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ABSTRACT

We present a framework for modeling right-hand gestures in
bowed-string instrument playing, applied to violin. Nearly
non-intrusive sensing techniques allow for accurate acqui-
sition of relevant timbre-related bowing gesture parameter
cues. We model the temporal contour of bow transversal
velocity, bow pressing force, and bow-bridge distance as se-
quences of short segments, in particular Bézier cubic curve
segments. Considering different articulations, dynamics, and
contexts, a number of note classes is defined. Gesture pa-
rameter contours of a performance database are analyzed
at note-level by following a predefined grammar that dic-
tates characteristics of curve segment sequences for each
of the classes into consideration. Based on dynamic pro-
gramming, gesture parameter contour analysis provides an
optimal curve parameter vector for each note. The informa-
tion present in such parameter vector is enough for recon-
structing original gesture parameter contours with signifi-
cant fidelity. From the resulting representation vectors, we
construct a statistical model based on Gaussian mixtures,
suitable for both analysis and synthesis of bowing gesture
parameter contours. We show the potential of the model
by synthesizing bowing gesture parameter contours from an
annotated input score. Finally, we point out promising ap-
plications and developments.

1. INTRODUCTION

Interaction complexity between performer and musical in-
strument stands out when dealing with excitation-continuous
musical instruments, by which sound bending is achieved
with continuous modulations of the physical actions directly
involved in sound production mechanisms, i.e. instrumental
gestures [2]. Because of the complex and continuous na-
ture of gestures involved in the control of bowed-string in-
struments (often considered among the most articulate and
expressive), analysis of bowed-string instrumental gestures
has been an active and challenging topic of study for several
years. Particularly for the case of violin, recent studies have
taken the advantage of currently available motion tracking
and force sensing techniques for providing accurate gesture
data [16] [10] [4].

Violin bowing gesture data analysis has been approached
recently by several works. Authors in [13] used bow ac-
celeration extrema for automatic bow stroke classification.
In a similar fashion, the work in [15] extends the classifica-
tion to different bowing techniques by extracting the princi-
pal components of raw acceleration and strain gage sensor
data. None of these approaches is aligned towards a genera-
tive model able to also provide means for the automation of
bowing gesture rendering.

A first attempt to create synthetic bowing gesture param-
eter contours from an annotated score is found in [3], where
the author presents an algorithm for rendering a number
of violin performance gesture parameter contours (includ-
ing both left and right hand) by concatenating short seg-
ments following a number of hand-made rules. Following
the same line, extensions dealing with left hand articula-
tions and string changes were introduced in [7]. Both ap-
proaches lack real performance data -driven definition of
segment contours parameters. A more recent study work-
ing with real data is found in [4], where bow velocity and
bow force contours of different bow strokes are quantita-
tively characterized and reconstructed mostly using sinu-
soidal segments. Flexibility limitations of the proposed con-
tour representation may impede to easily generalize its ap-
plication to other bowing techniques.

Author in [9] points directions towards a general frame-
work for the automatic characterization of real instrumental
gesture cue contours using parametric Bézier curves, fore-
seeing them as a more powerful and flexible basis for con-
tour shape representation (see their use for speech prosody
modeling in [5]). Aimed at providing means for reconstruct-
ing contours by concatenating short curve units, implied a
structured representation as opposed as the work presented
in [1] dealing with audio perceptual attributes. Later, au-
thors in [11] used Bézier concatenated curves for pursu-
ing a model for different note-to-note articulation classes in
singing voice performance.

In this paper, we present a general and extensible frame-
work for modeling bowing gesture parameter contours (bow
velocity, bow force, and bow-bridge distance) for different
bowing techniques and performance contexts using concate-
nated Bézier cubic curves. A key aspect resides on the fact
that curve parameter extraction is carried out automatically,
providing a representation usable both in gesture analysis
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and synthesis applications. In Section 2, we present the
methodology followed for carrying out contour parameter
automatic extraction. Section 3 gives details on the con-
struction of a statistical model of contour parameters. A
bowing gesture parameter contour synthesis application is
outlined in Section 4. We conclude by pointing out possible
extensions and applications.

