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ABSTRACT

Music Information Retrieval is largely based on descriptors
computed from audio signals, and in many practical appli-
cations they are to be computed on music corpora contain-
ing audio files encoded in a variety of lossy formats. Such
encodings distort the original signal and therefore may af-
fect the computation of descriptors. This raises the ques-
tion of the robustness of these descriptors across various
audio encodings. We examine this assumption for the case
of MFCCs and chroma features. In particular, we analyze
their robustness to sampling rate, codec, bitrate, frame size
and music genre. Using two different audio analysis tools
over a diverse collection of music tracks, we compute sev-
eral statistics to quantify the robustness of the resulting de-
scriptors, and then estimate the practical effects for a sam-
ple task like genre classification.

1. INTRODUCTION

A significant amount of research in Music Information Re-
trieval (MIR) is based on descriptors computed from au-
dio signals. In many cases, research corpora contain mu-
sic files encoded in a lossless format. In some situations,
datasets are distributed without their original music corpus,
so researchers have to gather audio files themselves. In
many other cases, audio descriptors are distributed instead
of the audio files. In the end, MIR research is thus based on
corpora that very well may use different audio encodings,
all under the assumption that audio descriptors are robust
to these variations and the final MIR algorithms are not af-
fected. This possible lack of robustness poses serious ques-
tions regarding the reproducibility of MIR research and
its applicability. For instance, whether algorithms trained
with lossless audio files can generalize to lossy encodings;
or whether a minimum audio bitrate should be required in
datasets that distribute descriptors instead of audio files.

In this paper we examine the assumption of robust-
ness of music descriptors across different audio encod-
ings on the example of Mel-frequency cepstral coeffi-
cients (MFCCs) and chroma features. They are among
the most popular music descriptors used in MIR research,
as they respectively capture timbre and tonal information.
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Many MIR tasks such as classification, similarity, autotag-
ging, recommendation, cover identification and audio fin-
gerprinting, audio-to-score alignment, audio segmentation,
key and chord estimation, and instrument detection are at
least partially based on them. As they pervade the literature
on MIR, we analyzed the effect of audio encoding and sig-
nal analysis parameters on the robustness of MFCCs and
chroma. To this end, we run two different audio analysis
tools over a diverse collection of 400 music tracks. We then
compute several indicators that quantify the robustness and
stability of the resulting features and estimate the practical
implications for a general task like genre classification.

2. DESCRIPTORS

2.1 Mel-Frequency Cepstrum Coefficients

MFCCs are inherited from the speech domain [18], and
they have been extensively used to summarize the spectral
content of music signals within an analysis frame. MFCCs
are widely used in tasks like music similarity [1,12], music
classification [6] (in particular, genre), autotagging [13],
preference learning for music recommendation [19, 24],
cover identification and audio segmentation [17].

There is no standard algorithm to compute MFCCs, and
a number of variants have been proposed [8] and adapted
for MIR applications. MFCCs are commonly computed as
follows. The first step consists in windowing the input sig-
nal and computing its magnitude spectrum with the Fourier
transform. We then apply a filterbank with critical (mel)
band spacing of the filters and bandwidths. Energy val-
ues are obtained for the output of each filter, followed by
a logarithm transformation. We finally compute a discrete
cosine transform to the set of log-energy values to obtain
the final set of coefficients. The number of mel bands and
the frequency interval on which they are computed may
vary among implementations. The low order coefficients
account for the slowly changing spectral envelope, while
the higher order coefficients describe the fast variations of
the spectrum shape, including pitch information. The first
coefficient is typically discarded in MIR applications be-
cause it does not provide information about the spectral
shape; it reflects the overall energy in mel bands.

2.2 Chroma

Chroma features represent the spectral energy distribution
within an analysis frame, summarized into 12 semitones
across octaves in equal-tempered scale. Chroma captures
the pitch class distribution of an input signal, typically used



for key and chord estimation [7, 9], music similarity and
cover identification [20], classification [6], segmentation
and summarization [5, 17], and synchronization [16].

