they vary, one can learn how to bring out the differences through
visualizations and incorporate these findings into the visual feature representation
that is begun here. With time, I believe such a representation will evolve into a
powerful way to visualize sound, while at the same time verifying the integrity of
the data which produced the features.
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Chapter 5

Implementation and Evaluation

The approaches to real-time spectral manipulations presented here have been carried
out over the past two years, consistently building on the notion that arbitrary frame
indexing will facilitate the experimental exploration of various types of sounds. In
order for this to sound good, it is first of all necessary that a low-latency computer
is used to operate the software. In my experiences, buffer sizes of 256 samples or
less, which corresponds to 5.33 milliseconds at a 48k samplerate, is fast enough to
make the instrument feel like you are controlling it in real-time. This has been
achievable in the Mac OS X operating system, although the instruments presented
here are commonly used from a PC with Debian-based Linux distribution.

The implementation here does not attempt to encapsulate all possible methods of
control, but instead aims to expose as many as possible for experimentation within a
real-time programming environment. This approach is especially fun because while
encountering unforeseen problems or effects along the way of implementing various
manipulations, one stumbles upon new ones that would have gone unheard if the
initial program was written in a more confined environment. If nothing else, the
effect of constantly listening to a program as it is being built keeps the engineering
portion of a project lively.

5.1 Trax : A Pure-Pd Approach

The first, naive attempt I made at designing a real-time instrument used Pd both for
synthesis and data visualization, and included a small step sequencer that could be
used to automate time indexing (pictured in figure 5.1). While it had its flaws, many
ideas and features were incorporated from Trax into my next, more sophisticated
instrument, presented in the next section. As Trax has been used both in perfor-
mances and compositions for a quite some time now (although now retired), here is
a review and reflection to provide insight into design directions taken thereafter.

55
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5.1.1 Overview

Trax 1 is a real-time synthesizer based on sinusoidal modeling an additive synthesis
(see 2.1.2), disregarding any residual representation for the sake of simplicity. The
implementation is in the form of two externals programmed in C (see 2.2.2) and
many ‘patches’ in Pure Data - a graphical system for programming real-time audio
software. It basically works as follows:

1. A sound file is analyzed in an external program, such as CLAM SMSTools 2,
or Spear 3, specifically designed for sinusoidal analysis.

2. the resulting analysis data is saved to file in SDIF file format and loaded in
Trax to a memory buffers.

3. data is then visualized using Pure Data’s graphical data structure mechanism
(see bottom figure in 5.1).

4. data index and some basic modifications are controlled via the Trax main GUI
patch (see top figures in 5.1) or using a Wacom Tablet.

5. resulting partial frequencies and amplitudes are sent to an oscillator bank
external that creates a sound waveform, which is then given to the software
audio output to be delivered to the speakers.

The data visualization originally grew out of the necessity of knowing whether
the analysis was correctly imported and, furthermore, I could correctly access frames
and tracks stored within the data structures. Programming with Pd’s visual data
structures was new to me at the time of this implementation (see [Barknecht and
Wall, 2006] for a better explanation of this unique feature). It immediately seemed
like a powerful way to visualize the success or failure of the organization of data held
within the structures, which became dense and complicated quite fast in my case.
Another enticing feature was the possibility to edit the data in real-time with the
mouse or more complicated macros, thereby seeming to immediately offer avenues
for manipulation.

5.1.2 Evaluation of Trax

The evaluation here is based on using the instrument within musical scenarios; per-
forming within an experimental improvisation group and personal compositions.

1Trax : http://mtg.upf.edu/files/personal/trax.tar.gz
2CLAM SMSTools: http://clam-project.org/
3Spear : http://www.klingbeil.com/spear/

http://mtg.upf.edu/files/personal/trax.tar.gz
http://clam-project.org/
http://www.klingbeil.com/spear/
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Figure 5.1: (top left) The main graphical interface for Trax, showing all the available
controls. The bottom two arrays are time-sequencers, which will manipulate the
horizontal bar on the top left, representing time index into the analysis file. Other
controls are for visualizing the data, loading files, overall frequency transpose, and a
range-based frequency transpose. (top right) And example patch for loading a file,
plotting it, and playing the instrument via data stored in a text file. (bottom) The
data visualization patch in Trax. The horizontal axis represents time and the vertical
axis represents frequency. The gray lines are time-varying sinusoidal tracks and their
color represents the mean magnitude of each track. The line in the middle represents
the current frame location, the two boxes on top of it represent a ranged frequency
transpose.
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There exists a few performances containing my name on Youtube and two compo-
sitions that I have placed on the internet4. Below are three fundamental criterion
that I found valuable for evaluation.

Quality of Sound Creation Using the Interface

First and foremost, the ability to create high quality sounds is the most important
aspect of any music instrument. Many things play into the sound quality of a
spectra-based synthesizer, such as the method of digital signal processing or analysis
parameters. Within this design, the important factors were the method of additive
synthesis and how the data was delivered to the synthesizer.

The synthesis implementation was quite slow; it could manage to synthesize a
few hundred partials in one frame but only if slowly traversing the frames. Sections
with dense partial tracks conflict with the audio loop and occasionally cause the
GUI to freeze. This is partly because the implementation of oscbank∼ used some
unoptimized loops based on criterion for how to determine whether a partial is born,
evolving, or dead. Yet, the main reason was that control and audio were processed
in the same buffer, meaning all control data had to be finished within the time of 64
samples. This system works based on a system of track indexes so as to save data
space, yet in retrospect such data conservation seem unnecessary in modern times.

