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Abstract 

 
The aim of this project is to explore the use of the violin as a controller 

for real time synthesis.  In this document acoustical features unique to 

bowed strings are identified which are relevant for controlling sound 

synthesis.  Algorithms are given for extracting these features using both 

time-domain and spectral domain-based techniques.  And a real-time 

synthesizer is presented that uses these feature descriptors to control a 

sample-based synthesizer.  In particular an application scenario is 

presented where a violin is used to control synthesis from a spectral 

model of a guitar being played with an ebow.   
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I. Introduction 

 

This work was motivated by the author’s frustration with existing 

tools for composing music using audio samples.  Having spent several 

years using applications such as AudioSculpt, Melodyne, RTCmix, and 

CSound for transforming samples in atypical manners, the author became 

increasingly dissatisfied with the drawbacks of working with off-line 

sample manipulation applications.  In particular such applications are time 

intensive.  They do not allow one to easily try out new ideas or variations 

on old ideas.  They constrain one’s ability to make global changes in a 

piece with regards to key or tempo.  And they simply are not very fun to 

work with;  the process of making music with such applications is in no 

way comparable to playing a musical instrument. 

Nonetheless, such applications are very powerful.  For those 

readers who are unfamiliar with any of the aforementioned applications, 

put simply, they expose more of the content of audio samples so that 

users can manipulate samples in a manner befitting their content.  They 

allow one to isolate instantaneous moments of a sound and extend them 

or to isolate particular aspects of a sound and strip away other non-

essential parts.  They allow one to build new composite sounds from 

constituent parts by adding, morphing, filtering, or convolving one sound 

with another.  In short they allow one to sculpt sounds that one has 

imagined from other sounds that one has found manifested in reality. 

For this reason the author began to look for ways to bring the 

power of these techniques into real-time by looking on one hand for 

controllers that offer more degrees of freedom than typical MIDI 

controllers and on the other hand for real-time synthesis techniques that 

allow one to manipulate samples based on their content.  After a couple 

of years of experiments with alternative controllers on one hand such as 

virtual reality gloves, joysticks, augmented percussion instruments, etc. 

and granular synthesizers and phase vocoders on the other hand (Kellum, 
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2005), the author came to the idea underlying the project described in 

this document:  to use one of the most expressive musical instruments – 

the violin – as a controller for one of the most powerful sample modeling 

techniques – sinusoidal plus residual modeling.  

Fortunately, there have been other projects of a similar nature, 

which the author was able to learn a great deal from and which have 

influenced the direction of this project.   

In 1998 Wessel et al presented a real time audio transformation 

technique, which allows audio material to be reconstituted with an 

arbitrary pitch, duration, and spectral evolution given control inputs of 

pitch and volume.  After performing a sinusoidal analysis of some 

performances, Wessel used various machine-learning techniques, e.g. 

neural networks, to learn the relationships between control parameters 

and analysis frames so that when given a set of control inputs during a 

performance the best fitting analysis frame could be selected for 

resynthesis regardless of its temporal position in the analysis file. 

Around the year 2000, the company, Antares, released an audio-

driven synthesizer named Kantos.  Antares also makes the popular pitch 

correction software, Autotune, and Kantos presumably uses the same 

underlying pitch tracking algorithm.  Although Kantos’ pitch tracker 

occasionally makes octave errors and is not safe in the face of unexpected 

noise and other transients, it nonetheless works surprisingly well, i.e. well 

enough to use in a concert setting.  The results of the monophonic pitch 

analysis are used to control a wave-table based synthesizer.  This type of 

synthesizer loops a short segment of audio material indefinitely, varying 

the pitch and amplitude of the loop in response to changes in the control 

inputs.  The sound produced by such a synthesizer is oftentimes so 

uniform that it can quickly become uninteresting, and the fact that Kantos 

never was successful as a product is likely due to this rather primitive 

synthesizer.  Kantos has been discontinued by Antares. 

Zeta, the well known maker of electric violins, has also created a 

hardware based, audio driven synthesizer for use with their violins named 
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the Synthony II MIDI Processor.  According to the product literature, it is 

a sample based synthesizer capable of playing instrument sounds 

including drums, horns, woodwinds, pianos, guitars, basses, and special 

effects.  Yoo and Fujinaga (1998) evaluated the Synthony II by 

comparing it to two other pitch trackers, and they mentioned only that it 

had the highest latency of the pitch trackers they tested. 

The project with perhaps the single most relevance to ours was 

Tristan Jehan’s master project done in collaboration with Bernd Schoner 

at MIT’s Media Lab (Jehan, 2001).  Jehan developed an audio driven 

synthesizer, which extracts perceptual information from an audio stream 

including pitch, loudness and brightness and uses it to control a spectral 

model based synthesizer.  Although Jehan’s system was designed to be 

usable with an arbitrary audio source, it was showcased in a performance 

where it was played by a violinist.  Jehan’s system is notable for its use of 

sophisticated statistical techniques in mapping the control source to the 

synthesis engine.  Jehan makes use of a probabilistic inference 

framework, cluster weighted modeling (Schoner, 2000), to predict the 

timbre of the synthesizer from the control inputs. Jehan’s work was 

certainly an advance, but some users have found his system to be difficult 

to control in a truly perceptually meaningful manner.  When used with a 

violin, the brightness values extracted by his system seem to be little 

better than noise, and the pitch tracker does not handle transients very 

well.  These problems derive from Jehan’s underlying assumption that the 

system should be usable with an arbitrary audio source.  A model of 

brightness or pitch that works well with one instrument will not 

necessarily work well with another, and by trying to accommodate an 

arbitrary audio source, one is lead to use feature descriptors that cater to 

the lowest common denominator of audio features.  However, in all 

fairness, Jehan mentioned his intention to develop new and better audio 

descriptors for his system in the conclusion of his thesis and regardless of 

whether or not he has done so, he certainly recognized that improving his 

audio descriptors would improve the performance of his system. 
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That concludes our review of the literature related to audio-driven 

synthesis.  In the first section of this document a review of the literature 

on violin acoustics is made in which the acoustical properties of the violin 

are presented which are relevant to audio driven synthesis.  In the 

following section methods are presented for extracting the pitch, 

amplitude, brightness and bow direction of the signal as well as for 

classifying individual frames as stationeries or transients.  Within this 

section the subsection on pitch detection evaluates the efficacy of the 

existing Yin algorithm (Cheveigne, 2001) for estimating the pitch of the 

bowed strings while the subsections on brightness estimation and 

stationary / transient classification present primarily new methods 

developed by the author.  Subsequently, a real-time spectral modeling 

synthesis application for continuous control sources is presented.  This 

synthesizer uses the existing CLAM implementation of spectral modeling 

synthesis (Amatriain et al, 2006) but adds some important extensions to 

this framework, which are necessary for creating a general musical 

instrument.   
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II. Overview of the Acoustics of the Violin 

 
The violin is the most wonderful of instruments, because it 

possesses more subtleties of color and shading than all other instruments. 

Rimsky Korsakov 

 
In the following section on violin acoustics, the manner in which 

bowed strings vibrate is described.  The relationship between bowing 

parameters and the spectral attributes of the produced sound wave is 

discussed, and the transition that bowed strings undergo to arrive at 

steady state motion from rest is explicated. 

 

A.  The effect of bowing parameters on tone 

The violin is one of the most difficult musical instruments to 

understand in terms of acoustics.  A bowed string is constantly losing 

energy through its dissipation into sound and heat, yet the bow is 

constantly providing additional energy, which ideally serves to keep the 

string vibrating in a stable manner.  Small changes in the manner in 

which the violin is bowed can lead to sudden and unexpected changes in 

the manner in which the string vibrates causing the string no longer to 

vibrate in a stable manner.  This marks the bowed string as a non-linear 

system, and non-linear systems have traditionally been difficult to model 

(Woodhouse and Galluzzo, 2004).   

This fact partially explains why it takes so many years to learn to 

play violin with any great proficiency.  One of the skills that violinists 

acquire over years of practice is the ability to consistently induce 

Helmholtz motion in the string despite changes in bow pressure and bow-

bridge distance.  (The concept of “bow pressure” is also oftentimes 

referred to as “bow force” within the literature on violin acoustics. I prefer 

the term “bow pressure” over “bow force” and will use it consistently 

throughout this essay.)  Although a vibrating violin string appears to the 



 10 

naked eye to move in the same manner as a vibrating rubber band, i.e. 

the entire string appears to move back and forth as a single arc, when 

viewed with time-lapse photography or examined using other techniques, 

Hermann von Helmholtz discovered in the late 19th century that in reality 

in any given instant the string forms a triangle with the bow.  Which is to 

say, that the string divides into two parts, which meet at a peak called 

the Helmholtz corner, and over time this peak runs up and down the 

length of the string.  What one perceives as an arc-like shape is in reality 

the envelope of the movement of the Helmholtz corner as it traverses the 

string.  