2. CONTOUR ANALYSIS

2.1. Corpus

Bowing gesture data acquisition was performed by means
of a commercial EMF device as reported in [10], extracting
bow force by applying the techniques presented in [6] and
[4]. Recording scripts (including both exercises and short
musical pieces) were designed to cover four different artic-
ulation types (détaché, legato, staccato, and saltato), three
different dynamics, and varied note durations in different
performance contexts (attending to bow direction changes
and rests). Score-performance alignment was carried auto-
matically by means of a dynamic programming (based on
the Viterbi algorithm [14]) adaptation of the procedure in-
troduced in [10] plus manual correction when needed for
ensuring the appropriate segmentation of bow velocity, bow
force, and β ratio contours (the latter obtained from ac-
quired bow-bridge distance and performed string and pitch)
of around 10K notes.

2.2. Score Annotation -Based Note Classification

Attending to different score-annotation based characteristics
of the notes in the corpus, we perform a classification that
will define different classes of notes for which specific ges-
ture models will be later constructed. The basis for classify-
ing note samples is divided into two main groups: intrinsic
aspects and contextual aspects.

Intrinsic characterstics
[ART] Articulation type: {détaché legato staccato saltato}
[DY] Dynamics: {piano mezzoforte forte
[BD] Bow direction: {downwards upwards}

Contextual characteristics
[BC] Bow context: {init mid end iso}
[PC] Phrase context: {init mid end iso}

Considering intrinsic note characteristics, first and most im-
portant is the articulation type. We have considered four
different articulations: détaché, legato, saltato, and saltato.
Three different dynamics are present in the corpus: piano,
mezzoforte, or forte. The possible bow directions are down-
wards and upwards.

In terms of what we call contextual characteristics, we
are considering two main aspects: which is the position of a
note within a bow (e.g. in legato articulation, several notes
are played successively without any bow direction change),

and which is the position of a note with respect to rest seg-
ments (e.g. silences). For the case of bow context, we clas-
sify a note as init when, in a succession of notes sharing the
same bow direction, is played first. A note is classified as
mid when is played neither first nor last. The class end cor-
responds to notes played in last sequence order, while notes
appearing as the only notes within a bow (e.g. in détaché
articulation) are classified as iso. Analogously to the case
of bow context, for what we called phrase context, we look
at successions of notes with no rest segments or silences in
between. Classified as init will those preceded by a silence
and followed by another note, as mid those preceded by and
followed by a note, as end those preceded by a note and
followed by a silence, as iso those surrounded by silences.

Each feasible combination of the classes above repre-
sented will lead to a note gesture class Ci characterized by
the tupla in (1). Note that not every possible combination of
any of the classes considered within each of the five charac-
teristics is feasible in practice.

Ci = [ ARTi DY Ni BDi BCi PCi ] (1)

Since both dynamics type and bow direction will be present
in any combination of articulation type, bow context and
phrase context (the corpus covers all feasible combinations),
possible classes will depend on upon the possible combina-
tions of the last three aspects. This leads to a total of 17
combinations, which multiplied by three dynamic types and
by two bow directions results into a total of 102 note gesture
classes. Using the collected bowing gesture parameter cues
for each class, a different note gesture model is constructed
following the steps that are described in upcoming sections.
More contextual variables could be taken into account, like
for instance the preceding and following articulations.

2.3. Contour Representation

Bowing gesture parameterer cue contours of recorded notes
are modeled in this framework by sequences of a predefined
number of units (e.g. lines, curve segments). For the use
case presented here, we used constrained cubic Bézier curve
segments, similarly as author in [1] used for representing
perceptual audio parameter contours. In contrast to the lack
of consistent score-performance relation in the organization
of the represenation proposed there, we define here a struc-
tured representation applying at note-level. We have repre-
sented the basic unit in Figure 1.

Even though it responds to a parametric curve defined
by the x-y points p1, p2, p3, p4, the constrains found in
equations (2) through (7) allow defining its shape by a vec-
tor b = [d vs ve r1 r2], where d represents the segment du-
ration, vs represents the starting y-value, ve represents the
ending y-value, and r1 and r2 represent the relative x-values
of the attractors p2 and p3 respectively. Among the rea-
sons why we choose this as the building block for modeling



p1y = p2y = vs (2)
p3y = p4y = ve (3)

r1 =
p2x− p1x

d
(4)

r2 =
p4x− p3x

d
(5)

0≤ r1 ≤ 1 (6)
0≤ r2 ≤ 1 (7)

Figure 1. Constrained Bézier cubic segment used as the basic
unit in the representation of bowing gesture parameter contours.

bowing gesture parameter contours, we highlight its robust-
ness (small changes in curve control points lead to small
changes in curve contour) and its flexibility (a diverse num-
ber of shapes can be modeled by different values of r1 and
r2, as it is illustrated by gray curves in Figure 1, which cor-
respond to rather extreme values of r1 and r2).

