
Automatic accompaniment for

improvised music

Daniel Martín

MASTER THESIS UPF / 2009
Master in Sound and Music Computing

Master thesis supervisor:

Rafael Ramírez

Department of Information and Communication Technologies

Universitat Pompeu Fabra, Barcelona

Abstract
Modern music students practice improvisation playing on top of a software that gen-
erates accompaniment, but it does not listen to the musician’s input. Automatic
accompaniment systems provide appropriate musical accompaniment to a human
player in a given musical context by listening to them. We are interested in de-
veloping an AAS. Therefore, the purpose of this project is to build a system that
generates accompaniment for a given melody, emulating a jazz pianist accompany-
ing a human soloist improvising in jazz style. The method used is based on re-using
stored fragments to create the accompaniment. Two musical fragment representa-
tion models have been studied: a tree representation model and a statistical model,
from which the latter has been implemented.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 The system . 2

1.4 Organization of the thesis . 2

2 State of the art in accompaniment systems 5

2.1 Classification distinctions . 5

2.1.1 Audio vs. MIDI input . 6

2.1.2 Interactive vs. Reactive . 6

2.1.3 System’s knowledge . 6

2.1.4 Music knowledge based vs. machine learning 6

2.1.5 Others . 7

2.2 Taxonomy . 7

2.2.1 Score followers . 7

2.2.2 Automatic arrangement systems 8

2.2.3 Automatic Harmonization systems 8

2.2.4 Improvisation systems . 9

2.2.5 Accompaniment systems related to jazz 10

3 Background 17

3.1 Machine Learning . 17

3.1.1 Instance-based Learning . 17

3.1.2 Multilayer Perceptron . 18

3.1.3 Sequential Minimal Optimization (SMO) for Support Vector
Machines (SVM) . 19

3.1.4 M5 Rules . 20

3.2 Music theory . 21

3.2.1 Jazz . 21

3.2.2 Piano comping . 21

3

4 CONTENTS

4 Our system 23
4.1 Overview . 23
4.2 How the system works . 24

4.2.1 Database . 25
4.2.2 Fragmentation . 26
4.2.3 Fragment description and retrieval 28
4.2.4 Transformation . 32

4.3 Implementation details . 34

5 Results 35
5.1 Learning the model . 35
5.2 Creating accompaniment evaluation 36

6 Conclusions 41
6.1 Further work . 42

References 42

Chapter 1

Introduction

1.1 Motivation

When musicians play music together they listen to each other and interact among
them; each musician’s performance influences on the others. Musicians can either
follow a score or improvise. In the first case, the notes to be played by each performer
depend on the score, but other musical aspects like tempo or dynamics depend on the
rest of the band’s performance. On the other hand, when musicians are improvising,
there are no predetermined notes to be played. Notes actually played depend on
the performers themselves, although these are following a fixed harmonic structure.
Usually, there is a soloist that improvises while other musicians accompany him/her.
In that case, the soloist tends to execute his musical discourse while the rest of the
band plays according to that discourse; furthermore, the soloist can be influenced
by the other musicians.

There is a popular software used by modern music students called Band in a
Box [Gan91] that receives as input a chord grid, some instruments, tempo and
genre specification and generates accompaniment as output in MIDI format. Musi-
cians can practice improvising on top of that accompaniment. Many music teachers
agree that the problem of this software is that its output is poor because of two
main reasons. First, output is very predictable, it is not affected by the musician’s
performance; and second it is a MIDI output, so the quality of the sound depends
on the sound card, which often results in bad quality output. Our intention is to
focus on the solution of the first problem: to develop a system that should be able
to listen to the human musician and accompany him in an adequate way.

The idea of a computer ’listening’ to a human performer and playing together
with him is not new. In the music technology field, this has been explored by many
researchers and a significant variety of systems have been developed using different
approaches in several music genres and emulating many musical instruments. We

1

2 CHAPTER 1. INTRODUCTION

call these systems ’Automatic Accompaniment Systems’ (AAS). AAS are systems
that provide a musical response to a human performer.

Our initial motivation was to come up with a system which accompanies a
soloist improvising in real time. We have focused on polyphonic accompaniment,
in particular the system consists of a piano emulator that plays according to the
soloist performance in jazz music following a fixed harmonic structure.

1.2 Objectives

While the long-term goal is to build an agent to play with in real-time, the immediate
goal is to develop a method that generates appropriate accompaniment. Focusing on
this immediate goal, we will explore different ways to generate musical response to
a given melodic input, studying advantages and drawbacks of different approaches.

1.3 The system

We focus on jazz because it is a music genre in which improvisation and interactivity
between musicians are very important. The system will emulate a piano player that
follows the same harmonic structure as the soloist, the harmonic structure being
determined by a chord grid.

In order to do this we will collect a database of performances in which for each
of them we have:

• The melody played by the soloist.

• An accompaniment played by a piano.

• A chord grid.

The general idea is to somehow associate the accompaniment lines with the
melodic lines and to establish a relationship among them so that the system is able
to generate a new accompaniment line for a given new input; this input consists
of a melody line and a chord grid. Therefore, two key issues in the system are
the description of the melodies and accompaniments, and the similarity measures
between those descriptions.

1.4 Organization of the thesis

Chapter 2 describes the state of the art in accompaniment systems and presents a
taxonomy for these systems. Chapter 3 describes the musical and technical back-
ground to our research. In Chapter 4 we describe our approach to accompaniment

1.4. ORGANIZATION OF THE THESIS 3

systems. Chapter 5 discusses some results, and finally in Chapter 6 we present some
conclusions and future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art in accompaniment
systems

Automatic accompaniment systems (AAS) are computer systems that provide a
solution to the problem of finding an appropriate accompaniment for a soloist.

Although the word accompaniment has been often used to refer to a particular
subclass of AAS (concretely, score followers, which we will describe later), we refer
to accompaniment in its musical meaning: the art of playing along with a soloist or
an ensemble in a supporting manner.

Since the early days of computers, many AAS have been developed. In this
chapter we present an overview of them.

2.1 Classification distinctions

AAS accompany a melodic line that is usually performed by a human soloist. The
accompaniment is performed in real time yet there are some exceptions. AAS are
real-time interactive music systems, and more concretely, machine listening [Jor05]
systems. Interactive systems are systems that use information provided by the hu-
man to generate a response, and the other way round: information provided by the
computer will determine how the human will proceed. This ex-change of information
requires two channels through which human and computer will communicate.

Interactive music systems are those interactive systems that produce music as
output; whereas machine listening systems are those interactive music systems
whose channel input from a human performer is a musical channel; that is, au-
dio or MIDI.

AAS may be characterized using different criteria and can be categorized in
many different ways (e.g. [Jor05], [Dav07], [Row93]). Here we discuss the most
important criteria to classify them.

5

6 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

2.1.1 Audio vs. MIDI input

AAS determine their output by a given input from the human performer. This
input, as in all machine listening systems, is a musical input that can be either
audio or MIDI. Processing MIDI is simpler and easier as the pitch and onset are
already described, whereas for audio input, pitch and onset detection techniques are
required.

2.1.2 Interactive vs. Reactive

The difference between an interactive and a reactive system is that while in the
former there is a mutual influence between the system and the human performer,
in the latter the system just reacts to the human’s input, but the system’s output
has no influence on the human musician’s performance. However, it is not a binary
classification; there are different levels of interactivity. The distinction between
interactive and reactive is correlated with a real-time vs. non real-time classification.
Non real-time systems are never interactive, whereas real-time systems can be either
interactive or reactive. We consider AAS to be real-time systems. The only non
real-time systems we will discuss are automatic arrangement systems, because they
are very close to AAS as they provide a harmonic accompaniment to a given melody.