 

 

Figure 1  Bowed string motion as it appears to the naked eye 

 

When the Helmholtz corner is moving from the violinist’s finger 

towards the bow, the string sticks to the bow;  the friction between the 

string and the rosin on the bow causes the string to be dragged by the 

bow.  But when the Helmholtz corner crosses the bow and moves towards 

the bridge, the string slips and moves in the opposite direction of the 

bow.  The alternation between these two types of motion constitutes 

Helmholtz motion, which is the type of motion that violinists almost 

exclusively sought to achieve before the birth of modern classical music. 

 

   
1. Sticking Motion 2. Sticking Motion 3. Sticking Motion 

  
 

4. Transition to Slipping 
Motion 

5. Slipping Motion 6. Slipping Motion 

Figure 2  Bowed string in Helmholtz motion 
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There are, however, other manners in which the string may move.  If 

the violinist uses very little bow pressure when playing, two Helmholtz 

corners can form rather than one, causing a type of motion referred to as 

double-slipping motion.  The resulting sound wave has a different 

waveform from the wave produced by Helmholtz motion, but it possesses 

the same pitch.  As a wave produced in this manner lacks the energy to 

fully excite the resonances in the body of the violin, the resulting sound 

wave sounds hollow and uninteresting, and for this reason violin teachers 

train their students to avoid bowing in this manner. 

 

   
1. Slipping Motion 2. Transition to Sticking 

Motion 
3. Sticking Motion 

   
4. Sticking Motion 5. Sticking Motion 6. Transition to Slipping 

Motion 

Figure 3  Bowed string in double sticking motion 

 

On the flip side of the coin, it is also possible to deviate from 

Helmholtz motion by applying too much bow pressure as well.  In this 

case the string oftentimes sticks to the bow even when the Helmholtz 

corner crosses the bow while moving towards the bridge.  The resulting 

sound is extremely rough and noisy and borders on aperiodicity. 

The amount of bow pressure alone, however, does not fully 

determine whether a string will settle into Helmholtz motion or one of the 

other alternatives.  The distance of the bow from the bridge of the violin 

is also a deciding factor.  It has been shown if a string is length L and the 

distance of the bow from the bridge is βL, then the maximum allowable 

bow pressure to achieve Helmholtz motion is proportional to β-1 and the 

minimum allowable bow pressure is proportional to β-2.  As originally 

suggested by John Schelling, this state of affairs can be represented 
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schematically on a logarithmic scale as follows: 

 

 

Figure 4  Schelling diagram displaying the range of possible bow pressures 
and bow bridge distances that produce Helmholtz motion. 

 
The violinist may control the brightness and the amplitude of a 

violin tone independently (within bounds) by his choice of bow pressure, 

bow bridge distance, and bow velocity (Askenfeld 1986).  Increasing the 

bow pressure for instance while holding the other parameters constant 

produces a brighter sound.  This increase in upper frequency content 

results from the fact that as the Helmholtz corner travels up and down 

the string it is rounded off as it approaches the string’s end points. And 

when the corner passes under the bow again before moving towards the 

finger board, it is resharpened, the extent of the resharpening depending 

on the amount of bow pressure being applied (Cremer, 1984);  the 

sharper the corner, the stronger the higher partials will be in the resulting 

sound wave.  This brightening of the tone will also cause it to be 

perceived as louder although the amplitude of the sound wave is 

essentially the same, due to the fact that the human auditory system is 

more sensitive to higher frequencies.  Decreasing the bow bridge distance 

will also in and of itself make the tone brighter, because the spectrum of 
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the produced sound wave has a continuous number of partials up to an 

order which is proportional to the ratio between the length of the string 

and the bow-bridge distance (Benade, 1990).  Oftentimes, these two 

effects combine, because as one decreases the bow bridge distance, one 

must necessarily increase the bow pressure to maintain Helmholtz 

motion.  And therefore, as a general rule, one may say that bowing closer 

to the bridge will increase the brightness of the tone.  The amplitude of 

the produced sound wave on the other hand is principally affected by the 

velocity of the bow.  The amplitude principally derives from the distance 

that the string is pulled by the bow, and the extent of this distance is 

directly proportional to the bow’s velocity.  The bow bridge distance, 

however, plays a role in determining the range of possible amplitude 

values, as the maximum possible amplitude of a string’s vibration 

decreases as this distance grows (Helmholtz, 1885).  These relationships, 

known as Helmholtz’s classical steady-state theory, can be formally 

stated as follows.  The peak displacement amplitude û at a point x along a 

string with length L and fundamental period T0 is given by: 

 

 
 

 
where β = (xB / L) is the fractional distance from the bridge to the bowing 

point.  As one can see from this equation, û is proportional to the ratio vB 

/ β.  When understood in physical terms, vB / β corresponds to the step in 

relative velocity between bow and string when switching between sticking 

and slipping (Askenfelt, 1988)  This mathematical formulation merely 

serves to expand upon, however, what was already previously elucidated:  

that the bow velocity and bow bridge distance are the violinists main 

control over the peak amplitude.   

 For the sake of completeness, let us briefly look at two further 

parameters that a violinist has at his disposal: the bow position, i.e. the 

point of contact between the bow and the string, and bow tilt.  Both of 
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these parameters affect the range of bow pressures that a violinist may 

apply.  It is only when the bow position is close to the frog that the 

violinist may exert the maximal bow pressure whereas the minimal bow 

pressure can be applied most safely near the tip of the bow.  Tilting the 

bow similarly affects the range of possible bow pressures by reducing the 

width of the contact area between the bow hairs and the string from 10 

mm to only a few millimeters;  this reduced contact area allows violinists 

to play with very little bow pressure (Askenfelt, 1988).  Both of these 

parameters can, therefore, be used to affect the brightness of the tone 

produced by the violin. 

 

B.  Transients  

 
 In the previous section we discussed the motion of a string when it 

is in a steady state, but before the string arrives at a steady state, there 

is a transient period where the motion of the string is typically aperiodic.  

This transient period can vary in duration and character depending on the 

style of bowing used as well as other factors, but three categories of 

transients predominate: (1) Periodic slipping of the string from the very 

beginning, giving periods equal or close to the period length of the 

Helmholtz motion  (2) Multiple slips, where more than one slipping 

interval occurs during each fundamental period and (3) Prolonged 

irregular periods characterized by raucous sounds oftentimes with no 

clearly definable pitch (Guettler, 2002).  The first category of transition 

proceeds to steady-state motion as follows: 

When the bow first starts to move across the string, the string is 

pulled outwards.  The string then slips, and two waves radiate outward 

from the bow.  The first slip ends after the second wave passes the bow 

and moves towards the fingerboard.  These waves both then reflect off of 

the finger and move in the direction of the bridge.  The first wave has the 

wrong sign to cause slipping, and it instead reflects off the bow rather 
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than the bridge.  The second wave causes the bow to begin slipping which 

continues until it has been reflected off of the bridge and once again 

crosses the bow.  As the second wave traveled a longer distance than the 

first, these two waves are now farther apart.  These waves then continue 

to move in this manner until one of the waves eventually overtakes the 

other, and the string settles into Helmholtz motion (Woodhouse, 2004).   

 
 

   
1. Bowing begins 2. Waves move towards 

fingerboard 
3. First wave reflects off 
fingerboard 

   
4. First wave reflects off of 
bow 

5. Second wave reflects off 
bridge 

6. Waves move towards 
fingerboard (again) 

Figure 5  Bowed string in transient phase 

 

This manner of transient can last as little as 5 milliseconds before 

the string settles into steady Helmholtz motion.  Surveys have shown, 

however, that transients of this nature can last up to 50 milliseconds and 

still be deemed acceptable by professional violinists (Guettler, 2002).  The 

second category of transition – multiple slips – can last up to 100 

milliseconds with the approbation of professional violinists, but 

professional violinists have much less patience with the third category of 

raucous transients. 
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III. Feature Extraction from the Violin’s Sound 

 

In this section algorithms are presented for extracting the pitch, 

amplitude, brightness, and bow direction of the violin’s signal as well as 

for classifying whether a given frame value is a stationary or transient. 