Given a time-series bowing parameter motion cue seg-
ment s(t) with t ∈ [0,d], starting value s(0) = vs, and ending
value s(d) = ve, optimal attractor relative x-values r∗1 and r∗2
leading to an optimal approximation σ∗(t) of the cue seg-
ment can be found via constrained optimization (see [1]).

2.4. Grammar Definition

Contours of the bowing gesture parameter cues (bow ve-
locity, bow force, and β ratio) corresponding to the sam-
ples present in the corpus of each note class Ci have been
been carefully observed in order to foresee an optimal rep-
resentation scheme by using the constrained Bézier cubic
curve segments presented in previous Section. When ob-
serving the data and taking the decisions on the segment
sequence arrangement, we aimed at keeping the length of
the sequences at a minimum while preserving the fidelity of
representation.

For each of the note classes Ci, we have defined a gram-
mar entry ρ i composed by three different tuplas ρ i

V , ρ i
F ,

and ρ i
β , each one defining the number of segments Ni

{V,F,β}
and the slope sequence constrain vector ∆si∗

{V,F,β} (see (8)
through (14)) that is used when performing gesture motion
cue segmentation and fitting.

ρ i = {ρ i
V ,ρ i

F ,ρ i
β}334444234235 (8)

ρ i
V = {Ni

V ,∆si∗
V } (9)

∆si∗
V = [δ si∗

V,1 · · ·δ si∗
V,Ni

V−1] (10)

ρ i
F = {Ni

F ,∆si∗
F } (11)

∆si∗
F = [δ si∗

F,1 · · ·δ si∗
F,Ni

F−1] (12)

ρ i
β = {Ni

β ,∆si∗
β } (13)

∆si∗
β = [δ si∗

β ,1 · · ·δ si∗
β ,Ni

β−1] (14)

The slope sequence constrain vectors ∆si∗
{V,F,β} define the

expected sequence of slope changes for each of the gesture
parameter cues. If each i-th segment is approximated lin-
early, a contour slope sequence s = [si · · ·sN ] is obtained.
Each pair of successive slope leads to a parameter δ si that
might take three different values: δ si ∈ {−1,+1,0}. The
value δ si = 0 will be assigned whenever there is no clear
expectancy in the relationship between successive slopes si
and si+1 (due to observations), while on the presence of a
particular expectancy, the value for δ si will be defined by
equation 15.

δ si = sign(si+1− si) (15)

We have sketched in Figure 2 (Left) an hypothetic note ges-
ture sample modeling example in order to illustrate the how
we carried out grammar definition by looking at bowing ges-
ture parameter cue contours of a particular note class: the
bow velocity contour is modeled by a sequence of 3 Bézier
segments with monotonically decreasing slope of their lin-
ear approximation. For modeling the force contour, a se-
quence of three Bézier segments is used, whose linear ap-
proximation slope value change sequence shows alternating
values. The β ratio is modeled by two segments with in-
creasing slope values. If every slope change were expected,
the grammar entry ρ for the model would be defined by
NV = 3, NF = 3, Nβ = 2, ∆s∗V = [−1− 1], ∆s∗F = [−1 + 1],
and ∆s∗β = [+1]. Grammar entries defined during this anal-
ysis are available here1.

2.5. Contour Automatic Segmentation and Fitting

Driven by each previously defined grammar entry for each
note class, the acquired bowing gesture parameter cues of
each note sample are automatically segmented and approxi-
mated by appropriate sequences (see Section 2.4) of Bézier
cubic curve segments as the one depicted in Figure 1. The
procedure for carrying out contour segmentation and curve
fitting is presented next.