Several approaches exist for chroma feature extraction,
including the following steps. The signal is first analyzed
with a high frequency resolution in order to obtain its fre-
quency domain representation. The main frequency com-
ponents (e.g. spectral peaks) are mapped onto pitch classes
according to an estimated tuning frequency. For most ap-
proaches, a frequency value partially contributes to a set
of “sub-harmonic” fundamental frequency (pitch) candi-
dates. The chroma vector is computed with a given inter-
val resolution (number of bins per octave) and is finally
post-processed to obtain the final chroma representation.
Timbre invariance is achieved by different transformations
such as spectral whitening [9] or cepstrum liftering [15].

3. EXPERIMENTAL DESIGN

3.1 Factors Affecting Robustness

We identified several factors that could have an effect on
the robustness of audio descriptors, from the perspective
of their audio encoding (codec, bitrate and sampling rate),
analysis parameters (frame/hop size and audio analysis
tool) and the musical characteristics of the songs (genre).

SRate. The sampling rate at which an audio signal is
encoded may affect robustness when using very high fre-
quency rates. We study standard 44100 and 22050 Hz.

Codec. Perceptual audio coders may also affect descrip-
tors because they introduce perturbations to the original
audio signal, in particular by reducing high-frequency con-
tent, blurring the attacks, and smoothing the spectral enve-
lope. In our experiments, we chose one lossless and two
lossy audio codecs: WAV, MP3 CBR and MP3 VBR.

BRate. Different audio codecs allow different bitrates
depending on the sampling rate, so we can not combine all
codecs with all bitrates. The following combinations are
permitted and used in our study:
• WAV: 1411 Kbps.
• MP3 CBR at 22050 Hz: 64, 96, 128 and 160 Kbps.
• MP3 CBR at 44100 Hz: 64, 96, 128, 160, 192, 256

and 320 Kbps.
• MP3 VBR: 6 (100-130 Kbps), 4 (140-185 Kbps), 2

(170-210 Kbps) and 0 (220-260 Kbps).
FSize. We considered a variety of frame sizes for spec-

tral analysis: 23.2, 46.4, 92.9, 185.8, 371.5 and 743.0 ms.
That is, we used frame sizes of 1024, 2048, 4096, 8192,
16384 and 32768 samples for signals with sampling rate of
44100 Hz, and the halved values (512, 1024, 2048, 4096,
8192 and 16384 samples) in the case of 22050 Hz.

Audio analysis tool. The specific software used to com-
pute descriptors may have an effect on their robustness due
to parameterizations (e.g. frequency ranges) and other im-
plementation details. We use two state-of-the-art and open
source tools publicly available online: Essentia 2.0.1 1 [2]
and QM Vamp Plugins 1.7 for Sonic Annotator 0.7 2 [3].

1 http://essentia.upf.edu
2 http://vamp-plugins.org/plugin-doc/

qm-vamp-plugins.html

Since our goal here is not to compare tools, we refer to
them simply as Lib1 and Lib2 throughout the paper.
Lib1 and Lib2 provide by default two different implemen-
tations of MFCCs, both of which compute cepstral coeffi-
cients on 40 mel bands, resembling the MFCC FB-40 im-
plementation [8, 22] but on different frequency intervals.
Lib1 covers a wider frequency range of 0-11000 Hz with
mel bin centers being equally spaced on the mel scale in
this range, while Lib2 covers a frequency range of 66-
6364 Hz. We compute the first 13 MFCCs in both systems
and discard the first coefficient. In the case of chroma,
Lib1 analyzes a frequency range of 40-5000 Hz based on
Fourier transform and estimates tuning frequency. Lib2
uses a Constant Q Transform and analyzes the frequency
range 65-2093 Hz assuming tuning frequency of 440 Hz,
but it does not account for harmonics of the detected peaks.
We compute 12-dimensional chroma features.

Genre. Robustness may depend as well on the music
genre of songs. For instance, as the most dramatic change
that perceptual coders introduce is that of filtering out high-
frequency spectral content, genres that make use of very
high-frequency sounds (e.g. cymbals and electronic tones)
should show a more detrimental effect than genres not in-
cluding them (e.g. country, blues and classical).