A.  Pitch detection algorithm 

 
 Pitch is that attribute of auditory sensation in terms of which sounds 

may be ordered on a scale extending from low to high (ANSI 1973). 

 

Pitch tracking is an area of music technology that has been worked 

on by countless researchers, but nonetheless, research in this area 

continues unabated with new articles being published every few years 

detailing recent advances.  Part of the reason for this continued activity is 

the ambiguity inherent to the concept of pitch itself.  Although the ANSI 

definition given above seems reasonable for a great number of sounds, 

there are more difficult cases where a sound can possess formants that 

suggest a pitch other than that of the sound’s period, and when 

confronted with such sounds, some listeners may indicate the periodic 

pitch to be “the pitch,” while other listeners will indicate the formant’s 

pitch (also known as the spectral pitch in Terhardt 1974).  In the light of 

this and other difficult cases, pitch has been revealed to be a 

multidimensional concept.  And as a result, when one speaks of pitch 

tracking algorithms, one must be clear about what model of pitch one has 

in mind, because different pitch tracking algorithms are underlain by 

different simplifying models of pitch. 

With regards to the violin, one can safely say that the period of the 

signal yields the pitch.  This implies that either the time-domain technique 

of auto-correlation or spectral domain techniques employing pattern 

matching would be suitable for extracting the violin’s pitch.  The author 
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began by performing an informal survey of these techniques using Alain 

Cheveigne’s Yin time-domain autocorrelation method (Cheveigne et al, 

2001), Tristan Jehan’s spectral-domain maximum likelihood estimator 

(which was derived from Miller Puckette’s work) (Jehan, 2001), and 

Maher and Beauchamp’s spectral-domain two-way mismatch algorithm 

(Maher and Beauchamp, 1993).  This survey showed that the spectral 

domain techniques had a much higher error rate for the violin than auto-

correlation.  This was likely due to the fact that the violin has strong 

resonances in the body, which made it difficult for the spectral domain 

techniques to identify the spectral peaks, which are harmonics of the 

fundamental.  In addition to this informal survey, a much more 

comprehensive evaluation of various pitch tracking algorithms was 

performed by the author of the Yin algorithm, Alain Cheveigne, using a 

database of speech recorded together with a laryngograph signal, and 

this survey showed Yin to have error rates that were three times lower 

than competing methods (Cheveigne, 2001).  The auto-correlation 

method also offers the additional advantage of providing a value for the 

aperiodicity of the signal, which is useful for identifying transients that 

occurred during bow changes.  So, for these reasons the author 

undertook to develop a real-time version of the Yin algorithm in C++ 

using Cheveigne’s existing, publicly available matlab version as a 

reference. 

 
1.  The Yin algorithm 
  
 Yin is classified as an auto-correlation algorithm.  Auto-correlation is 

a method of finding the period of a signal by multiplying the signal with 

time-shifted versions of itself. The autocorrelation function of a discrete 

signal xt may be defined as 
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where rt(t ) is the autocorrelation function of lag τ calculated at time 

index t, and W is the integration window size.  For a perfectly periodic 

signal, the autocorrelation function has a maximum at that lag, i.e. time-

shift, of the signal which corresponds to the period of the signal. 

 Yin does not actually use the auto-correlation function, but rather a 

function from the same family – the squared difference function. 

 

 

 

Here we search for the smallest lag τ for which the function is zero, as a 

perfectly periodic signal will always be zero when offset by its period or by 

a multiple of its period.   

 The squared difference is used in place of the auto-correlation 

function due to the fact that the auto-correlation function handles 

changes in the signal amplitude over the course of a single analysis 

window poorly.  If the signal increases in amplitude over an analysis 

window, the peaks of the auto-correlation function will grow as the lag 

grows rather than remaining constant.  This causes the auto-correlation 

function to skip over the peak corresponding to the period in favor of 

larger peaks corresponding to larger lags.  The squared difference 

function is immune to this problem, as the changes in amplitude in an 

analysis window affect all lag sizes equally. 

 The results of the squared difference function are then further 

refined by normalizing them with the cumulative mean in the following 

manner: 
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The primary benefit of normalizing the results of the squared difference 

function is that it allows one to search for the first minimum that crosses 

a certain given threshold rather than the absolute minimum of all the lag 

values.  It can happen that there is a dip in the signal (typically near a 

period that is at an octave of the period’s frequency) that is deeper than 

the dip of the period.  Selecting a threshold value and choosing the 

minimum of the first dip that crosses this threshold (or the absolute 

minimum if none is found) reduces this type of error. 

 Next, the results of the cumulative mean normalized difference 

function are then further refined by parabolically interpolating near the 

period to get a better estimate of the minimum.  This noticeably improves 

the accuracy of the period estimates for high frequency signals.  And 

finally, the signal is reexamined within a restricted range encompassing 

different phase offsets of the period to obtain the final estimate 

(Cheveigne, 2001). 

 

a.) Accuracy of the algorithm 

 

 When compared to other pitch detection algorithms by Cheveigne 

using four speech databases, Yin was found to have the lowest error rate 

of all methods.  99% of its estimates were accurate within 20% of the 

ground truth value.  94% were accurate to 5%, and 60% were accurate 

to 1%. 

 The author further evaluated his own C++ implementation of Yin 

using a database of eighty-seven violin samples where only the steady-

state portion of the signal was used.  (The transient portion of the signal 

as explained in the section on violin acoustics does not have a clear pitch, 

and therefore, one should not expect any pitch tracker to accurately 

identify its pitch.)  In the initial evaluation Yin correctly identified the 

pitch for 99.24% of the windows to within 1% of the ground truth.  The 

errors that Yin made were exclusively octave errors.  When the author 

more closely examined the recordings where Yin made detection errors, it 
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became apparent that in those recordings which were of the E4 note the 

violin’s E5 string had not been damped and the E5 string was ringing 

sympathetically with the E4 causing the octave errors.  The author 

rerecorded the E4 samples, and in a subsequent evaluation Yin correctly 

identified the pitch for 100% of the windows.  This formal evaluation 

confirmed the impression that the author had made during the informal 

evaluation: for steady-state violin signals, the Yin algorithm does not 

make prediction errors. 

 One caveat, however, needs to be given for the above statement.  

The signal provided to Yin must be loud enough to rise above the noise 

floor.  And as the violinist moves up the finger board of the violin shifting 

from the lower positions to the higher positions, the maximum possible 

amplitude of each note decreases as the string length decreases.  This 

means that notes played at higher positions tend to be softer, and 

therefore, to get accurate pitch tracking results in these positions, one 

may need to use a compression – limiter which unfortunately comes with 

the drawback of decreasing the dynamic range of the violin. 

 

b.) Performance Considerations 

 

 Autocorrelation algorithms including Yin are computationally 

expensive.  The Yin algorithm as presented by Cheveigne requires n2 

operations where n is the window size.  There are, however, a variety of 

methods to reduce the algorithms computational cost.  

 Two methods for doing so were suggested by Cheveigne in 

(Cheveigne, 2001).  The first method involves using a recursive division 

of powers algorithm similar in nature to that which underlies the FFT.  The 

second method involves using the FFT itself by implementing Yin as a 

spectral domain algorithm.  A third method not mentioned by Cheveigne 

known as fast autocorrelation was implemented by the author (Middleton, 

2003).  In fast autocorrelation the results of the last autocorrelation pitch 

estimate are stored, and the algorithm initially computes only the 
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autocorrelation values in the immediate vicinity of the last value for the 

next evaluation.  If one of these values crosses the threshold value, then 

it is used as the pitch value and the remaining autocorrelation values are 

not computed, which saves a considerable number of CPU cycles.  But if 

none of the values in the immediate vicinity of the last estimate cross the 

threshold value, then all of the remaining values are computed.  This 

method is possibly more efficient than those mentioned by Cheveigne, 

but it comes with the drawback that a reliable value for the aperiodicity of 

the signal cannot be computed, because in order to compute the 

aperiodicity, the autocorrelation values for all of the lags of the window 

are needed.  Whether this drawback is important, however, depends on 

whether the aperiodicity value is needed by a particular application. 

 

B.  Spectral domain features 

 

 We would like to extract as much control information from the violin 

as possible.  As violinists make choices about the bow bridge distance, 

bow pressure, bow tilt, and bow position in order to influence the quality 

of the tone produced, we would like to use as much of this information as 

possible to influence the quality of tone during the synthesis.  As 

mentioned earlier in the section on violin acoustics, adjustments to bow 

bridge distance, bow pressure, bow tilt and bow position all affect the 

brightness of the tone; the sound of the violin becomes brighter as the 

bow pressure increases and / or as the bow bridge distance decreases.  