In sound representations with few partials, such as single-note acoustic instru-
ment samples, a good synthesis can be created with flexible time control. These
sounds work well in Trax, while other more complicated sounds may distort more
often due to audio dropouts and visual clutter. I actually had quite some fun play-
ing with an analyzed section of a Webern chorale; although the resulting sounds
were rich and exciting, it sounded nothing like humans singing.

Ability to Control Parameters in Real-Time

The mapping strategy was very similar to what was explained in section 3.3.3;
a Wacom Tablet is used to control frame index and frequency transpose via the
absolute X and Y axes, respectively. There is also a ranger, a transpose for only
adjusting the frequencies within a certain range, specified via X/Y tilt and a button
on the stylus.

There is excellent ability to manipulate the frame index in real-time with the
Wacom Tablet, as the sound data is spread out so that one can traverse 10 or 1,000
frames within the same time. To make sure the synthesizer was not overloaded by
such fast gestures, the tablet’s parameters were sampled at Pd’s block rate.

Changing individual sinusoidal parameters is almost pointless from a musical
point of view, as it only creates an ‘electronically’ sine tone amidst the original

4online recordings: http://soundcloud.com/rich-e last visited: August 24, 2009

http://soundcloud.com/rich-e
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sound. It did, however, give insight into what we are actually hearing in an additive
synthesizer, by all of the sudden making an overtone at 1,000 hertz or higher quite
audible. The frame based method for transposing sections of sinusoidal tracks works
much better and producing a unique sound effect. Still, its visualization is poor,
as there is little correlation between the transpose (moving based on a linear scale)
and the visualization (logarithmic scale). It is also quite easy to move the ranger
controls to where no significant effect can be heard, or a very significant modulation
is created.

Graphical Interface Effectiveness and Efficiency

As emphasized in chapter 4, in order to make any arbitrary sound playable, it is
important to be able to visually recognize qualities of a sound based on its rep-
resentation. For instance, a transient will create a very abrupt sound when it is
played back, so it is important to know this ahead of time in order to avoid abrupt
or out-of-place musical performance.

The ease of recognizing sound features is poor compared to even a common
sonogram. Within the Tk drawing tools, the API that Pure Data uses to display
the data, the color of each line cannot change. Consequently, tracks that become
suddenly loud do not show these time-varying features.

Another drawback of this system is that it is nearly impossible to implement
zoom/pan functionality in real-time. The entire plot has to be redrawn in order to
do this, which takes up to a few seconds for some analysis files with dense sinusoidal
data. Still, the vertical bar is a good indicator of what sounds are going to be heard,
as it nears a section of dense tracks (e.g., many lines).

The display of frequencies is quite cumbersome. It was necessary to incorporate
some way of visualizing frequency transpose, which is best performed via the expo-
nential scale explained in 4.3.2. Yet, displaying sinusoidal tracks based on the same
scale looks horrible, as the harmonic structure is condensed in higher frequencies.
So, I decided to display the tracks based on linear frequencies while creating a MIDI-
like grid in the background, thereby completely disconnecting the visualization of
transpose and pitch content. There is virtually no way to visualize exactly what
pitch you can create without analyzing the output signal with a pitch detector after
the sound is already created.

As already mentioned as part of a problem concerning audio quality, graphical
drawing computation largely interfered with Pd’s audio deliverance. Loading a file
into a data struct was quite fast, yet plotting the data caused the audio to halt for
up to a few seconds. This makes the system hard to be used in dynamic situations
where one wants to load new data on the fly.
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5.1.3 Foreseen Possible Improvements

Most importantly, it was clear that the graphical interface needed to be implemented
in a different thread, working at its own speed. This allows Pure Data ample
computation time in order to avoid audio dropouts. A separate Pd thread could be
created in a number of ways; it is commonly achieved by starting two instances of
Pd and connecting them over a network, although in newer versions of Pd you can
do this with one main instance that spawns another Pd and can pass both audio
and control signals. Yet, a more flexible graphical toolkit would allow the data to
be drawn more expressively, as well as providing for panning and zooming, so using
two Pd threads did not seem like the appropriate way to go. Something based in
OpenGL seemed most appropriate.

The synthesis method could use improvements so that it could accurately handle
the fluctuations in partial tracks that are born and die. Furthermore, a pure-Pd
residual synthesis (using no externals, just Pd’s built-in FFT objects) was planned,
yet this system seemed to be problematic from the start. It would be difficult to
make sure the resulting components could be ‘melded’ back together (see 2.1.2) and
the residual data created with CLAM was difficult to interpret.

In general, both visualizing the data manipulation with a sonogram and time
bar and viewing manipulations with simple rectangles was not descriptive of what
was being heard. Pitch transposition was very powerful in this system, although
impossible to create any sort of sophisticated melodic phrasing. Controlling more
complex manipulations seemed outside the capabilities of this instrument.

