

Violin Driven Synthesis from Spectral Models

Greg Kellum

Master thesis submitted in partial fulfillment of the
requirements for the degree:

Master in Information, Communication, and Audiovisual Media Technologies

Supervisor: Xavier Serra

Department of Information and Communication Technologies
Universitat Pompeu Fabra

Spain
September 2007

 2

Table of Contents

ABSTRACT 3

ACKNOWLEDGEMENTS 4

I. INTRODUCTION 5

II. OVERVIEW OF THE ACOUSTICS OF THE VIOLIN 9

A. The effect of bowing parameters on tone 9

B. Transients 14

III. FEATURE EXTRACTION FROM THE VIOLIN’S SOUND 16

A. Pitch detection algorithm 16

B. Spectral domain features 21

C. Bow Changes 29

D. Transient detection 31

VI. SPECTRAL MODELING SYNTHESIS APPLICATION 46

A. Background 46
1. STFT 47
2. Sinusoidal Models 47
3. Sinusoidal plus Residual Modeling 48

B. A Spectral Modeling Synthesizer 49
1. Input Sources 50
2. SDIF and XML Database 52
3. Data Management 53
4. Interpolation 54
5. Synthesis 55

V. CONCLUSIONS AND FUTURE WORK 56

VI. BIBLIOGRAPHY 57

 3

Abstract

The aim of this project is to explore the use of the violin as a controller

for real time synthesis. In this document acoustical features unique to

bowed strings are identified which are relevant for controlling sound

synthesis. Algorithms are given for extracting these features using both

time-domain and spectral domain-based techniques. And a real-time

synthesizer is presented that uses these feature descriptors to control a

sample-based synthesizer. In particular an application scenario is

presented where a violin is used to control synthesis from a spectral

model of a guitar being played with an ebow.

 4

Acknowledgements

During my stay at the MTG, I had the luck to be immersed in an

environment which encourages unique synergies by bringing together

many researchers with different research interests to work together side

by side on projects in the field of music technology. I am grateful to all of

the members of the group for making the most of this opportunity

through their openness, supportiveness, and generosity towards one

another.

In particular I would like to thank Xavier Serra, my supervisor, for

incorporating me into the group and for the direction he gave to this

project. I would like to thank Alfonso Perez for his advice regarding violin

acoustics. I would like to thank Pau Arumi and the other members of the

CLAM project for their help in realizing a spectral synthesis application

using the CLAM framework, and I would like to thank Jordi Bonada for his

advice about how to overcome many of the practical problems one

encounters when creating a real-time spectral modeling synthesis

application. Finally, I would like to thank Google, Inc. for their financial

support.

Barcelona, Spain

September 3, 2007

Greg Kellum

 5

I. Introduction

This work was motivated by the author’s frustration with existing

tools for composing music using audio samples. Having spent several

years using applications such as AudioSculpt, Melodyne, RTCmix, and

CSound for transforming samples in atypical manners, the author became

increasingly dissatisfied with the drawbacks of working with off-line

sample manipulation applications. In particular such applications are time

intensive. They do not allow one to easily try out new ideas or variations

on old ideas. They constrain one’s ability to make global changes in a

piece with regards to key or tempo. And they simply are not very fun to

work with; the process of making music with such applications is in no

way comparable to playing a musical instrument.

Nonetheless, such applications are very powerful. For those

readers who are unfamiliar with any of the aforementioned applications,

put simply, they expose more of the content of audio samples so that

users can manipulate samples in a manner befitting their content. They

allow one to isolate instantaneous moments of a sound and extend them

or to isolate particular aspects of a sound and strip away other non-

essential parts. They allow one to build new composite sounds from

constituent parts by adding, morphing, filtering, or convolving one sound

with another. In short they allow one to sculpt sounds that one has

imagined from other sounds that one has found manifested in reality.

For this reason the author began to look for ways to bring the

power of these techniques into real-time by looking on one hand for

controllers that offer more degrees of freedom than typical MIDI

controllers and on the other hand for real-time synthesis techniques that

allow one to manipulate samples based on their content. After a couple

of years of experiments with alternative controllers on one hand such as

virtual reality gloves, joysticks, augmented percussion instruments, etc.

and granular synthesizers and phase vocoders on the other hand (Kellum,

 6

2005), the author came to the idea underlying the project described in

this document: to use one of the most expressive musical instruments –

the violin – as a controller for one of the most powerful sample modeling

techniques – sinusoidal plus residual modeling.

Fortunately, there have been other projects of a similar nature,

which the author was able to learn a great deal from and which have

influenced the direction of this project.

In 1998 Wessel et al presented a real time audio transformation

technique, which allows audio material to be reconstituted with an

arbitrary pitch, duration, and spectral evolution given control inputs of

pitch and volume. After performing a sinusoidal analysis of some

performances, Wessel used various machine-learning techniques, e.g.

neural networks, to learn the relationships between control parameters

and analysis frames so that when given a set of control inputs during a

performance the best fitting analysis frame could be selected for

resynthesis regardless of its temporal position in the analysis file.

Around the year 2000, the company, Antares, released an audio-

driven synthesizer named Kantos. Antares also makes the popular pitch

correction software, Autotune, and Kantos presumably uses the same

underlying pitch tracking algorithm. Although Kantos’ pitch tracker

occasionally makes octave errors and is not safe in the face of unexpected

noise and other transients, it nonetheless works surprisingly well, i.e. well

enough to use in a concert setting. The results of the monophonic pitch

analysis are used to control a wave-table based synthesizer. This type of

synthesizer loops a short segment of audio material indefinitely, varying

the pitch and amplitude of the loop in response to changes in the control

inputs. The sound produced by such a synthesizer is oftentimes so

uniform that it can quickly become uninteresting, and the fact that Kantos

never was successful as a product is likely due to this rather primitive

synthesizer. Kantos has been discontinued by Antares.

Zeta, the well known maker of electric violins, has also created a

hardware based, audio driven synthesizer for use with their violins named

 7

the Synthony II MIDI Processor. According to the product literature, it is

a sample based synthesizer capable of playing instrument sounds

including drums, horns, woodwinds, pianos, guitars, basses, and special

effects. Yoo and Fujinaga (1998) evaluated the Synthony II by

comparing it to two other pitch trackers, and they mentioned only that it

had the highest latency of the pitch trackers they tested.

The project with perhaps the single most relevance to ours was

Tristan Jehan’s master project done in collaboration with Bernd Schoner

at MIT’s Media Lab (Jehan, 2001). Jehan developed an audio driven

synthesizer, which extracts perceptual information from an audio stream

including pitch, loudness and brightness and uses it to control a spectral

model based synthesizer. Although Jehan’s system was designed to be

usable with an arbitrary audio source, it was showcased in a performance

where it was played by a violinist. Jehan’s system is notable for its use of

sophisticated statistical techniques in mapping the control source to the

synthesis engine. Jehan makes use of a probabilistic inference

framework, cluster weighted modeling (Schoner, 2000), to predict the

timbre of the synthesizer from the control inputs. Jehan’s work was

certainly an advance, but some users have found his system to be difficult

to control in a truly perceptually meaningful manner. When used with a

violin, the brightness values extracted by his system seem to be little

better than noise, and the pitch tracker does not handle transients very

well. These problems derive from Jehan’s underlying assumption that the

system should be usable with an arbitrary audio source. A model of

brightness or pitch that works well with one instrument will not

necessarily work well with another, and by trying to accommodate an

arbitrary audio source, one is lead to use feature descriptors that cater to

the lowest common denominator of audio features. However, in all

fairness, Jehan mentioned his intention to develop new and better audio

descriptors for his system in the conclusion of his thesis and regardless of

whether or not he has done so, he certainly recognized that improving his

audio descriptors would improve the performance of his system.

 8

That concludes our review of the literature related to audio-driven

synthesis. In the first section of this document a review of the literature

on violin acoustics is made in which the acoustical properties of the violin

are presented which are relevant to audio driven synthesis. In the

following section methods are presented for extracting the pitch,

amplitude, brightness and bow direction of the signal as well as for

classifying individual frames as stationeries or transients. Within this

section the subsection on pitch detection evaluates the efficacy of the

existing Yin algorithm (Cheveigne, 2001) for estimating the pitch of the

bowed strings while the subsections on brightness estimation and

stationary / transient classification present primarily new methods

developed by the author. Subsequently, a real-time spectral modeling

synthesis application for continuous control sources is presented. This

synthesizer uses the existing CLAM implementation of spectral modeling

synthesis (Amatriain et al, 2006) but adds some important extensions to

this framework, which are necessary for creating a general musical

instrument.

 9

II. Overview of the Acoustics of the Violin

The violin is the most wonderful of instruments, because it

possesses more subtleties of color and shading than all other instruments.

Rimsky Korsakov

In the following section on violin acoustics, the manner in which

bowed strings vibrate is described. The relationship between bowing

parameters and the spectral attributes of the produced sound wave is

discussed, and the transition that bowed strings undergo to arrive at

steady state motion from rest is explicated.