2.1.3 System’s knowledge

System’s knowledge classification refers to what the system knows about the hu-
man’s performance. Davies [Dav07] distinguishes between systems that accompany
a human improvising and those that follow a human performing a score. However,
the point is whether the system knows or not what the performer is going to play.
If the computer has no information about the human’s performance, the computer
cannot distinguish if the human is playing a given score or improvising. Therefore,
we will classify AAS according to the system’s knowledge regarding to the human’s
input. Basically we can distinguish between three types of AAS: first, systems that
have the complete information about the human’s performance (whereby the human
has to be reading a score when performing); second, systems that have information
about the harmonic structure, i.e. the chord grid; and third, those that have no in-
formation. This classification is related to the score-driven vs. performance-driven
dimension of Rowe’s taxonomy [Row93].

2.1.4 Music knowledge based vs. machine learning

After processing the input from the human, AAS have to generate an appropriate
output. To do so, they can make decisions based either on musical knowledge that

2.2. TAXONOMY 7

someone has introduced in the system or on knowledge obtained by training the
system with several examples. Also, both approaches can be combined.

2.1.5 Others

Finally, other classifications can be considered. Davies [Dav07] distinguishes be-
tween systems that consider time variations and those that use quantized time.
Also, the output of the system can be classified into rhythmic, melodic and har-
monic. We can say harmonic output is a vertical output, such as chords (in which
notes are played simultaneously); whereas melodic output is horizontal, that is, a
sequence of consecutively played notes, such as in solo trading between human and
computer. The last distinction to be considered is the music style in which the sys-
tem will focus; it can either be electroacoustic music, classic music, jazz, bossa-nova,
etc.

2.2 Taxonomy

In this section we give an overview of the different categories of AAS and the systems
developed.

2.2.1 Score followers

Score followers are a kind of AAS that have the information of the score the musician
is going to play. They follow a score in real-time, while the performer is playing it.

Regarding interactivity, score followers are reactive [Jor05] rather than interac-
tive because the performer has to follow a given path. It is just inverting the role
of the music minus one case where the musician follows a tape. In fact, if we think
about an extreme situation in which the performer would play without listening
to the computer’s response, the result would be the same. The point is that the
computer’s response can influence the human’s output, but this output should not
influence anymore the computer. So mutual influence should not be longer than
two steps; otherwise a collapsing effect in which for instance both components try
to play faster and faster could happen.

One of the interests of developing this kind of systems is to allow electroacoustic
musicians to perform their pieces where they mix a traditional instrument and tape
in real-time.

There have been many score followers developed since Dannenberg and Vercoe
started in the 1984. Initially the input was audio input, although Vercoe’s Syn-
thetic Performer [Ver84] used some finger information provided by optical sensors.
Later, on 1985 Vercoe used MIDI input. Some other examples are Norbert Schnell’s

8 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

IRCAM Score follower [SCS] or Christopher Raphael’s system [Rap06], in which a
human performer playing oboe was followed by an orchestral recording.

2.2.2 Automatic arrangement systems

Automatic arrangement systems are those that concentrate efforts in finding out
how to accompany a melody given the chord grid information, and therefore, to fill
the gap between the chord grid and the final accompaniment performance. They
are not a subclass of AAS, as they are not in real-time. Those systems that deter-
mine the accompaniment in real time are improvising AAS, we describe them later.
Arrangement is a musical task consisting in rewriting an existing piece with new
material. In music, arrangement is never done while performing. The equivalent to
arranging in real time would be improvising accompaniment.

The most popular automatic arrangement real-time system is Band in a Box
[Gan91]. It is a MIDI sequencer used by many jazz students to play and improvise
over any standard. Because it is MIDI, the user is able to change many parameters
like change tempo, key, style (so that rhythmic patterns will change). It is not
interactive neither reactive since it has no ’ears’ to listen to the soloist.

Another interesting arrangement system is D’accord guitar [CZL+01], its output
to a given chord grid and melody is the actual performance in real-time of a guitarist
is showed in a screen. It is useful to learn how to play the guitar but there is neither
musical effect nor interaction.

Finally, there is a pretty recent system by Emura et al. that generates jazz-style
arrangement for a given set of a melody and its chord name sequence [EMY08]. The
approach is based on music knowledge; harmonic theory of jazz and knowledge about
piano voicings are used to define some constraint the will be taken into account when
generating an accompaniment. Further, the system accepts some user requirements
that will also determine the output of the system.

2.2.3 Automatic Harmonization systems

Whereas score followers are systems that know both what to play and what the
performer is going to play, on the opposite side, there are the Automatic Harmo-
nization systems. These systems try to find the best harmonic accompaniment to a
melody with no information about what the musician is going to play neither about
the harmonic structure. It is important to point out that they focus on the har-
monization, i.e. in finding an appropriate harmonic context for a given music style.
Automatic Harmonization systems can be either real-time or not. Real-time auto-
matic harmonization systems are a type of AAS, whereas non real-time automatic
harmonization systems are arrangement systems.

2.2. TAXONOMY 9

Cabral [Cab08] PhD thesis’ topic was automatic harmonization in real-time. He
uses machine learning techniques among others like mosaicing in order to generate
automatic accompaniment. Since Cabral’s work is focused on bossanova music, he
tries to obtain tonal harmonic accompaniment with good results.

MySong [SMB08] is a system commercialized by Microsoft, with the same goal,
but focused on vocal music. Both, Cabral’s work and MySong analyze audio input.
The level of interactivity of these systems is low as their goal is just to provide a
harmonic context to a given melody. However, as it is real-time accompaniment,
the system’s output could influence the human’s performance.

2.2.4 Improvisation systems

Another subclass of AAS is the one that includes those systems in which there is
no information that the computer previously knows about what the musician is
going to play, although they can have information about the context. The human
musician is expected to improvise, so the system cannot know the exact notes the
human is going to play. The difference between improvisation that have no harmonic
context information and harmonization systems is that the former are focused on
performing together with a human musician rather than finding an appropriate
harmonic accompaniment.

As Thom [Tho01] points out, improvisation systems can be based on author-
the-aesthetics paradigm; that means that the decision of the system to generate the
output depends on the programmer or user’s configuration. On the other hand,
other systems can have their own aesthetic criteria learned by being trained using
some Machine Learning techniques.

The most important early example of improvisation system is G. Lewis’ Voyager
[Lew00]. Lewis was a free-jazz trombone player and he wanted to develop a system
that emulated a ’partner’ to play with himself. In this system, the computer analyzes
the trombone’s performance (through a pitch-to-MIDI converter) in real-time and
plays itself accordingly. The author-the-aesthetics paradigm is more present here
as the rules that the system follows to make the decision are defined by the author.

Robert Rowe developed Cypher [Row93]. This system processed MIDI input
of a human player in order to understand human’s play; it was based on Marvin’s
Minsky Society of mind (1986).

In 2003 Pachet came up with the Continuator [Pac03], a virtual improviser that
listens to a performance of a MIDI keyboard player, and gives a response, imitating
the player’s style. To do so, the Continuator focuses on certain features that it
extracts from the player’s music and creates a learned tree that it will use later to
produce a musical output.

10 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

Figure 2.1: Classification of AAS

2.2.5 Accompaniment systems related to jazz

Since we are talking about improvised music, jazz is one of the music styles in
which improvisation has a most important role. AAS related to jazz are based
either on autonomous aesthetics obtained by Machine Learning techniques or on
musical knowledge.

Band out of a Box

Belinda Thom’s BoB [Tho01] (Band out of a Box, 1999) is a virtual improvisational
partner. The name Band Out of a box refers to the popular software Band in a
box [Gan91], which it is not an interactive system as we discussed in Section 2.2.2.
BoB is a system that learns how a musician improvises in a learning stage. Once

2.2. TAXONOMY 11

it has created a model by machine learning techniques, the system trades solos in
real-time with the performer. Further, the system can learn a user-specific playing
mode, so it can imitate a certain musician. The system is a horizontal AAS because
it provides a response to the soloist as a solo dialog rather than accompanying har-
monically the soloist.