3.2 Data

We created an ad-hoc corpus of music for this study, con-
taining 400 different music tracks (30 seconds excerpts) by
395 different artists, uniformly covering 10 music genres
(blues, classical, country, disco/funk/soul, electronic, jazz,
rap/hip-hop, reggae, rock and rock’n’roll). All 400 tracks
are encoded from their original CD at a 44100 Hz sampling
rate using the lossless FLAC audio codec.

We converted all lossless tracks in our corpus into var-
ious audio formats in accordance with the factors iden-
tified above, taking into account all possible combina-
tions of sampling rate, codec and bitrate. Audio conver-
sion was done using the FFmpeg 0.8.3 3 converter, which
includes the LAME codec for MP3 joint stereo mode
(Lavf53.21.1 ). Afterwards, we analyzed the original loss-
less files and their lossy versions using both Lib1 and Lib2.
In the case of Lib1, both MFCCs and chroma features were
computed for all different frame sizes with the hop size
equal to half the frame size. MFCCs were computed simi-
larly in the case of Lib2, but chroma features only allow a
fixed frame size of 16384 samples (we selected a hop size
of 2048 samples). In all cases, we summarize the frame-
wise feature vectors with the mean of each coefficient.

3.3 Indicators of Robustness

We computed several indicators of the robustness of
MFCCs and chroma, each measuring the difference be-
tween the descriptors computed with the original lossless
audio clips and the descriptors computed with their lossy
versions. We blocked by tool, sampling rate and frame
size under the assumption that these factors are not mixed
in practice within the same application. For two arbitrary

3 http://www.ffmpeg.org



vectors x and y (each containing n = 12 MFCC or chroma
values) from a lossless and a lossy version, we compute
five indicators to measure how different they are.

Relative error δ. It is computed as the average relative
difference across coefficients. This indicator can be eas-
ily interpreted as the percentage error between coefficients,
and it is of especial interest for tasks in which coefficients
are used as features to train some model.

δ(x, y) = 1
n

∑ |xi−yi|
max(|xi|,|yi|)

Euclidean distance ε. The Euclidean distance between
the two vectors, which is especially relevant for tasks that
compute distances between pairs of songs, such as in music
similarity or other tasks that use techniques like clustering.

Pearson’s r. The common parametric correlation coef-
ficient between the two vectors, ranging from -1 to 1.

Spearman’s ρ. A non-parametric correlation coeffi-
cient, equal to the Pearson’s r correlation after transform-
ing all coefficients to their corresponding ranks in x ∪ y.

Cosine similarity θ. The angle between both vectors. It
is is similar to ε, but it is normalized between 0 and 1.

We have 400 tracks×19 BRate:Codec×6 FSize=45600
datapoints for MFCCs with Lib1, MFCCs with Lib2, and
chroma with Lib1. For chroma with Lib2 there is just
one FSize, which yields 7600 datapoints. This adds up to
144400 datapoints for each indicators, 722000 overall.

3.4 Analysis

For simplicity, we followed a hierarchical analysis for each
combination of sampling rate, tool, feature and robust-
ness indicator. We are first interested in the mean of the
score distributions, which tells us the expected robustness
in each case (e.g. a low ε mean score suggests that the de-
scriptor is robust because it does not differ much between
the lossless and the lossy versions). But we are also inter-
ested in the stability of the descriptor, that is, the variance
of the distribution. For instance, a descriptor might be ro-
bust on average but not below 192 Kbps, or robust only
with a frame size of 2048.