A. The effect of bowing parameters on tone

The violin is one of the most difficult musical instruments to

understand in terms of acoustics. A bowed string is constantly losing

energy through its dissipation into sound and heat, yet the bow is

constantly providing additional energy, which ideally serves to keep the

string vibrating in a stable manner. Small changes in the manner in

which the violin is bowed can lead to sudden and unexpected changes in

the manner in which the string vibrates causing the string no longer to

vibrate in a stable manner. This marks the bowed string as a non-linear

system, and non-linear systems have traditionally been difficult to model

(Woodhouse and Galluzzo, 2004).

This fact partially explains why it takes so many years to learn to

play violin with any great proficiency. One of the skills that violinists

acquire over years of practice is the ability to consistently induce

Helmholtz motion in the string despite changes in bow pressure and bow-

bridge distance. (The concept of “bow pressure” is also oftentimes

referred to as “bow force” within the literature on violin acoustics. I prefer

the term “bow pressure” over “bow force” and will use it consistently

throughout this essay.) Although a vibrating violin string appears to the

 10

naked eye to move in the same manner as a vibrating rubber band, i.e.

the entire string appears to move back and forth as a single arc, when

viewed with time-lapse photography or examined using other techniques,

Hermann von Helmholtz discovered in the late 19th century that in reality

in any given instant the string forms a triangle with the bow. Which is to

say, that the string divides into two parts, which meet at a peak called

the Helmholtz corner, and over time this peak runs up and down the

length of the string. What one perceives as an arc-like shape is in reality

the envelope of the movement of the Helmholtz corner as it traverses the

string.

Figure 1 Bowed string motion as it appears to the naked eye

When the Helmholtz corner is moving from the violinist’s finger

towards the bow, the string sticks to the bow; the friction between the

string and the rosin on the bow causes the string to be dragged by the

bow. But when the Helmholtz corner crosses the bow and moves towards

the bridge, the string slips and moves in the opposite direction of the

bow. The alternation between these two types of motion constitutes

Helmholtz motion, which is the type of motion that violinists almost

exclusively sought to achieve before the birth of modern classical music.

1. Sticking Motion 2. Sticking Motion 3. Sticking Motion

4. Transition to Slipping
Motion

5. Slipping Motion 6. Slipping Motion

Figure 2 Bowed string in Helmholtz motion

 11

There are, however, other manners in which the string may move. If

the violinist uses very little bow pressure when playing, two Helmholtz

corners can form rather than one, causing a type of motion referred to as

double-slipping motion. The resulting sound wave has a different

waveform from the wave produced by Helmholtz motion, but it possesses

the same pitch. As a wave produced in this manner lacks the energy to

fully excite the resonances in the body of the violin, the resulting sound

wave sounds hollow and uninteresting, and for this reason violin teachers

train their students to avoid bowing in this manner.

1. Slipping Motion 2. Transition to Sticking

Motion
3. Sticking Motion

4. Sticking Motion 5. Sticking Motion 6. Transition to Slipping

Motion

Figure 3 Bowed string in double sticking motion

On the flip side of the coin, it is also possible to deviate from

Helmholtz motion by applying too much bow pressure as well. In this

case the string oftentimes sticks to the bow even when the Helmholtz

corner crosses the bow while moving towards the bridge. The resulting

sound is extremely rough and noisy and borders on aperiodicity.

The amount of bow pressure alone, however, does not fully

determine whether a string will settle into Helmholtz motion or one of the

other alternatives. The distance of the bow from the bridge of the violin

is also a deciding factor. It has been shown if a string is length L and the

distance of the bow from the bridge is βL, then the maximum allowable

bow pressure to achieve Helmholtz motion is proportional to β-1 and the

minimum allowable bow pressure is proportional to β-2. As originally

suggested by John Schelling, this state of affairs can be represented

 12

schematically on a logarithmic scale as follows:

Figure 4 Schelling diagram displaying the range of possible bow pressures
and bow bridge distances that produce Helmholtz motion.

The violinist may control the brightness and the amplitude of a

violin tone independently (within bounds) by his choice of bow pressure,

bow bridge distance, and bow velocity (Askenfeld 1986). Increasing the

bow pressure for instance while holding the other parameters constant

produces a brighter sound. This increase in upper frequency content

results from the fact that as the Helmholtz corner travels up and down

the string it is rounded off as it approaches the string’s end points. And

when the corner passes under the bow again before moving towards the

finger board, it is resharpened, the extent of the resharpening depending

on the amount of bow pressure being applied (Cremer, 1984); the

sharper the corner, the stronger the higher partials will be in the resulting

sound wave. This brightening of the tone will also cause it to be

perceived as louder although the amplitude of the sound wave is

essentially the same, due to the fact that the human auditory system is

more sensitive to higher frequencies. Decreasing the bow bridge distance

will also in and of itself make the tone brighter, because the spectrum of

 13

the produced sound wave has a continuous number of partials up to an

order which is proportional to the ratio between the length of the string

and the bow-bridge distance (Benade, 1990). Oftentimes, these two

effects combine, because as one decreases the bow bridge distance, one

must necessarily increase the bow pressure to maintain Helmholtz

motion. And therefore, as a general rule, one may say that bowing closer

to the bridge will increase the brightness of the tone. The amplitude of

the produced sound wave on the other hand is principally affected by the

velocity of the bow. The amplitude principally derives from the distance

that the string is pulled by the bow, and the extent of this distance is

directly proportional to the bow’s velocity. The bow bridge distance,

however, plays a role in determining the range of possible amplitude

values, as the maximum possible amplitude of a string’s vibration

decreases as this distance grows (Helmholtz, 1885). These relationships,

known as Helmholtz’s classical steady-state theory, can be formally

stated as follows. The peak displacement amplitude û at a point x along a

string with length L and fundamental period T0 is given by:

where β = (xB / L) is the fractional distance from the bridge to the bowing

point. As one can see from this equation, û is proportional to the ratio vB

/ β. When understood in physical terms, vB / β corresponds to the step in

relative velocity between bow and string when switching between sticking

and slipping (Askenfelt, 1988) This mathematical formulation merely

serves to expand upon, however, what was already previously elucidated:

that the bow velocity and bow bridge distance are the violinists main

control over the peak amplitude.

 For the sake of completeness, let us briefly look at two further

parameters that a violinist has at his disposal: the bow position, i.e. the

point of contact between the bow and the string, and bow tilt. Both of

 14

these parameters affect the range of bow pressures that a violinist may

apply. It is only when the bow position is close to the frog that the

violinist may exert the maximal bow pressure whereas the minimal bow

pressure can be applied most safely near the tip of the bow. Tilting the

bow similarly affects the range of possible bow pressures by reducing the

width of the contact area between the bow hairs and the string from 10

mm to only a few millimeters; this reduced contact area allows violinists

to play with very little bow pressure (Askenfelt, 1988). Both of these

parameters can, therefore, be used to affect the brightness of the tone

produced by the violin.

B. Transients

 In the previous section we discussed the motion of a string when it

is in a steady state, but before the string arrives at a steady state, there

is a transient period where the motion of the string is typically aperiodic.

This transient period can vary in duration and character depending on the

style of bowing used as well as other factors, but three categories of

transients predominate: (1) Periodic slipping of the string from the very

beginning, giving periods equal or close to the period length of the

Helmholtz motion (2) Multiple slips, where more than one slipping

interval occurs during each fundamental period and (3) Prolonged

irregular periods characterized by raucous sounds oftentimes with no

clearly definable pitch (Guettler, 2002). The first category of transition

proceeds to steady-state motion as follows:

When the bow first starts to move across the string, the string is

pulled outwards. The string then slips, and two waves radiate outward

from the bow. The first slip ends after the second wave passes the bow

and moves towards the fingerboard. These waves both then reflect off of

the finger and move in the direction of the bridge. The first wave has the

wrong sign to cause slipping, and it instead reflects off the bow rather

 15

than the bridge. The second wave causes the bow to begin slipping which

continues until it has been reflected off of the bridge and once again

crosses the bow. As the second wave traveled a longer distance than the

first, these two waves are now farther apart. These waves then continue

to move in this manner until one of the waves eventually overtakes the

other, and the string settles into Helmholtz motion (Woodhouse, 2004).

1. Bowing begins 2. Waves move towards

fingerboard
3. First wave reflects off
fingerboard

4. First wave reflects off of
bow

5. Second wave reflects off
bridge

6. Waves move towards
fingerboard (again)

Figure 5 Bowed string in transient phase

This manner of transient can last as little as 5 milliseconds before

the string settles into steady Helmholtz motion. Surveys have shown,

however, that transients of this nature can last up to 50 milliseconds and

still be deemed acceptable by professional violinists (Guettler, 2002). The

second category of transition – multiple slips – can last up to 100

milliseconds with the approbation of professional violinists, but

professional violinists have much less patience with the third category of

raucous transients.

