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This paper proposes a system for score-informed audio source separation for multichannel orchestral recordings. The orchestral
music repertoire relies on the existence of scores. Thus, a reliable separation requires a good alignment of the score with the audio
of the performance. To that extent, automatic score alignment methods are reliable when allowing a tolerance window around the
actual onset and offset.Moreover, several factors increase the difficulty of our task: a high reverberant image, large ensembles having
rich polyphony, and a large variety of instruments recorded within a distant-microphone setup. To solve these problems, we design
context-specific methods such as the refinement of score-following output in order to obtain a more precise alignment. Moreover,
we extend a close-microphone separation framework to deal with the distant-microphone orchestral recordings.Then, we propose
the first open evaluation dataset in this musical context, including annotations of the notes played by multiple instruments from
an orchestral ensemble. The evaluation aims at analyzing the interactions of important parts of the separation framework on the
quality of separation. Results show that we are able to align the original score with the audio of the performance and separate the
sources corresponding to the instrument sections.

1. Introduction

Western classical music is a centuries-old heritage tradition-
ally driven by well-established practices. For instance, large
orchestral ensembles are commonly tied to a physically closed
place, the concert hall. In addition, Western classical music
is bounded by established customs related to the types of
instruments played, the presence of a score, the aesthetic
guidance of a conductor, and compositions spanning a large
time frame. Our work is conducted within the PHENICX
project [1], which aims at enriching the concert experience
through technology. Specifically, this paper aims at adapting
and extending score-informed audio source separation to
the inherent complexity of orchestral music. This scenario
involves challenges like changes in dynamics and tempo, a
large variety of instruments, high reverberance, and simul-
taneous melodic lines but also opportunities as multichannel
recordings.

Score-informed source separation systems depend on
the accuracy of different parts which are not necessarily
integrated in the same parametric model. For instance, they

rely on a score alignment framework that yields a coarsely
aligned score [2–5] or, in a multichannel scenario, they
compute a panning matrix to assess the weight of each
instrument in each channel [6, 7]. To account for that, we
adapt and improve the parts of the systemwithin the complex
scenario of orchestral music. Furthermore, we are interested
in establishing amethodology for this task for future research
and we propose a dataset in order to objectively assess the
contribution of each part of the separation framework to the
quality of separation.

1.1. Relation to Previous Work. Audio source separation is
a challenging task when sources corresponding to different
instrument sections are strongly correlated in time and
frequency [8]. Without any previous knowledge, it is difficult
to separate two sections which play, for instance, consonant
notes simultaneously. One way to approach this problem
is to introduce into the separation framework information
about the characteristics of the signals such as a well-aligned
score [2–5, 9, 10]. Furthermore, previous research relates the
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accuracy of the alignment to the quality of source separation
[4, 11]. For Western classical music, a correctly aligned score
yields the exact time where each instrument is playing.
Thus, an important step in score-informed source separation
is obtaining a correctly aligned score, which can be done
automatically with an audio-to-score alignment system.

Audio-to-score alignment deals with the alignment of a
symbolic representation such as the score with the audio of
the rendition. In a live scenario, this task deals with following
the musical score while listening to the live performance,
and it is known as score-following. To our knowledge,
with the exception of [12], audio-to-score alignment systems
have not been rigorously tested in the context of orchestral
music. However, with respect to classical music, limited
experimental scenarios comprising Bach chorales played by a
four instruments have been discussed in [4, 13]. Furthermore,
in [14], a subset of RWC classical music database [15] is
used for training and testing, though no details are given
regarding the instrumental complexity of the pieces. More-
over, a Beethoven orchestral piece from the same database
is tested in [16], obtaining lower accuracy than the other
evaluated pieces. These results point out the complexity of an
orchestral scenario, underlined in [12]. Particularly, a larger
number of instruments, many instruments playing concur-
rently different melody lines [17], prove to be a more difficult
problem than tracking a limited number of instruments as
in pop music or, for instance, string quartets and piano
pieces. Although, in this paper, we do not propose a new
system for orchestral music audio-to-score alignment, the
task being a complex and extensive itself, we are interested
in analyzing the relation between the task and the quality of
score-informed source separation in such a complex scenario.

Besides the score, state-of-the-art source separation
methods take into account characteristics of the audio signal
which can be integrated into the system, thus achieving
better results. For instance, the system can learn timbre
models for each of the instruments [7, 18]. Moreover, it
can rely on the assumption that the family of featured
instruments is known, and their spectral characteristics are
useful to discriminate between different sections playing
simultaneously, when the harmonics of the notes overlap.
In a more difficult case, when neither the score or the
timbre of the instrument is available, temporal continuity
and frequency sparsity [19] help in distributing the energy
between sources in a musically meaningful way. Further-
more, an initial pitch detection can improve the results [6, 20–
22], if the method assumes a predominant source. However,
our scenario assumes multichannel recordings with distant
microphones, in contrast to the close-microphone approach
in [6], and we cannot assume that a source is predominant.
As a matter a fact, previous methods deal with a limited
case: the separation between small number of harmonic
instruments or piano [3, 4, 6, 18], leaving the case of orchestral
music as an open issue. In this paper, we investigate a
scenario characterized by large reverberation halls [23], a
large number of musicians in each section, a large diversity
of instruments played, abrupt tempo changes, and many
concurrent melody lines, often within the same instrument
section.

