
Results

Conclusions
Duration truncation of steady melodic regions 
significantly improves melodic similarity in IAM
Complexity weighting considering inflection points 
improves melodic similarity in Carnatic music
Tetra-chord normalization improves retrieval 
accuracy in Carnatic music.

References
X. Serra, “A multicultural approach to music information research,” in Proc. of 12th International Society for Music Information Retrieval Conference, pp. 151–156, 2011.

S. Gulati, J. Serrà and X. Serra, "An Evaluation of Methodologies for Melodic Similarity in Audio Recordings of Indian Art Music", in Proc. of ICASSP, pp. 678–682, 2015.

G. E. Batista, X. Wang, and E. J Keogh. "A complexity- invariant distance measure for time series", in SDM, volume 11, pp. 699–710, 2011

Methodology

Improving Melodic Similarity In Indian Art Music Using Culture
Specific Melodic Characteristics
Sankalp Gulati*, Joan Serrà¥ and Xavier Serra*

sankalp.gulati@upf.edu, joan.serra@telefonica.com and xavier.serra@upf.edu

*Music Technology Group, UPF, ¥Telefonica Research, Barcelona, Spain

Goals & Challenges 
Improved computational model for melodic similarity in IAM
A top-down approach utilizing culture-specific characteristics
Variability in the overall duration
Large non-linear timing variations
Added Melodic ornamentations

Audio Predominant 
melody estimation

Melody abstraction 
and normalization Distance computation

Music collection
Over 5 hours of polyphonic recordings, 23 Carnatic (CMD), 9 Hindustani (HMD) 
625 phrases instances,10 Phrase categories, 6 rāgas, 21 artists and different forms
Annotations: two performing musicians with over 15 years of music training

Indian art Music
Hindustani (North-Indian), Carnatic (South-Indian) music.
Rāga melody framework, Tāla rhythm framework
Rāga: Svaras, Aroh-Avroh, Characteristic phrases
Oral pedagogy, essentially audio music repertoire
Practically no written music (descriptive) scores 
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Proposed approach
Partial transcription -> duration truncation (MDT)
Complexity Weighting (MCW): Dfinal =   DDTW

Tetrachord normalization (Ntetra)

Time (s)

F
re

qu
en

cy
(C

en
ts

)

Experimental setup

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20
0

HMD
Norm MB MD T MC W 1 MC W 2

Ntonic 0.45 (0.25) 0.52 (0.24) - -
Nmean 0.25 (0.20) 0.31 (0.23) - -
Ntetra 0.40 (0.23) 0.47 (0.23) - -

CMD
Norm MB MD T MC W 1 MC W 2

Ntonic 0.39 (0.29) 0.42 (0.29) 0.41 (0.28) 0.41 (0.29)
Nmean 0.39 (0.26) 0.45 (0.28) 0.43 (0.27) 0.45 (0.27)
Ntetra 0.45 (0.26) 0.50 (0.27) 0.49 (0.28) 0.51 (0.27)
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"The distance between pairs of complex time series is frequently
greater than the distance between pairs of simple timeseries" - Batista et al.
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86.72%.
However, rather than stopping here, we decided to test
the universal phasing assumption. Suppose we ignored
it and tested DTW for all possible alignments/shifts.
After testing the phase-invariant version of DTW [13],
we found that the accuracy increased to an impressive
91.4%. Clearly, the current universal phasing
algorithm does not produce perfect alignments.
Finally, we note the obvious, that in some cases
invariances can decrease accuracy. An obvious
example is in the classification of shapes converted to
time series (as in Figure 6). If we wanted to
discriminate between the shapes 'p' and 'd', this would
be trivial, but adding phase (rotation) invariance would
make it impossible.
The complexity invariance that we are proposing in
this work is not a special case of any of the above or
any combination of the above, but rather a new
invariance whose need has escaped the attention of the
community.

3. COMPLEXITY-INVARIANT
DISTANCE FOR TIME SERIES
We are finally in a position to introduce the core
contribution of this work. As we have seen, the
research community has proposed a diverse set of
invariances for time series in the last two decades.
However, there is one invariance that has been missed,
complexity invariance (for the moment, the reader's
natural intuition of complex as having many peaks and
values will suffice.) In many (perhaps most) domains,
different classes may have widely varying
complexities. We can most readily see this on time
series derived from shapes (as in Figure 6). For
example, as we show in Figure 7, leaves range in
complexity from a simple pointed ellipse (ovate),
shown bottom right, to a jagged-edged familiar maple
leaf (palmate), shown bottom left.

Figure 7: Examples of objects from a single
domain, which have different shape complexities

objects, even those which subjectively may seem very
similar to the human eye, tend to be further apart under
current distance measures than pairs of simple objects.
This fact introduces errors in nearest neighbor
classification, because complex objects are incorrectly
assigned to a simpler class.
We first illustrate the necessity for a complexity-
invariant distance for time series using a synthetic data
set of figures with different shape complexities. Note
that our use of synthetic data here is for clarity; as we
hinted at in Figure 7 and will show later, the
complexity problem occurs in many real data sets.
Figure 8 presents some geometric figures with
increasing shape complexity. Each figure is labeled
with its number of edges for reference. As in Figure 6,
the two-dimensional shapes are converted to a single-
dimensional “time” series by calculating the distance
between the central point and the figure contour.
Figure 8 also presents the z-normalized time series
created for each figure.

Figure 8: A set of geometric figures with increasing
shape complexity and the respective “time” series
extracted by calculating the distance between the
central point and its contour

series in Figure 8 using Euclidean distance and present
the results in Table 1.

Table 1: Euclidean distance matrix for the
geometric figures data set

4 5 6 7 10 12 24 32

4 1.000 1.122 1.231 1.181 1.048 1.155 1.170
5 1.318 1.068 1.103 1.153 1.165 1.180
6 1.088 1.097 1.103 1.186 1.200
7 1.217 1.199 1.198 1.191
10 1.263 1.195 1.214
12 1.135 1.199
24 1.191
32

We can use the numbers in Table 1 (and the
dendrogram created from them, as shown in Figure
10.left) to explore the most similar shapes according
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would help, and indeed our accuracy jumped to
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The reason why this matters is that pairs of complex
objects, even those which subjectively may seem very
similar to the human eye, tend to be further apart under
current distance measures than pairs of simple objects.
This fact introduces errors in nearest neighbor
classification, because complex objects are incorrectly
assigned to a simpler class.
We first illustrate the necessity for a complexity-
invariant distance for time series using a synthetic data
set of figures with different shape complexities. Note
that our use of synthetic data here is for clarity; as we
hinted at in Figure 7 and will show later, the
complexity problem occurs in many real data sets.
Figure 8 presents some geometric figures with
increasing shape complexity. Each figure is labeled
with its number of edges for reference. As in Figure 6,
the two-dimensional shapes are converted to a single-
dimensional “time” series by calculating the distance
between the central point and the figure contour.
Figure 8 also presents the z-normalized time series
created for each figure.
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shape complexity and the respective “time” series
extracted by calculating the distance between the
central point and its contour

We calculated distances between every pair of time
series in Figure 8 using Euclidean distance and present
the results in Table 1.

Table 1: Euclidean distance matrix for the
geometric figures data set

4 5 6 7 10 12 24 32

4 1.000 1.122 1.231 1.181 1.048 1.155 1.170
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