 16

III. Feature Extraction from the Violin’s Sound

In this section algorithms are presented for extracting the pitch,

amplitude, brightness, and bow direction of the violin’s signal as well as

for classifying whether a given frame value is a stationary or transient.

A. Pitch detection algorithm

 Pitch is that attribute of auditory sensation in terms of which sounds

may be ordered on a scale extending from low to high (ANSI 1973).

Pitch tracking is an area of music technology that has been worked

on by countless researchers, but nonetheless, research in this area

continues unabated with new articles being published every few years

detailing recent advances. Part of the reason for this continued activity is

the ambiguity inherent to the concept of pitch itself. Although the ANSI

definition given above seems reasonable for a great number of sounds,

there are more difficult cases where a sound can possess formants that

suggest a pitch other than that of the sound’s period, and when

confronted with such sounds, some listeners may indicate the periodic

pitch to be “the pitch,” while other listeners will indicate the formant’s

pitch (also known as the spectral pitch in Terhardt 1974). In the light of

this and other difficult cases, pitch has been revealed to be a

multidimensional concept. And as a result, when one speaks of pitch

tracking algorithms, one must be clear about what model of pitch one has

in mind, because different pitch tracking algorithms are underlain by

different simplifying models of pitch.

With regards to the violin, one can safely say that the period of the

signal yields the pitch. This implies that either the time-domain technique

of auto-correlation or spectral domain techniques employing pattern

matching would be suitable for extracting the violin’s pitch. The author

 17

began by performing an informal survey of these techniques using Alain

Cheveigne’s Yin time-domain autocorrelation method (Cheveigne et al,

2001), Tristan Jehan’s spectral-domain maximum likelihood estimator

(which was derived from Miller Puckette’s work) (Jehan, 2001), and

Maher and Beauchamp’s spectral-domain two-way mismatch algorithm

(Maher and Beauchamp, 1993). This survey showed that the spectral

domain techniques had a much higher error rate for the violin than auto-

correlation. This was likely due to the fact that the violin has strong

resonances in the body, which made it difficult for the spectral domain

techniques to identify the spectral peaks, which are harmonics of the

fundamental. In addition to this informal survey, a much more

comprehensive evaluation of various pitch tracking algorithms was

performed by the author of the Yin algorithm, Alain Cheveigne, using a

database of speech recorded together with a laryngograph signal, and

this survey showed Yin to have error rates that were three times lower

than competing methods (Cheveigne, 2001). The auto-correlation

method also offers the additional advantage of providing a value for the

aperiodicity of the signal, which is useful for identifying transients that

occurred during bow changes. So, for these reasons the author

undertook to develop a real-time version of the Yin algorithm in C++

using Cheveigne’s existing, publicly available matlab version as a

reference.

1. The Yin algorithm

 Yin is classified as an auto-correlation algorithm. Auto-correlation is

a method of finding the period of a signal by multiplying the signal with

time-shifted versions of itself. The autocorrelation function of a discrete

signal xt may be defined as

 18

where rt(t) is the autocorrelation function of lag τ calculated at time

index t, and W is the integration window size. For a perfectly periodic

signal, the autocorrelation function has a maximum at that lag, i.e. time-

shift, of the signal which corresponds to the period of the signal.

 Yin does not actually use the auto-correlation function, but rather a

function from the same family – the squared difference function.

Here we search for the smallest lag τ for which the function is zero, as a

perfectly periodic signal will always be zero when offset by its period or by

a multiple of its period.

 The squared difference is used in place of the auto-correlation

function due to the fact that the auto-correlation function handles

changes in the signal amplitude over the course of a single analysis

window poorly. If the signal increases in amplitude over an analysis

window, the peaks of the auto-correlation function will grow as the lag

grows rather than remaining constant. This causes the auto-correlation

function to skip over the peak corresponding to the period in favor of

larger peaks corresponding to larger lags. The squared difference

function is immune to this problem, as the changes in amplitude in an

analysis window affect all lag sizes equally.

 The results of the squared difference function are then further

refined by normalizing them with the cumulative mean in the following

manner:

 19

The primary benefit of normalizing the results of the squared difference

function is that it allows one to search for the first minimum that crosses

a certain given threshold rather than the absolute minimum of all the lag

values. It can happen that there is a dip in the signal (typically near a

period that is at an octave of the period’s frequency) that is deeper than

the dip of the period. Selecting a threshold value and choosing the

minimum of the first dip that crosses this threshold (or the absolute

minimum if none is found) reduces this type of error.

 Next, the results of the cumulative mean normalized difference

function are then further refined by parabolically interpolating near the

period to get a better estimate of the minimum. This noticeably improves

the accuracy of the period estimates for high frequency signals. And

finally, the signal is reexamined within a restricted range encompassing

different phase offsets of the period to obtain the final estimate

(Cheveigne, 2001).

a.) Accuracy of the algorithm

 When compared to other pitch detection algorithms by Cheveigne

using four speech databases, Yin was found to have the lowest error rate

of all methods. 99% of its estimates were accurate within 20% of the

ground truth value. 94% were accurate to 5%, and 60% were accurate

to 1%.

 The author further evaluated his own C++ implementation of Yin

using a database of eighty-seven violin samples where only the steady-

state portion of the signal was used. (The transient portion of the signal

as explained in the section on violin acoustics does not have a clear pitch,

and therefore, one should not expect any pitch tracker to accurately

identify its pitch.) In the initial evaluation Yin correctly identified the

pitch for 99.24% of the windows to within 1% of the ground truth. The

errors that Yin made were exclusively octave errors. When the author

more closely examined the recordings where Yin made detection errors, it

 20

became apparent that in those recordings which were of the E4 note the

violin’s E5 string had not been damped and the E5 string was ringing

sympathetically with the E4 causing the octave errors. The author

rerecorded the E4 samples, and in a subsequent evaluation Yin correctly

identified the pitch for 100% of the windows. This formal evaluation

confirmed the impression that the author had made during the informal

evaluation: for steady-state violin signals, the Yin algorithm does not

make prediction errors.

 One caveat, however, needs to be given for the above statement.

The signal provided to Yin must be loud enough to rise above the noise

floor. And as the violinist moves up the finger board of the violin shifting

from the lower positions to the higher positions, the maximum possible

amplitude of each note decreases as the string length decreases. This

means that notes played at higher positions tend to be softer, and

therefore, to get accurate pitch tracking results in these positions, one

may need to use a compression – limiter which unfortunately comes with

the drawback of decreasing the dynamic range of the violin.

b.) Performance Considerations

 Autocorrelation algorithms including Yin are computationally

expensive. The Yin algorithm as presented by Cheveigne requires n2

operations where n is the window size. There are, however, a variety of

methods to reduce the algorithms computational cost.

 Two methods for doing so were suggested by Cheveigne in

(Cheveigne, 2001). The first method involves using a recursive division

of powers algorithm similar in nature to that which underlies the FFT. The

second method involves using the FFT itself by implementing Yin as a

spectral domain algorithm. A third method not mentioned by Cheveigne

known as fast autocorrelation was implemented by the author (Middleton,

2003). In fast autocorrelation the results of the last autocorrelation pitch

estimate are stored, and the algorithm initially computes only the

 21

autocorrelation values in the immediate vicinity of the last value for the

next evaluation. If one of these values crosses the threshold value, then

it is used as the pitch value and the remaining autocorrelation values are

not computed, which saves a considerable number of CPU cycles. But if

none of the values in the immediate vicinity of the last estimate cross the

threshold value, then all of the remaining values are computed. This

method is possibly more efficient than those mentioned by Cheveigne,

but it comes with the drawback that a reliable value for the aperiodicity of

the signal cannot be computed, because in order to compute the

aperiodicity, the autocorrelation values for all of the lags of the window

are needed. Whether this drawback is important, however, depends on

whether the aperiodicity value is needed by a particular application.

B. Spectral domain features

 We would like to extract as much control information from the violin

as possible. As violinists make choices about the bow bridge distance,

bow pressure, bow tilt, and bow position in order to influence the quality

of the tone produced, we would like to use as much of this information as

possible to influence the quality of tone during the synthesis. As

mentioned earlier in the section on violin acoustics, adjustments to bow

bridge distance, bow pressure, bow tilt and bow position all affect the

brightness of the tone; the sound of the violin becomes brighter as the

bow pressure increases and / or as the bow bridge distance decreases.

Therefore, we would like to extract the brightness of the bowed string and

ideally represent it with a variable ranging from 0 – 1. But for this to be

possible, we will need to develop a descriptor for the brightness of a

bowed string that has a high correlation to the string’s brightness and a

small standard deviation.