Detailed description:

Thom’s system works in two stages: a learning stage called Listener, in which a
user-specific playing mode is learned; and a playing stage called Generator, when
the system trades solos with a human performer.

Listener:

In this stage, the input of the training examples needs to be described. The in-
put melody is fragmented per bar and the fragments’ description is done in two
steps. The first one is representing the input melody as a Variable Length Tree
(VLT). And the second is obtaining a conglomerative set of features CGL from
those VLT. In the VLTs, the leaf nodes encode pitch transformation whereas the
internal structure encodes duration information. They are variable length because
the number of nodes om the tree will depend on the number of notes in each bar.

For the CGL set of features, the sequence of pitches from the leaves in the tree
is converted in three fixed-size histograms: a pitch-class histogram (tonality), an
interval histogram (continuity), and melodic direction (contour). These histograms
will capture deeper levels of structure than the melody surface.

Figure 2.2: BoB’s Melody representation

All histograms are classified into clusters called playing modes. This clustering is

12 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

made with a Variable-sized Mixture of Multinomials (vMn) model which is learned
from the histograms by using an Expectation-Maximization (EM) strategy. The
learned model is used to classify the data into the playing modes.

Generator:

The generator receives the human musician’s melody v as input and generates an
output v’. To do so, there are three steps:

• Rhythmic transformation; in which the VLT of v is transformed by apply-
ing two types of transformation: embellishment (growth) and simplification
(collapse). The decision of what concrete transformation to use is stochastic.

Figure 2.3: Embellishment

Figure 2.4: Simplification

• Generation of a pitch sequence for the leaves of the transformed VLT. This
generation is goal-driven, and is executed under a set of constraints from the
learned model in the Listener stage; it also takes into account the most recent
context.

• Finally each pitch in the generated sequence is assigned to a leaf of the VLT.

2.2. TAXONOMY 13

VirJa session

Another AAS for jazz was presented in 1995 in ICMC by I. Hidaka, et al. [HGM].
It is a system that reacts to a Solo in real time. MIDI is the communication channel
between human and computer. In this system, the soloist intention is obtained and
used to alter the accompaniment.

Detection of primitives

At each beat some musical primitives are detected by analyzing chord and key;
these primitives are tension note, chord note, scale note and other chord note; also,
other primitives are detected directly: louder note, higher note and many notes.
Some of the primitives are obtained directly by MIDI information (i.e. loudness).
Others are the result of analyzing the relationship between the notes played and the
harmonic context using some music theory information. This is possible because
the system already knows the harmonic context, which is defined by a chord grid.

Extraction of intention parameters

All these primitives are used to extract some parameters that will define the inten-
tion of the soloist. This is done each certain period time. The intention parameters
are:

• excitement.

• tension: soloist’s intention of playing a little different from a standard by
playing tension notes

• emphasis on chord: soloist’s is trying to emphasize the chord progression by
playing notes of the chord.

• chord substitution: soloist’s emphasizes on a chord that substitutes the origi-
nal current chord which has the same functionality.

• theme reprise: soloist’s plays a faking theme that can be recognized as a
standard.

Alteration of the accompaniment

The extracted soloist’s intention parameters are used to control to modules that
will alter the system’s output:

• MIDI filter : adjusts loudness and pitch

• MIDI phase shifter : adds notes by shifting timing of the original notes.

14 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

Figure 2.5: Hidaka’s system. Soloist’s intention

Learning based Jam session system for a Guitar Trio

A few years later, in 2001, M. Goto et al. [HGO] presented a similar system that
extended the above one: this one was able to imitate the style of any musician, or
acquiring a musician’s reaction model, as they called it. The system had two modes:

• in the learning mode, the system acquires player personality models in non-
real time

• in the session mode, system interacts with a human musician

The reaction model is composed by the impression space and the intention space.
The impression space represents subjective impression with three dimensions: ap-
pealing, energetic and heavy. To obtain an impression vector in this space, canonical
correlation analysis (CCA) was used. On the other hand, the intention space rep-
resents the intention of the user in a similar way as in VirJa session. Finally, the
mapping from the impression space to the intention space gives as result the reaction
model.

2.2. TAXONOMY 15

ImPact

ImPact [RRG99] is a system developed by G. Ramalho et al. that emulates a jazz
bass player accompanying a musician. It is both real-time and interactive. Its output
depends on the environment, which consists of the other musicians’ performances
(pianist, drummer and soloist), the audience and the chord grid. The virtual bass
player is the agent and it is composed by a listener, a reasoner and an executor.

The reasoner is the part of the system that decides what to play. Impact’s rea-
soner is a Case-based Reasoning system: there are some musical fragments stored
in the system’s memory and characterized by some attributes referring to the rela-
tion between the system’s and the other performer’s lines in melodic and rhythmic
aspects, and also by the melody and chord grid relation. In front of a new test-
ing instance, the most similar case is retrieved according to the attributes that the
instance need. If some attributes are different, the retrieved case is transformed.
Finally, the transformed case is stored in the database as a new case. In this way
the system learns new cases that could be the target case of future input instances.

The listener receives the environment’s input (via MIDI) periodically in real-
time. The reasoner uses that information to retrieve a musical fragment among
all musical fragments that are stored in its memory and transforms the retrieved
fragment in order to adapt it to the actual context. Finally, the executor triggers
the notes according to the reasoner’s output.

The listener of ImPact listens to the evolving context, that is, it not only listens
to the soloist but also to the other musicians and the audience. Ramalho was
influenced by Hidaka’s ideas, so the system defines some events by evaluating some
musical properties. An example of these events would be pianist is using dorian
mode.

Learning based Jam session system that imitates a player’s personality
model

In 2003, the research group composed by Goto et al. completed their work by
allowing the system to acquire two more models apart from the reaction model
[HGAO03]. The phrase model was a set of the player’s characteristic phrases, as
those that students get from their favorite musicians and repeat in all keys in order
to take them as part of their musical vocabulary. This set of player’s phrases are ob-
tained from the performance’s MIDI input, combining machine learning techniques
and theoretical knowledge based on the Generative Theory of Tonal Music [LJ83].
On the other hand, the groove model is a model based on onset time deviations. The
groove model gives information to the system about when does the player improvise
playing more slowly or faster than the tempo, with more or less swing, etc. All these
models are acquired in the learning mode. In the session mode, the system uses all

16 CHAPTER 2. STATE OF THE ART IN ACCOMPANIMENT SYSTEMS

this information to accompany the performer and imitates the style of the player
that has performed in the learning mode.

Cyber-João

Cyber-João (2004) by Ramalho et.al [DST+] is a system that generates guitar rhyth-
mic accompaniment to a given soloist. Because its output depends on the soloist’s
melody, apart from the given chord grid, we can say it is interactive, or at least reac-
tive. Moreover, it is a Case-based Reasoning (CBR) system. As the authors argue,
CBR is a powerful technique as well as a realistic one, as it is the way musicians
play.

Their melody fragments are treated as rhythmic patterns, and they are described
with parameters of two kinds:

• Environmental parameters: they refer to the context where the pattern is
used. These parameters are harmonic rhythm (indicates how chords change
in a given period of time), and tempo.

• Musical parameters: describe fragment’s musical properties: Beginning de-
scribes whether a pattern starts at the down beat; Fill-in tells if it is an
typical accompaniment that is played when there is no melody. Usage deter-
mines how frequently is the pattern used, and density describes how many
musical events are in the pattern.

Chapter 3

Background

In this section we introduce some theoretical concepts that are important in the
context of this work.

3.1 Machine Learning

Machine Learning is a scientific discipline which has many applications in the field
of music technology as well as in other technology fields as it allows machines to rec-
ognize complex patterns and make intelligent decisions based on data. Learning can
be supervised or unsupervised. Supervised learning learns a function from training
data which consists of pairs of input and known desired outputs. The learned func-
tion will be useful for predicting the output of any new valid input. Unsupervised
learning only deals with unlabeled data, so the machine does not know the output
of each input. Unsupervised learning problems seek to determine how the data is
organized. Another important issue is the type of the data; it can be numerical or
nominal (symbolic values, that is, categories). In this work we are using supervised
learning methods. Further, the attributes we consider are numeric. In the following
we briefly describe the learning methods we are using.