Regarding the techniques used for source separation,
matrix decomposition has been increasingly popular for
source separation during the recent years [2, 3, 6, 18–20].
Nonnegative matrix factorization (NMF) is a particular case
of decomposition which restricts the values of the factor
matrices to be nonnegative. The first-factor matrix can be
seen as a dictionary representing spectral templates. For
audio signals, a dictionary is learned for each of the sources
and stored into the basis matrix as a set of spectral templates.
The second-factor matrix holds the temporal activation or
the weights of the templates. Then, the resulting factorized
spectrogram is calculated as a linear combination of the
template vectors with a set of weight vectors forming the
activation matrix. This representation allows for paramet-
ric models such as the source-filter model [3, 18, 20] or
the multiexcitation model [9], which can easily capture
important traits of harmonic instruments and help separate
between them, as it is the case with orchestral music. The
multiexcitation model has been evaluated in a restricted
scenario of Bach chorales played by a quartet [4] and for
this particular database has been extended in the scope of
close-microphone recordings [6] and score-informed source
separation [11]. From a source separation point of view, in
this article, we extend and evaluate the work in [6, 11, 18] for
orchestral music.

In order to obtain a better separation with any NMF
parametric model, the sparseness of the gains matrix is
increased by initializing it with time and frequency informa-
tion obtained from the score [3–5, 24].The values between the
time frames where a note template is not activated are set to
zero and will remain this way during factorization, allowing
for the energy from the spectrogram to be redistributed
between the notes and the instruments which actually play
during that interval. A better alignment leads to better gains
initialization and better separation. Nonetheless, audio-to-
score alignment mainly fixes global misalignments, which
are due to tempo variations, and does not deal with local
misalignments [21]. To account for local misalignments,
score-informed source separation systems include onset and
offset information into the parametric model [3, 5, 24] or use
image processing in order to refine the gains matrix so that
it closely matches the actual time and frequency boundaries
of the played notes [11]. Conversely, local misalignments
can be fixed explicitly [25–27]. To our knowledge, none of
these techniques have been explored for orchestral music,
although there is a scope for testing their usefulness, if
we take into account several factors as the synchronization
of musicians in large ensembles, concurrent melody lines,
and reverberation. Furthermore, the alignment systems are
monaural. However, in our case, the separation is done on
multichannel recordings and the delays between the sources
and microphones might yield local misalignments. Hence,
towards a better separation and more precise alignment, we
propose a robust method to refine the output of a score
alignment system with respect to each audio channel of the
multichannel audio.

In the proposed distant-microphone scenario, we nor-
mally do not have microphones close to a particular instru-
ment or soloist and, moreover, in an underdetermined case,
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Figure 1: The diagram representing the flow of operations in the system.

the number of sources surpasses the number ofmicrophones.
Therefore, recording the sound of an entire section also
captures interference from other instruments and the rever-
beration of the concert hall. To that extent, our task is different
from interference reduction in close-microphone recordings
[6, 7, 23], these approaches being evaluated for pop concerts
[23] or quartets [6]. Additionally, we do not target a blind
case source separation as the previous systems [6, 7, 23].
Subsequently, we adapt and improve the systems in [6, 11], by
using information from all the channels, similar to parallel
factor analysis (PARAFAC) in [28, 29].

With respect to the evaluation, to our knowledge, this is
the first time score-informed source separation is objectively
evaluated on such a complex scenario. An objective evalua-
tion provides a more precise estimation of the contribution
of each part of the framework and their influence on the
separation. Additionally, it establishes a methodology for
future research and eases the research reproducibility. We
annotated the database proposed in [30], comprising four
pieces of orchestral music recorded in an anechoic room, in
order to obtain a score which is perfectly aligned with the
anechoic recordings. Then, using the Roomsim software in
[31], we simulate a concert hall in order to obtain realistic
multitrack recordings.

1.2. Applications. The proposed framework for score-infor-
med source separation has been used to separate recordings
by various orchestras.The recordings are processed automat-
ically and stored in the multimodal repository Repovizz [32].
The repository serves the data through its API for several
applications.Thefirst application is called instrument empha-
sis or orchestra focus and allows for emphasizing a particular
instrument over the full orchestra. The second application
relates to spatialization of the separated musical sources in
the case of virtual reality scenarios and it is commonly known
as Acoustic Rendering. Third, we propose an application to
estimating the spatial locations of the instruments on the
stage. All the three applications are detailed in Section 7.

1.3. Outline. We introduce the architecture of the framework
with its main parts in Section 2. Then, in Section 3, we

give an outline of the baseline source separation system.
Furthermore, we present the extension of the baseline system:
the initialization of the gains with score information (Sec-
tion 4) and the note refinement (Section 4.1). Additionally, the
proposed extension to the multichannel case is introduced
in Section 5. We present the dataset and the evaluation
procedures and discuss the results in Section 6. The demos
and applications are described in Section 7.