 Oftentimes, the brightness of a signal is modeled by calculating the

spectral centroid of the FFT of the signal (Jehan, 2001). The spectral

 22

centroid can be understood as the center of gravity of the STFT; if the

STFT bins were to be split into two equally weighted halves, it is the point

where they would be split. It is defined as follows:

The spectral centroid given in this formulation does not, however,

do a very good job, of modeling the changes in brightness of a bowed

string that result from changes in the bow bridge distance and the bow

pressure, because changes in the mean spectral centroid values show

little correlation with changes in these bowing parameters. To prove this,

the author created a database of sixty violin notes consisting of fives

notes on each of the four strings being played three times with

progressively decreasing bow bridge distances and increasing bow

pressures and hence with progressively increasing brightness. He then

calculated the correlation factor between each set of three recordings of a

note and the spectral centroids of the STFTs of the three recordings. The

total mean correlation for the entire database was found to be -0.3435.

This implies that the spectral centroid tends to increase as the bow bridge

distance decreases, which is in accordance with the literature on violin

acoustics, but the correlation between the two variables is fairly weak.

The spectral centroid also has a fairly large standard deviation even when

the bowing parameters which have the greatest influence on brightness

are held constant and brightness does not change perceptibly. This

suggests that the source of the deviation lies elsewhere.

 23

Figure 6 Spectral Centroid for a single C4 note played on a Zeta violin

 Looking at the example spectral centroid in the figure above, the

source of this instability should be fairly obvious. There is a sharp spike

in the spectral centroid at the start of the note and at the end of the note.

During these periods the bowed string is in a transient phase, and the

motion of the string is highly aperiodic and noisy. As the spectral

centroid of noise is much higher than the spectral centroid of a bowed

string in Helmholtz motion1, when the string enters a transient stage, the

spectral centroid rises.

 We would like to separate changes in brightness that occur due to

changes in bow bridge distance and bow pressure from changes in

brightness that occur due to changes in the noiseness of the signal. In

order to do so, we need to limit the scope of the validity of the brightness

descriptor to Helmholtz motion alone, i.e. during transient portions of the

signal, the brightness descriptor need not be calculated. And during

Helmholtz motion, we need to calculate the brightness of the signal based

1 The spectral centroid of white noise is equal to half of the Nyquist
frequency, which for a sampling rate of 44,100 would be 11,025 Hertz.

 24

only on the changes in the sharpness of the Helmholtz corner as

described in the preceding section on violin acoustics.

 In order to follow changes in the sharpness of the Helmholtz corner

in the time domain, we need to follow changes in those peaks in the

frequency domain, which are multiples of the fundamental frequency.

Figure 7 The spectrum of an A4 note played on a Zeta violin with an illustration
of the peak selection algorithm used for calculating the centroid of the peaks. The
vertical black lines in the second graph denote multiples of the fundamental. The
peaks selected by the algorithm are topped with black asterisks, while the peaks
ignored by the algorithm are topped by red asterisks.

As shown in the figure above, we select the largest peaks of those

peaks which are close to a multiple of the fundamental frequency and

calculate their spectral centroid. When tested using the same database

used for the spectral centroid of the STFT, the correlation then climbs to -

0.84, which is a considerable improvement over the previous correlation

value, and the standard deviation falls significantly as well.

There is a difficulty, however, that comes with using the spectral

centroid of the peaks as a metric for brightness. The number of peaks

decreases as the fundamental frequency increases, and since there are

less peaks to use in the calculation of the peak centroid, the peak

centroid also decreases as the fundamental frequency increases (after

being normalized by dividing its value by that of the fundamental

frequency). It might be possible to define a function to normalize the

 25

peak centroid using either the fundamental frequency of the signal or the

number of peaks used to calculate the centroid, but one could also

perfectly well use another descriptor which would be unaffected by

changes in the number of peaks used to calculate its value.

Figure 8 The spectrum of an A3 and an A5 note played on a Zeta violin. As can be
seen, the A5 has significantly fewer peaks than the A3.

 26

Figure 9 The mean peak centroid values of each entire note. Each note was
played with three brightness values, and the three notes with their three
brightness values are shown connected by a line. The notes were color coded
by string. The blue asterisks represent notes played on the violin’s G string –
the lowest string. The red asterisks represent notes played on the violin’s D
string, the yellow asterisks notes on the A string, and the green asterisks notes
on the E string – the highest string. As can be seen from the graph, the peak
centroid falls as the fundamental frequency rises.

 Let us consider for a moment what form another descriptor for

tracking changes in brightness might take. As the brightness increases,

the magnitudes of the peaks to the right of the fundamental should

increase and possibly the total number of peaks might increase as well.

It stands to reason then that if one were to draw a line through the peaks

then the slope of this line should decrease as the brightness increases.

The descriptor just described is similar in nature to the descriptor

normally referred as the spectral slope (Alastair et al, 2004). However,

the spectral slope is usually calculated as the difference in energy

between the lower and upper halves of the spectrum. To avoid confusion,

the author will instead refer to slope of the line that passes through the

selected peaks as given by the least squares method (Weisstein, 2007) as

 27

the spectral peak slope.

Figure 10 The spectral peak slope of an A4 note played on a Zeta violin
with a small bow bridge distance and high bow pressure.

 The spectral peak slope does indeed prove to be more effective at

tracking the brightness than the spectral peak centroid. It yielded a

correlation value of -0.9613 which is a considerable improvement over

the correlation value of the spectral peak centroid and which is very close

to the ideal value of -1. And after scaling the slope to range from 0 – 1,

it had a standard deviation of 0.0387. The author attempted to further

reduce the standard deviation by applying sinusoidal modeling techniques

such as peak continuation across frames, but applying these techniques

only marginally improving the standard deviation while significantly

reducing the correlation. The author also tried different schemes for

weighting the peaks when calculating the slope, but he found that

weighting the peaks equally gave better results. The author found that

the following peak selection / slope calculation algorithm gave the best

 28

results: (1) generate the maximum number of peaks to be selected as a

function of the fundamental frequency so that as the fundamental

frequency increases the maximum number of peaks falls (2) for every

multiple of the f0 select the largest peak which is within a certain

threshold distance from the multiple’s location where the threshold is

defined to be 20% of the fundamental frequencies bin position (3)

calculate the spectral peak slope using the interpolated magnitudes and

locations of the selected peaks where every peak is weighted equally.

 The author validated these results by testing how well the spectral

peak slope worked as a classifier of samples recorded with differing bow

bridge distances. As brightness varies with bow bridge distance, we can

use different bow bridge distances as a proxy for the ground truth of

different brightness values. The author recorded 24 notes where the bow

was near to the bridge and far from the bridge. (Middle bridge distances

were not used, because notes played at this position can be identically

bright to notes played at other bow bridge positions if changes in the bow

pressure offset changes in the bow bridge distance.) The notes were

classified with 88.89% accuracy if the string which the note was played

on was given. Otherwise, they were classified with a 77.78% accuracy.

Information about which string a note is played on proved to be

important, because different strings are stretched to different pressures,

and the same note played on different strings creates a different number

of peaks with different magnitudes and hence different spectral peak

slopes. As the mean values for the spectral peak slopes changes from

one string to the next, these values are best scaled to the range 0 – 1

using functions which are specific to the string. Although a mapping

function was also derived for all strings, it obviously did not work as well.

In end effect this means that violinists playing on violins with one pickup

per string will have better results than violinists playing with only a single

pickup, but having one pickup per string already gave better results in the

sense that it allows violinists to play polyphonically.

 29

C. Bow Changes

 Oftentimes before a violinist plays a new piece, they look at the

score first in order to plan their bow movements. Notes in the score that

require emphasis and therefore greater bow pressure are best played

close to the frog, i.e. the base of the bow, where one can summon the

greatest bow force, and notes that call for a soft onset are best played at

the tip of the bow where the chances of losing steady contact with the

string due to an unintentional movement of the hand are lessened. The

choice of points in the score at which to change the bow direction is also

important as notes played on the same bow tend to be heard as phrases.

A violinist may prefer for example to play all the notes of a melody

leading to a melodic apex on one bow while playing the subsequent

descending notes on another bow. This helps create the impression that

the violinist is playing towards the inflection points in the score which

lends the piece a flowing quality. Poorly planned bow changes on the

other hand can cause a piece to sound choppy and unmusical.

 In terms of acoustics, the likely reason why violinists plan their bow

changes so carefully is that the string undergoes a lengthier transient

phase when the bow changes. A bow change is the only time when a

string must be brought into Helmholtz motion from still stand by a bow

accelerating from still stand as well. In those cases where a note is

played on the same bow, the bow is in any case already moving and

possibly the string is already moving as well (if the previous note was

played on the same string).

 The bow direction and changes in the bow direction should be

treated as significant later on when we synthesize a new signal using the

controls extracted from the violin signal. As a bow change usually

corresponds to a lengthy transient, we should correspondingly play a full

attack for a synthesized note whenever there is a bow change. For this

reason we would like to be able to detect the bow direction and the

 30

changes in bow direction.

Given only an airborne signal recorded by a microphone, detecting

the bow direction might be rather difficult, but this task becomes much

easier if one uses a signal recorded by a pick-up in direct contact with the

string, because a pick-up is actually pulled with the string by the bow

during an up or a down bow and hence the signal is centered either above

or below zero depending on the bow direction.