To gain a deeper understanding of the variations in the
indicators, we fitted a random effects model to study the
effects of codec, bitrate and frame size [14]. The spe-
cific models included the FSize and Codec main effects,
and the bitrate was modeled as nested within the Codec
effect (BRate:Codec); all interactions among them were
also fitted. Finally, we included the Genre and Track main
effects to estimate the specific variability due to inherent
differences among the music pieces themselves. We did
not consider any Genre or Track interactions because they
can not be controlled in a real-world application, so their
effects are all confounded with the residual effect. Note
though that this residual does not account for any random
error (in fact, there is no random error in this model); it
accounts for high-order interactions associated with Genre
and Track that are irrelevant for our purposes. This re-
sults in a Resolution V design for the factors of interest
(main effects unconfounded with two- or three-factor in-
teractions) and a Resolution III design for musical factors

related to genre (main effects confounded with two-factor
interactions) [14]. We ran an ANOVA analysis on these
models to estimate variance components, which indicate
the contribution of each factor to the total variance, that is,
their impact on the robustness of the audio descriptors.

4. RESULTS

Table 1 shows the results for MFCCs. As shown by the
mean scores, the descriptors computed by Lib1 and Lib2
are similarly robust (note that ε scores are not directly com-
parable across tools because they are not normalized; ac-
tual MFCCs in Lib1 are orders of magnitude larger than
in Lib2). Both correlation coefficients r and ρ, as well as
cosine similarity θ, are extremely high, indicating that the
shape of the feature vectors is largely preserved. However,
the average error across coefficients is as high δ ≈ 6.1% at
22050 Hz and δ ≈ 6.7% at 44100 Hz.

When focusing on the stability of the descriptors, we
see that the implementation in Lib2 is generally more sta-
ble because the distributions have less variance, except for
δ and ρ at 22050 Hz. The decomposition in variance com-
ponents indicates that the choice of frame size is irrelevant
in general (low σ̂2

FSize scores), and that the largest part of
the variability depends on the particular characteristics of
the music pieces (very high σ̂2

Track+σ̂
2
residual scores). For

Lib2 in particular, this means that controlling encodings
or analysis parameters does not increase robustness signif-
icantly when the sampling rate is 22050 Hz; it depends
almost exclusively on the specific music pieces. On the
other hand, the combination of codec and bitrate has a quite
large effect in Lib1. For instance, about 42% of the vari-
ability in Euclidean distances is due to the BRate:Codec
interaction effect. This means that an appropriate selection
of the codec and bitrate of the audio files leads to signifi-
cantly more robust descriptors. At 44100 Hz both tools are
clearly affected by the BRate:Codec effect as well, espe-
cially Lib1. Figure 1 compares the distributions of δ scores
for each tool. We can see that Lib1 has indeed large vari-
ance across groups, but small variance within groups, as
opposed to Lib2. The robustness of Lib1 seems to con-
verge to δ ≈ 3% at 256 Kbps, and the descriptors are
clearly more stable with larger bitrates (smaller within-
group variance). On the other hand, the average robustness
of Lib2 converges to δ ≈ 5% at 160-192 Kbps, and stabil-
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Figure 1. Distributions of δ scores for different combina-
tions of MP3 codec and bitrate at 44100 Hz, and for both
audio analysis tools. Blue crosses mark the sample means.
Outliers are rather uniformly distributed across genres.



22050 Hz 44100 Hz
δ ε r ρ θ δ ε r ρ θ

L
ib

1
σ̂2
FSize 1.08 3.03 1.73 0 1.74 0.21 0.09 0.01 0 0
σ̂2
Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
BRate:Codec 31.25 42.13 21.61 8.38 21.49 46.98 41.77 22.52 24.03 21.51

σ̂2
FSize×Codec 0 0 0 0 0 0 0.20 0.07 0.05 0.06

σ̂2
FSize×(BRate:Codec)

4.87 11.71 12.36 1.23 13.21 7.37 18.25 17.98 10.85 18.02
σ̂2
Genre 0.99 4.53 3.92 0.08 3.80 1.12 0.52 0.90 0.32 0.89
σ̂2
Track 19.76 5.84 6.46 11.59 5.73 10.12 3.91 2.65 5.23 2.59

σ̂2
residual 42.05 32.75 53.92 78.72 54.03 34.19 35.26 55.87 59.52 56.92

Grand mean 0.0591 1.6958 0.9999 0.9977 0.9999 0.0682 1.8820 0.9998 0.9939 0.9998
Total variance 0.0032 3.4641 1.8e-7 3.2e-5 1.5e-7 0.0081 11.44 1.6e-6 0.0005 1.4e-6