5.2 SmsPlayer Instrument Implementation

SmsPlayer, so-called because of the current lack of a more creative name, is the
combined set of Pd patches for sound control and synthesis and python scripts for
interactive visualization (see 2.2.3). The main graphical interface is shown in 5.4,
showing a feature-based display of the entire sound file on the top and the data
currently within the synthesizer on the bottom. This is one of three views, depending
on the prominent features within the data, that one would use while trying to create
musical manipulations, while there are two more for viewing the data in more detail
(further explained in section 5.2.4)

At the point of manipulating the data while watching the OpenGL user interface,
all parameters are controlled by either the Wacom Tablet or a MIDI keyboard with
rotary knobs and sliders. Before this, at the long and experimental phase of deciding
how to map the parameters to these controllers, one is using the Pd interface (the
top layer is shown in 5.3). It is possible here to independently control parameters,
fine tune HID mapping, and save/load state files of the current mapping scheme
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and synthesis parameters..
The following sections provide more detail into the different components and

decisions taken throughout the implementation. Appendix A provides more sound
examples, screenshots, and links to online videos demonstrations.

5.2.1 Creating the SMS Data

SMS data is normally created either with the terminal application smsAnal (see 2.2.3)
or with a python equivalent script. As of this writing, creating a good spectral rep-
resentation of more complicated sound with libsms is still a process of guessing the
correct parameters. If a sound is harmonic, in a medium range of frequencies, and
stable (which does cover many sounds ranging from voice to orchestral instruments),
a good result can be obtained with default parameters to the analyzer. For many
interesting sounds, one must inspect the sound prior to analysis (ex. a spectrogram
is useful) and adjust parameters to such an extent that it is not yet beneficial to
analyze the sound in a real-time environment (such as with the analysis external

smsanal ). As of this writing, it is best to create a personalized script for each
sound I wish to use, honing in on the parameters that produce the most accurate
results, then load the data into Pd with smsbuf .

5.2.2 The Real-Time Synthesizer

The SMS synthesizer presented here assures that any data frame can be synthesized
immediately with just a few parameters. Sophisticated data modifications, such as
those mentioned in section 3.1.2, are processed in real-time if they are turned on,
although off by default. All parameters are sent with Pd’s message system and
stored as internal variables, then sampled every time another SMS frame is going
to be reconstructed to waveform. Regardless of exactly what value is given to any
of the parameters, synthesis will continue while audio computation is running.

In smssynth∼ ’s audio loop, there are three main library functions that the
necessary work. sms interpolateFrames() first samples the current floating point
index within the range of the frames stored in an smsbuf and creates a new frame
with interpolated values. sms modify() then modifies the resulting frame based on
a set of flags within a parameter structure, and finally sms synthesize() blindly
synthesizes the modified frame into audio samples that will be delivered at Pd’s
blockrate.

Separate from Pd, the blockrate specified within the synthesis parameters de-
cides the time for linear interpolation from one frame to the next, occurring between
any two arbitrarily sampled frames. By default, the window size in smssynth∼ is
128 samples, set by the limit on FFT sizes within libsms. This can be increased to
any power of two by providing an additional argument when creating smssynth∼ ,
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although larger blockrates have yet to show drastic improvements in computation
time (which is normally too low to be a concern, at least for monophonic purposes)
or synthesis fidelity.

In some cases, it may be desirable to turn off either sinusoidal or residual syn-
thesis. Both can either be completely turned off in real-time or their amplitudes can
be adjusted separately. This aids in understanding the quality of each component’s
representation and localizing features of the sound. For instance, the residual syn-
thesis occasionally sounds like wind, thereby inadvertently making the result sound
more synthetic. Or, the deterministic synthesis may be distorting because of bogus
modification parameters, which may be slightly masked if the residual synthesis is
loud.

The synthesis parameters are programmed directly into libsms so that other
applications can take advantage of identical algorithms at a C level. Then, each
programming API calls the function to perform the manipulation independent of
its own programming paradigm. In Pd, this equates to adding a C method with a
symbol attached that can be recognized in the real-time environment, then sending
a message to smssynth∼ containing the symbol and parameter values. Within the
C method, checks are conducted to make sure the values are sane, but otherwise
everything is handled within libsms.

Although modifications can be seen as part of the process of synthesizing the
data, much effort has been made to separate all modifications from the synthesis
routines. This aids in refactoring the original code, continuously checking if analysis
and re-synthesis produces the same results for test files. With this separation,
others may also avoid the libsms modification routines and use their own, while still
benefiting from the synthesis engine. Almost all the low to mid level modifications
described in chapter 3 have been implemented within the modify.c file of libsms.

5.2.3 Control Mapping

Since the conception of Trax (see 5.1), a Wacom Tablet has proved an appropriate
controller for the constraints of the SMS instrument in this thesis. The model used
within this system is the Intous II, 6 by 11 inches (15.2 by 27.9 centimeters). This
USB-powered tablet provides all the features that Wacom provides while remaining
quite portable; small enough to fit in a backpack while large enough to provide
ample space for gestures.