Is it unreasonable to expect that the signal will be recorded by a

pickup? Every electric violin that the author is aware of uses pickups.

And as only an electric violin will produce a signal soft enough as to not

drown out the signal produced by the synthesizer, one can safely say that

an electric violin is the optimal type of violin for an audio-driven synthesis

application. Although it might be preferable to develop a method that

would work independently of the manner in which the signal was

recorded, as the reader will soon see, it is unlikely that such a method

would work as well as a pickup specific method.

Figure 11 Down bow.

Figure 12 Up bow.

 A number of different measures were considered to extract the bow

direction from a window of the signal, and these measures were

subsequently tested on eight Zeta violin notes. The first measure was to

compute the mean value of a window of the signal and extract the bow

 31

direction from whether the mean was positive or negative. The second

measure was to find the maximum and the minimum of a window and to

extract the bow direction based on whether the maximum exceeded the

absolute value of the minimum. The third measure was to find the

average of the five largest maximums and the average of the five

smallest minimums of a window and to extract the bow direction based

on whether the mean maximum exceeded the absolute value of the mean

minimum.

 The first measure simply did not work as there was little correlation

between the mean of a window and the direction of the bow. The second

measure accurately predicted the down bows for 96.12% of the windows

and the up bows for 98.05% of the windows. The third measure had

more or less the same accuracy. It correctly predicted the down bows for

96.09% of the windows and the up bows for 98.08% of the windows. As

the second measure is computationally less expensive than the third

measure, it is therefore to be preferred.

These numbers suggest that both the second and third measures

identify the bow direction fairly accurately. But as the errors that they

made were exclusively during the transient portion of the signal, they

could be even further improved by suppressing these values during the

transient portion of the signal. (If one looks closely at the figures above,

small black asterisks in the signal identify the points where the bow

direction was incorrectly identified.)

D. Transient detection

 Accurate identification of transients in the signal is essential for any

audio driven synthesis application, because when transients occur, the

pitch values delivered by the pitch detection algorithm are inaccurate,

oftentimes substantially so. If they are not filtered out, one may hear a

flurry of wild pitch values with nearly every note change. Transients

 32

must, therefore, be identified as such so that they can be suppressed or

dealt with in some other way.

Figure 13 Stationaries and transients in a violin performance. The red
plus signs represent bad pitch estimates from Yin during a transient.

 The author evaluated four different measures for identifying

transients. First, as previously mentioned, the yin algorithm and other

auto-correlation algorithms provide a measure of the aperiodicity of the

signal. When transients occur, there is typically a spike in the aperiodicity

of the signal, and this value has been used by at least one acoustician as

the basis of a transient identification algorithm developed for bowed

strings (Woodhouse, 2003). Second, when transients occur, Yin’s pitch

estimates oftentimes deviate substantially from the previous stable pitch

value, and therefore, rather than trying to identify transients by looking

at the signal itself, one could instead look at Yin’s output pitch values for

pitch changes that cross a threshold level. Third, the author noticed while

developing the brightness descriptor that when transients occur, the

spectral peak centroid oftentimes deviates significantly from its steady

state value for a particular pitch, and therefore, checking to see whether

 33

the spectral centroid falls outside of a normal range of values is a further

potentially useful measure. Fourth, the author developed a measure of

the distance of the current pitch value from the most recent pitch values.

The measure works by maintaining a running histogram of the last half

second of pitch values so that the distance of the current value from the

recent values can be calculated as the cost of moving all the weights in

the other histogram bins into the bin of the current pitch. This cost is

then subsequently normalized by dividing it by the largest possible cost.

This distance measurement borrows conceptually from the earth mover’s

distance algorithm (Rubner, et al, 1998).

 In order to test the efficacy of these four measures, the author

played, recorded, and transcribed three solo violin pieces. Oftentimes, in

the transition between notes, it was not possible to say exactly when one

pitch ended and another began which means that the ground truth could

not be fully determined by transcription. But the ground truth could be

approximated during the note transitions by declaring any pitch values

between the first and the second pitches in a transition to be good

estimates, and any pitches outside that range to be poor estimates.

In order to evaluate these four measures, the author used each of

the four measures to classify each frame of the signal as either stationary

or transient, and each classification was compared to the ground truth to

assess its accuracy. At the end of the evaluation, rather than calculating

one number representing the total percent correct, the author calculated

four numbers: the percentage of correct stationary classifications, the

percentage of incorrect stationary classifications, the percentage of

correct transient classifications, and the percentage of incorrect transient

classifications. The reason for dividing the results into these four

categories is that although an incorrect stationary classification and an

incorrect transient classification are both errors, incorrectly labeling a

transient as a stationary is a far worse error than incorrectly labeling a

stationary as a transient. When we incorrectly label a transient as a

stationary, this leads us to synthesize a new note using a bad pitch

 34

estimate. When we incorrectly label a stationary as a transient on the

other hand, the value will most likely be suppressed which means that we

will continue to sustain the value of the current note at its current pitch

and amplitude until the next stationary. In end effect we introduce

additional latency to the onset of new notes, but this is a far less severe

error than outputting a bad note. As the reader will see for each of the

measures evaluated, there is a trade-off between these two types of

errors. By adjusting the threshold values, one can decrease one type of

error but only at the cost of increasing the other type of error.

In the following tables the data is given for how successfully each

measure works to classify frames as either stationary or transient.

Different threshold values for each measure were used to classify frames

as stationary or transient, and the percentage of correct classifications

that resulted is given for each measure. For each measure two tables are

given. The first gives the percentages of stationery frames or transient

frames identified with respect to the total number of stationeries or

transients frames, and the second gives the percentages of stationery or

transient frames identified with respect to the total number of frames.

Before applying any measures, the recordings evaluated consisted of

94.92% stationary frames and 5.08% transient frames2.

1.) Transient detection using aperiodicity

2 These numbers overstate, however, to an extent the number of
transient frames as in many cases transient frames occur during
moments of near silence. As the amplitude level is so low for these
frames, it is somewhat irrelevant if the pitch is correctly or incorrectly
estimated as they will not be heard anyway. These nearly silent frames
account for 10 – 30% of the transients.

 35

Aperiodicity
Threshold

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.0500 91.91% 8.08% 59.80% 40.19%
0.0700 93.60% 6.39% 52.02% 47.97%
0.0900 94.78% 5.21% 46.31% 53.68%
0.2000 97.73% 2.26% 28.66% 71.33%
0.3000 98.96% 1.03% 20.77% 79.22%
0.4000 99.48% 0.51% 14.19% 85.80%
0.5000 99.76% 0.23% 10.28% 89.71%
0.6000 99.87% 0.12% 7.16% 92.83%
0.7000 99.91% 0.08% 4.91% 95.08%
0.8000 99.93% 0.06% 3.68% 96.31%
0.9000 99.96% 0.03% 2.50% 97.49%
1.0000 99.97% 0.02% 1.74% 98.25%

Table 1 In this table as the allowed amount of aperiodicity increases, the
percentage of correctly identified stationary frames increases while the
percentage of correctly identified transient frames decreases. The percentages
indicate the percentages of correctly identified stationery frames with respect to
the total number of stationary frames and the percentage of correctly identified
transient frames with respect to the total number of transient frames.

Aperiodicity
Threshold

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.0500 86.88% 7.64% 3.27% 2.19%
0.0700 88.48% 6.04% 2.84% 2.62%
0.0900 89.60% 4.92% 2.53% 2.93%
0.2000 92.39% 2.13% 1.56% 3.90%
0.3000 93.54% 0.97% 1.13% 4.33%
0.4000 94.04% 0.48% 0.77% 4.69%
0.5000 94.30% 0.22% 0.56% 4.90%
0.6000 94.40% 0.12% 0.39% 5.07%
0.7000 94.45% 0.07% 0.26% 5.20%
0.8000 94.47% 0.05% 0.20% 5.26%
0.9000 94.49% 0.03% 0.13% 5.33%
1.0000 94.50% 0.02% 0.09% 5.37%

Table 2 In this table the percentages of correctly and incorrectly classified
frames is given with respect to the total number of frames.