2. Proposed Approach Overview

The diagram of the proposed framework is presented in
Figure 1. The baseline system relies on training spectral tem-
plates for the instruments we aim to separate (Section 3.3).
Then, we compute the spectrograms associated with the
multichannel audio. The spectrograms along with the score
of the piece are used to align the score to the audio. From
the aligned score, we derive gains matrix that serves as an
input for the NMF parameter estimation stage (Section 4),
along with the learned spectral templates. Furthermore, the
gains and the spectrogram are used to calculate a panning
matrix (Section 3.1) which yields the contribution of each
instrument in each channel. After the parameter estimation
stage (Section 3.2), the gains are refined in order to improve
the separation (Section 4.1). Then, the spectrograms of
the separated sources are estimated using Wiener filtering
(Section 3.5).

For the score alignment step, we use the system in
[13] which aligns the scores to a chosen microphone and
achieved the best results inMIREX score-following challenge
(http://www.music-ir.org/mirex/wiki/2015:Real-time Audio
to Score Alignment (a.k.a. Score Following) Results). How-
ever, other state-of-the-art alignment systems can be used at
this step, since our final goal is to refine a given score with
respect to each channel, in order to minimize the errors in
separation (Section 5.2). Accounting for that, we extend the
model proposed by [6] and the gains refinement formonaural
recordings in [11] to the case of score-informed multichannel
source separation in the more complex scenario of orchestral
music.



4 Journal of Electrical and Computer Engineering

3. Baseline Method for Multichannel
Source Separation

According to the baseline model in [6], the short-term
complex valued Fourier transform (STFT) in time frame 𝑡
and frequency 𝑓 for channel 𝑖 = 1, . . . , 𝐼, where 𝐼 is the total
number of channels, is expressed as

𝑥𝑖 (𝑓, 𝑡) ≈ �̂�𝑖 (𝑓, 𝑡) =
𝐽

∑
𝑗=1

𝑚𝑖,𝑗𝑠𝑗 (𝑓, 𝑡) , (1)

where 𝑠𝑗(𝑓, 𝑡) represents the estimation of the complex valued
STFT computed for the source 𝑗 = 1, . . . , 𝐽, with 𝐽 the total
number of sources. Note that, in this paper, we consider a
source or instrument, one or more instruments of the same
kind (e.g., a section of violins). Additionally, 𝑚𝑖,𝑗 is a mixing
matrix of size 𝐼×𝐽 that accounts for the contribution of source
𝑖 to channel 𝑗. In addition, we denote𝑥𝑖(𝑓, 𝑡) as themagnitude
spectrogram and𝑚𝑖,𝑗 as the real-valued panning matrix.

Under the NMF model described in [18], each source
𝑠𝑗(𝑓, 𝑡) is factored as a product of two matrices: 𝑔𝑗,𝑛(𝑡),
the matrix which holds the gains or activation of the basis
function corresponding to pitch 𝑛 at frame 𝑡, and 𝑏𝑗,𝑛(𝑓), 𝑛 =
1, . . . , 𝑁, the matrix which holds bases, where 𝑛 = 1, . . . , 𝑁 is
defined as the pitch range for instrument 𝑗. Hence, source 𝑗
is modeled as

𝑠𝑗 (𝑓, 𝑡) ≈
𝑁

∑
𝑛=1

𝑏𝑗,𝑛 (𝑓) 𝑔𝑗,𝑛 (𝑡) . (2)

The model represents a pitch for each source 𝑗 as a single
template stored in the basis matrix 𝑏𝑗,𝑛(𝑓). The temporal
activation of a template (e.g., onset and offset times for a note)
is modeled using the gains matrix 𝑔𝑗,𝑛(𝑡). Under harmonicity
constraints [18], the NMF model for the basis matrix is
defined as

𝑏𝑗,𝑛 (𝑓) =
𝐻

∑
ℎ=1

𝑎𝑗,𝑛 (ℎ) 𝐺 (𝑓 − ℎ𝑓0 (𝑛)) , (3)

where ℎ = 1, . . . , 𝐻 is the number of harmonics, 𝑎𝑗,𝑛(ℎ) is the
amplitude of harmonic ℎ for note 𝑛 and instrument 𝑗,𝑓0(𝑛) is
the fundamental frequency of note 𝑛, 𝐺(𝑓) is the magnitude
spectrum of the window function, and the spectrum of a
harmonic component at frequency ℎ𝑓0(𝑛) is approximated by
𝐺(𝑓 − ℎ𝑓0(𝑛)).