3.1.1 Instance-based Learning

Instance-based Learning [FW05] is a lazy Machine Learning method in which a
training data set is stored and a distance function is used to determine the closest
training instance to a given new test example. The class of the chosen training
instance is assigned to the test example.

There are many distance functions to be used, the most common of them is
Euclidean distance: √

(a1
1 − a2

1)
2 + (a1

2 − a2
2)

2 + ... + (a1
n − a2

n)2

17

18 CHAPTER 3. BACKGROUND

Attributes can be either numerical or symbolic. In the symbolic ones, differences
between values are 0 if they are the same and 1 if not. For numerical attributes
different attribute values may use different scales and this poses a problem; to solve
it, when summing up them they have to be normalized.

One problem of Instance-base Learning is that it’s time-consuming as each test
instance is compared with the whole training set. This can be solved by reducing
the training set. There are often redundant examples in a training set, so we can
classify each example with the already seen ones and store only the misclassified
examples.

Another problem is that the database may be corrupted with noisy examples.
Furthermore, the strategy of storing misclassified examples does not work well with
noise. There are two possible strategies to deal with this. One is using the k-nearest
neighbor (KNN) strategy by which a given number of nearest neighbors (specified
by k) are chosen and the class of the test instance is the most repeated one in
those k ; for numeric data, the final value is the mean of those k-nearest neighbors.
Another strategy is to evaluate the performance of the stored exemplars and discard
those that are performing under a desired threshold.

Further, there is a drawback in using the Euclidian distance function: it assumes
that all attributes are equally important. We can incorporate some class-specific
weights for each attribute so that the most important attributes in a class will have
higher values. √

w2
1(x1 − y1)2 + w2

2(x2 − y2)2 + ... + w2
n(xn − yn)2

In order to determine the value of each weight, they are set to an equal initial value
and are updated after each training instance is classified. If a training instance is
x and its most similar exemplar is y, the distance ‖xi − yi‖ is calculated for each
attribute i. The weight changes in relation to that difference. If the choice is correct,
that is, the chosen exemplar is actually the most similar, the weight of the attribute
changes positively, increases, and otherwise decreases.

K* [CT95] is an Instance-based method that uses entropy as a distance measure
instead of Euclidean or Manhattan distances. Entropy distance is measured as the
complexity of transforming one instance into another.

3.1.2 Multilayer Perceptron

An artificial neural network (ANN) is a group of interconnected neurons that pro-
cess information. Artificial neural networks are mathematical models that try to
simulate the structure of biological neural networks. ANN use to be adaptive sys-
tems: their structure changes in the learning stage based on the information the
flows through the network. Multilayer Perceptron (MLP) is a feedforward artificial
neural network (ANN) [MBD+90]. A simple perceptron computes a single output

3.1. MACHINE LEARNING 19

from multiple real-valued inputs by forming a linear combination according to its
input weights and then possibly putting the output through some nonlinear acti-
vation function. MLP is more powerful than a simple perceptron in that it can
distinguish data that is not linearly separable. In between the input layer and the
output layer are the hidden layers of the network.

Figure 3.1: Multilayer Perceptron, from WEKA

3.1.3 Sequential Minimal Optimization (SMO) for Support
Vector Machines (SVM)

The problem of classifying instances can be solved sometimes by linear models. That
is, using linear combination of the attributes to separate classes. Nevertheless, many
times a linear classification is not possible. A possible solution is to transform the
instance space into a new space where the classes can be classified linearly. A
linear model in the new space can represent a nonlinear model in the original space.
This linear model in a new dimension is called hyperplane. However, the task of
finding the best hyperplane can be computationally very complex. Support Vector
Machines (SVM) are a set of supervised learning methods used for classification
and regression. SVM find the maximum margin hyperplane that separates best the

20 CHAPTER 3. BACKGROUND

instances into classes. As instances are linearly separable in the new space, there is
a polygon that can enclose all of them for each class, the tightest polygon enclosing
all instances of each class is called convex hull. The maximum margin hyperplane
is the hyperplane that is as far as possible from the classes complex hulls as we can
see in Figure 3.2. Support vectors are those instances that are closer to maximum
margin hyperplane. Sequential Minimal Optimization (SMO) is an algorithm for
SVM learning using a polynomial kernel [SKBM00].

Figure 3.2: A maximum margin hyperplane

3.1.4 M5 Rules

M5 Rules generates a decision list for regression problems (problems for predicting
continuous variables, rather than discrete categories). For these kind of problems,
regression trees are a good solution. Regression trees are those trees that have
numeric values at the leaves. This value represents the average of all the values of
the possible paths to reach the leaf.

A decision list is a set of rules that are obtained from a tree, and have to be
interpreted in order (check the first rule, if not true, check the second, and so on).
The rules are obtained from a model tree, which is a regression tree that haves linear
equations as leaves. In M5 Rules, in each iteration a model tree is built using M5
algorithm [Qui92] and makes the best leaf into a rule.

3.2. MUSIC THEORY 21

3.2 Music theory

3.2.1 Jazz

Jazz is a music genre that was born shortly before the beginning of the 20th century;
we could say it is a mixture of various kinds of traditional music; mainly, European
music and African music. In the 50s, a style called Be-Bop appeared which intro-
duced some new revolutionary ideas referring both to harmony and rhythm. Jazz
Theory, the contemporary harmonic theory of jazz, is based on BeBop harmonic
theory. The jazz language refers also to BeBop language, that is, to the specific
phrases and scales used in this genre.

From the beginning of jazz, a lot of popular music songs have been written,
collected and compiled in a book called Real Book. These popular songs are called
jazz standards.

In a traditional jazz band, let us say a jazz quartet, there are:

• a lead instrument which can be a trumpet or a saxophone (or any instrument
capable to play a melody)

• a polyphonic instrument for harmonizing, such as a guitar or a piano

• a bass

• drums

When playing a standard, the melody is usually played at the beginning, then
the musicians begin to play their improvised solo successively. The musician that
is playing the solo adopts the leader role and the rest of the band accompany him
playing in a musically appropriate way according to the soloist’s performance. Both
the band and the soloist follow a fixed harmonic structure determined by a chord
grid, and play according to it. The soloist can improvise with as many iterations
of the whole piece as he wants. Each iteration is called chorus. The band usually
plays again the melody to finish the performance.

3.2.2 Piano comping

Our interest is to focus on the role of a piano while the lead musician is playing
the melody or improvising his solo, that is, while he is comping. The pianist has a
guide of what he is expected to play, this guide is the chord grid of the standard;
in addition to that, he knows that his role is to provide musical support to the
soloist. Provided he complies with these two conditions, he can play whatever he
wants, there is a high degree of improvisation in his performance. This role is
called piano comping. The different harmonic lines a piano can draw are called

22 CHAPTER 3. BACKGROUND

piano voicings, that is, voicing means chord assignment including allocation for a
given chord name. Also, the piano can play different rhythmic patterns. Both the
voicings and the rhythm can be determined by the soloist and by the rest of the
band. Furthermore, the piano can interact with the soloist in other ways such as
repeating a melodic fragment, filling up spaces the soloist may leave...etc.

Chapter 4

Our system

4.1 Overview

We are building a system that generates polyphonic piano jazz accompaniment to
a given melody. This generation is not done in real-time, so the system cannot play
together with a human musician. A real-time accompaniment system is a long term
goal we would like to achieve, but it is out of the scope of this Master thesis.

