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Utilizing Available Data 

§  Editorial Metadata 

§  Audio Content 

§  Context 



Utilizing Available Data 

§  Editorial Metadata 

§  Audio Content 

§  Context 



Objective 



Objective 



Objective 



Objective 



Music Collection 

§  Indian Art Music 
§  Carnatic music 
§  Hindustani music 

§  Rāga: melodic framework 
§  Swar (note) 
§  Swar prominence/role (Vādi, Samvādi, Nyās, Grah) 
§  Pakads (characteristic melodic patterns) 



Music Collection – Carnatic music 

§  Why this music tradition? 
§  Signal processing steps relatively easier 
§  Main challenge due to melodic characteristics and 

improvisation 
§  Melodic patterns cues to rāga identification 



Music Collection – Carnatic music 

§  Dataset details 
§  1764 commercially available polyphonic audio 

recordings (subset of CompMusic collection) 
§  365 hours of music ( > 50 billion audio samples) 
§  Diverse dataset – gender, #ragas, #compositions… 

X. Serra, “Creating research corpora for the computational study of music: the case of the Compmusic project,” in Proc. of the 53rd AES 
International Conference on Semantic Audio, London, Jan. 2014. 



Previous Work – Symbolic Data 

§  Hungarian, Slovak, French, Sicilian, Bulgarian and 
Appalachian Folk Melodies - (Juhász, 2006) 

§  Cretan, Nova scotia and Essen Folk Melodies – (Conklin and 
Anagnostopoulou, 2010, 2006) 

§  Tunisian modal music -(Lartillot & Ayari, 2006). 

Juhász, Z. (2006, June). A systematic comparison of different European folk music traditions using self-organizing maps. Journal of New 
Music Research, 35(2), 95–112. 
Conklin, D., & Anagnostopoulou, C. (2006). Segmental pattern discovery in music. INFORMS Journal on Computing, 18(3), 285–293. 
Lartillot, O., & Ayari, M. (2006). Motivic pattern extraction in music, and application to the study of Tunisian modal music. South 
African Computer Journal, 36, 16–28. 



Previous Work – Audio Data (IAM) 

§  Spotting motifs in Carnatic Music 
§  Detecting melodic motifs in Hindustani music 
§  Classification of melodic motifs 
§  Discovering typical melodic motifs from one-liners 

distinctive motifs in an extempore enunciation of a raga

called the Alapana. For more details on the concepts of

svara, gamaka, phraseology pertaining to Carnatic music,

the reader is advised to refer to [7].

In this paper, pitch is used as the main feature for

the task of motif spotting. Substantial research exists on

analysing different aspects of Carnatic music computation-

ally, using pitch as a feature. Krishnaswamy et al [8], char-

acterize and analyse gamakas using pitch contours. Serra

et al [16] study the tuning of Indian classical music us-

ing pitch histograms. M. Subramaniam [17] has exten-

sively studied the motifs in the raga Thodi using pitch his-

tograms and pitch contours. All of the above prove the

relevance and importance of pitch as a feature for compu-

tational analysis of Carnatic music.

In the previous work, the uniqueness of the characteris-

tic motifs was established using a closed set motif recog-

nition experiment using HMMs. As a continuation, in this

work an attempt is made to spot motifs given a long Ala-

pana interspersed with motifs. Time series motif recogni-

tion has been attempted for Hindustani music. J.C. Ross et.

al. [13] use the onset point of the rhythmic cycle 2 empha-

sized by the beat of the tabla (an Indian percussion instru-

ment) as a cue for potential motif regions. In another work,

J.C.Ross et. al. [14] attempt motif spotting in a Bandish (a

type of composition in Hindustani music) using elongated

notes(nyaas svara).

Spotting motifs in a raga alapana is equivalent to find-

ing a subsequence in trajectory space. Interestingly, the

duration of these motifs may vary, but the relative duration

of the svaras is preserved across the motif. The attempt in

this work is to use pitch contours as a time series and em-

ploy time series pattern capturing techniques to identify the

motif. The techniques are customized using the properties

of the music. There has been work done on time series mo-

tif recognition in fields other than music. Pranav et. al. in

their work [11] define a time series motif and attempt motif

discovery using the EMMA algorithm. In [3, 18], time se-

ries motifs are discovered adapting the random projection

algorithm by Buhler and Tompa to time series data. In [2],

a new warping distance called Spatial Assembling distance

is defined and used for pattern matching in streaming data.