 36

2.) Transient detection using pitch changes

Pitch
Change
Threshold

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

1.0006 85.73% 14.26% 63.07% 36.92%
1.0012 92.61% 7.38% 51.55% 48.44%
1.0017 94.97% 5.02% 44.71% 55.28%
1.0023 96.29% 3.70% 40.19% 59.80%
1.0029 97.05% 2.94% 36.69% 63.30%
1.0035 97.60% 2.39% 33.92% 66.07%
1.0041 97.95% 2.04% 31.55% 68.44%
1.0046 98.24% 1.75% 29.54% 70.45%
1.0052 98.45% 1.54% 28.07% 71.92%
1.0058 98.61% 1.38% 26.55% 73.44%
1.0116 99.35% 0.64% 19.37% 80.62%
1.0175 99.48% 0.51% 16.07% 83.92%
1.0234 99.55% 0.44% 14.51% 85.48%
1.0293 99.58% 0.41% 13.55% 86.44%
1.0353 99.61% 0.38% 13.27% 86.72%
1.0413 99.62% 0.37% 12.93% 87.06%
1.0473 99.62% 0.37% 12.42% 87.57%
1.0534 99.62% 0.37% 11.97% 88.02%
1.0595 99.62% 0.37% 11.72% 88.27%

Table 3 In this table as the allowed size of the change in pitch between frames
decreases, the percentage of correctly identified stationary frames decreases
while the percentage of correctly identified transient frames increases. The
percentages indicate the percentages of correctly identified stationery frames
with respect to the total number of stationary frames and the percentage of
correctly identified transient frames with respect to the total number of
transient frames. The pitch change threshold is the ratio of the current pitch to
the previous pitch, and the value 1.05946 represents one semitone.

 37

Pitch
Change
Threshold

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

1.0006 81.06% 13.49% 3.43% 2.01%
1.0012 87.56% 6.98% 2.80% 2.63%
1.0017 89.80% 4.75% 2.43% 3.01%
1.0023 91.05% 3.50% 2.18% 3.25%
1.0029 91.77% 2.78% 1.99% 3.44%
1.0035 92.28% 2.26% 1.84% 3.59%
1.0041 92.62% 1.92% 1.71% 3.72%
1.0046 92.89% 1.66% 1.60% 3.83%
1.0052 93.08% 1.46% 1.52% 3.91%
1.0058 93.24% 1.31% 1.44% 4.00%
1.0116 93.93% 0.61% 1.05% 4.39%
1.0175 94.06% 0.48% 0.87% 4.57%
1.0234 94.13% 0.41% 0.79% 4.65%
1.0293 94.16% 0.38% 0.73% 4.70%
1.0353 94.18% 0.36% 0.72% 4.72%
1.0413 94.19% 0.35% 0.70% 4.74%
1.0473 94.19% 0.35% 0.67% 4.77%
1.0534 94.19% 0.35% 0.65% 4.79%
1.0595 94.20% 0.35% 0.63% 4.80%

Table 4 In this table the percentages of correctly classified frames is given
with respect to the total number of frames.

 38

3.) Transient detection using the spectral peak centroid

Distance
from mean
value

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.10 96.44% 3.55% 47.18% 52.81%
0.15 99.19% 0.80% 31.42% 68.57%
0.20 99.57% 0.42% 12.73% 87.26%
0.25 99.68% 0.31% 8.71% 91.28%
0.30 99.80% 0.19% 4.74% 95.25%
0.35 99.87% 0.12% 2.50% 97.49%
0.40 99.92% 0.07% 1.51% 98.48%

Table 5 In this table as the allowed size of the distance of the spectral peak
centroid from the mean spectral peak centroid increases, the percentage of
correctly identified stationary frames increases while the percentage of
correctly identified transient frames decreases. The percentages indicate the
percentages of correctly identified stationery frames with respect to the total
number of stationary frames and the percentage of correctly identified transient
frames with respect to the total number of transient frames.

Distance
from mean
value

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.10 91.16% 3.35% 2.58% 2.88%
0.15 93.76% 0.76% 1.71% 3.75%
0.20 94.12% 0.40% 0.69% 4.77%
0.25 94.23% 0.29% 0.47% 4.99%
0.30 94.34% 0.18% 0.25% 5.21%
0.35 94.41% 0.11% 0.13% 5.33%
0.40 94.45% 0.07% 0.08% 5.38%

Table 6 In this table the percentages of correctly classified frames is given
with respect to the total number of frames.

 39

4. Transient detection using a running histogram

Distance
from recent
values

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.07 73.52% 26.47% 72.66% 27.33%
0.08 83.17% 16.82% 68.79% 31.20%
0.09 88.47% 11.52% 66.29% 33.70%
0.10 92.17% 7.82% 61.60% 38.39%
0.11 95.69% 4.30% 55.71% 44.28%
0.12 97.89% 2.10% 52.67% 47.32%
0.13 98.77% 1.22% 50.51% 49.48%
0.14 99.01% 0.98% 44.82% 55.17%
0.15 99.24% 0.75% 43.23% 56.76%
0.16 99.47% 0.52% 36.29% 63.70%
0.17 99.71% 0.28% 31.42% 68.57%
0.18 99.96% 0.03% 29.26% 70.73%
0.19 99.98% 0.01% 27.61% 72.38%

Table 7 In this table as the allowed distance (measured as transformational
cost) of the current pitch value from the most recent values increases, the
percentage of correctly identified stationary frames increases while the
percentage of correctly identified transient frames decreases. The percentages
indicate the percentages of correctly identified stationery frames with respect to
the total number of stationary frames and the percentage of correctly identified
transient frames with respect to the total number of transient frames.

 40

Distance
from recent
values

Correct
Stationary
Classification

Incorrect
Stationary
Classification

Correct
Transient
Classification

Incorrect
Transient
Classification

0.07 69.79% 25.12% 3.68% 1.38%
0.08 78.95% 15.97% 3.49% 1.58%
0.09 83.97% 10.94% 3.36% 1.71%
0.10 87.49% 7.42% 3.12% 1.94%
0.11 90.83% 4.08% 2.82% 2.24%
0.12 92.92% 1.99% 2.67% 2.40%
0.13 93.75% 1.16% 2.56% 2.51%
0.14 93.98% 0.93% 2.27% 2.80%
0.15 94.20% 0.71% 2.19% 2.88%
0.16 94.42% 0.49% 1.84% 3.23%
0.17 94.64% 0.27% 1.59% 3.48%
0.18 94.89% 0.03% 1.48% 3.59%
0.19 94.90% 0.01% 1.40% 3.67%

Table 8 In this table the percentages of correctly classified frames is given
with respect to the total number of frames.

 41

Figure 14 Curves showing the tradeoff for each measure between correct
stationary and transient classification. Curves closer to the upper right hand
corner present the best trade-off between correct stationary and transient
classification. So, as can be seen, the histogram gives the best results while the
aperiodicity and the pitch change give the worst results.

As none of these features proved to be sufficient to detect all of the

transients on their own, we would like to combine these different features

in the hopes of improving the overall accuracy of the transient

classification. After having tried various classification algorithms in the

Weka machine learning environment (Witten and Frank, 2005), the

author chose to implement a naïve Bayesian classifier. Although the

decision tree based classifiers in Weka gave slightly better results for this

problem, implementation considerations lead the author to prefer the

naïve Bayesian classifier.

 Naïve Bayesian classifiers attempt to find the probability of a

particular class given a set of features, p(Class | F1 … Fn). In our

particular case, the classes are whether a particular frame is a transient

 42

or stationary, and the features are discretized values for the aperiodicity,

the distance of the spectral peak centroid from the mean, and the

distance of the current pitch value from recent values. (The pitch change

was not included, because the running histogram did a better job of

measuring essentially the same phenomena.) We can use Bayes’

theorem to derive p(Class | F1 … Fn) as:

And making the assumption from which naïve Bayes classification derives

its name, we assume that F1 … Fn are conditionally independent so that

we can restate the above equation as:

We can then plug in the values of p(C), p(F1 | Class), p(F2 | Class), p(F3 |

Class), p(F1), p(F2), and p(F3) to derive the probability of a particular

frame being a stationary or a transient. Given these probabilities, rather

than simply declaring the class with the greatest probability to be the

winner, we use a user provided scaling value to determine by what

percent the probability of a frame being a stationary must exceed the

probability of a frame being a transient in order for that frame to be

declared a stationary. The scaling factor can be used to select an

appropriate trade-off between incorrectly identified stationeries and

incorrectly identified transients as the percentages produced by the naïve

Bayes’ classifier exhibit the same trade-off between incorrectly identified

stationeries and incorrectly identified transients as do its constituent

features.

 In order to compare the performance of the naïve Bayes’ classifier

with that of the individual measures, the author plotted the trade-off

 43

curve between correct stationary classifications and correct transient

classifications for all four measures as well as the naïve Bayes’ classifier.

One can judge how well the classifier works by looking at whether it

presents a more favorable trade-off curve than its individual features.

Figure 15 Trade-off curves between stationary and transient
classification. Curves closer to the upper right hand corner present
a better trade-off between errors in transient and stationary
identification. As can be seen, the classifier performed
significantly better than any of its constituent features.

 The naïve Bayesian classifier did indeed perform better than its

constituent features. It was able to correctly identify transients and

stationeries with a significantly higher success rate than its constituent

features. The overall accuracy of this classifier peaked at 97.4% while

the overall accuracy of the most successful of its constituent features –

the running histogram – peaked at 96.4%. Its overall error rate of 2.6%

might still sound unacceptably high, but an examination of plots of the

errors shows that the classifier manages to catch all of the egregious

transients and what remains are primarily transients which are very close

 44

to the actual pitch and mislabeled stationeries.