Therefore, we would like to extract the brightness of the bowed string and 

ideally represent it with a variable ranging from 0 – 1.  But for this to be 

possible, we will need to develop a descriptor for the brightness of a 

bowed string that has a high correlation to the string’s brightness and a 

small standard deviation. 

 Oftentimes, the brightness of a signal is modeled by calculating the 

spectral centroid of the FFT of the signal (Jehan, 2001).  The spectral 
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centroid can be understood as the center of gravity of the STFT; if the 

STFT bins were to be split into two equally weighted halves, it is the point 

where they would be split.  It is defined as follows: 

 

 

The spectral centroid given in this formulation does not, however, 

do a very good job, of modeling the changes in brightness of a bowed 

string that result from changes in the bow bridge distance and the bow 

pressure, because changes in the mean spectral centroid values show 

little correlation with changes in these bowing parameters.  To prove this, 

the author created a database of sixty violin notes consisting of fives 

notes on each of the four strings being played three times with 

progressively decreasing bow bridge distances and increasing bow 

pressures and hence with progressively increasing brightness.  He then 

calculated the correlation factor between each set of three recordings of a 

note and the spectral centroids of the STFTs of the three recordings.  The 

total mean correlation for the entire database was found to be -0.3435.  

This implies that the spectral centroid tends to increase as the bow bridge 

distance decreases, which is in accordance with the literature on violin 

acoustics, but the correlation between the two variables is fairly weak.  

The spectral centroid also has a fairly large standard deviation even when 

the bowing parameters which have the greatest influence on brightness 

are held constant and brightness does not change perceptibly.  This 

suggests that the source of the deviation lies elsewhere. 
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Figure 6  Spectral Centroid for a single C4 note played on a Zeta violin 

 Looking at the example spectral centroid in the figure above, the 

source of this instability should be fairly obvious.  There is a sharp spike 

in the spectral centroid at the start of the note and at the end of the note.  

During these periods the bowed string is in a transient phase, and the 

motion of the string is highly aperiodic and noisy.  As the spectral 

centroid of noise is much higher than the spectral centroid of a bowed 

string in Helmholtz motion1, when the string enters a transient stage, the 

spectral centroid rises. 

 We would like to separate changes in brightness that occur due to 

changes in bow bridge distance and bow pressure from changes in 

brightness that occur due to changes in the noiseness of the signal.  In 

order to do so, we need to limit the scope of the validity of the brightness 

descriptor to Helmholtz motion alone, i.e. during transient portions of the 

signal, the brightness descriptor need not be calculated.  And during 

Helmholtz motion, we need to calculate the brightness of the signal based 
                                           
1 The spectral centroid of white noise is equal to half of the Nyquist 
frequency, which for a sampling rate of 44,100 would be 11,025 Hertz. 
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only on the changes in the sharpness of the Helmholtz corner as 

described in the preceding section on violin acoustics. 

 In order to follow changes in the sharpness of the Helmholtz corner 

in the time domain, we need to follow changes in those peaks in the 

frequency domain, which are multiples of the fundamental frequency.   

 

  

Figure 7  The spectrum of an A4 note played on a Zeta violin with an illustration 
of the peak selection algorithm used for calculating the centroid of the peaks.  The 
vertical black lines in the second graph denote multiples of the fundamental.  The 
peaks selected by the algorithm are topped with black asterisks, while the peaks 
ignored by the algorithm are topped by red asterisks. 

 

As shown in the figure above, we select the largest peaks of those 

peaks which are close to a multiple of the fundamental frequency and 

calculate their spectral centroid.  When tested using the same database 

used for the spectral centroid of the STFT, the correlation then climbs to -

0.84, which is a considerable improvement over the previous correlation 

value, and the standard deviation falls significantly as well.   

There is a difficulty, however, that comes with using the spectral 

centroid of the peaks as a metric for brightness.  The number of peaks 

decreases as the fundamental frequency increases, and since there are 

less peaks to use in the calculation of the peak centroid, the peak 

centroid also decreases as the fundamental frequency increases (after 

being normalized by dividing its value by that of the fundamental 

frequency).  It might be possible to define a function to normalize the 
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peak centroid using either the fundamental frequency of the signal or the 

number of peaks used to calculate the centroid, but one could also 

perfectly well use another descriptor which would be unaffected by 

changes in the number of peaks used to calculate its value.   

 

  

Figure 8 The spectrum of an A3 and an A5 note played on a Zeta violin.  As can be 
seen, the A5 has significantly fewer peaks than the A3. 
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Figure 9 The mean peak centroid values of each entire note.  Each note was 
played with three brightness values, and the three notes with their three 
brightness values are shown connected by a line.  The notes were color coded 
by string.  The blue asterisks represent notes played on the violin’s G string – 
the lowest string.  The red asterisks represent notes played on the violin’s D 
string, the yellow asterisks notes on the A string, and the green asterisks notes 
on the E string – the highest string.  As can be seen from the graph, the peak 
centroid falls as the fundamental frequency rises. 

 

 Let us consider for a moment what form another descriptor for 

tracking changes in brightness might take.  As the brightness increases, 

the magnitudes of the peaks to the right of the fundamental should 

increase and possibly the total number of peaks might increase as well.  

It stands to reason then that if one were to draw a line through the peaks 

then the slope of this line should decrease as the brightness increases.  

The descriptor just described is similar in nature to the descriptor 

normally referred as the spectral slope (Alastair et al, 2004).  However, 

the spectral slope is usually calculated as the difference in energy 

between the lower and upper halves of the spectrum.  To avoid confusion, 

the author will instead refer to  slope of the line that passes through the 

selected peaks as given by the least squares method (Weisstein, 2007) as 
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the spectral peak slope. 

  

 

Figure 10 The spectral peak slope of an A4 note played on a Zeta violin 
with a small bow bridge distance and high bow pressure. 

 

 The spectral peak slope does indeed prove to be more effective at 

tracking the brightness than the spectral peak centroid.  It yielded a 

correlation value of -0.9613 which is a considerable improvement over 

the correlation value of the spectral peak centroid and which is very close 

to the ideal value of -1.  And after scaling the slope to range from 0 – 1, 

it had a standard deviation of 0.0387.  The author attempted to further 

reduce the standard deviation by applying sinusoidal modeling techniques 

such as peak continuation across frames, but applying these techniques 

only marginally improving the standard deviation while significantly 

reducing the correlation.  The author also tried different schemes for 

weighting the peaks when calculating the slope, but he found that 

weighting the peaks equally gave better results.  The author found that 

the following peak selection / slope calculation algorithm gave the best 
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results:  (1) generate the maximum number of peaks to be selected as a 

function of the fundamental frequency so that as the fundamental 

frequency increases the maximum number of peaks falls  (2) for every 

multiple of the f0 select the largest peak which is within a certain 

threshold distance from the multiple’s location where the threshold is 

defined to be 20% of the fundamental frequencies bin position  (3) 

calculate the spectral peak slope using the interpolated magnitudes and 

locations of the selected peaks where every peak is weighted equally. 

 The author validated these results by testing how well the spectral 

peak slope worked as a classifier of samples recorded with differing bow 

bridge distances.  As brightness varies with bow bridge distance, we can 

use different bow bridge distances as a proxy for the ground truth of 

different brightness values.  The author recorded 24 notes where the bow 

was near to the bridge and far from the bridge.  (Middle bridge distances 

were not used, because notes played at this position can be identically 

bright to notes played at other bow bridge positions if changes in the bow 

pressure offset changes in the bow bridge distance.)  The notes were 

classified with 88.89% accuracy if the string which the note was played 

on was given.  Otherwise, they were classified with a 77.78% accuracy.  

Information about which string a note is played on proved to be 

important, because different strings are stretched to different pressures, 

and the same note played on different strings creates a different number 

of peaks with different magnitudes and hence different spectral peak 

slopes.  As the mean values for the spectral peak slopes changes from 

one string to the next, these values are best scaled to the range 0 – 1 

using functions which are specific to the string.  Although a mapping 

function was also derived for all strings, it obviously did not work as well.  

In end effect this means that violinists playing on violins with one pickup 

per string will have better results than violinists playing with only a single 

pickup, but having one pickup per string already gave better results in the 

sense that it allows violinists to play polyphonically. 
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C.  Bow Changes 

 

 Oftentimes before a violinist plays a new piece, they look at the 

score first in order to plan their bow movements.  Notes in the score that 

require emphasis and therefore greater bow pressure are best played 

close to the frog, i.e. the base of the bow, where one can summon the 

greatest bow force, and notes that call for a soft onset are best played at 

the tip of the bow where the chances of losing steady contact with the 

string due to an unintentional movement of the hand are lessened. The 

choice of points in the score at which to change the bow direction is also 

important as notes played on the same bow tend to be heard as phrases.  