Considering the model given in (3), the initial equation
(2) for the computation of themagnitude spectrogram for the
source 𝑗 is expressed as

𝑠𝑗 (𝑓, 𝑡) ≈
𝑁

∑
𝑛=1

𝑔𝑗,𝑛 (𝑡)
𝐻

∑
ℎ=1

𝑎𝑗,𝑛 (ℎ) 𝐺 (𝑓 − ℎ𝑓0 (𝑛)) , (4)

and (1) for the factorization of magnitude spectrogram for
channel 𝑖 is rewritten as

�̂�𝑖 (𝑓, 𝑡) =
𝐽

∑
𝑗=1

𝑚𝑖,𝑗
𝑁

∑
𝑛=1

𝑔𝑗,𝑛 (𝑡)
𝐻

∑
ℎ=1

𝑎𝑗,𝑛 (ℎ) 𝐺 (𝑓 − ℎ𝑓0 (𝑛)) . (5)

3.1. PanningMatrix Estimation. Thepanningmatrix gives the
contribution of each instrument in each channel and as seen
in (1) influences directly the separation of the sources. The
panning matrix is estimated by calculating an overlapping
mask which discriminates the time-frequency zones for
which the partials of a source are not overlapped with the
partials of other sources. Then, using the overlapping mask,
a panning coefficient is computed for each pair of sources
at each channel. The estimation algorithm in the baseline
framework is described in [6].

3.2. AugmentedNMF for Parameter Estimation. According to
[33], the parameters of the NMFmodel are estimated bymin-
imizing a cost function which measures the reconstruction
error between the observed 𝑥𝑖(𝑓, 𝑡) and the estimated �̂�𝑖(𝑓, 𝑡).
For flexibility reasons, we use the beta-divergence [34] cost
function, which allows for modeling popular cost functions
for different values of 𝛽, such as Euclidean (EUC) distance
(𝛽 = 2), Kullback-Leibler (KL) divergence (𝛽 = 1), and the
Itakura-Saito (IS) divergence (𝛽 = 0).

The minimization procedures assure that the distance
between 𝑥𝑖(𝑓, 𝑡) and �̂�𝑖(𝑓, 𝑡) does not increase with each
iteration, thus accounting for the nonnegativity of the basis
and the gains. By these means, the magnitude spectrogram of
a source is explained solely by additive reconstruction.

3.3. Timbre-Informed Signal Model. An advantage of the
harmonic model is that templates can be learned for various
instruments, if the appropriate training data is available.
The RWC instrument database [15] offers recordings of solo
instrument playing isolated notes along all their correspond-
ing pitch range.Themethod in [6] uses these recordings along
with the ground truth annotation to learn instrument spectral
templates for each note of each instrument. More details on
the training procedure can be found in the original paper [6].

Once the basis functions 𝑏𝑗,𝑛(𝑓) corresponding to the
spectral templates are learned, they are used at the fac-
torization stage in any orchestral setup which contains the
targeted instruments.Thus, after training the basis 𝑏𝑗,𝑛(𝑓) are
kept fixed, while the gains 𝑔𝑗,𝑛(𝑡) are estimated during the
factorization procedure.

3.4. Gains Estimation. The factorization procedure to esti-
mate the gains 𝑔𝑗,𝑛(𝑡) considers the previously computed
panning matrix 𝑚𝑖,𝑗 and the learned basis 𝑏𝑗,𝑛(𝑓) from the
training stage. Consequently, we have the following update
rules:

𝑔𝑗,𝑛 (𝑡) ← 𝑔𝑗,𝑛 (𝑡)
∑𝑓,𝑖𝑚𝑖,𝑗𝑏𝑗,𝑛 (𝑓) 𝑥𝑖 (𝑓, 𝑡) �̂�𝑖 (𝑓, 𝑡)

𝛽−2

∑𝑓,𝑖𝑚𝑖,𝑗𝑏𝑗,𝑛 (𝑓) �̂� (𝑓, 𝑡)
𝛽−1

. (6)

3.5. From the Estimated Gains to the Separated Signals. The
reconstruction of the sources is done by estimating the
complex amplitude for each time-frequency bin. In the case
of binary separation, a cell is entirely associated with a
single source. However, when having many instruments as
in orchestral music, it is more advantageous to redistribute
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(1) Initialize 𝑏𝑗,𝑛(𝑓) with the values learned in Section 3.3.
(2) Initialize the gains 𝑔𝑗,𝑛(𝑡) with score information.
(3) Initialize the mixing matrix𝑚𝑖,𝑗 with the values learned in Section 3.1.
(4) Update the gains using equation (6).
(5) Repeat Step (2) until the algorithm converges (or maximum number of iterations is reached).

Algorithm 1: Gain estimation method.

energy proportionally over all sources as in the Wiener
filtering method [23].

This model allows for estimating each separated source
𝑠𝑗(𝑡) from mixture 𝑥𝑖(𝑡) using a generalized time-frequency
Wiener filter over the short-time Fourier transform (STFT)
domain as in [3, 34].

Let 𝛼𝑗 be the Wiener filter of source 𝑗, representing the
relative energy contribution of the predominant source with
respect to the energy of the multichannel mixed signal 𝑥𝑖(𝑡)
at channel 𝑖:

𝛼𝑗 (𝑡, 𝑓) =
𝐴 𝑖,𝑗


2 𝑠𝑗 (𝑓, 𝑡)


2

∑𝑗
𝐴 𝑖,𝑗


2 𝑠𝑗 (𝑓, 𝑡)


2
. (7)

Then, the corresponding spectrogram of source 𝑗 is
estimated as

�̂�𝑗 (𝑓, 𝑡) =
𝛼𝑗 (𝑡, 𝑓)
𝐴 𝑖,𝑗


2
𝑥𝑖 (𝑓, 𝑡) . (8)

The estimated source �̂�𝑗(𝑓, 𝑡) is computed with the
inverse overlap-add STFT of �̂�𝑗(𝑓, 𝑡).