Figure 16 Depiction of correctly identified stationaries (in blues) and correctly identified
transients (in black). The plot is for the point on the tradeoff curve where the overall
accuracy is 95.2%.

Figure 17 Depiction of incorrectly identified transients (in red) versus stationaries.

 45

Figure 18 Depiction of incorrectly identified stationaries (in yellow) versus correctly
identified stationaries.

 46

VI. Spectral Modeling Synthesis Application

As previously stated in the introduction, one of the goals of this

project was to create a real-time spectral modeling synthesis application,

which works with samples provided by the musician. Before describing

how we approached this goal, we will give a brief introduction to spectral

modeling, and then, we will proceed to discuss the specifics of the

application developed.

A. Background

 A mathematical model is a representation of the essential aspects of

an existing system (or a system to be constructed), which presents

knowledge of that system in usable form.

 Eykhoff (1974)

 A spectral model of a signal is a frequency domain representation of

a signal that enables us to perform a variety of transformations on a

signal that might be achieved only with great difficulty or computational

cost in the time domain. Spectral modeling encompasses the following

three basic representations of a signal: the STFT (short time Fourier

transform), sinusoidal models, and sinusoidal plus residual models.

(There are many other representations in addition to these, but they can

be seen as extensions to or variations of these three basic

representations.) The models differ in how much flexibility in

transformation they offer as well as in which sorts of signals they are able

to effectively model. From these three representations, further high-level

attributes of a signal can be extracted as well in order to aid certain

transformations.

 47

1. STFT

 The discrete Fourier transform decomposes an audio signal into a

continuous spectrum of its frequency components, or put differently, it

models a signal as a sum of sine waves. The inverse transform

synthesizes an audio signal from its spectrum of frequency components.

Due to the fact that the Fourier transform does not give one any

information about the temporal locations of frequency components,

typically only a small window of the audio signal – a window just large

enough to give adequate frequency resolution – is analyzed in order to

localize the frequency components. Hence comes the name short time

Fourier transform.

 The STFT was first used for musical applications in the digital phase

vocoder (Moorer, 1978) which is essentially a digital implementation of a

fixed frequency filter bank. The phase vocoder is able to successfully

analyze harmonic sounds with stable partials well enough to allow a

variety of transformations of the signal without producing artifacts, but its

analysis is less successful for inharmonic sounds or sounds with time

varying frequency components. This is due to the fact that partials may

wander between the bands of the filter bank or fall between the

boundaries of two neighboring banks.

2. Sinusoidal Models

 Sinusoidal modeling builds upon the STFT by identifying sinusoidal

components in the frequency analysis, pinpointing their frequencies via

interpolation, and tracking them across successive analysis windows.

This allows for a better analysis of inharmonic sounds and sounds with

time varying frequency components. However, it does not provide a very

useful representation of noisy signals, as noise would basically have to be

represented as a sinusoid at every frequency up to the Nyquist frequency.

See (McAulay and Quatieri, 1986; Smith and Serra 1987) for further

information on sinusoidal modeling.

 48

3. Sinusoidal plus Residual Modeling

 Sinusoidal plus residual modeling builds upon the sinusoidal model

by performing the previous steps in sinusoidal modeling to obtain the

sinusoidal components, which are then subtracted from the spectrum to

yield a residual component, i.e. noise. The residual component can then

be modeled by calculating its spectral envelope, which can later be used

to re-synthesize the residual from white noise. Please see (Serra, 1997)

for further information.

 The following diagram gives a high level representation of the steps

involved in a sinusoidal plus residual modeling analysis, transformation,

and resynthesis process. Many different implementations are possible;

the diagram depicts the implementation in the CLAM C++ library for

audio and music (Amatriain, et al, 2006).

Figure 19 Diagram of the sinusoidal plus residual modeling process in CLAM

 49

B. A Spectral Modeling Synthesizer

The goal in developing the real-time, spectral modeling,

monophonic synthesizer was to use the audio descriptors extracted from

the violin to control the synthesis process thereby allowing the performer

more control over the synthesis process than would be possible using a

MIDI keyboard. However, in order for this greater control to translate

into greater expressivity in a performance, there must be a fairly intuitive

mapping between the control information extracted from the violin and

the control inputs of the spectral model.

The author chose to concentrate on modeling the sound of an ebow

while developing the synthesizer. The ebow is a battery powered device

used for playing guitar that manages to produce a sound similar in nature

to that of a bowed string by producing an electro-magnetic field which

causes the steel strings of a guitar to vibrate. By changing the ebow's

position on the string, different string overtones can be produced, and

fade-ins and fade-outs can be produced by lowering and raising the ebow

from the string. It is fairly obvious how to map the descriptors extracted

from the violin to the descriptors for the ebow’s spectral model, and the

sound of an ebow differs enough from that of a violin to make it a

welcome addition to a violinist’s sound palette. For this reason the author

limited his efforts to modeling the ebow although it is intended to

eventually develop this application into a general purpose synthesizer

supporting all three of the previously mentioned spectral modeling

techniques.

 50

Figure 20 An ebow by itself and an ebow being used to play a guitar.

 The synthesizer was developed in C++ using the CLAM library. The

author used CLAM’s classes for the implementation of sinusoidal plus

residual modeling and SDIF file IO and developed additional classes for

threaded, buffered file reading, thread pooling, looping, OSC input, data

mapping, data management, spectral transformation and interpolation.

The synthesis process is depicted in the following flow diagram.

Figure 21 Overview of the synthesis process as implemented by the author

1. Input Sources

 The synthesizer runs either as a module in CLAM’s Network Editor

 51

or as a standalone application that can be controlled either via a score file

or an OSC stream. It is also planned to have it run as well as an external

inside of Max/MSP, but at the time of writing this has not yet been

completed.

Figure 22 The synthesizer inside of CLAM's Network Editor

 When loaded in OSC listening mode, the synthesizer listens on port

7000 for OSC events with the following syntax:

/ces f f f f pitch amplitude brightness voiceId

The message’s intended recipient – the continuous excitation synthesizer

– is given by the string “/ces”. The following four “f” letters give the data

types of the subsequent four variables; they are all floats. The variable

“pitch” gives the pitch of the note in hertz. The variable “amplitude”

gives the amplitude in the range from 0 – 1, and the variable “brightness”

gives the brightness in the range from 0 – 1. The brightness value can

also be set to -1 in which case the amplitude is used as an indicator of the

brightness instead. Finally, the variable “voiceId” is used to indicate

whether the events belong to an existing note / phrase or a new one.

This is the means for clients to indicate where notes should be

 52

segmented; for each new voiceId, the note begins with an attack phase

while for existing voiceIds once the attack phase is completed additional

frames are read from the steady state which loops indefinitely. It is

preferable for clients to indicate the note segmentation points, because

the clients are in a better position to make decisions about the proper

note segmentation than the synthesizer, but client’s can chose not to

provide this information by setting the voiceId to -1. In this case the

synthesizer segments the event stream into notes by looking for changes

in the pitch value greater than a predefined threshold.

2. SDIF and XML Database

 One of the primary goals when developing the synthesizer was to

ensure that new audio material could be converted into a usable database

format by musicians. This suggested the following constraints: the

database creation process should require little to no knowledge of spectral

modeling techniques, and the process should be quick, easy, and

relatively fail proof.

 To meet these constraints, the author developed a simple utility

program for converting audio material into SDIF files with associated

metadata in XML format. Before the analysis, the user specifies where

the attack ends and how far into the steady state he would like to search

for loopable audio. The program then performs a sinusoidal plus residual

analysis on the file and searches for the optimal loop points amongst the

analysis frames by comparing each frame using the earth mover’s

distance algorithm (Rubner, et al, 1998). This algorithm can be

understood metaphorically by imagining the analysis frames to be

representations of piles of dirt spread out over a region; the earth

mover’s distance is then the cost of turning one pile into the other where

cost is defined to be the minimum amount of dirt that must be moved

times the distance by which the dirt has to be carried. The frames with

 53

the smallest earth mover’s distance are the most spectrally similar, and

they are therefore presumably the best loop points. After the program

has extracted a half a dozen loops in this manner, it saves their start and

end positions in milliseconds to an XML file together with the fundamental

frequency, the maximum amplitude3, and the start point of the attack.

Finally, the program saves the analysis frames to a single SDIF file.

 Currently, this utility program runs as a command line application,

but ultimately, it would be desirable to integrate this functionality into the

existing CLAM application SMSTools which provides a GUI interface to the

sinusoidal plus residual analysis process in order to provide users with a

better looking and eventually more powerful interface.

3. Data Management

 When the synthesizer starts, it is given a directory name containing

the database. The synthesizer then searches for files in this directory

ending in the extension “xml” and after loading them converts them into

metadata objects. It then opens file handles to the SDIF files referenced

in the metadata objects and preloads the attack and first loop of each file.