In Figure 2 (Right) we have sketched the bow velocity
contour and its Bézier approximation of the example given
in the previous section. For each one of the i segments, each
one presenting a relative duration di, the real bow velocity
contour qi is represented by a dashed line, while the approx-
imated Bézier contour σi is represented by a solid curve.
We set the problem of segmentation and fitting as the opti-
mization task of finding an optimal relative duration vector
d∗ = [d∗1 · · ·d∗N ] such that a total cost C is minimized while
satisfying that the sum of all components of the relative du-
ration vector must add to the unity. This is expressed in
equation (16), where we defined the approximation error
ξi for the i-th segment as the mean squared error between
the real contour qi and the optimal Bézier approximation σ∗i

1
http://www.iua.upf.edu/∼emaestre/gestureModels/bowed/violin/grammarV1.pdf



Figure 2. (Left) Schematic illustration of the note gesture model
applied to a hypothetic note gesture sample in thick solid lines
represent the Bézier approximation for each one of the segments
SEG1 · · ·SEGN , and thick dashed lines represent the linear approx-
imation of each one of the segments, each with its corresponding
slope s1 · · ·sN . Black-border squares represent the junction be-
tween adjacent Bézier segments. (Right) Schematic representation
of a gesture parameter contour and its Bézier approximation. For
each one of the i segments (each one presenting a relative duration
di), a dashed curve represents the acquired contour qi, and a solid
curve represents the approximated Bézier contour σi.

(see Section 2.3), and a weight wi applied to each ξi.

d∗ = [d∗1 · · ·d∗N ] = argmin
d,∑N

i=1 di=1
C(d) = argmin

d,∑N
i=1 di=1

N−1

∑
i=1

wiξi +ξN

(16)
The weight wi applied to each of the first N− 1 computed
ξi will depend on the fulfillment of the slope sequence con-
strains defined by δ s∗. Expressed in (17), the weight wi will
be set to a arbitrary value W much bigger than one in case
δ si computed from the slopes of the linear approximations
of the i-th and (i + 1)-th segments does not match the sign
of its corresponding δ s∗i (see Section 2.4).

wi =

{
W >> 1 if δ si

δ s∗i
< 1 and δ s∗i &= 0,

1 otherwise.
(17)

The solution for this problem is found by using dynamic
programming techniques, in particular based on the so-called
Viterbi decoding algorithm [14]. As a result, the whole set
of note samples corresponding to each of the note classes
included in the corpus is analyzed, so that the set of parame-
ters defining the Bézier curve segments that best model each
of the bowing gesture parameter contours of each note is at-
tached to each note sample. Some examples of the results
on automatic segmentation and fitting are shown in Figure
3, where acquired bowing parameter cues are compared to
their corresponding Bézier approximations for détaché and
staccato articulations.

3. MODEL CONSTRUCTION

3.1. Curve Parameter Vector Construction

The curve parameters of each note are represented as a vec-
tor p resulting from the concatenation of three curve param-
eter vectors pV , pF , and pβ , corresponding to the bow ve-
locity, bow force, and β ratio contours respectively. The di-
mensionality of these vectors will depend on the number of
segments used for modeling each bowing gesture parame-
ter contour, which is defined by the corresponding grammar
entry (see Section 2.4). Each of the three parameter vector
contains three different subvectors: a first subvector pd con-
taining the relative durations di/D of each of the segments,
a second subvector pv containing the the inter-segment y-
axis values (starting or ending values vs,i or ve,i of each one
of the segments), and a third subvector pr containing the
pairs of attractor x-value ratios r1,i and r2,i. The organiza-
tion of the contour parameters is summarized by equations
(18) through (30).

p = {pV , pF , pβ} (18)

pV = {pd
V , pv

V , pr
V} (19)

pd
V = [dV,1/D · · · dV,NV /D] (20)

pv
V = [vV,s,1 · · · vV,s,NV vV,e,NV ] (21)

pr
V = [rV,1,1 rV,2,1 · · · rV,1,NV rV,2,NV ] (22)

pF = {pd
F , pv

F , pr
F} (23)

pd
F = [dF,1/D · · · dF,NF /D] (24)

pv
F = [vF,s,1 · · · vF,s,NF vF,e,NF ] (25)

pr
F = [rF,1,1 rF,2,1 · · · rF,1,NF rF,2,NF ] (26)

pβ = {pd
β , pv

β , pr
β} (27)

pd
β = [dβ ,1/D · · · dβ ,Nβ /D] (28)

pv
β = [vβ ,s,1 · · · vβ ,s,Nβ vβ ,e,Nβ ] (29)

pr
β = [rβ ,1,1 rβ ,2,1 · · · rβ ,1,Nβ rβ ,2,Nβ ] (30)