The estimated source magnitude spectrogram is com-
puted using the gains 𝑔𝑗,𝑛(𝑡) estimated in Section 3.4 and
𝑏𝑗,𝑛(𝑓) the fixed basis functions learned in Section 3.3:
�̂�𝑗(𝑡, 𝑓) = 𝑔𝑛,𝑗(𝑡)𝑏𝑗,𝑛(𝑓). Then, if we replace 𝑠𝑗(𝑡, 𝑓) with
�̂�𝑗(𝑡, 𝑓) and if we consider the mixing matrix coefficients
computed in Section 3.1, we can calculate the Wiener mask
from (7):

𝛼𝑗 (𝑡, 𝑓) =
𝑚2𝑖,𝑗 �̂�𝑗 (𝑓, 𝑡)

2

∑𝑗𝑚2𝑖,𝑗�̂�𝑗 (𝑓, 𝑡)
2
. (9)

Using (8), we can apply the Wiener mask to the mul-
tichannel signal spectrogram, thus obtaining �̂�𝑗(𝑓, 𝑡), the
estimated predominant source spectrogram. Finally, we use
the phase information from the original mixture signal
𝑥𝑖(𝑡), and, through inverse overlap-add STFT, we obtain the
estimated predominant source �̂�𝑗(𝑡).

4. Gains Initialization with Score Information

In the baseline method [6], the gains are initialized fol-
lowing a transcription stage. In our case, the automatic
alignment system yields a score which offers an analogous
representation to the one obtained by the transcription. To
that extent, the output of the alignment is used to initialize

the gains for the NMF based methods for score-informed
source separation.

Although the alignment algorithm aims at fixing global
misalignments, it does not account for local misalignments.
In the case of score-informed source separation, having a
better aligned score leads to better separation [11], since it
increases the sparseness of the gains matrix by setting to zero
the activation for a time frame in which a note is not played
(e.g., the corresponding spectral template of the note in the
basis matrix is not activated outside this time boundary).
However, in a real-case scenario, the initialization of gains
derived from theMIDI score must take into account the local
misalignments. This has been traditionally done by setting a
tolerance window around the onsets and offsets [3, 5, 24] or
by refining the gains after a number of NMF iterations and
then reestimating the gains [11]. While the former integrates
note refinement into the parametric model, the latter detects
contours in the gains using image processing heuristics and
explicitly associates them with meaningful entities as notes.
In this paper, we present two methods for note refinement:
in Section 4.1, we detail the method in [11] which is used as a
baseline for our framework and, in Section 5.2, we adapt and
improve this baseline to the multichannel case.

On these terms, if we account for errors up to 𝑑 frames in
the audio-to-score alignment, we need to increase the time
interval around the onset and the offset for a MIDI note
when we initialize the gains. Thus, the values in 𝑔𝑗,𝑛(𝑡) for
instrument 𝑗 and pitch corresponding to a MIDI note 𝑛 are
set to 1 for the frames where the MIDI note is played, as well
as the neighboring 𝑑 frames.The other values in 𝑔𝑗,𝑛(𝑡) are set
to 0 and do not change during computation, while the values
set to 1 evolve according to the energy distributed between
the instruments.

Having initialized the gains, the classical augmented
NMF factorization is applied to estimate the gains corre-
sponding to each source 𝑗 in the mixture. The process is
detailed in Algorithm 1.

4.1. Note Refinement. The note refinement method in [11]
aims at associating the values in the gains matrix 𝑔𝑗,𝑛(𝑡)
with notes. Therefore, it is applied after a certain number
of iterations of Algorithm 1, when the gains matrix yields a
meaningful distribution of the energy between instruments.

The method is applied on each note separately, with the
scope of refining the gains associated with the targeted note.
The gains matrix 𝑔𝑗,𝑛(𝑡) can be understood as a greyscale
image with each element in the matrix representing a pixel in
the image. A set of image processing heuristics are deployed
to detect shapes and contours in this image commonly known
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Figure 2: After NMF, the resulting gains (a) are split in submatrices (b) and used to detect blobs [11].

as blobs [35, p. 248]. As a result, each blob is associated with a
single note, giving the onset and offset times for the note and
its frequency contour. This representation further increases
the sparsity of the gains 𝑔𝑗,𝑛(𝑡), yielding less interference and
better separation.