According to the taxonomy defined in Section 2.2, our system fits in the category
of automatic arrangement systems. In particular, these are the features of the
system:

• MIDI input: the input is in MIDI format rather than in audio. We decided to
focus on MIDI input because it is much easier to process compared to audio
input, and this way we can spend more effort on developing the other parts
of the system. Nevertheless, most of the components of the system could in
the future be adapted to audio input by applying a ’pitch to midi’ converter.
Thus, the system input is a MIDI melody consisting of a sequence of notes,
each note being a structure that contains four values: pitch, onset, duration
and velocity.

• Interaction: The level of interactivity in our system is null. As we discussed
in Section 2.2, non real-time systems are not interactive at all. Anyway, let
us assume that in the future we end up building a real-time accompaniment
system: the level of interactivity of that system would be exactly the same as
the one between a pianist and a soloist. A real-time system that emulates a
pianist is interactive because when the system reacts to the human’s input, its
response can influence human’s performance. However, if the system not only
reacts but also is able to make decisions from scratch in order to influence
the soloist, the level of interactivity is higher because the system assumes at
certain points leadership role.

23

24 CHAPTER 4. OUR SYSTEM

• System’s knowledge: as discussed above, this distinction refers to what the
system knows about the human’s performance. In our system it is very clear.
The system has no idea about which notes will the human play but both the
accompaniment system and the soloist share the same harmonic structure.
This harmonic structure will be determined by the chord grid, from which we
will extract the local keys.

• Vertical accompaniment system: the system accompanies the soloist playing
along with him and providing a harmonic line rather than trading solos with
the human.

• Music knowledge vs. Machine Learning: both of them are taken into account
in this system. The melody and the accompaniment are described by extract-
ing from them some features that are musical; for instance, tension rate, that
depends on the local key. Also, machine learning methods are used in order
to learn the relationship between melody and accompaniment.

In general terms, this is how the system works: there is an initial database of
music pieces which are fragmented. Then, given a new melody, the system creates
an appropriate accompaniment by fragmenting the new melody and retrieving for
each melody fragment the best accompaniment fragment among all those stored
in the database. We train a model using machine learning in order to choose the
best melody fragment. Next, retrieved fragments are transformed depending on the
original and target local keys, Thus, in the end, the accompaniment generated is a
list of retrieved fragments. See Figure 4.1

4.2 How the system works

We have already discussed (Section 2.2.5) different approaches for generating ac-
companiment. The most similar system to ours is Ramalho’s intelligent jazz per-
former [RRG99]. Ramalho’s approach is fragment re-using. He points that it is
a good solution because fragments embody a certain musical knowledge. Further,
this fragment re-using improves expressiveness as fragments are played by a human
musician. And also, it is a natural approach, as it is quite close to the way musicians
play: they unconsciously play patterns that they have studied and learned previ-
ously. These reasons have convinced us to choose fragment re-using for generating
accompaniment.

4.2. HOW THE SYSTEM WORKS 25

Figure 4.1: System overview

4.2.1 Database

The database consists of melody fragments and accompaniment fragments, both of
them in MIDI format. Each melody fragment has its correspondent accompaniment
fragment. Also, both of them will have the same chord grid. The total duration
summing up all the pieces is about one hour. The recorded jazz standards are: All
of me, All the things you are, Alone together, Days of wine and roses, Have you met
Miss Jones, It could happen to you, Just friends, Recordame, Stella by Starlight,
There is no greater love and Whisper not. All of them played in mid tempo.

We have two databases for two different fragment description and retrieval ap-
proaches (Section 4.2.3). In the first database there is a set of nine standard pieces

26 CHAPTER 4. OUR SYSTEM

in which the melody is taken from the Band in a Box software whereas the ac-
companiment is recorded by a pianist with a MIDI piano. The melody is played
twice in most of the pieces. On the other hand, in the second database, there are
seven standards in which both the melody and the accompaniment are recorded by
musicians. The melody is an improvisation recorded by a saxophonist playing a
MIDI wind controller, and the accompaniment by a pianist playing a MIDI piano.
In this second database pieces are slightly longer, as the solos are between two and
three choruses long.

Figure 4.2: Data base diagram

4.2.2 Fragmentation

For fragmenting, we have to decide the size of the fragments and whether all of
them will have the same size.

The best decision will be one based on musical criteria. A fragment should rep-
resent a musical phrase. Obviously, musical phrases do not have a fixed length. We
should use an algorithm for detecting the start and the end of musical phrases. This
is a difficult task as musicologists can come to different conclusions when analyzing
the same music piece. Actually, melody segmentation is a discussed current research
topic.

The problem of having variable-sized fragments is that we will have to compare
fragments of different size comparison, so we will have to add or delete tempo beats,

4.2. HOW THE SYSTEM WORKS 27

and then, to invent the content of that beats when adding, or decide which part
to delete otherwise. We could also compare each melody fragment with only those
stored fragments that have the same size, but that would reduce the possible target
fragments to compare to. Thus, we would need a much larger database.

Therefore we decided that all fragments will have the same length. Although in
jazz standards musical phrases use to be longer than one bar, for implementation
simplicity each fragment will be one bar long. Further, a fragment will contain
notes’ information (pitch, onset, duration and velocity) as well as the chord grid. In
addition, fragmentation requires to change some MIDI values. Regarding to time,
the notes’ onset is relative to the start of the piece. When fragmenting we store
the onset relative to the fragment’s start. Duration is not changed; although the
offset of some notes can be out of the time window of the current fragment, that
is not really a problem. Velocity is not changed either. Neither is pitch; we will
keep absolute pitch as it can give us useful information, although we are aiming at
reusing these fragments regardless of their key. Anyway, pitch class relative to the
local key can be obtained by a fast operation any time it is needed. We will consider
that each fragment has one local key ; in this way, transformation will give better
results as we will see later.

When we are talking about local key, in fact we are really talking about the
valid scale to be used over a given chord. Based on musical knowledge, we have
considered the following mappings:

• minor 7th chord → dorian mode.

Example: Cm7 → C D Eb F G A Bb C

• major chord / major 7th chord → major mode.

Example: Cmaj7 → C D E F G A B C

• 7th chord → mixolydian mode.

Example: C7 → C D E F G A Bb C

• half diminished chord (minor 7th, flat 5) → locrian mode.

Example: Cm7b5 → C Db Eb F Gb Ab Bb C

• diminished chord → octatonic scale.

Example: C dim → C D Eb F Gb Ab A B C

28 CHAPTER 4. OUR SYSTEM

In the standards we are using, there is usually one chord per bar, and often when
there are more than one, we can consider that they belong to the same local key.
Thus, if a fragment happens to contain more than one chord per bar, we will take
just the first chord in order to determine the local key. For instance, let us pretend
we have the chords Am7 and D7 in one bar. For Am7 the A dorian scale is: A B
C D E F# G A; whereas for D7, the D mixolydian scale is D E F# G A B C D.
As we can observe, there are exactly the same notes, so both chords belong to the
same local key. This is what usually happens if there is not only one chord per bar.
Therefore, we just consider the first one.

4.2.3 Fragment description and retrieval

Fragments stored in the database are described in such a way that they can be
compared with other fragments. Fragment description and retrieval can be done in
many ways, we have tried two main approaches, which are described as follows.

Approach 1

The database for the first approach contains 9 jazz standards with a melody obtained
from the Band in a Box software and an accompaniment recorded with a MIDI piano
played by a pianist while listening to the melody.

Fragment description: Melodic Tree Representation. The way we are de-
scribing the fragments is by Melodic Tree Representation [RLIn08], so, in fact, we
are just changing the format of the melody to another format that will allow us to
compare fragments in an easy way.