In the work of Hwei-Jen Lin et. al. [10], music matching

is attempted using a variant of the Longest Common Sub-

sequence (LCS) algorithm called Rough Longest Common

Subsequence. This paper attempts similar time series motif

matching for Carnatic Music. Searching for a 2-3 second

motif (in terms of a pitch contour) in a 10 min Alapana

(also represented as a pitch contour) can be erroneous, ow-

ing pitch estimation errors. To address this issue, the pitch

contour of the Alapana is first quantized to a sequence of

quasistationary points which are meaningful in the context

of a raga. A two-pass search is performed to determine the

location of the motif. In the first pass, a Rough Longest

Common Subsequence approach is used to find the region

corresponding to the location of the motif. Once the region

2 The rhythmic cycle in Indian Music is called Tala and the onset point
is called the Sam.

is located, another pass is made using a fine-grained RLCS

algorithm using the raw pitch contour.

The paper is organised as follows. Section 2 discusses

the approach employed to extract the stationary points in

a raga. Section 3 discusses the algorithm to perform the

two-level RLCS approach to spot the motif. In Section

3.1 the Rough Longest Common Subsequence(RLCS) al-

gorithm is discussed. In Section 4, the database used in the

study is discussed. Section 5 discusses the results. Finally,

conclusions are presented in Section 6.

2. SADDLE POINTS

2.1 Saddle Points: Reducing the Search Space
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Figure 2. a) Motifs Interspersed in an Alapana ; b) Mag-

nified Motif

The task of this paper is to attempt automatic spotting

of a motif that is queried. The motif is queried against a set

of Alapanas of a particular raga to obtain locations of the

occurrences of the motif. The task is non-trivial since in

Alapanas, rhythm is not maintained by a percussion instru-

ment. Figure 2 (a) shows repetitive occurrences of motifs

in a piece of music. An enlarged view of the motif is given

in Figure 2(b). Since the Alapana is much longer than the

motif, searching for a motif in an Alapana is like searching

for a needle in a haystack. After an analysis of the pitch

contours and discussions with professional musicians, it

was conjectured that the pitch contour can be quantized at

saddle points. Figure 3 shows an example phrase of the

raga Kamboji with the saddle points highlighted.

Musically, the saddle points are a measure of the extent

to which a particular svara is intoned. In Carnatic music

since svaras are rendered with gamakas, there is a differ-

ence between the notation and the actual rendition of the

phrase. However, there is a one to one correspondence

with the saddle point frequencies and what is actually ren-

dered by the musician (Figure 3). Figure 4 shows the pitch

histogram and the saddle point histogram of an Alapana of

the raga Kamboji. The similarity between the two pitch

histograms indicates our conjecture that saddle points are

important.

V. Ishwar, S. Dutta, A. Bellur, and H. Murthy, “Motif spotting in an Alapana in Carnatic music,” in Proc. of Int. Conf. on Music Information 
Retrieval (ISMIR), 2013, pp. 499–504. 
J. C. Ross, T. P. Vinutha, and P. Rao, “Detecting melodic motifs from audio for Hindustani classical music,” in Proc. of Int. Conf. on Music 
Information Retrieval (ISMIR), 2012, pp. 193–198.  
P. Rao, J. C. Ross, K. K. Ganguli, V. Pandit, V. Ishwar, A. Bellur, and H. A. Murthy, “Classification of melodic motifs in raga music with 
time-series matching,” Journal of New Music Research, vol. 43, no. 1, pp. 115–131, Jan. 2014.  