As seen in Figure 2, the method considers an image
patch around the pixels corresponding to the pitch of the
note and the onset and offset of the note given by the
alignment stage, plus the additional 𝑑 frames accounting for
the local misalignments. In fact, the method works with the
same submatrices of 𝑔𝑗,𝑛(𝑡) which are set to 1 according to
their correspondingMIDI note during the gains initialization
stage, as explained in Section 3.4. Therefore, for a given note
𝑘 = 1, . . . , 𝐾𝑗, we process submatrix �̌�𝑘𝑗,𝑛(𝑡) of the gainsmatrix
𝑔𝑗,𝑛(𝑡), where 𝐾𝑗 is the total number of notes for instrument
𝑗.

The steps of the method in [11], image preprocessing,
binarization, and blob selection, are explained in Sections
4.1.2, 4.1.1, and 4.1.3.

4.1.1. Image Preprocessing. The preprocessing stage ensures
through smoothing that there are no energy discontinuities
within an image patch. Furthermore, it gives more weight
to the pixels situated closer to the central bin in the blob in
order to eliminate interference from the neighboring notes
(close in time and frequency), but still preserving vibratos or
transitions between notes.

First, we convolve with a smoothing Gaussian filter [35,
p. 86] each row of the submatrix �̌�𝑘𝑗,𝑛(𝑡). We choose a one-
dimension Gaussian filter:

𝑤 (𝑡) = 1
√2𝜋𝜙

𝑒−(−𝑡2/2𝜙2), (10)

where 𝑡 is the time axis and 𝜙 is the standard deviation.Thus,
each row vector of �̌�𝑘𝑗,𝑛(𝑡) is convolved with 𝑤(𝑡), and the
result is truncated in order to preserve the dimensions of the
initial matrix by removing the mirrored frames.

Second, we penalize values in �̌�𝑘𝑗,𝑛(𝑡) which are further
away from the central bin by multiplying each column vector
of this matrix with a 1-dimensional Gaussian centered in the
central frequency bin, represented by vector V(𝑛):

V (𝑛) = 1
√2𝜋]

𝑒−(𝑛−𝜅)2/2]2 , (11)

where 𝑛 is the frequency axis, 𝜅 is the position of the central
frequency bin, and ] is the standard deviation. The values of
the parameters above are given in Section 6.4.2 as a part of
the evaluation setup.

4.1.2. Image Binarization. Image binarization sets to zero
the elements of the matrix �̌�𝑘𝑗,𝑛(𝑡) which are lower than a
threshold and to one the elements larger than the threshold.
This involves deriving a submatrix �̌�𝑘𝑗,𝑛(𝑡), associated with
note 𝑘:

�̌�𝑘𝑗,𝑛 (𝑡) =
{
{
{

0, if �̌�𝑘𝑗,𝑛 (𝑡) < mean (�̌�𝑘𝑗,𝑛 (𝑡)) ,
1, if �̌�𝑘𝑗,𝑛 (𝑡) ≥ mean (�̌�𝑘𝑗,𝑛 (𝑡)) .

(12)

4.1.3. Blob Selection. First, we detect blobs in each binary sub-
matrix �̌�𝑘𝑗,𝑛(𝑡), using the connectivity rules described in [35,
p. 248] and [27]. Second, from the detected blob candidates,
we determine the best blob for each note in a similar way to
[11]. We assign a value to each blob, depending on its area
and the overlap with the blobs corresponding to adjacent



Journal of Electrical and Computer Engineering 7

notes, which will help us penalize the overlap between blobs
of adjacent notes.

As a first step, we penalize parts of the blobswhich overlap
in time with other blobs from different notes 𝑘 − 1, 𝑘, 𝑘 + 1.
This is done by weighting each element in �̌�𝑘𝑗,𝑛(𝑡) with factor
𝛾, depending on the amount of overlapping with blobs from
adjacent notes. The resulting score matrix has the following
expression:

�̌�𝑘𝑗,𝑛 (𝑡) =
{{{{
{{{{
{

𝛾 ∗ �̌�𝑘𝑗,𝑛 (𝑡) , if �̌�𝑘𝑗,𝑛 (𝑡) ∧ �̌�𝑘−1𝑗,𝑛 (𝑡) = 1,
𝛾 ∗ �̌�𝑘𝑗,𝑛 (𝑡) , if �̌�𝑘𝑗,𝑛 (𝑡) ∧ �̌�𝑘+1𝑗,𝑛 (𝑡) = 1,
�̌�𝑘𝑗,𝑛 (𝑡) , otherwise,

(13)

where 𝛾 is a value in the interval [0, 1].
Then, we compute a score for each note 𝑙 and for each blob

associated with the note, by summing up the elements in the
score matrix �̌�𝑘𝑗,𝑛(𝑡) which are considered to be part of a blob.
The best blob candidate is the one with the highest score and
further on; it is associated with the note, its boundaries giving
the note onset and offsets.

4.2. Gains Reinitialization and Recomputation. Having asso-
ciated a blob with each note (Section 4.1.3), we discard
obtrusive energy from the gainsmatrix 𝑔𝑗,𝑛(𝑡), by eliminating
the pixels corresponding to the blobswhichwere not selected,
making thematrix sparser. Furthermore, the energy excluded
from instrument’s gains is redistributed to other instruments,
contributing to better source separation. Thus, the gains
are reinitialized with the information obtained from the
corresponding blobs and we can repeat the factorization
Algorithm 1 to recompute 𝑔𝑗,𝑛(𝑡). Note that the energy which
is excluded by note refinement is set to zero 𝑔𝑗,𝑛(𝑡) and will
remain zero during the factorization.