Melodic Tree Representation is simply representing the melody as a tree in which
each leaf is a note with a pitch value. Unlike in the fragments, the pitch values in
the leaves are relative to the fragment’s local key, because we want to be able to
later compare melodies regardless of the key. On the other hand, the internal tree
structure implicitly represents time (rhythm): each level of a tree represents the
subdivision of the higher level. This subdivision is made in two leaves for binary
subdivisions, or three for ternary ones. So in a two four time signature (two fourth
notes per bar), while the root of the tree would represent the whole bar, in order to
represent an eighth note we would need two levels. We can see a representation of
the melody in Figure 4.3

In the case of Melodic Tree Representation the problem of comparing two melody
descriptions becomes a tree comparison problem. Edit distance is a method for
comparing two strings in which the distance is based on the number of operations
that are required to convert one string into the other. This method can also be used
on tree representation. The standard operations that can be done are inserting

4.2. HOW THE SYSTEM WORKS 29

Figure 4.3: Tree representation example

nodes, deleting nodes and transformation, that is, modification of the values of
the nodes. Selkow [Sel77] introduced a method based on tree edit distance with one
restriction: insertion, deletion and transformation can only be done at the leaf level.
Therefore, if an inner node has to be deleted, all nodes belonging to the subtree
rooted at it have to be deleted first.

In this approach we have described only melody fragments of the database.
Then, given a new melody input, we compare each fragment of the new melody
with all the stored melody fragments and, once we have chosen the most similar,
we retrieve the related accompaniment fragment (Figure 4.4).

Figure 4.4: First Fragment retrieval approach

While developing the system, we decided to discard this approach because we
have found out that comparing melodies in order to retrieve the related accompa-
niment is not an optimal solution, because one melody fragment can have many
completely different related accompaniment fragments. Furthermore, the decision

30 CHAPTER 4. OUR SYSTEM

of which accompaniment fragment to retrieve is based only on melody fragment
comparison, without taking into account for what reasons a given melody fragment
was accompanied in a particular way. Therefore, we decided to develop a method
that focuses on the relation between melody and accompaniment.

Approach 2

The database for this approach contains 7 jazz standards in which both the melody
(the solo) and the accompaniment are recorded by humans: a saxophonist playing
wind MIDI controller and a pianist playing a MIDI piano. For each standard the
performers have played between 2 and 4 choruses.

Fragment description: statistical features. We want to obtain relevant infor-
mation from the fragments, and also to learn the relationship between melody and
accompaniment. That is why we obtain statistical features from the fragments.

Based on musical knowledge, we have defined some parameters in melody and
in accompaniment that can influence mutually. The system will be able to learn the
relationship between different parameters, which can either refer to pitch, rhythm
or dynamics. This relationship will represent some rules that are often applied when
musicians perform. Here are some examples of these rules:

• a) If melody plays louder, so does the accompaniment.

• b) If there are tension notes in the melody, the accompaniment plays louder.

• c) When there is more density of notes in a melody there is less density of
chords in accompaniment and or viceversa.

By calculating statistical features we are loosing a lot of information and saving
just some statistical data, the point is to keep just relevant information. These are
the features we have extracted:

For the Melody

Duration mean: this feature tells us if notes are long or short, which can give
us a clue of the expressiveness of the fragment, i.e. stacatto or legato.

mean(d) =
∑N

n=1 dn/N ;

where N=number of notes and d=duration

Pitch mean: pitch mean gives us the information of the absolute pitch of the
fragment.

4.2. HOW THE SYSTEM WORKS 31

mean(p) =
∑N

n=1 pn/N ;

where N=number of notes and p=pitch

Number of notes: which is the same as note density. To get this value, we
count the number of notes of each fragment.

Tension rate:

tensionRate =
∑N

n=1(isTension(n) ∗ d)/N

where the output of isTension is a boolean [0,1], and d is the duration. In this way,
longer notes are more important than shorter notes. Tension notes are those notes
that do not belong to the chord of their local key. For example, for C Major, all
notes are tension notes except C, E and G.

For the Accompaniment

Duration mean and Pitch mean are the same features we calculated for the
melody.

Velocity mean:

mean(v) =
∑N

v=1 vn/N

where N=number of notes and v=velocity

Number of polyphonic onsets: since the accompaniment is polyphonic, in order
to obtain the density of notes as we did in the melody, we have to count the onset
of the chords; that is, the number of distinct note onsets.

Mean notes per onset: the notes per onset is the number of notes that are
triggered in each polyphonic onset.

mean(notesOnset) =
∑N

n=1 xn/Nonset;

where n is the current polyphonic onset, N is the number of polyphonic onsets
in the fragment, and x is the number of notes in the current onset.

We should have taken into account also velocity mean, but due to some techni-
cal problems we lost this information.

This features are similar to Hidaka’s primitives [HGM]. Melodic features like
tension rate are extracted by analyzing the local key.

32 CHAPTER 4. OUR SYSTEM

Both melody and accompaniment fragments are described, and a model that
defines the relationship between each melody fragment and its respective accom-
paniment fragment is learned. Hence, thanks to this model the system is able to
obtain an accompaniment fragment description from each melody fragment descrip-
tion. So, in front of a new melody, this melody is fragmented and each fragment
is described. From this description, which is a statistical description, the relative
accompaniment description is predicted. Then, the system retrieves the most sim-
ilar accompaniment fragment among those stored in the database. The similarity
measure used is the euclidean distance with a previous normalization of the data
(Figure 4.5).

Figure 4.5: Second Fragment retrieval approach

In Section 5.1 we describe how the system learns that model and discuss some
results obtained when trying different methods.

4.2.4 Transformation

Once an accompaniment fragment has been retrieved it needs to be transformed
in order to fit into the new musical context. This transformation is a pitch trans-
position that takes into account the harmonic structure. The local key (we have
introduced this concept in Section 4.2.2) is defined by the chords of the fragments
which are further defined by a key and a node. There are twelve keys that corre-
spond to the twelve pitch classes in Western music.

C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#,Ab, A, A#/Bb and B

4.2. HOW THE SYSTEM WORKS 33

The chords are seventh chords rather than triads and the available modes in our
system are: Major seventh, seventh, minor seventh, half diminished seventh and di-
minished seventh. Each chord has a scale associated. There are many more chords,
but for the moment we can play enough jazz standards with these. Let us see for
each mode the notation for key C and the alterations in the degrees of its scale.

• major seventh (Cmaj7): no alterations

• seventh (C7): VII b

• minor seventh (C-7): III b and VII b

• half diminished seventh (C-7b5): III b, V b and VII b

The problem of transformation is traduced to a mapping of notes in the retrieved
fragment and its local key (which will be the source key and will be determined by
the chord sequence) to the notes in a target key. The process of transforming is
done in two steps. First, the recognition of the degrees in the source local key’s
mode and the mapping of those degrees to the target local key’s mode. And sec-
ond, the transposition from one key to another. Figure 4.6 shows an example of
transformation in which a sequence of pitches is transformed from a Cm7 key to a
Emaj7 key.

Figure 4.6: Transformation example

There is an issue we did not approach yet: How should we transform chromatic
notes that are not in the scale when source and target modes are different? By

34 CHAPTER 4. OUR SYSTEM

now we are leaving them as they are. An improvement would be to identify them
as a chromatic approximation to a scale note, and map it to the new scale. For
instance, Eb in and C Major scale, should be identified as chromatic approximation
to E (third degree), and therefore, if the target scale is C minor, the third degree
is now Eb and the chromatic approximation becomes D. Anyway, leaving the notes
as they are (we just transpose them) does not gives so poor musical results.

4.3 Implementation details

We have the MIDI pieces with the melody and the accompaniment in different
tracks. MIDI pieces are transformed to text. This text files will be the input to our
Java framework that will fragment the pieces and describe them (either in melodic
tree representation or statistical description). To give an overview of the framework
these are the main classes:

• AAS: is the main class. It contains an array of Pieces, a ResultPiece and an
array of models to learn.

• Piece: it represents a piece that contains two lists of fragments (class FragList),
one for the melody and one for the accompaniment.

• FragList: it contains an array of fragments and performs all operations con-
cerning the fragments (add a fragment, compare fragments)

• Fragment: contains the information of a fragment including its description
(tree or statistical)

• StatisMus: in this class there are all the statistical values of a fragment.

• Tree representation: for this, we have used a framework from the University
of Alicante (UA).