The Wacom data is received in Pd using Hans Steiner’s linuxevent or hid

objects, available in both Pd’s svn5 and Pd-extended6. As the data regularity of
USB can vary depending on other processes in a computer, the control values are

5Pd’s svn: http://sourceforge.net/projects/pure-data/
6Pd-extended: http://puredata.info/downloads

http://sourceforge.net/projects/pure-data/
http://puredata.info/downloads
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Figure 5.2: The wacom data, sampled in Pd with the bang∼ object for 2,000
frames. The top figure shows the overall sampling of each of the five coupled controls,
while the bottom displays frames 500-549, normalized from zero to one.

used to set synthesis parameters that are only evaluated at the beginning of every
audio block. Figure 5.2 displays the data of the five continous and coupled controls
offered by this tablet version, sampled every synthesis buffer (128 samples). The
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top figure shows the data values sampled for 2,000 frames (5.33 seconds). The
bottom figure shows 50 normalized frames (about 14 milliseconds) of the same
data, revealing some interesting information about the capacity of this device as an
instrument. Th pressure shows some small oscillations about .02 in magnitude. As
the tilt axes, only ranging from 0-128, seem to be stable despite their low fidelity. In
this sampling, the Y-tilt is near stationary while the X-tilt is constantly descending
It is difficult to deduce any information about the accuracy of the absolute axes
from their display here, yet they have always had a natural mapping (explained
below) and controlling these parameters has been responsive and accurate.

The X absolute position naturally maps to a frame index into the currently
loaded data file, spanning the entire length of the file. For files up to about ten
seconds in length, this gives good control over time-changing features.

The Y absolute position is mapped to frequency transpose, allowing an octave
in each direction and centered around zero transpose. On the current tablet in use,
this means moving the stylus tip a quarter inch, or 0.6 centimeters, will transpose
the sound by one semitone. Although this mapping is adjustable on the fly, keeping
a consistent mapping allows one to improve their skill in melodic improvisation.
Furthermore, transposing many sounds more than an octave does not normally
sound good, while an two octaves provides ample room for melodic creation.

The stylus pressure is most naturally mapped to an overall amplitude gain in
decibels. One problem in early usage of the tablet was that when ending a musical
phrase, the last recoded gesture would occasionally be a positive and audible value,
while no more parameters are changing. In order to make sure the instrument only
creates sound when the stylus is touch the tablet surface, the tip is also mapped to
amplitude gain as a multiplier of one if it is touching and zero if not touching. The
oscillation of pressure values seen when sampling the data probably will not create
a large difference when mapped to gain, but instead may help in providing constant
variability.

The above mappings are fixed, as they feel natural while controlling this instru-
ment. The other parameters that need controlling, such as stochastic gain, envelope
modifications, and harmonic frequency / amplitude modifications, remain experi-
mental in controlling. It is desirable to find settings that distribute some or many
of these parameters among the X and Y tilt control, searching for a medium be-
tween ease of expression and variability. In order to streamline the experimentation
of these mappings, a system of ‘automapping’ has been created in the form of Pd
abstractions to permit all parameters the possibility of receiving control data from
the wacom parameters, a variable step sequencer, and a midi keyboard with sliders.
These are kept on the main Pd patch (see figure 5.3, ultimately out of site dur-
ing performance. Experimentation with mapping these parameters is explained in
section 5.3.3.
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Figure 5.3: Main Pd
patch and subpatch for
assigning and manipu-
lating all parameters.
The hub-trigger and
hub-float abstractions
have automap functionality
for the wacom tablet, midi
keyboard, and a variable
step-sequencer. The ranges
of values, linear or loga-
rithmic, are set with initial
arguments or with the
top two number boxes in
each abstraction. The big
number box reveals each
parameter’s current value.
If the rightmost ‘bang’ (the
circles) is green, the pa-
rameter has been mapped
to something, which can be
reported with the leftmost
bang.
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5.2.4 The Graphical Interface: gSmsPlayer

The following section describes the graphical interface that is used as an aid in
understanding the characteristics of the currently loaded sound and visual feedback
of the real-time manipulations. The implementation, called gSmsPlayer, is pro-
grammed using the pysms (see 2.2.3), Pygame7, PyOpenGL8, and NumPy python
modules. One large benifit of programming the interface in python is, other having
extensive libraries for any type of graphics manipulations desired within a easy-to-
read scripting language, is that video is processed in a seperate thread from Pd,
thereby further guaranteeing real-time audio synthesis.

Figure 5.4 shows the main window, including the five optional displays. The
bottommost display is the frame-based display of the spectral data that corresponds
to what is currently processed by the synthesizer. It reflects all synthesis parameters;
switching off the synthesis of either component will make its visual representation
disappear, or changing their respective gains will make them darker or brighter.

The top portion of the larger figure shows the entire sound file that is loaded.
The current synthesis frame is visualized by a vertical line that is gray when gain is
zero (ex., the stylus pen is not touching the tablet) and increasingly bright as gain
increases. This is also reflected in the frame-based display by a frame number in the
top right. The display here is the current visualization used based on features. The
original version is shown in the small, top-left figure, which is different only in one
aspect: the first attempt displayed fundamental frequency on top of the pianoroll
(see 4.5), then stacked overall amplitude of the sinusoidal on top of this and overall
amplitude of residual data on top of that. While the display seemed descriptive
of the components relative to each other, the display is lop-sided, especially when
transposing the sound (which shifts the overall image so that the fundamental fre-
quency still corresponds to the correct MIDI value). To help fix this, the second
attempt uses fundamental frequency as a divider between sinusoidal and residual
amplitudes, as displayed in the largest section of 5.4. In both versions, the spectral
centroids of the respective components are mapped to color using a logarithmic
scale. The harmonic deviation is mapped to the color of the pitch, although it
fails at revealing any information because erroneous data seems to offset any subtle
inharmonic changes.