In order to refine the gains 𝑔𝑗,𝑛(𝑡), we define a set of
matrices 𝑝𝑘𝑗,𝑛(𝑡) derived from the matrices corresponding to
the best blobs �̌�𝑘𝑗,𝑛(𝑡) which contain 1 only for the elements
associated with the best blob and 0 otherwise. We rebuild
the gains matrix 𝑔𝑗,𝑛(𝑡) with the set of submatrices 𝑝𝑘𝑗,𝑛(𝑡).
For the corresponding bins 𝑛 and time frames 𝑡 of note 𝑘,
we initialize the values in 𝑔𝑗,𝑛(𝑡) with the values in 𝑝𝑘𝑗,𝑛(𝑡).
Then, we reiterate the gains estimation with Algorithm 1.
Furthermore, we obtain the spectrogram of the separated
sources with the method described in Section 3.5.

5. PARAFAC Model for Multichannel
Gains Estimation

Parallel factor analysis methods (PARAFAC) [28, 29] are
mostly used under the nonnegative tensor factorization
paradigm. By these means, the NMF model is extended to
work with 3-valence tensors, where each slice of the sensor
represents the spectrogram for a channel. Another approach
is to stack up spectrograms for each channel in a singlematrix
[36] and perform a joint estimation of the spectrograms of
sources in all channels. Hence, we extend the NMF model

in Section 3 to jointly estimate the gains matrices in all the
channels.

5.1. Multichannel Gains Estimation. The algorithm described
in Section 3 estimates gains 𝑔𝑛,𝑗 for source 𝑗 with respect
to single channel 𝑖 determined as the corresponding row
in column 𝑗 of the panning matrix where element 𝑚𝑖,𝑗
has the maximum value. However, we argue that a better
estimation can benefit from the information in all channels.
To this extent, we can further include update rules for other
parameters such as mixing matrix𝑚𝑖,𝑗 which were otherwise
kept fixed in Section 3, because the factorization algorithm
estimates the parameters jointly for all the channels.

We propose to integrate information from all channels by
concatenating their corresponding spectrogram matrices on
the time axis, as in

𝑥 (𝑓, 𝑡) = [𝑥1 (𝑓, 𝑡) 𝑥1 (𝑓, 𝑡) ⋅ ⋅ ⋅ 𝑥𝐼 (𝑓, 𝑡)] . (14)

We are interested in jointly estimating the gains 𝑔𝑛,𝑗 of the
source 𝑗 in all the channels. Consequently, we concatenate in
time the gains corresponding to each channel 𝑖 for 𝑖 = 1, . . . , 𝐼,
where 𝐼 is the total number of channels, as seen in (15). The
new gains are initialized with identical score information
obtained from the alignment stage. However, during the
estimation of the gains for channel 𝑖, the new gains 𝑔𝑖𝑛,𝑗(𝑡)
evolve accordingly, taking into account the corresponding
spectrogram 𝑥𝑖(𝑓, 𝑡). Moreover, during the gains refinement
stage, each gain is refined separately with respect to each
channel:

𝑔𝑛,𝑗 (𝑡) = [𝑔1𝑛,𝑗 (𝑡) 𝑔2𝑛,𝑗 (𝑡) ⋅ ⋅ ⋅ 𝑔𝐼𝑛,𝑗 (𝑡)] . (15)

In (5), we describe the factorization model for the
estimated spectrogram, considering the mixing matrix, the
basis, and the gains. Since we estimate a set of 𝐼 gains for each
source 𝑗 = 1, . . . , 𝐽, this will result in 𝐽 estimations of the
spectrograms corresponding to all the channels 𝑖 = 1, . . . , 𝐼,
as seen in

�̂�𝑗𝑖 (𝑓, 𝑡)

=
𝐽

∑
𝑗=1

𝑚𝑖,𝑗
𝑁

∑
𝑛=1

𝑔𝑖𝑗,𝑛 (𝑡)
𝐻

∑
ℎ=1

𝑎𝑗,𝑛 (ℎ) 𝐺 (𝑓 − ℎ𝑓0 (𝑛)) .
(16)

Each iteration of the factorization algorithm yields addi-
tional information regarding the distribution of energy
between each instrument and each channel. Therefore, we
can include in the factorization update rules for mixing
matrix 𝑚𝑖,𝑗 as in (17). By updating the mixing parameters at
each factorization step, we can obtain a better estimation for
�̂�𝑗𝑖 (𝑓, 𝑡):

𝑚𝑖,𝑗 ← 𝑚𝑖,𝑗
∑𝑓,𝑡 𝑏𝑗,𝑛 (𝑓) 𝑔𝑛,𝑗 (𝑡) 𝑥𝑖 (𝑓, 𝑡) �̂�𝑖 (𝑓, 𝑡)

𝛽−2

∑𝑓,𝑡 𝑏𝑗,𝑛 (𝑓) 𝑔𝑛,𝑗 (𝑡) �̂� (𝑓, 𝑡)
𝛽−1

. (17)

Considering the above, the new rules to estimate the
parameters are described in Algorithm 2.
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(1) Initialize 𝑏𝑗,𝑛(𝑓) with the values learned in Section 3.3.
(2) Initialize the gains 𝑔𝑗,𝑛(𝑡) with score information.
(3) Initialize the panning matrix𝑚𝑖,𝑗 with the values learned in Section 3.1.
(4) Update the gains using equation (6).
(5) Update the panning matrix using equation (17).
(6) Repeat Step (2) until the algorithm converges (or maximum number of iterations is reached).

