Melodic Pattern Extraction in Large Collections of Music Recordings Using Time Series Mining Techniques

Sankalp Gulati^{*}, Joan Serrà[¥], Vignesh Ishwar^{*} and Xavier Serra^{*} sankalp.gulati@upf.edu, jserra@iiia.csic.es, vignesh.ishwar@gmail.com and xavier.serra@upf.edu

^{*}Music Technology Group, UPF, [¥]Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain The 15th International Society for Music Information Retrieval Conference (ISMIR) 2014: Late Breaking Demo

Goals

- Discover short-time melodic paterns in audio collections of Indian art music (IAM)
- Assess scalability of melodic similarity measures based on DTW
- Evaluate four variants of DTW cost function for rank refinement
- distance measure for the given data

Melodic Patterns in Indian Art Music

- Prominent cues for rāga identification
- Basis for melodic analysis of IAM
- Set ground for melodic improvisation
- Highly varied across repetitions

compmusic

Melodic similarity

- Whole sequence matching DTW-based distance measure
- Square Euclidean distance as DTW cost function
- No local constraint and transition cost
- Step condition: {(1,0), (1,1), (0,1)}
- Sakoe-Chiba globand band constraint (10% pattern length)
- Use first-last (FL) lower bound
- Use LB_Keogh lower bound

Rank-refinement

- Local constraint
- Step condition: $\{(2,1), (1,1), (1,2)\}$
- 4 different DTW cost functions
- No lower bounding used

Results and Discussion

Evaluation

Dataset:

- CompMusic Carnatic music collection
- 1764 polyphonic audio recordings

Intra-recording discovery: 1.4*10^12 DTW computations (75% avoided) Inter-recording search: 12.4*10^12 DTW computations (99% avoided)

Browse melodic patterns

• 365 hours of music material covering different forms, ragas and artists • Over **300 million pattern candidates**

Evaluation:

- 79,000 seed patterns & 15 million search patterns
- Randomly sample 200 seed patterns and top 10 search patterns
- Total of 8000 patterns pairs evaluated by a professional musician
- Mean averate precision (MAP) to quantify musician's assessment
- ROC curves for the anlaysis of distance distribution

on:									
	Search results using chosen seed from Nadamadi								
Browsing options Artist list	Similarity		Start(s)	End(s)	Pair Id	Start(s)	End(s)	Musicbrainz ID (searched file)	Distance
<u>Releases</u> <u>Recordings</u>	1	15506039	95.6	97.5	<u>15506885</u>	372.8	375.0	2bade8d8-1cfa-4076-9329-98f7cacc65a0	1318.68
• <u>Seeds</u>	1	15506039	95.6	97.5	15506914	57.9	60.2	<u>70761911-9f70-436c-97ed-d23ea74e7ed9</u>	2416.83
Stop Audio	1	15506039	95.6	97.5	15506904	223.7	225.9	<u>5c342c56-c07a-4905-89cc-bd5d1151d20a</u>	2507.13
<u>btop nutio</u>	1	15506039	95.6	97.5	<u>15506891</u>	2448.1	2450.1	<u>1d99a413-bc0a-430d-9587-410932113eaf</u>	2554.72
	✓	<u>15506039</u>	95.6	97.5	15506925	98.7	101.0	<u>b6af2720-6beb-454b-ba8c-f912ea8ab27b</u>	2573.89
	✓	<u>15506039</u>	95.6	97.5	<u>15506921</u>	77-7	80.1	<u>b6af2720-6beb-454b-ba8c-f912ea8ab27b</u>	2615.10
	✓	<u>15506039</u>	95.6	97.5	15506888	132.3	134.5	<u>70761911-9f70-436c-97ed-d23ea74e7ed9</u>	2615.37
	✓	<u>15506039</u>	95.6	97.5	<u>15506886</u>	538.7	541.2	<u> 170970da-a19a-462d-8dae-4ece614f2780</u>	2617.46
	✓	<u>15506039</u>	95.6	97.5	<u>15506887</u>	538.7	541.2	<u> 170970da-a19a-462d-8dae-4ece614f2780</u>	2617.46
	1	15506039	95.6	97.5	<u>15506890</u>	10.7	12.5	<u>367f884a-5de9-4f45-a139-82a067c13865</u>	2630.05
	1	15506039	95.6	97.5	15506901	69.8	72.1	<u>bec3b237-0a03-4011-9d8b-394415b0a6b2</u>	2635.77
	1	15506039	95.6	97.5	<u>15506990</u>	927.7	929.9	<u>5269b678-e274-4732-a906-4b17607df9c3</u>	2658.49
	1	15506039	95.6	97.5	15506910	261.2	263.2	<u>5c342c56-c07a-4905-89cc-bd5d1151d20a</u>	2708.06
	1	<u>15506039</u>	95.6	97.5	<u>15506899</u>	175.1	177.1	<u>5c342c56-c07a-4905-89cc-bd5d1151d20a</u>	2740.02
	1	15506039	95.6	97.5	15506894	272.5	274.5	<u>0298a06d-ffe9-4d83-922d-dedbc3bfde21</u>	2768.00
	1	<u>15506039</u>	95.6	97.5	<u>15506889</u>	663.2	665.2	829df365-78bc-4157-9346-5a3b39bf12a5	2770.42
	1	<u>15506039</u>	95.6	97.5	<u>15506919</u>	260.4	262.4	<u>2f9b5ddc-f253-46be-a316-36f9ce111b9e</u>	2801.36
	1	15506039	95.6	97.5	15506902	219.2	221.3	<u>5c24dc68-51e2-4ce5-a7c7-74f160482e2b</u>	2827.50
	1	<u>15506039</u>	95.6	97.5	<u>15506976</u>	32.9	35.1	<u>d7112257-77c5-4f52-a284-c73226cad4d0</u>	2833.71
	✓	<u>15506039</u>	95.6	97.5	<u>15506897</u>	206.3	209.0	<u>bedc82f2-d42c-4062-9fc1-832f7f1bfd62</u>	2836.99
	✓	<u>15506039</u>	95.6	97.5	<u>15507021</u>	33.0	34.9	<u>8e31cd33-0143-4357-83cd-31c87443055d</u>	2852.56
	1	<u>15506039</u>	95.6	97.5	<u>15506893</u>	144.6	147.0	<u>097411d7-bd64-41b7-a604-56bdcb584886</u>	2869.28
	1	<u>15506039</u>	95.6	97.5	<u>15506913</u>	49.8	52.0	e00a3860-8ae2-400b-8300-4d72204969b3	2878.99

- X. Serra, "Creating research corpora for the computational study of music: the case of the Compmusic project," in Proc. of the 53rd AES International Conference on Semantic Audio, London, Jan. 2014. • J. Salamon and E. G'omez, "Melody extraction from polyphonic music signals using pitch contour characteristics," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 6, pp. 1759–1770, 2012. • D. Bogdanov, N. Wack, E. G'omez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J. Salamon, J. Zapata, and X. Serra, "Essentia: an audio analysis library for music information retrieval," in Proc. of Int. Society for Music Information Retrieval Conf. (ISMIR), 2013, pp. 493–498.
- S. Gulati, A. Bellur, J. Salamon, H. Ranjani, V. Ishwar, H. A. Murthy, and X. Serra, "Automatic tonic identification in Indian art music: approaches and evaluation," Journal of New Music Research, vol. 43, no. 1, pp. 55–73, 2014.
- T. Rakthanmanon, B. Campana, A. Mueen, G.Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh, "Addressing big data time series: mining trillions of time series subsequences under dynamic time warping," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 7, no. 3, pp. 10:1–10:31, Sep. 2013.