3.2. Performance Context -Based Clustering

The next step toward the construction of a model for each
note class Ci is to divide its notes into different clusters, each
one representing notes performed in similar performance
contexts, which we considered here defined by the note du-
ration and the effective string length (from the bridge to the
the finger/nut) after observation of the obtained data curve
parameters corresponding notes of different durations or at
different pitches. Even though the durations of the curve
segments are coded as relative to the note durations, we have
observed that their values vary significantly depending on
note duration. Extending this to the other curve parameters,
we find the note duration to be an important aspect not to be
missed when modeling bowing gestures. Likewise, an im-
porant correlation between the string effective length and the
curve parameters corresponding to the β parameter contour



has been observed. Analogously, furher parameters could be
considered (e.g. starting/ending bow transversal position).

The procedure that follows applies to any note class Ci.
Once each note sample has been annotated with its corre-
sponding contour parameter vector p (see Section 3.1), we
attach to each note a context vector s = [ D Lst ] where D is
the note duration (seconds), and Lst is the effective length
of the string. Note clustering is performed in two steps:
first the notes are grouped into different duration clusters,
and then, further performance context clusters are obtained
within each of the duration clusters. Note duration-based
clustering is performed as a first step in order to make sure
that a sufficient variety of performance contexts are found
for each duration cluster.

(a) Détaché articulation

(b) Staccato articulation

Figure 3. Bowing gesture parameter cue automatic segmenta-
tion and fitting results. In each figure, from top to bottom: ac-
quired bow force (expressed in 50N units), bow transversal veloc-
ity (cm/s), and bow-bridge distance (25cm units) are depicted with
think dashed curves laying behind the modeled, contours, repre-
sented by solid thick curves. Solid horizontal lines represent the
respective zero levels. Junction points between successive Bézier
segments are represented with black squares, while vertical dashed
lines represent note onsets and offsets.

Step 1. In a first step, N duration clusters of notes are ob-
tained by applying the k−means clustering algorithm [8] to
the note samples, based on the first component of the con-
text vector s, i.e. the note duration D.

Step 2. In a second step, M performance context clusters of
note samples are obtained by applying again the k−means
clustering algorithm to the notes within each of the previ-
ously obtained N duration clusters, but this time based on
the 2-dimensional context vector s. Ideally, this leads to
N×M performance context clusters cn,m per note class Ci,
each one containing a number of p contour parameter vec-
tors and s performance context vectors (we denote these sets
of vectors as pn,m and sn,m), each pair corresponding to a
note sample. Depending on the number of samples found
within each performance context cluster, the values of N and
M may need to be modified in each case in order to ensure
enough population of the groups.

3.3. Model Parameters Estimation

In a first step, an analysis of the correlation between the du-
rations dV , dF , and dβ of the Bézier segments modeling re-
spectively bow velocity, bow force and β ratio, and the note
duration D is performed for each note class. We include
such information in the model in order to be able to ade-
quately adjust the relative duration of the segments when
reconstructing contours (see Section 4). The task of this
analysis is to find, for each one of the three gesture param-
eter contours, which segment presents the highest correla-
tion with the note duration D. For doing so, we collect all
note samples belonging to the class under analysis, compute
the Pearson correlation coefficient rd,D between each of the
segment durations and the note duration, and select the seg-
ments sV

D, sF
D, sβ

D presenting the highest correlation. The
computation of the duration correlation vector sD contain-
ing sV

D, sF
D, sβ

D is expressed in equations (31) through (35),
where K is the total number of samples in the note class, and
NV , NF , and Nβ are the number of Bézier segments used for
modeling each one of the three gesture parameter contours.