Chapter 5

Results

5.1 Learning the model

In this section we explain how the model in the second approach (Section 4.2.3) to
the fragment description and retrieval is learned. As we detailed above, features are
extracted for both melody and accompaniment fragments. There are 592 fragments,
from which we extract 4 features for the melody and 5 for the accompaniment.

The accompaniment features are:

• Mean Duration

• Mean notes per onset

• Mean pitch

• Mean velocity

• Number of polyphonic onsets.

On the other hand, the melody features are:

• Mean Duration

• Tension rate

• Mean pitch

• Number of notes

The melody features are the known attributes and the accompaniment attributes
are the values to predict. For each accompaniment feature there is a model to be
found. We have used cross-validation with 10 folds in the training stage. The Ma-
chine Learning methods for learning the model are described in Section 3.1. We

35

36 CHAPTER 5. RESULTS

now go more into detail on the parameters used.

• For the multilayer perceptron we have used the 2 hidden layers in all models
(which is equal to number of attributes (4) + number of outputs (1) / 2), a
learning rate of 0.3, which is the amount the weights are updated; and 0.2 of
momentum applied to the weights during updating. We have normalized all
attributes. And finally we used a 0 seed random number generator for setting
the initial weights of the connections between nodes.

• In the SMO regression implementation of Support Vectors Machine we have
tried to use the method with two different values for the exponent of polyno-
mial kernel: 1 and 2. That is, a linear kernel and a polynomial kernel with
exponent 2.

• For the K-nearest neighbor method we have used euclidean distance as the
distance function to search nearest neighbor and tried with k=1, and k=4, so
we took into account 1 and 4 nearest neighbors.

• Finally, for the M5Rules method we have determined a minimum of 4 number
of instances to allow at a leaf node.

Correlation coefficients are shown in table 5.1; values are very low. Mean dura-
tion and Mean velocity are the accompaniment attributes that obtain better correla-
tion coefficients. The accompaniment attribute with the worst correlation coefficient
is Mean notes per onset. However, differences are not big enough to take valid con-
clusions regarding to attributes. The conclusion we can take is that values are low
for all accompaniment attributes. This is because the attributes of our data are
not consistent. The recorded data is not good enough neither big enough to extract
from it high correlation models. Focusing on the methods, we can see that the lazy
methods (KNN and K*) are those that perform worst. The one that gives best
correlation coefficients in general is SVM with linear kernel.

5.2 Creating accompaniment evaluation

We have created a model for each accompaniment feature using all melody features
as attributes with the Support Vector Machines method (with SMO regression)
with linear kernel as it was the one that performed best. When there is a new test
melody, for each melody fragment, the system extracts its melody features and uses
the models to predict the ideal accompaniment features. Then, it compares the

5.2. CREATING ACCOMPANIMENT EVALUATION 37

Table 5.1: Correlation coefficient using all attributes

Dataset (1) (2) (3) (4) (5) (6) (7)
Mean Duration 0.22 0.25 0.16 0.15 0.12 0.09 0.24
Mean Notes per Onset 0.02 0.03 0.08 0.06 0.01 0.06 -0.04
Mean Pitch 0.08 0.09 0.10 0.07 0.06 0.07 0.01
Mean Velocity 0.24 0.25 0.24 0.07 0.05 0.10 0.24
Number of Polyphonic Onsets 0.15 0.14 0.18 0.03 0.02 0.07 0.14

(1) Multilayer Perceptron
(2) SVM with linear kernel
(3) SVM with in polynomial (exponent=2) kernel
(4) kNN with k=1
(5) kNN with k=4
(6) K*
(7) M5Rules

predicted features with all those from the accompaniment fragments stored in the
database using the euclidean distance and retrieves the most similar.

Before evaluating the results at a perceptual level we have tried the system with
a few melodies of the pieces. While retrieving the fragments we have registered
which fragment was retrieved each time, and we have observed that there were cer-
tain fragments that have been retrieved most of the times whereas there are some
fragments that have never been retrieved. This makes us think about the sparsity
of the data. Fragment comparison is done by using euclidean distance of the 5 ac-
companiment features, so in order to visualize the sparsity, we should see how these
5-dimension instances are distributed in space. We cannot visualize 5-dimension
data, but we can see some pairs of attributes projected in a 2-dimension plane. For
instance we can see Figure 5.1 where X axis represents meanDur (duration mean)
values and Y axis represents meanVel (velocity mean). This figure shows clearly
how data is more dense in the area corresponding to high meanDur values and low
meanVel values.

We also have listened to some results and we have found out that errors in
rhythm are much more noticeable. So we think we should improve the rhythm of
the generated accompaniment.

In order to test the results in a perceptual level, we have made a Turing test
experiment. We have chosen 5 pieces. For each piece we have both the melody
played by a MIDI wind controller, and an accompaniment played by a piano MIDI.
Keeping the melody and the chord grid, we have generated a new accompaniment
with our system, and also another accompaniment randomly. Whereas our system
retrieves the most similar accompaniment fragment stored in the database for each
melody fragment, the random approach retrieves any fragment, chosen randomly.
Transformation is done in both cases. For each one of the 5 pieces we will have

38 CHAPTER 5. RESULTS

Figure 5.1: meanDur-meanVel

three categories of accompaniment: the original, the generated one (by our system)
and the random one. We have chosen excerpts of more or less 10 seconds long for
each category. So in the end we have 15 excerpts divided in groups of 3 with the
same melody and different accompaniments.

13 subjects with ages between 23 and 36 have listened to them and evaluated how
well the accompaniment sounds. There was a brief questionaire asking for general
musical skills and for jazz skills which allowed us to divide subjects in 2 main
categories: musicians (5 subjects) and non-musicians (8 subjects). Non-musicians
are those subjects who listen frequently to music and sometimes to jazz music,
some of them play an instrument but they have never studied music seriously. On
the other hand, musicians listen to a lot of jazz music and are familiar with jazz
language.

Subjects were asked to listen to the excerpts focusing on the piano accompani-
ment and evaluate them with a mark between 0 and 5 (0 would be ’sounds bad’, and
5 would be ’sounds great’). As it is shown in Figure 5.2, original excerpts got the
best marks and the generated excerpts were slightly better than the random ones.
Furthermore, we have observed that musicians perceived the difference between gen-
erated and random excerpts better than non-musicians, who ranked better random
excerpts than the generated ones.

Moreover, we have calculated variance in the marks taking into account all
subjects (the mean is represented by the yellow bars in Figure 5.2). Variance tells
us how different are the marks between excerpts of the same category. We observed
that, the original and the generated excerpts have similar variances, 0.41 and 0.39

5.2. CREATING ACCOMPANIMENT EVALUATION 39

Figure 5.2: Turing Test Results

respectively, whereas random excerpts have a higher variance, 1.03. That means
that all generated and original excerpts where evaluated in a similar way whereas
random excerpts were more distinctly perceived by the subjects. We could conclude
that although our system is far from performing like a human, its performance is
better than the random approach’s one. This difference is more noticeable for
musicians who are used to jazz language. Nevertheless, this is an experiment that
has been tested with very few subjects, the conclusions would be more reliable with
more subjects.

Some excerpts examples are available at

https://iua-share.upf.es/wikis/smc/Daniel Mart́ın Mart́ınez

40 CHAPTER 5. RESULTS

Chapter 6

Conclusions

We have developed a system that creates an accompaniment for a given melody.
This accompaniment is generated by re-using fragments stored in a database. The
system learns the relation between melody and accompaniment and uses that knowl-
edge to create the accompaniment for a given melody.

The data used is recorded by musicians playing MIDI controllers. This allows
us to get directly MIDI data, but the musician playing the wind MIDI was not used
to this instrument, and that has been traduced in a decrease of the quality of the
data. In addition to that, the velocity information for the melody has been lost for
technical problems, velocity would have given us valuable information for describing
the fragments and training the model. For instance, we could have modeled the
relation between melody and accompaniment velocity.