This manner of dynamic loading enables users to grow or shrink the

database by simply moving files into or out of the directory.

 Later when a file is played, the additional loops are loaded as well

into memory by a background thread if the file is played long enough to

start looping. This ensures a higher quality synthesis by preventing the

same loop from being played contiguously while being conservative with

regards to memory consumption.

3 The maximum amplitude is extracted as a surrogate for brightness.
Typically, notes that are played louder are brighter, and for this reason if
the synthesizer identifies two notes with the same frequency in the
database, it will assume that the note with the greater maximum
amplitude is brighter. This information is then used when changing the
equalization of the sinusoids in response to the brightness parameter.

 54

4. Interpolation

 The metadata for the SDIF files are indexed internally in a two

dimensional table where the axis are pitch and brightness. As control

information for pitch, amplitude and brightness comes in, the data

manager must create a frame to match the target pitch and brightness

from a potentially insufficient data set. As users can put an arbitrary

number of files in the synthesizer’s directory, they may very well choose

to place only a single sample or a non-multilayered collection of samples

in the directory rather than a multilayered collection of samples, and for

this reason the interpolation algorithm must be flexible enough to deal

both with the best case and the worst case scenarios in the optimal

manner.

The interpolation algorithm implemented by the author chooses the

SDIF data source with the smallest Euclidian distance from the target

pitch and brightness as the base source for the interpolation. The pitch of

its delivered frame is then transposed to match that of the target pitch.

Then, a second data source is searched for which can be used as the

other pole with which to interpolate the brightness. If a data source with

a suitable brightness value is found that has a pitch distance which is

equal to or less than that of the first data source or if a data source with a

suitable brightness is found that has a pitch distance which is greater

than that of the first data source but does not exceed five semitones,

then it is selected as the second pole for brightness interpolation. The

pitch of the delivered frame is also transposed to match that of the target

pitch, and then, the brightness is interpolated by scaling the magnitudes

of the sinusoids of the first frame with the envelope of the sinusoids of

the second frame.

 55

5. Synthesis

 The interpolated frame is then given to CLAM’s sinusoidal plus

residual modeling class to be resynthesized. Before the frame is given

over to the IFFT, the phase for each STFT bin is recalculated based on the

frame’s transposed frequency and the number of samples since the last

frame, and the sinusoids and the residual are merged into a single

spectrum. Then, the time domain signal is created with the IFFT, and the

signal is windowed, overlapped, and added to the last window of the

signal.

 56

V. Conclusions and Future Work

An audio driven synthesizer was presented that was developed for a

bowed string controller. Algorithms were given for detecting the pitch,

brightness and bow direction of a violin and for identifying transients, and

a real-time spectral modeling synthesizer was introduced that uses the

descriptors extracted from the violin’s signal to control audio synthesis

from a spectral model.

In the future the author would like to continue refining and

extending the audio descriptors for violin. With further work the standard

deviation of the spectral peak slope descriptor could likely be further

reduced. The transient detection algorithm could likely be further

improved by developing better signal level descriptors; a dissertation

written recently on the topic promises to provide a wealth of further

insights and ideas in this direction (Thornburg, 2005). And it could be

potentially useful to develop classification algorithms for the kind of string

motion, i.e. Helmholtz motion, double-slipping motion, etc as well as the

style of bowing, i.e. staccato, detaché, pizzicato, etc.

With regards to the synthesis engine, one could honestly say that the

real work is only now beginning. The core classes for synthesizing from a

spectral model in real-time are now finished, but as was mentioned in the

introduction, the author is most interested in spectral models due to the

variety of transformations of sampled material that they allow. The

author would like to develop a flexible framework for specifying sound

transformations using spectral models that would allow these

transformations to be controlled in real-time with input from the violin

possibly after they have been parametrized with contextual information

regarding tempo and key from the surrounding musical environment.

 57

VI. Bibliography

Amatriain, X., P. Arumí and D. Garcia. "CLAM: A Framework for Efficient

and Rapid Development of Cross-Platform Audio Applications."

Proceedings of ACM Multimedia, Santa Barbara, U.S.A., 2006.

Askenfelt, A. "Measurement of Bow Motion and Bow Force in Violin

Playing." Journal of the Acoustical Society of America 80.4 (Oct.

1986.): 1007-15. .

---. "Measurement of the Bowing Parameters in Violin Playing." Journal of

the Acoustical Society of America 84.1 (1988): 163. .

Benade, A. H. Fundamentals of Musical Acoustics. 2nd ed. New York:

Dover Publications, 1990.

Chamberlin, H. "Using the FFT for Synthesis." Music Applications of

Microprocessors.Hayden Book Co., 1980. 424-431.

Cremer, Lothar. The Physics of the Violin. Trans. John S. Allen. 1st ed.

Cambridge, Massachusetts: MIT Press, 1984.

Disley, Alastair, and David Howard. "Spectral Correlates of Timbral

Semantics Relating to the Pipe Organ." Baltic-Nordic Acoustic Meeting,

Mariehamn, Finland, 2004.

 58

George, E. B., and M. J. T. Smith. "Analysis-by-Synthesis/Overlap-Add

Sinusoidal Modeling Applied to the Analysis and Synthesis of Musical

Tones." J. Audio Eng. Soc. 40.6 (June 1992) .

Guettler, Knut. The Bowed String. KTH, Department of Speech, Music and

Hearing, 2002.

Helmholtz, Hermann L. von. On the Sensations of Tone as a Physiological

Basis for the Theory of Music. New York: Dover, 1885 (Reprinted

1954).

Jehan, T., and B. Schoner. An Audio-Driven Perceptually Meaningful

Timbre Synthesizer., Proc. Intl. Computer Music Conference, 2001.

Kellum, Greg. "The Music Is Movement Plug-in Collection." 2005.

<http://artassault.gregkellum.com/software/>.

Krishnaswamy, A., and J. O. Smith. " Inferring Control Inputs to an

Acoustic Violin from Audio Spectra." Proc. Intl. Conf. on Multimedia

and Expo, 2003.

Maher, R., and James Beauchamp. "Fundamental frequency estimation of

musical signals using a Two-Way Mismatch procedure", J. Acoust.

Soc. Am., Vol. 95, No.4, pp. 2254-2263. 1993.

 59

McAulay, R. J., and T. F. Quatieri. "Speech Analysis/Synthesis Based on a

Sinusoidal Representation." IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing 34.6 (April 1986): 1713. .

Middleton, Gareth. "Pitch Detection Algorithms." 12/03/2003.

<http://cnx.org/content/m11714/latest/>.

Moorer, J. A. "The use of the Phase Vocoder in Computer Music

Applications." Journal of the Acoustical Society of America 26.1/2

(1978): 42 - 45. .

Rubner, Yossi, Carlo Tomasi and Leonidas J. Guibas. "A Metric for

Distributions with Applications to Image Databases." ICCV '98:

Proceedings of the Sixth International Conference on Computer

Vision.

Schoner, B. Probabilistic Characterization and Synthesis of Complex

Driven Systems. PhD MIT. 2000.

Serra, X., et al. "Integrating Complementary Spectral Models in the

Design of a Musical Synthesizer." Proc. Intl. Computer Music

Conference, 1997.

Serra, X. "Musical Sound Modeling with Sinusoids Plus Noise." Musical

Signal Processing. Ed. G. D. Poli, et al.Swets & Zeitlinger Publishers,

1997.

 60

Thornburg, Harvey. Detection and Modeling of Transient Audio Signals

with Prior Information. PhD Stanford University, 2005.

Velikic, G., E. L. Titlebaum and M. F. Bocko. " Musical Note Segmentation

Employing Combined Time and Frequency Analyses." Proc. IEEE Conf.

on Acoustics, Speech, and Signal Processing, 2004.

Weisstein, Eric. "Least Squares Fitting." 8/24/2007 2007.

<http://mathworld.wolfram.com/LeastSquaresFitting.html>.

Wessel, D., C. Drame and M. and Wright. "Removing the Time Axis from

Spectral Model Analysis Based Additive Synthesis: Neural Networks

Versus Memory-Based Machine Learning." Proc. Int. Computer Music

Conference, Ann Arbor, USA, 1998.

Witten, Ian H., and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques. 2nd edition ed. San Francisco: Morgan

Kaufmann, 2005.

Woodhouse, J., and P. M. Galluzzo. "The Bowed String as we Know it

Today." Acta Acustica united with Acustica 90 (July/August 2004):

579-589 (11). 2004.

Woodhouse, Jim, and P. M. Galluzzo. "Why is the violin so hard to play?"

+plus magazine. September 2004 2004.

<http://plus.maths.org/issue31/features/woodhouse/index.html>.

 61

Woodhouse, Jim. "Bowed String Simulation using a Thermal Friction

Model." Acta Acustica 89: 355–368. 2003.

Yoo, Lilit, and Ichiro Fujinaga. "A Comparative Latency Study of Hardware

and Software Pitch-Trackers." Proc. SEAMUS, 1998.