The top-right display is used when the sound is inharmonic, in which the first
sinusoidal track would give no correct information for pitch content of the sound.
Instead, the sinusoidal amplitude begins in the middle of the display and extends
upwards, while the residual extends downwards. The result is very similar to a
time-domain waveform view in logarithm display, except non-symmetrical. The
pianoroll is removed because the it does not help in determining the pitch of a

7PyGame: http://www.pygame.org
8PyOpenGL: http://pyopengl.sourceforge.net/

http://www.pygame.org
http://pyopengl.sourceforge.net/
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Figure 5.4: Screenshots of gSmsPlayer loaded with the same singing voice sample
used throughout this thesis. The top four images are optional views of the overall
data, displayed in the larger section. The bottom display always reflects the current,
real-time synthesis data.
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sound, whether transposed or not. The sound can still be manipulated melodically,
although judgment is left up to the ear in this case9

The next display in 5.4, the lower-left of the small figures, shows the extracted
features separated with there own independent axis. This suggests where infor-
mation is erroneous (such as the beginning of this sound, or all of the harmonic
deviance analysis) and helps in creating knew data visualizations. The last small
display, bottom-right, shows the original display that resembles a sonogram. Here,
residual magnitude bins are represented with a gray scale while sinusoidal tracks
are represented on top with magnitude-varying color.

At the time of this writing, the overall display is unchanging accept when trans-
posed, where-in the feature-based image is shifted to match the corresponding pi-
anoroll. As such, all five displays are loaded as OpenGL display lists, which are
then processed in real-time to create the visuals with minimal CPU usage.

5.2.5 Linking Pd and Python

Pd and Python communicate over the UDP protocol using high-level OSC Wright
and Freed [1997] modules: In Pd, messages are sent using the sendOSC object that
is available in both Pd’s svn and Pd-extended. In python, the messages are received
using a pure-python OSC implementation10. As of this writing, both applications
are run best in their own terminal, although it is certainly possible to run Pd from
within the python script or vice-versa (calling python from Pd). Either step would
decrease start-up time and make the instrument feel like a whole.

As they run in separate threads, both Pd and Python need their own copy of
the sound data in memory, although this amount of memory consumption is not
an issue in today’s computer systems. A large benefit of placing all modification
code within libsms is that both ends, the audio engine and graphical interface,
will compute the same modifications to the data by using the same functions and
modification structure. In this manner, whenever a message is sent to smssynth∼
it is also sent to sendOSC with the message “/smsplayer/” prefixed. The message
is received in python by binding a function to each message.

Network bandwidth has not yet been an issue in this implementation. Still, as
the graphics frame rate is much slower that the rate of Pd, one can optimize the
network bandwidth by down-sampling the OSC messages sent by a factor of eight.

9Following any sort of traditional theories when manipulating an inharmonic sound as harmonic
will not help anyway. One might as well make up their own in this case.

10Python SimpleOSC module: www.ixi-software.net/content/body_backyard_python.
html

www.ixi-software.net/content/body_backyard_python.html
www.ixi-software.net/content/body_backyard_python.html
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5.3 Evaluation

In order to correctly evaluate the instrument presented in this thesis, experimenta-
tion will need to be conducted within musical applications for quite some time. This
type of evaluation is quite subjective, wherein one performs with the instrument for
an extended time and imagines what type of new effects can be introduced to create
interesting sounds. In the evaluation presented here, I will list the strengths and
weaknesses of the system of the instrument, and also evaluate the preliminary set
of implemented effects.

5.3.1 Interactive Control of SMS Data

The instrument presented here provides excellent control of pitch, loudness, and
timbre through the use of arbitrary frame indexing and frame-based modifications.
The possible sounds are flexible and rich, creating a powerful interactive instrument
from minimal sound data. Since partial tracks are interpolated on the fly from
one frame to the next (with appropriate phases), one can easily improvise for an
arbitrary length of time with only a model that contains a few interesting features
(see figure 3.4).

When controlled with the Wacom Tablet, data is continuously sent the synthe-
sizer that varies enough to consistently sound ‘alive’. Articulations are straightfor-
ward and natural; a very realistic vibrato is produced by moving the stylus in a
circular motion around a desired pitch. Sophisticated melodies can be created with
more ease due to the pianoroll visual aid.

Without using display lists, PyOpenGL is too slow to interactively modify partial
tracks, and as such it is difficult to improve interactivity of the sound representations
presented in this thesis. If the visualization is computed in real-time, it is possible
to visualize permanent data modifications, a feature desirable of an interface for
music composition. Yet, in this implementation, computing the sonogram visual-
ization requires about 50 percent CPU usage while computing the feature-based
representation requires about 50-100 percent, depending on the frame resolution.
Both methods could most surely be optimized, yet the largest optimization would
be a port to C++. As the PyGame code is a direct wrapper around SDL11, the
structure of the C++ code would be nearly identical as the prototype in python.

5.3.2 Synthesis Improvements

The quality of synthesis is in general quite good if the data it is synthesizing is
accurate. However, many problems are introduced by sounds that are harder to
analyze (and would probably create good music material).