A violinist may prefer for example to play all the notes of a melody 

leading to a melodic apex on one bow while playing the subsequent 

descending notes on another bow.  This helps create the impression that 

the violinist is playing towards the inflection points in the score which 

lends the piece a flowing quality.  Poorly planned bow changes on the 

other hand can cause a piece to sound choppy and unmusical.   

 In terms of acoustics, the likely reason why violinists plan their bow 

changes so carefully is that the string undergoes a lengthier transient 

phase when the bow changes.  A bow change is the only time when a 

string must be brought into Helmholtz motion from still stand by a bow 

accelerating from still stand as well.  In those cases where a note is 

played on the same bow, the bow is in any case already moving and 

possibly the string is already moving as well (if the previous note was 

played on the same string). 

 The bow direction and changes in the bow direction should be 

treated as significant later on when we synthesize a new signal using the 

controls extracted from the violin signal.  As a bow change usually 

corresponds to a lengthy transient, we should correspondingly play a full 

attack for a synthesized note whenever there is a bow change.  For this 

reason we would like to be able to detect the bow direction and the 
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changes in bow direction.   

Given only an airborne signal recorded by a microphone, detecting 

the bow direction might be rather difficult, but this task becomes much 

easier if one uses a signal recorded by a pick-up in direct contact with the 

string, because a pick-up is actually pulled with the string by the bow 

during an up or a down bow and hence the signal is centered either above 

or below zero depending on the bow direction. 

Is it unreasonable to expect that the signal will be recorded by a 

pickup? Every electric violin that the author is aware of uses pickups.  

And as only an electric violin will produce a signal soft enough as to not 

drown out the signal produced by the synthesizer, one can safely say that 

an electric violin is the optimal type of violin for an audio-driven synthesis 

application.  Although it might be preferable to develop a method that 

would work independently of the manner in which the signal was 

recorded, as the reader will soon see, it is unlikely that such a method 

would work as well as a pickup specific method. 

 

 

Figure 11 Down bow. 

 

Figure 12 Up bow. 

 

 A number of different measures were considered to extract the bow 

direction from a window of the signal, and these measures were 

subsequently tested on eight Zeta violin notes.  The first measure was to 

compute the mean value of a window of the signal and extract the bow 
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direction from whether the mean was positive or negative.  The second 

measure was to find the maximum and the minimum of a window and to 

extract the bow direction based on whether the maximum exceeded the 

absolute value of the minimum.  The third measure was to find the 

average of the five largest maximums and the average of the five 

smallest minimums of a window and to extract the bow direction based 

on whether the mean maximum exceeded the absolute value of the mean 

minimum.   

 The first measure simply did not work as there was little correlation 

between the mean of a window and the direction of the bow.  The second 

measure accurately predicted the down bows for 96.12% of the windows 

and the up bows for 98.05% of the windows.  The third measure had 

more or less the same accuracy.  It correctly predicted the down bows for 

96.09% of the windows and the up bows for 98.08% of the windows. As 

the second measure is computationally less expensive than the third 

measure, it is therefore to be preferred. 

These numbers suggest that both the second and third measures 

identify the bow direction fairly accurately.  But as the errors that they 

made were exclusively during the transient portion of the signal, they 

could be even further improved by suppressing these values during the 

transient portion of the signal.  (If one looks closely at the figures above, 

small black asterisks in the signal identify the points where the bow 

direction was incorrectly identified.) 

 

D.  Transient detection 

 

 Accurate identification of transients in the signal is essential for any 

audio driven synthesis application, because when transients occur, the 

pitch values delivered by the pitch detection algorithm are inaccurate, 

oftentimes substantially so.  If they are not filtered out, one may hear a 

flurry of wild pitch values with nearly every note change.  Transients 
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must, therefore, be identified as such so that they can be suppressed or 

dealt with in some other way.    

 

 

Figure 13  Stationaries and transients in a violin performance. The red 
plus signs represent bad pitch estimates from Yin during a transient. 

 

 The author evaluated four different measures for identifying 

transients.  First, as previously mentioned, the yin algorithm and other 

auto-correlation algorithms provide a measure of the aperiodicity of the 

signal.  When transients occur, there is typically a spike in the aperiodicity 

of the signal, and this value has been used by at least one acoustician as 

the basis of a transient identification algorithm developed for bowed 

strings (Woodhouse, 2003).  Second, when transients occur, Yin’s pitch 

estimates oftentimes deviate substantially from the previous stable pitch 

value, and therefore, rather than trying to identify transients by looking 

at the signal itself, one could instead look at Yin’s output pitch values for 

pitch changes that cross a threshold level.  Third, the author noticed while 

developing the brightness descriptor that when transients occur, the 

spectral peak centroid oftentimes deviates significantly from its steady 

state value for a particular pitch, and therefore, checking to see whether 
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the spectral centroid falls outside of a normal range of values is a further 

potentially useful measure.  Fourth, the author developed a measure of 

the distance of the current pitch value from the most recent pitch values.  

The measure works by maintaining a running histogram of the last half 

second of pitch values so that the distance of the current value from the 

recent values can be  calculated as the cost of moving all the weights in 

the other histogram bins into the bin of the current pitch.  This cost is 

then subsequently normalized by dividing it by the largest possible cost.  

This distance measurement borrows conceptually from the earth mover’s 

distance algorithm (Rubner, et al, 1998). 

 In order to test the efficacy of these four measures, the author 

played, recorded, and transcribed three solo violin pieces.  Oftentimes, in 

the transition between notes, it was not possible to say exactly when one 

pitch ended and another began which means that the ground truth could 

not be fully determined by transcription.  But the ground truth could be 

approximated during the note transitions by declaring any pitch values 

between the first and the second pitches in a transition to be good 

estimates, and any pitches outside that range to be poor estimates.   

In order to evaluate these four measures, the author used each of 

the four measures to classify each frame of the signal as either stationary 

or transient, and each classification was compared to the ground truth to 

assess its accuracy.  At the end of the evaluation, rather than calculating 

one number representing the total percent correct, the author calculated 

four numbers: the percentage of correct stationary classifications, the 

percentage of incorrect stationary classifications, the percentage of 

correct transient classifications, and the percentage of incorrect transient 

classifications.  The reason for dividing the results into these four 

categories is that although an incorrect stationary classification and an 

incorrect transient classification are both errors, incorrectly labeling a 

transient as a stationary is a far worse error than incorrectly labeling a 

stationary as a transient. When we incorrectly label a transient as a 

stationary, this leads us to synthesize a new note using a bad pitch 
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estimate.  When we incorrectly label a stationary as a transient on the 

other hand, the value will most likely be suppressed which means that we 

will continue to sustain the value of the current note at its current pitch 

and amplitude until the next stationary.  In end effect we introduce 

additional latency to the onset of new notes, but this is a far less severe 

error than outputting a bad note.  As the reader will see for each of the 

measures evaluated, there is a trade-off between these two types of 

errors.  By adjusting the threshold values, one can decrease one type of 

error but only at the cost of increasing the other type of error.   

In the following tables the data is given for how successfully each 

measure works to classify frames as either stationary or transient.  

Different threshold values for each measure were used to classify frames 

as stationary or transient, and the percentage of correct classifications 

that resulted is given for each measure.  For each measure two tables are 

given.  The first gives the percentages of stationery frames or transient 

frames identified with respect to the total number of stationeries or 

transients frames, and the second gives the percentages of stationery or 

transient frames identified with respect to the total number of frames.  

Before applying any measures, the recordings evaluated consisted of 

94.92% stationary frames and 5.08% transient frames2. 