Standard deviation 0.0567 1.8612 0.0004 0.0056 0.0004 0.0897 3.3835 0.0013 0.0214 0.0012

L
ib

2

σ̂2
FSize 1.17 0.32 0.16 0.24 0.18 0.25 0 0 0 0
σ̂2
Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
BRate:Codec 4.91 6.01 2.32 0.74 3.14 23.46 24.23 14.27 13.31 15.02

σ̂2
FSize×Codec 0 0 0 0 0 0 0 0 0 0

σ̂2
FSize×(BRate:Codec)

0.96 0.43 0.03 0.04 0.09 7.17 8.09 10.35 6.34 10.86
σ̂2
Genre 4.21 14.68 2.84 0.61 4.41 0.37 5.37 0.50 0 0.48
σ̂2
Track 52.34 61.05 32.07 66.10 41.26 27.33 14.10 6.55 13.32 5.53

σ̂2
residual 36.41 17.51 62.57 32.27 50.92 41.42 48.21 68.32 67.03 68.11

Grand mean 0.0622 0.0278 0.9999 0.9955 0.9999 0.0656 0.0342 0.9998 0.9947 0.9999
Total variance 0.0040 0.0015 8.9e-8 0.0002 3.5e-8 0.0055 0.0034 6.4e-7 0.0002 4.8e-7

Standard deviation 0.0631 0.0391 0.0003 0.0131 0.0002 0.0740 0.0587 0.0008 0.0150 0.0007

Table 1. Variance components in the distributions of robustness of MFCCs for Lib1 (top) and Lib2 (bottom). Each
component represents the percentage of total variance due to each effect (eg. σ̂2

FSize = 3.03 indicates that 3.03% of the
variability in the robustness indicator is due to differences across frame sizes; σ̂2

x = 0 when the effect is so extremely small
that the estimate is slightly below zero). All interactions with the Genre and Track main effects are confounded with the
residual effect. The last rows show the grand mean, total variance and standard deviation of the distributions.

ity remains virtually the same beyond 96 Kbps. These plots
confirm that the MFCC implementation in Lib1 is nearly
twice as robust and stable when the encoding is homoge-
neous in the corpus, while the implementation in Lib2 is
less robust but more stable with heterogeneous encodings.

The FSize effect is negligible, indicating that the choice
of frame size does not affect the robustness of MFCCs
in general. However, in several cases we can observe
large σ̂2

FSize×(BRate:Codec) scores, meaning that for some
codec-bitrate combinations it does matter. An in-depth
analysis shows that these differences only occur at 64 Kbps
though (small frame sizes are more robust); differences are
very small otherwise. Finally, the small σ̂2

Genre scores in-
dicate that robustness is similar across music genres.

A similar analysis was conducted to assess the robust-
ness and stability of chroma features. Even though the
correlation indicators are generally high as well, Table 2
shows that chroma vectors do not preserve the shape as
well as MFCCs do. When looking at individual coeffi-
cients, the relative errors are similarly δ ≈ 6% in Lib1, but
they are greatly reduced in Lib2, especially at 44100 Hz.
In fact, the chroma implementation in Lib2 is more robust
and stable according to all indicators 4 . For Lib1, virtually
all the variability in the distributions is due to the Track
and residual effects, meaning that chroma is similarly ro-
bust across encodings, analysis parameters and genre. For
Lib2, we can similarly observe that errors in the correla-
tion indicators depend almost entirely on the Track effect,
but δ and ε depend mostly on the codec-bitrate combina-
tion. This indicates that, despite chroma vectors preserve

4 Even though these distributions include all frame sizes in Lib1 but
only 16384 in Lib2, the FSize effect is negligible in Lib1, meaning that
these indicators are still comparable across implementations

their shape, the individual components vary significantly
across encodings; we observed that increasing the bitrate
leads to larger coefficients overall. This suggests that nor-
malizing the chroma coefficients could dramatically im-
prove the distributions of δ and ε. We tried the parameter
normalization=2 to have Lib2 normalize chroma vec-
tors to unit maximum. As expected, the effects of codec
and bitrate are removed after normalization, and most of
the variability is due to the Track effect. The correlation
indicators are practically unaltered after normalization.