Previous Work – Time Series Analysis 

§  Motif Discovery approaches 
§  Exact, Online, Probabilistic discovery 

§  Lower bounding (indexing techniques) 
§  Symbolic representation - SAX 
§  Lower bounds on dynamic time warping (DTW) 

DMKD03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003                               page 4

 

Figure 2: The most common representations for time series data 
mining. Each can be visualized as an attempt to approximate the signal 
with a linear combination of basis functions  

Recent work suggests that there is little to choose between the 
above in terms of indexing power [23]; however, the 
representations have other features that may act as strengths or 
weaknesses. As a simple example, wavelets have the useful 
multiresolution property, but are only defined for time series that 
are an integer power of two in length [7].  
One important feature of all the above representations is that they 
are real valued. This limits the algorithms, data structures and 
definitions available for them. For example, in anomaly detection 
we cannot meaningfully define the probability of observing any 
particular set of wavelet coefficients, since the probability of 
observing any real number is zero [27]. Such limitations have lead 
researchers to consider using a symbolic representation of time 
series. 
While there are literally hundreds of papers on discretizing 
(symbolizing, tokenizing, quantizing) time series [2, 20] (see [11] 
for an extensive survey), none of the techniques allows a distance 
measure that lower bounds a distance measure defined on the 
original time series. For this reason, the generic time series data 
mining approach illustrated in Table 1 is of little utility, since the 
approximate solution to problem created in main memory may be 
arbitrarily dissimilar to the true solution that would have been 
obtained on the original data. If, however, one had a symbolic 
approach that allowed lower bounding of the true distance, one 
could take advantage of the generic time series data mining 
model, and of a host of other algorithms, definitions and data 
structures which are only defined for discrete data, including 
hashing, Markov models, and suffix trees. This is exactly the 
contribution of this paper.  We call our symbolic representation of 
time series SAX (Symbolic Aggregate approXimation), and 
define it in the next section. 

3. SAX: OUR SYMBOLIC APPROACH 
SAX allows a time series of arbitrary length n to be reduced to a 
string of arbitrary length w, (w < n, typically w << n). The 
alphabet size is also an arbitrary integer a, where a > 2. Table 2 
summarizes the major notation used in this and subsequent 
sections. 

C A time series C = c1,…,cn  

C  
A Piecewise Aggregate Approximation of a time series 

wccC ,...,1!   

Ĉ  A symbol representation of a time series wccC ˆ,...,ˆˆ
1!  

w The number of PAA segments representing time series 
C 

a Alphabet size (e.g., for the alphabet = {a,b,c},  a = 3) 
Table 2: A summarization of the notation used in this paper 

Our discretization procedure is unique in that it uses an 
intermediate representation between the raw time series and the 
symbolic strings. We first transform the data into the Piecewise 
Aggregate Approximation (PAA) representation and then 
symbolize the PAA representation into a discrete string. There are 
two important advantages to doing this:  
" Dimensionality Reduction: We can use the well-defined 

and well-documented dimensionality reduction power of 
PAA [22, 35], and the reduction is automatically carried over 
to the symbolic representation. 

" Lower Bounding: Proving that a distance measure between 
two symbolic strings lower bounds the true distance between 
the original time series is non-trivial. The key observation 
that allows us to prove lower bounds is to concentrate on 
proving that the symbolic distance measure lower bounds the 
PAA distance measure. Then we can prove the desired result 
by transitivity by simply pointing to the existing proofs for 
the PAA representation itself [35]. 

We will briefly review the PAA technique before considering the 
symbolic extension. 

3.1 Dimensionality Reduction Via PAA 
A time series C of length n can be represented in a w-dimensional 
space by a vector wccC ,,1 !! . The ith element of C is 
calculated by the following equation: 

#
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   (1) 

Simply stated, to reduce the time series from n dimensions to w 
dimensions, the data is divided into w equal sized “frames.” The 
mean value of the data falling within a frame is calculated and a 
vector of these values becomes the data-reduced representation. 
The representation can be visualized as an attempt to approximate 
the original time series with a linear combination of box basis 
functions as shown in Figure 3. 

 

Figure 3: The PAA representation can be visualized as an attempt 
to model a time series with a linear combination of box basis 
functions. In this case, a sequence of length 128 is reduced to 8 
dimensions 

The PAA dimensionality reduction is intuitive and simple, yet has 
been shown to rival more sophisticated dimensionality reduction 
techniques like Fourier transforms and wavelets [22, 23, 35].  
We normalize each time series to have a mean of zero and a 
standard deviation of one before converting it to the PAA 
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A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover, “Exact discovery of time series motifs,” in Proc. of SIAM Int. Con. on Data 
Mining (SDM), 2009, pp. 1–12. 
B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs,” Proc. ninth ACM SIGKDD Int. Conf. Knowl. Discov. 
data Min. - KDD ’03, p. 493, 2003. 
J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series, with implications for streaming algorithms,” Proc. 
8th ACM SIGMOD Work. Res. issues data Min. Knowl. Discov. - DMKD ’03, p. 2, 2003. 
T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh, “Addressing big data time 
series: mining trillions of time series subsequences under dynamic time warping,” ACM Transactions on Knowledge Discovery from Data 
(TKDD), vol. 7, no. 3, pp. 10:1–10:31, Sep. 2013.  