  

1.)  Transient detection using aperiodicity 

 

                                           
2 These numbers overstate, however, to an extent the number of 
transient frames as in many cases transient frames occur during 
moments of near silence.  As the amplitude level is so low for these 
frames, it is somewhat irrelevant if the pitch is correctly or incorrectly 
estimated as they will not be heard anyway.  These nearly silent frames 
account for 10 – 30% of the transients. 
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Aperiodicity 
Threshold 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.0500 91.91% 8.08% 59.80% 40.19% 
0.0700 93.60% 6.39% 52.02% 47.97% 
0.0900 94.78% 5.21% 46.31% 53.68% 
0.2000 97.73% 2.26% 28.66% 71.33% 
0.3000 98.96% 1.03% 20.77% 79.22% 
0.4000 99.48% 0.51% 14.19% 85.80% 
0.5000 99.76% 0.23% 10.28% 89.71% 
0.6000 99.87% 0.12% 7.16% 92.83% 
0.7000 99.91% 0.08% 4.91% 95.08% 
0.8000 99.93% 0.06% 3.68% 96.31% 
0.9000 99.96% 0.03% 2.50% 97.49% 
1.0000 99.97% 0.02% 1.74% 98.25%  

Table 1  In this table as the allowed amount of aperiodicity increases, the 
percentage of correctly identified stationary frames increases while the 
percentage of correctly identified transient frames decreases.  The percentages 
indicate the percentages of correctly identified stationery frames with respect to 
the total number of stationary frames and the percentage of correctly identified 
transient frames with respect to the total number of transient frames. 
 

Aperiodicity 
Threshold 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.0500 86.88% 7.64% 3.27% 2.19% 
0.0700 88.48% 6.04% 2.84% 2.62% 
0.0900 89.60% 4.92% 2.53% 2.93% 
0.2000 92.39% 2.13% 1.56% 3.90% 
0.3000 93.54% 0.97% 1.13% 4.33% 
0.4000 94.04% 0.48% 0.77% 4.69% 
0.5000 94.30% 0.22% 0.56% 4.90% 
0.6000 94.40% 0.12% 0.39% 5.07% 
0.7000 94.45% 0.07% 0.26% 5.20% 
0.8000 94.47% 0.05% 0.20% 5.26% 
0.9000 94.49% 0.03% 0.13% 5.33% 
1.0000 94.50% 0.02% 0.09% 5.37%  

Table 2  In this table the percentages of correctly and incorrectly classified 
frames is given with respect to the total number of frames. 
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2.)  Transient detection using pitch changes 

 

Pitch 
Change 
Threshold 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

1.0006 85.73% 14.26% 63.07% 36.92% 
1.0012 92.61% 7.38% 51.55% 48.44% 
1.0017 94.97% 5.02% 44.71% 55.28% 
1.0023 96.29% 3.70% 40.19% 59.80% 
1.0029 97.05% 2.94% 36.69% 63.30% 
1.0035 97.60% 2.39% 33.92% 66.07% 
1.0041 97.95% 2.04% 31.55% 68.44% 
1.0046 98.24% 1.75% 29.54% 70.45% 
1.0052 98.45% 1.54% 28.07% 71.92% 
1.0058 98.61% 1.38% 26.55% 73.44% 
1.0116 99.35% 0.64% 19.37% 80.62% 
1.0175 99.48% 0.51% 16.07% 83.92% 
1.0234 99.55% 0.44% 14.51% 85.48% 
1.0293 99.58% 0.41% 13.55% 86.44% 
1.0353 99.61% 0.38% 13.27% 86.72% 
1.0413 99.62% 0.37% 12.93% 87.06% 
1.0473 99.62% 0.37% 12.42% 87.57% 
1.0534 99.62% 0.37% 11.97% 88.02% 
1.0595 99.62% 0.37% 11.72% 88.27%  

Table 3 In this table as the allowed size of the change in pitch between frames 
decreases, the percentage of correctly identified stationary frames decreases 
while the percentage of correctly identified transient frames increases.  The 
percentages indicate the percentages of correctly identified stationery frames 
with respect to the total number of stationary frames and the percentage of 
correctly identified transient frames with respect to the total number of 
transient frames.  The pitch change threshold is the ratio of the current pitch to 
the previous pitch, and the value 1.05946 represents one semitone. 
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Pitch 
Change 
Threshold 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

1.0006 81.06% 13.49% 3.43% 2.01% 
1.0012 87.56% 6.98% 2.80% 2.63% 
1.0017 89.80% 4.75% 2.43% 3.01% 
1.0023 91.05% 3.50% 2.18% 3.25% 
1.0029 91.77% 2.78% 1.99% 3.44% 
1.0035 92.28% 2.26% 1.84% 3.59% 
1.0041 92.62% 1.92% 1.71% 3.72% 
1.0046 92.89% 1.66% 1.60% 3.83% 
1.0052 93.08% 1.46% 1.52% 3.91% 
1.0058 93.24% 1.31% 1.44% 4.00% 
1.0116 93.93% 0.61% 1.05% 4.39% 
1.0175 94.06% 0.48% 0.87% 4.57% 
1.0234 94.13% 0.41% 0.79% 4.65% 
1.0293 94.16% 0.38% 0.73% 4.70% 
1.0353 94.18% 0.36% 0.72% 4.72% 
1.0413 94.19% 0.35% 0.70% 4.74% 
1.0473 94.19% 0.35% 0.67% 4.77% 
1.0534 94.19% 0.35% 0.65% 4.79% 
1.0595 94.20% 0.35% 0.63% 4.80%  

Table 4  In this table the percentages of correctly classified frames is given 
with respect to the total number of frames. 
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3.)  Transient detection using the spectral peak centroid 

 

Distance 
from mean 
value 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.10 96.44% 3.55% 47.18% 52.81% 
0.15 99.19% 0.80% 31.42% 68.57% 
0.20 99.57% 0.42% 12.73% 87.26% 
0.25 99.68% 0.31% 8.71% 91.28% 
0.30 99.80% 0.19% 4.74% 95.25% 
0.35 99.87% 0.12% 2.50% 97.49% 
0.40 99.92% 0.07% 1.51% 98.48%  

Table 5 In this table as the allowed size of the distance of the spectral peak 
centroid from the mean spectral peak centroid increases, the percentage of 
correctly identified stationary frames increases while the percentage of 
correctly identified transient frames decreases.  The percentages indicate the 
percentages of correctly identified stationery frames with respect to the total 
number of stationary frames and the percentage of correctly identified transient 
frames with respect to the total number of transient frames. 
 

 

Distance 
from mean 
value 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.10 91.16% 3.35% 2.58% 2.88% 
0.15 93.76% 0.76% 1.71% 3.75% 
0.20 94.12% 0.40% 0.69% 4.77% 
0.25 94.23% 0.29% 0.47% 4.99% 
0.30 94.34% 0.18% 0.25% 5.21% 
0.35 94.41% 0.11% 0.13% 5.33% 
0.40 94.45% 0.07% 0.08% 5.38%  

Table 6  In this table the percentages of correctly classified frames is given 
with respect to the total number of frames. 
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4. Transient detection using a running histogram 

 

Distance 
from recent 
values 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.07 73.52% 26.47% 72.66% 27.33% 
0.08 83.17% 16.82% 68.79% 31.20% 
0.09 88.47% 11.52% 66.29% 33.70% 
0.10 92.17% 7.82% 61.60% 38.39% 
0.11 95.69% 4.30% 55.71% 44.28% 
0.12 97.89% 2.10% 52.67% 47.32% 
0.13 98.77% 1.22% 50.51% 49.48% 
0.14 99.01% 0.98% 44.82% 55.17% 
0.15 99.24% 0.75% 43.23% 56.76% 
0.16 99.47% 0.52% 36.29% 63.70% 
0.17 99.71% 0.28% 31.42% 68.57% 
0.18 99.96% 0.03% 29.26% 70.73% 
0.19 99.98% 0.01% 27.61% 72.38%  

Table 7 In this table as the allowed distance (measured as transformational 
cost) of the current pitch value from the most recent values increases, the 
percentage of correctly identified stationary frames increases while the 
percentage of correctly identified transient frames decreases.  The percentages 
indicate the percentages of correctly identified stationery frames with respect to 
the total number of stationary frames and the percentage of correctly identified 
transient frames with respect to the total number of transient frames. 
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Distance 
from recent 
values 

Correct 
Stationary 
Classification 

Incorrect 
Stationary 
Classification 

Correct 
Transient 
Classification 

Incorrect 
Transient 
Classification 

0.07 69.79% 25.12% 3.68% 1.38% 
0.08 78.95% 15.97% 3.49% 1.58% 
0.09 83.97% 10.94% 3.36% 1.71% 
0.10 87.49% 7.42% 3.12% 1.94% 
0.11 90.83% 4.08% 2.82% 2.24% 
0.12 92.92% 1.99% 2.67% 2.40% 
0.13 93.75% 1.16% 2.56% 2.51% 
0.14 93.98% 0.93% 2.27% 2.80% 
0.15 94.20% 0.71% 2.19% 2.88% 
0.16 94.42% 0.49% 1.84% 3.23% 
0.17 94.64% 0.27% 1.59% 3.48% 
0.18 94.89% 0.03% 1.48% 3.59% 
0.19 94.90% 0.01% 1.40% 3.67%  

Table 8  In this table the percentages of correctly classified frames is given 
with respect to the total number of frames. 
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Figure 14  Curves showing the tradeoff for each measure between correct 
stationary and transient classification.  Curves closer to the upper right hand 
corner present the best trade-off between correct stationary and transient 
classification.  So, as can be seen, the histogram gives the best results while the 
aperiodicity and the pitch change give the worst results. 