5. ROBUSTNESS IN GENRE CLASSIFICATION

The previous section provided indicators of robustness that
can be easily understood. However, they can be hard to
interpret because in the end we are interested in the ro-
bustness of the various algorithms that make use of these
features; whether δ = 5% is large or not depends on how
MFCCs and chroma are used in practice. To investigate
this question we consider a music genre classification task.
For each sampling rate, codec, bitrate and tool we trained
one SVM model with radial basis kernel using MFCCs and
another using chroma. For MFCCs we used a standard
frame size of 2048, and for chroma we set 4096 in Lib1
and the fixed 16384 in Lib2. We did random sub-sampling
validation with 100 random trials for each model, using
320 tracks for training and the remaining 80 for testing.

We first investigate whether a particular choice of en-
coding is likely to classify better when fixed across train-
ing and test sets. Table 3 shows the results for a selec-
tion of encodings at 44100 Hz. Within the same tool and
descriptor, differences across encodings are quite small,
approximately 0.02. In particular, for MFCCs and Lib1
an ANOVA analysis suggests that differences are signifi-



22050 Hz 44100 Hz
δ ε r ρ θ δ ε r ρ θ

L
ib

1

σ̂2
FSize 1.68 2.77 0.20 0.15 0.38 2.37 2.42 0.24 0.34 0.50
σ̂2
Genre 2.81 2.75 1.29 1.47 0.81 3.12 2.61 1.17 1.25 0.85
σ̂2
Track 20.69 19.27 17.75 18.52 16.63 22.28 20.78 18.81 19.92 18.64

σ̂2
residual 74.82 75.21 80.75 79.86 82.17 72.22 74.19 79.79 78.49 80.01

Grand Mean 0.0610 0.0545 0.9554 0.9366 0.9920 0.0588 0.0521 0.9549 0.9375 0.9922
Total variance 0.0046 0.0085 0.0276 0.0293 0.0014 0.0048 0.0082 0.0286 0.0298 0.0013

Standard deviation 0.0682 0.0924 0.1663 0.1713 0.0373 0.0695 0.0904 0.1691 0.1725 0.0355

L
ib

2

σ̂2
Codec 63.62 34.55 0 0 0 32.32 21.59 0 0 0

σ̂2
BRate:Codec 0.71 0.23 0 0 0 61.80 39.51 0.01 0.03 0.04

σ̂2
Genre 0.25 15.87 2.90 4.05 7.95 0.62 9.98 3.43 1.33 3.66
σ̂2
Track 19.29 32.77 96.71 92.75 91.80 3.27 13.79 94.24 93.04 77.00

σ̂2
residual 16.14 16.58 0.38 3.20 0.25 1.98 15.13 2.32 5.60 19.30

Grand mean 0.0346 0.0031 0.9915 0.9766 0.9998 2.6e-2 2.2e-3 0.9989 0.9928 1
Total variance 0.0004 5e-6 0.0002 0.0007 6.1e-8 4.6e-4 4.8e-6 3.7e-6 0.0001 1.8e-9

Standard deviation 0.0195 0.0022 0.0135 0.0270 0.0002 0.0213 0.0022 0.0019 0.0122 4.2e-5

Table 2. Variance components in the distributions of robustness of Chroma for Lib1 (top) and Lib2 (bottom), similar
to Table 1. The Codec main effect and all its interactions are not shown for Lib1 because all variance components are
estimated as 0. Note that the FSize main effect and all its interactions are omitted for Lib2 because it is fixed to 16384.