11SDL: http://www.libsdl.org/

http://www.libsdl.org/
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One of the largest problems discovered during this thesis is that sporadic partials,
ones that are born and die repeatedly, cause problems when using a spectral envelope
for modifications. The problem arises mainly when trying to interpolate between
frames, which allows for one to manipulate a much smaller section of the sound
with more expression. However, the spectral envelope interpolation (pre-computed
during the analysis phase) does not take into account partial track interpolation,
causing partials that would otherwise ramp into an audible amplitude to start with
the amplitude of the spectral envelope. An obvious solution, though undesirable,
is to compute the envelope in real-time, before any modifications are performed to
the data. Another solution is to improve the data through better post-processing
techniques, like the methods mentioned in section 2.1.2.

5.3.3 Manipulation Experiments

The goal of this thesis was to define and create a real-time synthesizer that stream-
lined the experimentation of spectral modifications, allowing the user to test the
effectiveness of effects interactively with both their ears and eyes. In the end, the
evaluation most effective will be undergone throughout the process of implementing
and testing new modifications, and in attempting combine them to create higher
level manipulations. Within the time span of this thesis, there was not enough time
to warrant this full evaluation, although preliminary experimentation is described
here.

Bar far the largest gain from this system is an improved ability to transpose any
harmonic data with pitch accuracy. This is due to the feature-based representation,
in which the fundamental frequency is mapped to a visual pianoroll in the MIDI
scale. Pitch control is a fundamental manipulation that showed promise when con-
trolled with the continuous Wacom Stylus, yet difficult to master without this visual
aid. Early on, pitch was sometimes delegated to a MIDI keyboard in order to stay
in tune, although it was clear that much of the expression that the stylus contained
when simultaneously controlling pitch and dynamics was lost. With the higher-level
display of pitch and only a short time practicing melodies within a given scale were
achievable with decent accuracy and rhythmic control. After more practice, it seems
highly likely that melodies will be controllable with more expression by modifying
the data and still maintaining precise control of the pitch.

The modification changing the amplitude of all the even harmonics is most
effective in real-time. It easily allows the sound to become more or less ‘hallow’,
while otherwise maintaining all timbrel characteristics. One experiment has been in
controlling this parameter with a Low Frequency Oscillator (LFO), which modulates
the amplitude of even harmonics with variable speed and depth. This and similar
mechanisms (such as a [psuedo]randomizer) are quick and easy to build in Pd with
pre-designed abstracts. The first attempt turned out less effective than desired;
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if the modulation is two fast or strong, it sounds like one copy of the original is
synthesized an octave higher in frequency.

Concerning the method of exposing some envelope modifications, such as tilt or
variation, the current implementation is quite tedious. For every type of contortion,
such tilting or shifting, the following is necessary:

• a function in libsms is added to libsms

• additional members are added to the modify structure handed to the main
modify function, for turning on/off the modification and controlling it

• functions are added to smssynth∼ source code to receive the structure’s
parameters

• message commands are added in a Pd patch to send the values in real-time
to both smssynth∼ and over the network to python

• functions are added in python for dealing with the parameters and a binding
is made for this function

As the number of possible ways to modify an envelope are quite limitless, this
begins to be a repetitive and inefficient method of adding new modifications when
the idea arises. An alternative could be to use a Pd array as a filtering function
and then interpolate the original with this12. Then, one could easily implement var-
ious types of ‘filtering envelopes’ directly in Pd without the need for compilation.
Yet this method is more complicated in making sure that modifications are intro-
duced smoothly in time, an important requirement for the real-time manipulations
suggested here.

On the other hand, the ability to shift the envelope while retaining its shape is a
powerful effect for both sinusoidal and residual components. The sound is noticeably
disconnected from the original when doing this, yet not in an abrupt or unpleasant
manner. By linearly interpolating frequency bins of the spectral envelope, it is
possible to introduce the effect in a more subtle manner.

Sadly, reducing the harmonicity of a sound with the rudimentary methods shown
in 3.1 normally result in something less pleasant than the original, explaining why
acoustic instrument designers strive to create their instruments as harmonic as pos-
sible. Manipulations involving a modification to harmonic locations will probably
need to rely more heavily on acoustic instrument analysis and physical modeling
techniques in order to reposition harmonic locations without reducing the quality

12 smssynth∼ can already use spectral envelopes from a secondary file in a simple, real-time
method of ‘morphing’ (see 3.1.3), although this concept of manipulation is outside the scope of
this thesis
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of the data. It did seem, however, that quickly adjusting the inharmonic parame-
ters, either the deviance or ratio, from very extreme back to the original at a fast
rate, produced the pleasant effect of an electronic sound converging into something
meaningful. Although this was not the original manipulation intended, it may be an
viable tool for expressing some musical ideas, especially in combination with other
effects.



Chapter 6

Conclusions and Future Prospects

Designing experimental manipulations of spectral data is both rewarding and frus-
trating. Sometimes, one can create sounds that are new yet familiar at the same
time, one can apply new ideas to existing sounds and thereby explore music creation
with a new avenue. Other times, the resulting sound is hideous and abrupt and one
wishes only to resort back to the timbres of acoustic instruments that we have come
to love.