Proposed Methodology 

Carnatic 
Corpus! Inter-recording 

Pattern Detection! Rank Refinement!

Melodic !
Patterns!

Intra-recording 
Pattern Discovery!Data Processing!

Block diagram of the proposed approach  



Proposed Methodology 

-Predominant pitch 
estimation 

-Downsampling 
-Hz to Cents 
-Tonic normalization 
 
-Brute-force 
segmentation 

-Segment filtering 

-Uniform Time-scaling 

Flat Non-flat  

Carnatic audio 
music collection  

Data processing Intra-recording 
discovery 

Inter-recording 
search 

Rank-refinement 



Data processing 

Pre-processing 

Subsequence 
generation 

-Predominant pitch 
estimation 

-Downsampling 
-Hz to Cents 
-Tonic normalization 
 
-Brute-force 
segmentation 

-Segment filtering 

-Uniform Time-scaling 

Flat Non-flat  



Data processing: Pre-processing 
§  Predominant pitch estimation – Melodia 

§  Designed for polyphonic music audio 
§  Uses melodic contour characteristics 

Signal processing Learning 

Salamon, Justin, and Emilia Gómez. "Melody extraction from polyphonic music signals using pitch contour characteristics." Audio, 
Speech, and Language Processing, IEEE Transactions on 20.6 (2012): 1759-1770. 
1http://nema.lis.illinois.edu/nema out/mirex2011/results/ame/indian08/ summary.html 

 

 

§  Essentia implementation of Melodia 
§  Use default parameters in Essentia 
§  Performed well for Indian art music dataset in MIREX’111 



Data processing: Pre-processing 

§  Hertz to Cents conversion 
§  Musically meaningful (logarithmic) scale 

§  Tonic normalization 
§  Robustness against different tonic pitches of the lead artists 
§  Automatic tonic identification (Essentia implementation) 

S. Gulati, A. Bellur, J. Salamon, H. Ranjani, V. Ishwar, H. A. Murthy, and X. Serra, “Automatic Tonic Identi- fication in Indian Art Music: 
Approaches and Evalua- tion,” Journal of New Music Research, vol. 43, no. 01, pp. 55–73, 2014. 

Pcents = 1200log2(PHz/ftonic) (1)

1



Data processing: Pre-processing 
§  Down-sampling 

§  Histogram of Auto-correlation (ACF) at each lag value 
§  Segments of 2 seconds 
§  Significant drop in ACF for sampling rate of the pitch 

contour more than 22.2 ms 



Data processing: Subsequence generation 

§  Melody segmentation – hard task 
§  Nyās based segmentation  

§  Brute-force segmentation 
§  Sliding window with constant hop 
§  2 second window 
§  Remove segments across silence regions ( > 0.5 seconds) 

S. Gulati, J. Serrà, K. K. Ganguli, and X. Serra, “Landmark detection in hindustani music melodies,” in Proc. of Int. Computer Music Conf., 
Sound and Music Computing Conf., Athens, Greece, 2014, pp. 1062–1068. 



Data processing: Subsequence generation 

§  Uniform time-scaling 
§  5 scale factors{0.9, 0.95, 1.0, 1.05, 1.1} 
§  Similarity computation of 16 out of 25 combinations 

saved!! (S1.0à1.05 = S1.05à1.1) 



Data processing: Subsequence generation 

§  Segment filtering 
§  Remove flat segments 
§  Local Variance 

§  Window length 
§  Variance threshold 



Data processing: Mridangam Segments 

§  Model based filtering 
§  MFCC, spectral centroid & flatness 
§  46 ms frame size 
§  Aggregate duration 2 seconds 
§  Classifiers: Tree, KNN, NB, LR, SVM 
§  Median filtering 20 seconds 

D. Bogdanov, N. Wack, E. Go ́mez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J. Salamon, J. Zapata, and X. Serra, “Essentia: an audio 
analysis library for music information retrieval,” in Proc. of Int. Society for Music Information Retrieval Conf. (ISMIR), 2013, pp. 493–498 
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. 
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: machine learning in Python,” Journal of 
Machine Learning Research, vol. 12, pp. 2825–2830, 2011. 
 