64 96 128 160 192 256 320 WAV

L
ib

1 MFCCs .383 .384 .401 .403 .395 .402 .394 .393
Chroma .275 .281 .288 .261 .278 .278 .284 .291

L
ib

2 MFCCs .335 .329 .332 .341 .336 .336 .344 .335
Chroma .320 .325 .320 .323 .325 .319 .320 .313

Table 3. Mean classification accuracy over 100 trials when
training and testing with the same encoding (MP3 CBR
and WAV only) at 44100 Hz.

cant, F (7, 693)=2.34, p=0.023; a multiple comparisons
analysis reveals that 64 Kbps is significantly worse than
the best (160 Kbps). In terms of chroma, differences are
again statistically significant, F (7, 693)=3.71, p<0.001;
160 Kbps is this time significantly worse that most of
the others. With Lib2 differences are not significant for
MFCCs, F (7, 693) = 1.07, p = 0.378. No difference is
found for chroma either, F (7, 693) = 0.67, p = 0.702.
Overall, despite some pairwise comparisons are signifi-
cantly different, there is no particular encoding that clearly
outperforms the others; the observed differences are prob-
ably just Type I errors. There is no clear correlation either
between bitrate and accuracy.

We then investigate whether a particular choice of en-
coding for training is likely to produce better results when
the target test set has a fixed encoding. For MFCCs
and Lib1 there is no significant difference in any but
one case (testing with 160 Kbps is worst when training
with 64 Kbps). For chroma there are a few cases where
160 Kbps is again significantly worse than others, but we
attribute these to Type I errors as well. Although not sig-
nificantly so, the best result is always obtained when the
training set has the same encoding as the target test set.
With Lib2 there is no significant difference for MFCCs or
chroma. Overall, we do not observe a correlation either be-
tween training and test encodings. Due to space constrains,
we do not discuss results for VBR or 22050 Hz, but the
same general conclusions can be drawn nonetheless.

6. DISCUSSION

Sigurdsson et al. [21] suggested that MFCCs are sensi-
tive to the spectral perturbations that result from low bi-

trate compression, mostly due to distortions at high fre-
quencies. They estimated squared Pearson’s correlation
between MFCCs computed on original lossless audio and
its MP3 derivatives, using 4 different MFCC implemen-
tations. All implementations were found to be robust at
bitrates of at least 128 Kbps, with r2 > 0.95, but a sig-
nificant loss in robustness was observed at 64 Kbps in
some of the implementations. The most robust MFCC im-
plementation had a highest frequency of 4600 Hz, while
the least robust implementation included frequencies up to
11025 Hz. Their music corpus contained only 46 songs
though, clearly limiting their results. In our experiments,
all encodings show r2>0.99. However, we note that Pear-
son’s r is very sensible to outliers with such small samples.
This is the case of the first MFCC coefficients, which are
orders of magnitude larger than the last coefficients. This
makes r extremely large simply because the first coeffi-
cients are remotely similar; most of the variability between
feature vectors is explained because of the first coefficient.
This is clear in our Table 1, where r ≈ 1 and variance is
nearly 0. To minimize this sensibility to outliers, we also
included the non-parametric Spearman’s ρ correlation co-
efficient as well as the cosine similarity. In our case, the
tool with the larger frequency range was shown to be more
robust under homogeneous encodings, while the shorter
range was more stable under heterogeneous conditions.

Hamawaki et al. [10] analyzed differences in the distri-
bution of MFCCs for different bitrates using a corpus of
2513 MP3 files of Japanese and Korean pop songs with bi-
trates between 96 and 192 Kbps. Following a music simi-
larity task, they compared differences in the top-10 ranked
results when using MFCCs derived from WAV audio, its
MP3 encoded versions, and the mixture of MFCCs from
different sources. They found that the correlation of the re-
sults deteriorates smoothly as the bitrate decreases, while
ranking on a set of MFCCs derived from different formats
revealed uncorrelated results. We similarly observed that
the differences between MFCCs of the original WAV files
and its MP3 versions decrease smoothly with bitrate.

Jensen et al. [12] measured the effect of audio encoding
on performance of an instrument classifier using MFCCs.