The interface presented in this thesis shows great potential in the ability to
search and explore new sounds in the form of spectral data. The next step is to use
the instrument for an extended time, to become familiar with the available manip-
ulations and learn how to combine their effect in order to improve the dynamics of
the instrument.

Many improvements can be made to the feature-based display of SMS data in
order for the image to make a closer correspondence to what one hears when travers-
ing that section of the sound. These improvements will also require experimentation
in both visual programming and using the instrument.

Many other directions can be taken from here as well, starting with the tools
created in order to efficiently synthesize spectral data in real-time. An interface
for real-time analysis of sounds, using visual aids and smsanal could lead to new
possibilities in live performance with SMS techniques.

A Wacom Tablet provided for natural control of the frame-based SMS data, as
it allows one to easily navigate the time axis in an intuitive way. Yet, as the system
still suggests the use of a visual aid in order to understand what sounds will be
created beforehand, a graphics tablet could further couple the data, sound, and
visualization. As of this writing, graphics tables do not offer control mechanisms
comparable to the tablet currently used, such as precise X/Y location, pressure,
and tilt. Until then, separating the controller and visual is necessary.

The sound representations introduced here for interactive navigation of spectral
data could also make great use in music composition, improving the visualization
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of computer-aided composition. The visuals are both informative to the viewer and
computer, creating a link between the two paradigms that has become separated in
electronic music composition. Compositional prospects of the techniques introduced
in this thesis would also improve if methods were created for visualizing permanent
data editing. As of this writing, doing so forces a complete redraw of the OpenGL
display lists.

The ability to edit the SMS data in real-time would be a valuable tool for
both creating new sounds and improving the analysis data in general. Real-Time
editing would further make the system presented here well-fit for composition, as
modifications can be organized in time to create a larger work. In retrospect, it is
necessary to design an interface for efficient exploration in order to know what is
possible. Thereafter, interesting avenues are easier to recognize and pursue.



Appendix A

Sound Examples

This section displays some example analysis data and visual representations used
by the instrument presented within this thesis. Information about the sound, its
analysis, and screenshots of the graphical interface are provided here, while the
original/synthesis sound files and resulting SMS files are online at:
http://mtg.upf.edu/people/eakin?p=Examples

This web address also contains links to video examples of instrument manipulations,
along with information regarding choices and retrospect. While the demonstrations
are not very musical in themselves, they present the instrument at its earliest stage
of usage, when it is still the most experimental.

In all but the first example in this appendix (the soopastar sample used through-
out this work), there is a main screenshot that shows the currently synthesized frame
data on bottom and the primary view of the entire sound (based on spectral fea-
tures). The other images below are alternative views of the entire sound as explained
in section 5.2.4.

A.1 Singing Voice

Throughout this thesis I have used the same singing voice sample almost exclusively,
which is also the sample file used within the example scripts included in libsms. It
originates from the Freesound Project, with the following address:
http://www.freesound.org/download/4228/4228_NoiseCollector_soopastar11.

wav

I have renamed it to ‘soopastar’ for the use within this context, but it is other-
wise unaltered. Images of the visual interface when using this file are in 5.4. I
particularly like this sample because it has many fluctuations in most of the spec-
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tral features that I use within this thesis, while at the same time it is a very ordinary
sample. There is a video example online in which I experiment with shifting, tilting,
and varying the sinusoidal spectral envelope while performing with the sample.

SMS header information:

smsHeader:

nFrames : 912

iFrameRate : 300

nTracks : 60

nStochasticCoeff : 128

iFormat : harmonic

iStochasticType : approx

nEnvCoeff : 128

iMaxFreq : 12000

iEnvType : fbins

iSamplingRate : 44100

text_string: >

created by smsAnal with parameters: format 0, soundType 0,

analysisDirection 0, windowSize 4.00, windowType 2,

frameRate 300, highestFreq 12000.00, minPeakMag 0.00, refHarmonic 1,

minRefHarmMag 30.00, refHarmMagDiffFromMax 30.00, defaultFund 100.00,

lowestFund 50.00, highestFund 1000.00, nGuides 100, nTracks 60,

freqDeviation 0.45, peakContToGuide 0.40, fundContToGuide 0.50,

cleanTracks 1, iMinTrackLength 40,iMaxSleepingTime 40, stochasticType 1
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A.2 Ocarina Note

An ocarina note with slight fluctuation in amplitude and pitch, lasting 1.5 seconds.
There was no fundamental frequency located in the beginning of the file, an error
during analysis. This section is only softer than the data following immediately
afterward and is unnecessary to perform with the data as an instrument.

Notice the residual spectral centroid (bottom of the main figure) is varying from
orange to red consistently while the residual amplitude stays the same. This may
be an important characteristic of this type of sound.