Correlation coefficients of the model were very low, the reason of this could be
because of the inconsistency of the data; but we should also try to extract more
and different features. Then, when we create a new accompaniment by retrieving
fragments based on models with a better correlation coefficient, results would be
much better.

Sparsity in the accompaniment data is low, this should be fixed recording more
data consciously in order to better populate the feature space.

After evaluating the results we can conclude that our system is far from per-
forming as a human, but in ears of jazz musicians our system’s results are better
than a randomly generated accompaniment. We could say that the reason for that
is that our system applies knowledge that has to be learned by getting used to jazz
language. However, the test has been evaluated by very few subjects.

41

42 CHAPTER 6. CONCLUSIONS

6.1 Further work

We have a feeling that we have designed and implemented a good system that could
give good results if we improve certain aspects. So next step would be to record more
quality data, planning what features to take into account, what relation between
melody and accompaniment we want to model, and play consequently.

Further, we should extract more features, mainly those features related to rhythm
such as off-beat rate, rhythmic figures, etc. We believe that correctly modeling
rhythm aspects would improve a lot results in Turing tests, since rhythm is some-
thing very easily perceived. We believe that because of the harmonic complexity of
jazz, non-musicians perceive much better bad rhythms than harmonic errors in jazz
style.

An important improvement would be to try more than one bar fragmentation;
as we already pointed, musical phrases are longer than one bar. Moreover, so far
we have just considered one fragment at a time, if we took into account the history
of the previous retrieved fragments we would make sure there would be continuity.

When retrieving fragments, we compare them by Euclidian distance being all
accompaniment features equally important. We could learn weights of the features
by training them; that is, for a given melody fragment, listening to different retrieved
fragments, and giving higher marks to those that are more appropriated. This way
the system could assign a weight to each accompaniment feature.

Real-time issues. Our long term goal is to come up with a real-time system.
But the approach we have chosen has some drawbacks if the system is required to
be in real time. First of all, we need to change the way we are doing the fragmen-
tation: we analyze a melody when it is already played and look for its appropriate
accompaniment. This is not possible in real-time because the accompaniment has
to be played at the same time so there’s no time to wait for the melody to end. In
real-time, the re-use of fragments would not be based on the representation of the
current fragment but on a predicted representation. Predicting can be a difficult
task depending on the representation method. Further, the system should learn the
relationship between the representation of a fragment and that of the following frag-
ment. Another important issue, like in all real-time systems, is the computational
speed of the process and the windowing time, the latter is analog to the fragment
size. If we imagine a system that generates response from scratch, the window-
ing time would be as small as possible as long as there is enough time to extract
some relevant parameters to predict next window. In our system, since we re-use
fragments, these should be long enough so that they make sense musically by them-
selves. Otherwise, the method should ensure that the concatenation of fragments
does make sense musically.

Bibliography

[Cab08] G. Cabral. Harmonisation Automatique en temps reel. PhD thesis,
Universite Pierre et Marie Curie, Paris, 2008.

[CT95] J.G. Cleary and L.E. Trigg. K*: An Instance-based Learner Us-
ing an Entropic Distance Measure. In MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages 108–
114. Citeseer, 1995.

[CZL+01] G. Cabral, I. Zanforlin, R. Lima, H. Santana, and G. Ramalho. Playing
along with DAccord Guitar. In Procs. of the 8 th Brazilian Symposium
on Computer Music, 2001.

[Dav07] M.E.P. Davies. Towards automatic rhythmic accompaniment. PhD the-
sis, University of London, 2007.

[DST+] M. Dahia, H. Santana, E. Trajano, G. Ramalho, C. Sandroni, and
G. Cabral. Using patterns to generate rhythmic accompaniment for
guitar. CEP, 50732:970.

[EMY08] N. Emura, M. Miura, and M. Yanagida. A modular system generating
Jazz-style arrangement for a given set of a melody and its chord name
sequence. Acoustical Science and Technology, 29(1):51–57, 2008.

[FW05] E. Frank and I.H. Witten. Data Mining: Practical machine learning
tools and techniques with Java implementations. Morgan Kaufmann,
2005.

[Gan91] P. Gannon. Band-in-a-Box. PG Music. Inc., Hamilton, Ontario, 1999,
1991.

[HGAO03] M. Hamanaka, M. Goto, H. Asoh, and N. Otsu. A learning-based jam
session system that imitates a player’s personality model. In INTERNA-
TIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE,
volume 18, pages 51–58. LAWRENCE ERLBAUM ASSOCIATES LTD,
2003.

43

44 BIBLIOGRAPHY

[HGM] I. Hidaka, M. Goto, and Y. Muraoka. An automatic jazz accompaniment
system reacting to solo. Proc. of ICMC 1995, page 167.

[HGO] M. Hamanaka, M. Goto, and N. Otsu. Learning-Based Jam Session
System for a Guitar Trio. system, 5(6):7.

[Jor05] S. Jorda. Digital Lutherie: Crafting musical computers for new musics
performance and improvisation. PhD thesis, PhD. dissertation, Univer-
sitat Pompeu Fabra, Barcelona, 2005.

[Lew00] G.E. Lewis. Too many notes: Computers, complexity and culture in
voyager. Leonardo Music Journal, pages 33–39, 2000.

[LJ83] F. Lerdahl and R. Jackendoff. A generative theory of tonal music. MIT
press, 1983.

[MBD+90] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom,
and A. Waibel. Machine learning. Annual Review of Computer Science,
4(1):417–433, 1990.

[Pac03] F. Pachet. The continuator: Musical interaction with style. Journal of
New Music Research, 32(3):333–341, 2003.

[Qui92] JR Quinlan. Learning with continuous classes. In In: Proceedings of 5th
Australian Joint Conference on Artificial Intelligience, 1992.

[Rap06] C. Raphael. Aligning music audio with symbolic scores using a hybrid
graphical model. Machine Learning, 65(2):389–409, 2006.

[RLIn08] D. Rizo, K. Lemström, and J. Iñesta. Tree representation in combined
polyphonic music comparison. In Computer Music Modeling and Re-
trieval, 2008.

[Row93] R. Rowe. Interactive music systems. MIT Press, 1993.

[RRG99] G.L. Ramalho, P.Y. Rolland, and J.G. Ganascia. An artificially intel-
ligent jazz performer. Journal of New Music Research, 28(2):105–129,
1999.

[SCS] D. Schwarz, A. Cont, and N. Schnell. From Boulez to ballads: Train-
ing IRCAMs score follower. In Proceedings of the 2005 International
Computer Music Conference, pages 5–9.

[Sel77] S.M. Selkow. The tree-to-tree editing problem. Information processing
letters, 6(6):184–186, 1977.

[SKBM00] S.K. Shevade, SS Keerthi, C. Bhattacharyya, and KRK Murthy. Im-
provements to the SMO algorithm for SVM regression. IEEE Transac-
tions on Neural Networks, 11(5):1188–1193, 2000.

[SMB08] I. Simon, D. Morris, and S. Basu. MySong: automatic accompaniment
generation for vocal melodies. 2008.

[Tho01] B. Thom. BoB: An Improvisation Music Companion. PhD thesis,
Carnegie Mellon University, 2001.

[Ver84] B. Vercoe. The synthetic performer in the context of live performance.
In Proceedings of the 1984 International Computer Music Conference,
pages 199–200, 1984.

46 BIBLIOGRAPHY

Acknowledgements I would like to thank Rafael Ramı́rez for all his support
and valuable guidance in this Master Thesis. Also to my friend Amaia Ureta for
her contribution to the data recording by playing the piano, and to David Rizo
from the University of Alicante for providing me with a framework for melody
tree comparison. I am grateful also to my family and friends, some of which have
contributed as subjects in the experiments. Finally, I would like to thank Xavier
Serra, as director of the MTG, for giving me the opportunity to be part of the MTG
as a master student.