They compared MFCCs computed from MP3 files at only
32-64 Kbps, observing a decrease in performance when
using a different encoder for training and test sets. In con-
trast, performance did not change significantly when using
the same encoder. For genre classification with MFCCs,
our results showed no differences in either case. We note
though that the bitrates we considered are much larger. Ue-
mura et al. [23] examined the effect of bitrate on chord
recognition using chroma features with an SVM classi-
fier. They observed no obvious correlation between en-
coding and estimation results; the best results were even
obtained with very low bitrates for some codecs. Our re-
sults on genre classification with chroma largely agree in
this case as well; the best results with Lib2 were also ob-
tained by low bitrates. Casey et al. [4] evaluated the effect
of lossy encodings on genre classification tasks using au-
dio spectrum projection features. They found a small but
statistically significant decrease in accuracy for bitrates of
32 and 96 Kbps. In our experiments, we do not observe
these differences, although the lowest bitrate we consider
is 64 Kbps. Jacobson et al. [11] also investigated the ro-
bustness of onset detection methods to lossy MP3 encod-
ing. They found statistically significant changes in accu-
racy only at bitrates lower than 32 Kbps.

Our results showed that MFCCs and chroma features, as
computed by Lib1 and Lib2, are generally robust and sta-
ble within reasonable limits. Some differences have been
noted between tools though, largely attributable to the dif-
ferent frequency ranges they employ. Nonetheless, it is
evident that certain combinations of codec and bitrate may
require a re-parameterization of some descriptors to im-
prove or even maintain robustness. In practice, these pa-
rameterizations affect the performance and applicability of
algorithms, so a balance between performance, robustness
and generalizability should be sought. These considera-
tions are of major importance when collecting audio files
for some dataset, as a minimum audio quality might be
needed for some descriptors.

7. CONCLUSIONS

In this paper we have studied the robustness of two com-
mon audio descriptors used in Music Information Re-
trieval, namely MFCCs and chroma, to different audio en-
codings and analysis parameters. Using a varied corpora
of music pieces and two different audio analysis tools we
have confirmed that MFFCs are robust to frame/hop sizes
and lossy encoding provided that a minimum bitrate of
approximately 160 Kbps is used. Chroma features were
shown to be even more robust, as the codec and bitrates
had virtually no effect on the computed descriptors. This
is somewhat expected given that chroma does not capture
information as fine-grained as MFCCs do, and that lossy
compression does not alter the perceived tonality. We did
find subtle differences between implementations of these
audio features, which call for further research on standard-
izing algorithms and parameterizations to maximize their
robustness while maintaining their effectiveness in the var-
ious tasks they are used in. The immediate line for future
work includes the analysis of other features and tools.
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[9] E. Gómez. Tonal description of music audio signals. PhD the-
sis, Universitat Pompeu Fabra, 2006.

[10] S. Hamawaki, S. Funasawa, et al. Feature analysis and nor-
malization approach for robust content-based music retrieval
to encoded audio with different bit rates. In MMM, 2008.

[11] K. Jacobson, M. Davies, and M. Sandler. The effects of lossy
audio encoding on onset detection tasks. In AES, 2008.

[12] J.H. Jensen, M.G. Christensen, D. Ellis, and S.H. Jensen.
Quantitative analysis of a common audio similarity measure.
IEEE TASLP, 2009.

[13] B. McFee, L. Barrington, and G. Lanckriet. Learning content
similarity for music recommendation. IEEE TASLP, 2012.

[14] D.C. Montgomery. Design and Analysis of Experiments. Wi-
ley & Sons, 2009.

[15] M. Müller and S. Ewert. Towards timbre-invariant audio fea-
tures for harmony-based music. IEEE TASLP, 2010.

[16] M. Müller, H. Mattes, and F. Kurth. An efficient multiscale
approach to audio synchronization. In ISMIR, 2006.

[17] J. Paulus, M. Müller, and A Klapuri. Audio-based music
structure analysis. In ISMIR, 2010.

[18] L.R. Rabiner and R.W. Schafer. Introduction to Digital
Speech Processing. Foundations and Trends in Signal Pro-
cessing. 2007.

[19] J. Reed and C. Lee. Preference music ratings prediction using
tokenization and minimum classification error training. IEEE
TASLP, 2011.
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