 

As none of these features proved to be sufficient to detect all of the 

transients on their own, we would like to combine these different features 

in the hopes of improving the overall accuracy of the transient 

classification.  After having tried various classification algorithms in the 

Weka machine learning environment (Witten and Frank, 2005), the 

author chose to implement a naïve Bayesian classifier.  Although the 

decision tree based classifiers in Weka gave slightly better results for this 

problem, implementation considerations lead the author to prefer the 

naïve Bayesian classifier. 

 Naïve Bayesian classifiers attempt to find the probability of a 

particular class given a set of features, p(Class | F1 … Fn).  In our 

particular case, the classes are whether a particular frame is a transient 
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or stationary, and the features are discretized values for the aperiodicity, 

the distance of the spectral peak centroid from the mean, and the 

distance of the current pitch value from recent values.  (The pitch change 

was not included, because the running histogram did a better job of 

measuring essentially the same phenomena.)  We can use Bayes’ 

theorem to derive p(Class | F1 … Fn) as: 

 

 

 

And making the assumption from which naïve Bayes classification derives 

its name, we assume that F1 … Fn are conditionally independent so that 

we can restate the above equation as: 

 

 

 

We can then plug in the values of p(C), p(F1 | Class), p(F2 | Class), p(F3 | 

Class), p(F1), p(F2), and p(F3) to derive the probability of a particular 

frame being a stationary or a transient.  Given these probabilities, rather 

than simply declaring the class with the greatest probability to be the 

winner, we use a user provided scaling value to determine by what 

percent the probability of a frame being a stationary must exceed the 

probability of a frame being a transient in order for that frame to be 

declared a stationary.  The scaling factor can be used to select an 

appropriate trade-off between incorrectly identified stationeries and 

incorrectly identified transients as the percentages produced by the naïve 

Bayes’ classifier exhibit the same trade-off between incorrectly identified 

stationeries and incorrectly identified transients as do its constituent 

features. 

 In order to compare the performance of the naïve Bayes’ classifier 

with that of the individual measures, the author plotted the trade-off 
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curve between correct stationary classifications and correct transient 

classifications for all four measures as well as the naïve Bayes’ classifier. 

One can judge how well the classifier works by looking at whether it 

presents a more favorable trade-off curve than its individual features. 

 

 

Figure 15  Trade-off curves between stationary and transient 
classification. Curves closer to the upper right hand corner present 
a better trade-off between errors in transient and stationary 
identification.  As can be seen, the classifier performed 
significantly better than any of its constituent features. 

 

 The naïve Bayesian classifier did indeed perform better than its 

constituent features.  It was able to correctly identify transients and 

stationeries with a significantly higher success rate than its constituent 

features.  The overall accuracy of this classifier peaked at 97.4% while 

the overall accuracy of the most successful of its constituent features – 

the running histogram – peaked at 96.4%.  Its overall error rate of 2.6% 

might still sound unacceptably high, but an examination of plots of the 

errors shows that the classifier manages to catch all of the egregious 

transients and what remains are primarily transients which are very close 
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to the actual pitch and mislabeled stationeries. 

 

 

Figure 16  Depiction of correctly identified stationaries (in blues) and correctly identified 
transients (in black). The plot is for the point on the tradeoff curve where the overall 
accuracy is 95.2%. 

 

Figure 17  Depiction of incorrectly identified transients (in red) versus stationaries.  
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Figure 18  Depiction of incorrectly identified stationaries (in yellow) versus correctly 
identified stationaries. 
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VI.  Spectral Modeling Synthesis Application 

 

As previously stated in the introduction, one of the goals of this 

project was to create a real-time spectral modeling synthesis application, 

which works with samples provided by the musician.  Before describing 

how we approached this goal, we will give a brief introduction to spectral 

modeling, and then, we will proceed to discuss the specifics of the 

application developed. 

 

A.  Background 

 

 A mathematical model is a representation of the essential aspects of 

an existing system (or a system to be constructed), which presents 

knowledge of that system in usable form. 

        Eykhoff (1974) 

 

 A spectral model of a signal is a frequency domain representation of 

a signal that enables us to perform a variety of transformations on a 

signal that might be achieved only with great difficulty or computational 

cost in the time domain.  Spectral modeling encompasses the following 

three basic representations of a signal:  the STFT (short time Fourier 

transform), sinusoidal models, and sinusoidal plus residual models.  

(There are many other representations in addition to these, but they can 

be seen as extensions to or variations of these three basic 

representations.)  The models differ in how much flexibility in 

transformation they offer as well as in which sorts of signals they are able 

to effectively model.  From these three representations, further high-level 

attributes of a signal can be extracted as well in order to aid certain 

transformations. 
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1.  STFT 

 The discrete Fourier transform decomposes an audio signal into a 

continuous spectrum of its frequency components, or put differently, it 

models a signal as a sum of sine waves.  The inverse transform 

synthesizes an audio signal from its spectrum of frequency components.  

Due to the fact that the Fourier transform does not give one any 

information about the temporal locations of frequency components, 

typically only a small window of the audio signal – a window just large 

enough to give adequate frequency resolution – is analyzed in order to 

localize the frequency components. Hence comes the name short time 

Fourier transform.   

 The STFT was first used for musical applications in the digital phase 

vocoder (Moorer, 1978) which is essentially a digital implementation of a 

fixed frequency filter bank.  The phase vocoder is able to successfully 

analyze harmonic sounds with stable partials well enough to allow a 

variety of transformations of the signal without producing artifacts, but its 

analysis is less successful for inharmonic sounds or sounds with time 

varying frequency components.  This is due to the fact that partials may 

wander between the bands of the filter bank or fall between the 

boundaries of two neighboring banks. 

2.  Sinusoidal Models 

 Sinusoidal modeling builds upon the STFT by identifying sinusoidal 

components in the frequency analysis, pinpointing their frequencies via 

interpolation, and tracking them across successive analysis windows.  

This allows for a better analysis of inharmonic sounds and sounds with 

time varying frequency components.  However, it does not provide a very 

useful representation of noisy signals, as noise would basically have to be 

represented as a sinusoid at every frequency up to the Nyquist frequency.  

See (McAulay and Quatieri, 1986; Smith and Serra 1987) for further 

information on sinusoidal modeling. 
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3.  Sinusoidal plus Residual Modeling  

 Sinusoidal plus residual modeling builds upon the sinusoidal model 

by performing the previous steps in sinusoidal modeling to obtain the 

sinusoidal components, which are then subtracted from the spectrum to 

yield a residual component, i.e. noise.  The residual component can then 

be modeled by calculating its spectral envelope, which can later be used 

to re-synthesize the residual from white noise.  Please see (Serra, 1997) 

for further information. 

 The following diagram gives a high level representation of the steps 

involved in a sinusoidal plus residual modeling analysis, transformation, 

and resynthesis process.  Many different implementations are possible; 

the diagram depicts the implementation in the CLAM C++ library for 

audio and music (Amatriain, et al, 2006). 

  

 

Figure 19  Diagram of the sinusoidal plus residual modeling process in CLAM 
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B.  A Spectral Modeling Synthesizer 

 

The goal in developing the real-time, spectral modeling, 

monophonic synthesizer was to use the audio descriptors extracted from 

the violin to control the synthesis process thereby allowing the performer 

more control over the synthesis process than would be possible using a 

MIDI keyboard.  However, in order for this greater control to translate 

into greater expressivity in a performance, there must be a fairly intuitive 

mapping between the control information extracted from the violin and 

the control inputs of the spectral model. 

The author chose to concentrate on modeling the sound of an ebow 

while developing the synthesizer.  The ebow is a battery powered device 

used for playing guitar that manages to produce a sound similar in nature 

to that of a bowed string by producing an electro-magnetic field which 

causes the steel strings of a guitar to vibrate. By changing the ebow's 

position on the string, different string overtones can be produced, and 

fade-ins and fade-outs can be produced by lowering and raising the ebow 

from the string.  It is fairly obvious how to map the descriptors extracted 

from the violin to the descriptors for the ebow’s spectral model, and the 

sound of an ebow differs enough from that of a violin to make it a 

welcome addition to a violinist’s sound palette.  For this reason the author 

limited his efforts to modeling the ebow although it is intended to 

eventually develop this application into a general purpose synthesizer 

supporting all three of the previously mentioned spectral modeling 

techniques.   
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Figure 20 An ebow by itself and an ebow being used to play a guitar. 