sD = {sV
D,sF

D,sβ
D} (31)

sV
D = argmax

i,i=1···NV

rdV,i,D (32)

sF
D = argmax

i,i=1···NF

rdF,i,D (33)

sβ
D = argmax

i,i=1···Nβ

rdβ ,i,D (34)

rdi,D =
K ∑K

k=1 di,kDk−∑K
k=1 di,k ∑K

k=1 Dk√
K ∑K

k=1 d2
i,k− (∑K

k=1 di,k)2
√

K ∑K
k=1 D2

k − (∑K
k=1 Dk)2

(35)
Then, for each of the N duration clusters, a duration distri-
bution dn, defined by a mean duration µn,d and a duration
variance σ2

n,d , is estimated from the duration of the notes



contained in the n-th duration cluster (see equation (36)).

dn = {µn,d ,σn,d} (36)

In a third step, assuming that both the curve parameter vec-
tors pn,m and the context vectors sn,m contained in the m-
th performance context cluster of the n-th duration cluster
also follow a normal distribution, the estimation of N×M
pairs of normal distributions gn,m and vn,m, respectively cor-
responding to the curve parameter vector distributions (ob-
tained from an estimation based on the set of pn,m vectors)
and context vector distributions (obtained from an estima-
tion based on the set of sn,m vectors), is carried out. This is
expressed in equations (37) and (38), where µn,m and Σn,m

respectively correspond to the mean and covariance matrix
of the curve parameter vector distribution of the m-th perfor-
mance context cluster within the n-th duration cluster, and
γn,m and Ωn,m respectively correspond to the mean and co-
variance matrix of the context vector distribution of the m-th
performance context cluster within the n-th duration cluster.

gn,m = {µn,m,Σn,m} (37)
vn,m = {γn,m,Ωn,m} (38)

Thus, the set of parameters describing the model for each
class will contain:

• Correlation duration vector sD.

• N duration clusters each one described by a duration
distribution dn defined by a mean duration µn,d and a
duration variance σ2

n,d , and containing M performance
context clusters. Each of the M performance context
clusters is defined by:

– A performance context distribution vn,m defined
by a mean γn,m and a covariance matrix Ωn,m of
its context vectors.

– A curve parameter distribution gn,m defined by
a mean µn,m and a covariance matrix Σn,m of its
curve parameter vectors.

4. CONTOUR SYNTHESIS

As a demonstration of the potential of the modeling frame-
work, a gesture contour preliminary synthesis application is
presented here. Curve parameters of synthetic bowing ges-
ture parameter cues are obtained for the sequence of notes
of an annotated input score. First, the note class to which
each note belongs is determined following the same prin-
ciples that drove score annotation-based note classification
during gesture data analysis (see Section 2.2). Then, a tar-
get context performance vector st (see Section 3.2) is deter-
mined from the score annotations. Based on the target con-
text vector st , a mixed curve parameter normal distribution
g∗ is obtained from the curve parameter normal distributions

presents in the model of the class into consideration, so that
a curve parameter vector p (see equation (18)) can be drawn.
Then, before using the components of p for rendering the
Bézier curve segments (corresponding to the bow velocity,
bow force, and β ratio countours), a number of curve param-
eters of must be adjusted in order to fulfill some constrains
mostly related to note duration and note concatenation.

4.1. Model Mixing

We detail next the steps followed for obtaining the mixed
curve parameter distribution g∗ based on a target perfor-
mance context vector st . The vector st is determined by
the target note duration Dt (nominal duration in the input
score), and the effective string length Lt

st (obtained from the
scripted string and the pitch of the note).

1. Duration cluster selection. First, the appropriate du-
ration cluster n∗ (see Section 3.2) is selected. For doing
so, we compute the distance between the target duration Dt

and each cluster duration distribution using a normalized
Euclidean distance in which the variance σ2

n,d of the dura-
tions within each duration cluster is taken into account (see
equation (39), where µn,d is the mean duration of the n-th
cluster).

n∗ = argmin
n

√
(Dt −µn,d)2

σ2
n,d

(39)

2. Selection of performance context clusters. Within the
selected duration cluster n∗, the closest K performance con-
text clusters (see Section 3.2) to the target context vector
st are selected from the M subclusters n∗. For doing so,
we measure the Mahalanobis distance DM between st and
each m-th context vector distribution vn∗,m in n∗ (see equa-
tion (40)), and keep a vector h of length K with the indexes
of the performance context clusters in increasing order.