Intra-recording Discovery 

§  Melodic Similarity 
§  Dynamic time warping (DTW) 

§  Cost matrix – Sq. Euclidean distance 
§  10% Sakoe-Chiba band 
§  Step size [(1,0),(1,1),(0,1)] 
§  No local constraint or penalties 

§  Lower bounds 
§  FL bound 
§  LB_Keogh_EC / EQ 

§  Statistics 
§  25 patterns per song 
§  79,000 total melodic patterns 
§  1.43 trillion similarity computations 
§  76 % computations avoided!! 

H. Sakoe and S. Chiba, “Dynamic programming algorithm 
optimization for spoken word recognition,” IEEE Trans. on 
Acoustics, Speech, and Language Processing, vol. 26, no. 1, 
pp. 43–50, 1978. 



Inter-recording Search 

§  Melodic Similarity 
§  Dynamic time warping (DTW) 

§  Cost matrix – Sq. Euclidean distance 
§  10% Sakoe-Chiba band 
§  Step size [(1,0),(1,1),(0,1)] 
§  No local constraint or penalties 

§  Lower bounds 
§  FL bound 
§  LB_Keogh_EC / EQ 

§  Statistics 
§  200 nearest neighbors 
§  15.8 million melodic patterns 
§  12.4 trillion similarity computations 
§  99 % computations avoided!! 

H. Sakoe and S. Chiba, “Dynamic programming algorithm 
optimization for spoken word recognition,” IEEE Trans. on 
Acoustics, Speech, and Language Processing, vol. 26, no. 1, 
pp. 43–50, 1978. 



Rank Refinement 

§  Melodic Similarity 
§  Dynamic time warping (DTW) 

§  Cost matrix – 4 distance measures 
§  10% Sakoe-Chiba band 
§  Step size [(2,1),(1,1),(1,2)] 
§  Local constraint, no penalties 

§  No lower bounds 

H. Sakoe and S. Chiba, “Dynamic programming algorithm 
optimization for spoken word recognition,” IEEE Trans. on 
Acoustics, Speech, and Language Processing, vol. 26, no. 1, 
pp. 43–50, 1978. 



Evaluation 

S1 S2 S3 

§  79,000 seed patterns, 15.8 million searched patterns 
§  4 different distance measure for rank refinement 
§  200 seed pattern pairs 

§  Top 10 searched patterns for 4 methods 

§  Total of 8000 patterns (200*10*4) 



Evaluation - Annotations 

§  Professional musician with over 20 years of formal 
training. 

§  Listening short audio fragments (melodic patterns) 
§  Listening Melodically similar: 1 (Good) 
§  Melodically dissimilar: 0 (Bad) 



Evaluation - Measures 

§  Mean Average Precision (MAP) 

§  Statistical significance 
§  Mann-Whitney U test (P < 0.05) 

§  Multiple comparison compensation 
§  Holm-Bonferroni method 

C. D. Manning, P. Raghavan, and H. Schuẗze, Introduction to information retrieval. Cambridge university press Cam- bridge, 2008, vol. 1. 
H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger than the other,” The annals of 
mathematical statistics, vol. 18, no. 1, pp. 50– 60, 1947. 
S. Holm, “A simple sequentially rejective multiple test pro- cedure,” Scandinavian journal of statistics, vol. 6, no. 2, pp. 65–70, 1979. 



Results - Qualitative 

(a) (b) 

(c) (d) 

(e) (f) 



Results – Intra recording patterns 

§  Fraction of melodically similar seed patterns 
§  S1 (0.98), S2(0.67) and S3(0.31) 

§  Well separated distance distributions 



Results – Inter recording patterns 
Table II

MAP SCORES FOR FOUR VARIANTS OF RANK REFINEMENT METHOD
(Vi) FOR EACH SEED CATEGORY (S1, S2 AND S3).