 

 The synthesizer was developed in C++ using the CLAM library.  The 

author used CLAM’s classes for the implementation of sinusoidal plus 

residual modeling and SDIF file IO and developed additional classes for 

threaded, buffered file reading, thread pooling, looping, OSC input, data 

mapping, data management, spectral transformation and interpolation.  

The synthesis process is depicted in the following flow diagram. 

 

 

Figure 21  Overview of the synthesis process as implemented by the author 

 

1.  Input Sources 

 

 The synthesizer runs either as a module in CLAM’s Network Editor 
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or as a standalone application that can be controlled either via a score file 

or an OSC stream.  It is also planned to have it run as well as an external 

inside of Max/MSP, but at the time of writing this has not yet been 

completed. 

 

 

Figure 22  The synthesizer inside of CLAM's Network Editor 

 

 When loaded in OSC listening mode, the synthesizer listens on port 

7000 for OSC events with the following syntax: 

 

/ces f f f f pitch amplitude brightness voiceId 

 

The message’s intended recipient – the continuous excitation synthesizer 

– is given by the string “/ces”.  The following four “f” letters give the data 

types of the subsequent four variables;  they are all floats.  The variable 

“pitch” gives the pitch of the note in hertz.  The variable “amplitude” 

gives the amplitude in the range from 0 – 1, and the variable “brightness” 

gives the brightness in the range from 0 – 1.  The brightness value can 

also be set to -1 in which case the amplitude is used as an indicator of the 

brightness instead.  Finally, the variable “voiceId” is used to indicate 

whether the events belong to an existing note / phrase or a new one.  

This is the means for clients to indicate where notes should be 
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segmented;  for each new voiceId, the note begins with an attack phase 

while for existing voiceIds once the attack phase is completed additional 

frames are read from the steady state which loops indefinitely.  It is 

preferable for clients to indicate the note segmentation points, because 

the clients are in a better position to make decisions about the proper 

note segmentation than the synthesizer, but client’s can chose not to 

provide this information by setting the voiceId to -1.  In this case the 

synthesizer segments the event stream into notes by looking for changes 

in the pitch value greater than a predefined threshold. 

 

2.  SDIF and XML Database 

 

 One of the primary goals when developing the synthesizer was to 

ensure that new audio material could be converted into a usable database 

format by musicians.  This suggested the following constraints:  the 

database creation process should require little to no knowledge of spectral 

modeling techniques, and the process should be quick, easy, and 

relatively fail proof. 

 To meet these constraints, the author developed a simple utility 

program for converting audio material into SDIF files with associated 

metadata in XML format.  Before the analysis, the user specifies where 

the attack ends and how far into the steady state he would like to search 

for loopable audio.  The program then performs a sinusoidal plus residual 

analysis on the file and searches for the optimal loop points amongst the 

analysis frames by comparing each frame using the earth mover’s 

distance algorithm (Rubner, et al, 1998).  This algorithm can be 

understood metaphorically by imagining the analysis frames to be 

representations of piles of dirt spread out over a region; the earth 

mover’s distance is then the cost of turning one pile into the other where 

cost is defined to be the minimum amount of dirt that must be moved 

times the distance by which the dirt has to be carried.  The frames with 
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the smallest earth mover’s distance are the most spectrally similar, and 

they are therefore presumably the best loop points.  After the program 

has extracted a half a dozen loops in this manner, it saves their start and 

end positions in milliseconds to an XML file together with the fundamental 

frequency, the maximum amplitude3, and the start point of the attack.  

Finally, the program saves the analysis frames to a single SDIF file. 

 Currently, this utility program runs as a command line application, 

but ultimately, it would be desirable to integrate this functionality into the 

existing CLAM application SMSTools which provides a GUI interface to the 

sinusoidal plus residual analysis process in order to provide users with a 

better looking and eventually more powerful interface. 

 

3.  Data Management 

 

 When the synthesizer starts, it is given a directory name containing 

the database.  The synthesizer then searches for files in this directory 

ending in the extension “xml” and after loading them converts them into 

metadata objects.  It then opens file handles to the SDIF files referenced 

in the metadata objects and preloads the attack and first loop of each file.  

This manner of dynamic loading enables users to grow or shrink the 

database by simply moving files into or out of the directory. 

 Later when a file is played, the additional loops are loaded as well 

into memory by a background thread if the file is played long enough to 

start looping.  This ensures a higher quality synthesis by preventing the 

same loop from being played contiguously while being conservative with 

regards to memory consumption. 

                                           
3 The maximum amplitude is extracted as a surrogate for brightness.  
Typically, notes that are played louder are brighter, and for this reason if 
the synthesizer identifies two notes with the same frequency in the 
database, it will assume that the note with the greater maximum 
amplitude is brighter.  This information is then used when changing the 
equalization of the sinusoids in response to the brightness parameter. 
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4.  Interpolation 

 

 The metadata for the SDIF files are indexed internally in a two 

dimensional table where the axis are pitch and brightness.  As control 

information for pitch, amplitude and brightness comes in, the data 

manager must create a frame to match the target pitch and brightness 

from a potentially insufficient data set.  As users can put an arbitrary 

number of files in the synthesizer’s directory, they may very well choose 

to place only a single sample or a non-multilayered collection of samples 

in the directory rather than a multilayered collection of samples, and for 

this reason the interpolation algorithm must be flexible enough to deal 

both with the best case and the worst case scenarios in the optimal 

manner.   

The interpolation algorithm implemented by the author chooses the 

SDIF data source with the smallest Euclidian distance from the target 

pitch and brightness as the base source for the interpolation.  The pitch of 

its delivered frame is then transposed to match that of the target pitch.  

Then, a second data source is searched for which can be used as the 

other pole with which to interpolate the brightness.  If a data source with 

a suitable brightness value is found that has a pitch distance which is 

equal to or less than that of the first data source or if a data source with a 

suitable brightness is found that has a pitch distance which is greater 

than that of the first data source but does not exceed five semitones, 

then it is selected as the second pole for brightness interpolation.  The 

pitch of the delivered frame is also transposed to match that of the target 

pitch, and then, the brightness is interpolated by scaling the magnitudes 

of the sinusoids of the first frame with the envelope of the sinusoids of 

the second frame.   
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5.  Synthesis 

 

 The interpolated frame is then given to CLAM’s sinusoidal plus 

residual modeling class to be resynthesized.  Before the frame is given 

over to the IFFT, the phase for each STFT bin is recalculated based on the 

frame’s transposed frequency and the number of samples since the last 

frame, and the sinusoids and the residual are merged into a single 

spectrum.  Then, the time domain signal is created with the IFFT, and the 

signal is windowed, overlapped, and added to the last window of the 

signal. 
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V.  Conclusions and Future Work 

 
An audio driven synthesizer was presented that was developed for a 

bowed string controller. Algorithms were given for detecting the pitch, 

brightness and bow direction of a violin and for identifying transients, and 

a real-time spectral modeling synthesizer was introduced that uses the 

descriptors extracted from the violin’s signal to control audio synthesis 

from a spectral model. 

In the future the author would like to continue refining and 

extending the audio descriptors for violin.  With further work the standard 

deviation of the spectral peak slope descriptor could likely be further 

reduced. The transient detection algorithm could likely be further 

improved by developing better signal level descriptors; a dissertation 

written recently on the topic promises to provide a wealth of further 

insights and ideas in this direction (Thornburg, 2005).  And it could be 

potentially useful to develop classification algorithms for the kind of string 

motion, i.e. Helmholtz motion, double-slipping motion, etc as well as the 

style of bowing, i.e. staccato, detaché, pizzicato, etc. 

With regards to the synthesis engine, one could honestly say that the 

real work is only now beginning.  The core classes for synthesizing from a 

spectral model in real-time are now finished, but as was mentioned in the 

introduction, the author is most interested in spectral models due to the 

variety of transformations of sampled material that they allow.  The 

author would like to develop a flexible framework for specifying sound 

transformations using spectral models that would allow these 

transformations to be controlled in real-time with input from the violin 

possibly after they have been parametrized with contextual information 

regarding tempo and key from the surrounding musical environment. 
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