DM(st ,vn∗,m) =
√

(st − γn∗,m)T (Ωn∗,m)−1(st − γn∗,m) (40)

3. Curve parameter distribution mixing. The mixed curve
parameter distribution g∗ (from which we will draw the syn-
thesis curve parameter vector p) is obtained as a weighted
average of the K source curve parameter distributions corre-
sponding to the closest K performance context distributions
to the performance target st .

g∗ = {µ∗,Σ∗} (41)

µ∗ =
K

∑
i=1

wi µn∗,h(i) (42)

Σ∗ =
K

∑
i=1

wi Σn∗,h(i) (43)

The mixed curve parameter distribution parameters µ∗ and
Σ∗ (see equations (42) through (43)) respectively correspond



the weighted average of the means and covariance matri-
ces of the K source curve parameter distributions. For the
weights corresponding to each distribution in the mix, we
have used the Mahalanobis distances computed in the previ-
ous step (see equation (44)).

wi =
DM(st ,vn∗,h(i))

K

∑
k=1

DM(st ,vn∗,h(k))
(44)

4.2. Adjustment of Contour Parameters

After drawing an initial curve parameter vector p from the
mixed distribution g∗, its components are checked for the
satisfaction of a set of constrains, some dealing with the na-
ture of the curve segment model (for instance, attractor rela-
tive durations must be greater than zero), other dealing with
the nature of the note class (e.g. articulation, bow/phrase
contexts), some other dealing with the relative duration of
symbols, or with note concatenation. Due to the nature of
the model, some values of the curve parameters in drawn p
might not respect such constrains. Here we give details on
the adjustment of the components of p involved in the rel-
ative durations of the segments, and in note concatenation
issues.
Segment relative durations. The relative segment dura-
tions di for each of the three cues must sum to the unity. In
order to perform the adjustments, the duration of segment
sD (which corresponds to the one found presenting the high-
est correlation with the note duration, see Section 3.3) is
modified for making the total sum of relative durations to
be the unity (see equation (45), where D corresponds to the
note target duration, and N corresponds to the number of
segments used for modeling the cue contour).

dsD/D = 1−
N

∑
i=1

i &=sD

di/D (45)

Note concatenation. Possible discontinuities of bowing pa-
rameter contours of successive notes are solved by setting
the starting value of the first symbol of each of the three
segment sequences (bow velocity, bow force and β ratio) to
the ending value of the last segment of their corresponding
sequence in the previously note that has been already ren-
dered.

4.3. Rendering Results

Preliminary bowing gesture rendering results obtained by
means an implementation of the framework presented here
are shown in Figure 4. For rendering bowing gestures, we
used existing scores in the corpus. By using note onset/offset
times of the recorded performances instead of the nominal
times, it is possible to visually compare the obtained con-
tours to the acquired ones. Discontinuities in the contour of

bow-bridge distance happen around note onset/offsets due
to fact that for the transformation that needs to be applied
to the rendered the β ratio in order to obtain the bow-bridge
distance, we used flat pitch and string values over each note,
leading to sudden changes not happening in reality.

5. CONCLUSION

We have presented a framework for the analysis and synthe-
sis of violin bowing gesture parameter contours. Common
patterns observed in bow velocity, bor force, and bow-bridge
distance cues lead to the definition of a grammar able to dic-
tate an automatic cue contour segmentation and fitting algo-
rithm adapted to several articulations and contexts. Rep-
resentation parameters allow the reconstruction of bowing
gesture parameter contours. A statistical model based on
gaussian distributions of contour parameters (suited for ges-
ture parameter contour analysis and synthesis) is used for
rendering gesture parameter contours from an input score.

Several extensions to the general methodology presented
here remain clear: adding more note articulations, including
left-hand gesture analysis, considering further performance
context factors (e.g. playing closer to the tip or to the frog),
etc. Likewise, approaches for automatic grammar defini-
tion could greatly contribute. Apart from considering the
application of the modeing framework to other excitation-
continuous instruments, a number of violin use-cases are
to be studied. Automatic performance annotation might be
useful for expressiveness or style analysis. We are currently
studying applications to automate input controls for violin
sound synthesis. Moreover, aspects of instrument-specific
effort-based physical or biological constrains [12] might be
considered in this framework.
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