Seed Category V1 V2 V3 V4

S1 0.92 0.92 0.91 0.89
S2 0.68 0.73 0.73 0.66
S3 0.35 0.34 0.35 0.35

S1 S2 S3 

Figure 8. Boxplot of average precision for variants of rank refinement
method (Vi) for each seed category.

ically similar and dissimilar subsequences in this case is
poorer than the one obtained for the seed pairs (solid blue
line). This indicates that it is much harder to differentiate
melodically similar from dissimilar patterns when the search
is performed across recordings. This can be attributed to the
fact that phrases of two allied rāgas are differentiated based
on subtle melodic nuances [13]. Hence, one faces a much
more difficult task.

V. CONCLUSION AND FUTURE WORK

We presented a data-driven unsupervised approach for
melodic pattern discovery in large audio collections of
Indian art music. A randomly sampled subset of the ex-
tracted melodic patterns was evaluated by a professional
Carnatic musician. We first discovered seed patterns within
a recording and later used those as queries to detect similar
occurrences in the entire dataset. We used DTW-based dis-
tance measures to compute melodic similarity and compared
four different rank refinement methods. We showed that a
variant of DTW using cityblock distance performs slightly
better than the rest. We also found that a DTW-based dis-
tance measure performs reasonably well for intra-recording
discovery. However, we require better melodic similarity
measures for searching occurrences across recordings. This
is a clear direction for future works. Our results also indicate
that patterns which find close matches within a recording
have a larger number of repetitions across recordings. As
mentioned before, the data and the code used in this study
are available online.

Future work includes the improvement of the melodic
similarity measure, finding musically meaningful pattern

boundaries and making melodic similarity invariant to trans-
positions across octaves. We also plan to perform a similar
analysis in an Hindustani audio music collection.
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Results – Inter recording patterns 
Table II

MAP SCORES FOR FOUR VARIANTS OF RANK REFINEMENT METHOD
(Vi) FOR EACH SEED CATEGORY (S1, S2 AND S3).

Seed Category V1 V2 V3 V4

S1 0.92 0.92 0.91 0.89
S2 0.68 0.73 0.73 0.66
S3 0.35 0.34 0.35 0.35

S1 S2 S3 

Figure 8. Boxplot of average precision for variants of rank refinement
method (Vi) for each seed category.

ically similar and dissimilar subsequences in this case is
poorer than the one obtained for the seed pairs (solid blue
line). This indicates that it is much harder to differentiate
melodically similar from dissimilar patterns when the search
is performed across recordings. This can be attributed to the
fact that phrases of two allied rāgas are differentiated based
on subtle melodic nuances [13]. Hence, one faces a much
more difficult task.

V. CONCLUSION AND FUTURE WORK

We presented a data-driven unsupervised approach for
melodic pattern discovery in large audio collections of
Indian art music. A randomly sampled subset of the ex-
tracted melodic patterns was evaluated by a professional
Carnatic musician. We first discovered seed patterns within
a recording and later used those as queries to detect similar
occurrences in the entire dataset. We used DTW-based dis-
tance measures to compute melodic similarity and compared
four different rank refinement methods. We showed that a
variant of DTW using cityblock distance performs slightly
better than the rest. We also found that a DTW-based dis-
tance measure performs reasonably well for intra-recording
discovery. However, we require better melodic similarity
measures for searching occurrences across recordings. This
is a clear direction for future works. Our results also indicate
that patterns which find close matches within a recording
have a larger number of repetitions across recordings. As
mentioned before, the data and the code used in this study
are available online.

Future work includes the improvement of the melodic
similarity measure, finding musically meaningful pattern

boundaries and making melodic similarity invariant to trans-
positions across octaves. We also plan to perform a similar
analysis in an Hindustani audio music collection.
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Conclusions and Future work 

§  Data driven unsupervised approach – melodic pattern discovery 
§  DTW based distance measure is good for intra recording discovery 
§  Need informed distance measures for inter song pattern search 
§  DTW using Cityblock distance performs little better than the rest 
§  Closer seed pattern pairs have higher MAP scores à higher 

number of repetitions 

§  Future Work 
§  Similar analysis on Hindustani music 
§  Transposition invariance 
§  Network analysis from mined patterns 



Objective 



Demo: 

h.p://dunya.compmusic.upf.edu/mo:fdiscovery/	
  

> 16 million melodic patterns 
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