SMS header information:

smsHeader:

nFrames : 447

iFrameRate : 300

nTracks : 60

nStochasticCoeff : 128

iFormat : harmonic

iStochasticType : approx

nEnvCoeff : 128

iMaxFreq : 12000

iEnvType : fbins

iSamplingRate : 44100

text_string: >

created by smsAnal with parameters: format 0, soundType 0,

windowSize 3.50, windowType 2, frameRate 300, highestFreq 12000.00,

minPeakMag 0.00, refHarmonic 1, minRefHarmMag 30.00,

refHarmMagDiffFromMax 30., defaultFund 100.00, lowestFund 50.00,

highestFund 1000.00, nGuides 100, nTracks 60, freqDeviation 0.45,

peakContToGuide 0.40, fundContToGuide 0.5, cleanTracks 0,

iMinTrackLength 40,iMaxSleepingTime 40, stochasticType 1
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Figure A.1: Ocarina Example
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A.3 Saxophone Melody

This saxophone sample originates from the Freesound Project with the following
web address:
http://www.freesound.org/download/46798/46798_uauaua_mec7.wav

It consists of stoccato notes within a major scale followed by a long vibrato note,
as depicted in the main view that contains a pitch mapping to MIDI pianoroll. The
spectral centroid of the saxophone is quite high, close to that of the residual.

There is a video online that shows an attempt at modifying harmonic locations
by adjusting the ratio to the fundamental while also modifying the even harmonic
amplitudes to make the sound more ‘hollow’.

SMS header information:

smsHeader:

nFrames : 1672

iFrameRate : 300

nTracks : 60

nStochasticCoeff : 128

iFormat : harmonic

iStochasticType : approx

nEnvCoeff : 128

iMaxFreq : 12000

iEnvType : fbins

iSamplingRate : 22050

text_string: >

created by smsAnal with parameters: format 0, soundType 0,

analysisDirection 0, windowSize 3.50, windowType 2,

frameRate 300, highestFreq 12000.00, minPeakMag 0.00,

refHarmonic 1, minRefHarmMag 30.00, refHarmMagDiffFromMax 30.00,

defaultFund 100.00, lowestFund 50.00, highestFund 1000.00,

nGuides 100, nTracks 60, freqDeviation 0.45, peakContToGuide 0.40,

fundContToGuide 0.50, cleanTracks 0, iMinTrackLength 40,

iMaxSleepingTime 40, stochasticType 1

http://www.freesound.org/download/46798/46798_uauaua_mec7.wav


80 APPENDIX A. SOUND EXAMPLES

Figure A.2: Saxophone Example
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A.4 Shakuhachi

The shakuhachi sound example is a section of the file used in the ICMC 2000 Anal-
ysis/Synthesis Comparison section [Wright et al., 2001]. I received the sample from
the following website:
http://archive.cnmat.berkeley.edu/SDIF/ICMC2000/sounds.html

The section I chose to use contains first about two seconds of a subtle glissando
from B-flat to C, then short fluctuation characteristic to the shakuhachi, followed by
a vibrato on C for two and a half more seconds. Note that these sections are much
easier to distinguish in the feature-based representation rather than the sonogram
plot.e

The online example video using this sound is an attempt at playing a folk song
while using the fluctuation in the middle of the file for accentuation.

SMS header information:

smsHeader:

nFrames : 1388

iFrameRate : 300

nTracks : 60

nStochasticCoeff : 128

iFormat : harmonic

iStochasticType : approx

nEnvCoeff : 128

iMaxFreq : 12000

iEnvType : fbins

iSamplingRate : 44100

text_string: >

created by smsAnal with parameters: format 0, soundType 0,

analysisDirection 0, windowSize 3.50, windowType 2,

frameRate 300, highestFreq 12000.00, minPeakMag 0.00,

refHarmonic 1, minRefHarmMag 30.00, refHarmMagDiffFromMax 30.0,

defaultFund 100.00, lowestFund 50.00, highestFund 1000.00,

nGuides 100, nTracks 60, freqDeviation 0.45, peakContToGuide 0.40,

fundContToGuide 0.50, cleanTracks 0, iMinTrackLength 40,

iMaxSleepingTime 40, stochasticType 1

http://archive.cnmat.berkeley.edu/SDIF/ICMC2000/sounds.html
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Figure A.3: Shakuhachi Example
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A.5 Bell

This bell sample is included with Pd as an example for additive analysis and syn-
thesis within the patch “doc/4.data.structures/14.partialtracer.pd”. Here it is an
example of using an inharmonic sound within this system for interactive navigation
and manipulation. Note that the feature representation which makes use of the first
harmonic as fundamental frequency is not help for describing the sound. As such,
either the inharmonic display (in the main window here) or the sonogram can be
used.

There are video examples of using the bell sound as a melodic instrument online;
one using a MIDI keyboard for discrete pitch control, and the other using the tablet
stylus as in other examples.

SMS header information:

smsHeader:

nFrames : 1056

iFrameRate : 300

nTracks : 60

nStochasticCoeff : 128

iFormat : inharmonic

iStochasticType : approx

nEnvCoeff : 256

iMaxFreq : 12000

iEnvType : fbins

iSamplingRate : 44100

text_string: >

created by smsAnal with parameters: format 1, soundType 0,

analysisDirection 0, windowSize 3.50, windowType 2, frameRate 300,

highestFreq 12000.00, minPeakMag 0.00, refHarmonic 1,

minRefHarmMag 30.00, refHarmMagDiffFromMax 30.00, defaultFund 100.00,

lowestFund 50.00, highestFund 1000.00, nGuides 100, nTracks 60,

freqDeviation 0.45, peakContToGuide 0.40, fundContToGuide 0.50,

cleanTracks 1, iMinTrackLength 40,iMaxSleepingTime 40,

stochasticType 1
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Figure A.4: Bell Example
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