Algorithm 2: Gain estimation method.

Note that the current model does not estimate the phases
for each channel. In order to reconstruct source 𝑗, the model
in Section 3 uses the phase of the signal corresponding to
channel 𝑖 where it has the maximum value in the panning
matrix, as described in Section 3.5. Thus, in order to recon-
struct the original signals, we can solely rely on the gains
estimated in single channel 𝑖, in a similar way to the baseline
method.

5.2. Multichannel Gains Refinement. As presented in Sec-
tion 5.1, for a given source, we obtain an estimation of the
gains corresponding to each channel.Therefore, we can apply
note refinement heuristics in a similar manner to Section 4.1
for each of the gains [𝑔1𝑛,𝑗(𝑡), . . . , 𝑔𝐼𝑛,𝑗(𝑡)].Then,we can average
out the estimations for all the channel, making the blob
detection more robust to the variances between the channels:

𝑔𝑛,𝑗 (𝑡) =
∑𝐼𝑖=1 𝑔𝑖𝑛,𝑗 (𝑡)

𝐼 . (18)

Having computed the mean over all channels as in
(18), for each note 𝑘 = 1, . . . , 𝐾𝑗, we process submatrix
𝑔𝑘𝑗,𝑛(𝑡) of the new gains matrix 𝑔𝑗,𝑛(𝑡), where 𝐾𝑗 is the total
number of notes for an instrument 𝑗. Specifically, we apply
the same steps: preprocessing (Section 4.1.1), binarization
(Section 4.1.2), and blob selection (Section 4.1.3), to each
matrix 𝑔𝑘𝑗,𝑛(𝑡) and we obtain a binary matrix 𝑝𝑘𝑗,𝑛(𝑡) having
1 s for the elements corresponding to the best blob and 0 s for
the rest.

Our hypothesis is that averaging out the gains between all
channels makes blob detection more robust. However, when
performing the averaging, we do not account for the delays
between the channels. In order to compute the delay for a
given channel, we can compute the best blob separately with
themethod in Section 4.1 (matrix �̌�𝑘𝑗,𝑛(𝑡)) and compare it with
the one calculated with the averaged estimation (𝑝𝑘𝑗,𝑛(𝑡)).This
step is equivalent to comparing the onset times of the two best
blobs for the two estimations. Subtracting these onset times,
we get the delay between the averaged estimation and the
one obtained for a channel and we can correct this in matrix
𝑝𝑘𝑗,𝑛(𝑡). Accordingly, we zero-pad the beginning of𝑝

𝑘
𝑗,𝑛(𝑡)with

the amount of zeros corresponding to the delay, or we remove
the trailing zeros for a negative delay.

6. Materials and Evaluation

6.1. Dataset. The audio material used for evaluation was pre-
sented by Pätynen et al. [30] and consists of four passages of

symphonic music from the Classical and Romantic periods.
This work presented a set of anechoic recordings for each
of the instruments, which were then synchronized between
them so that they could later be combined to a mix of the
orchestra. Musicians played in an anechoic chamber, and, in
order to be synchronous with the rest of the instruments,
they followed a video featuring a conductor and a pianist
playing each of the four pieces. Note that the benefits of
having isolated recordings comes at the expense of ignoring
the interactions between musicians which commonly affect
intonation and time-synchronization [37].

The four pieces differ in terms of number of instruments
per instrument class, style, dynamics, and size. The first
passage is a soprano aria of Donna Elvira from the opera Don
Giovanni by W. A. Mozart (1756–1791), corresponding to the
Classical period, and traditionally played by a small group
of musicians. The second passage is from L. van Beethoven’s
(1770–1827) Symphony no. 7, featuring big chords and string
crescendo. The chords and pauses make the reverberation
tail of a concert hall clearly audible. The third passage is
from Bruckner’s (1824–1896) Symphony no. 8, and represents
the late Romantic period. It features large dynamics and
size of the orchestra. Finally, G. Mahler’s Symphony no. 1,
also featuring a large orchestra, is another example of late
romanticism. The piece has a more complex texture than the
one by Bruckner. Furthermore, according to the musicians
which recorded the dataset, the last two pieces were alsomore
difficult to play and record [30].

In order to keep the evaluation setup consistent between
the four pieces, we focus in the following instruments: violin,
viola, cello, double bass, oboe, flute, clarinet, horn, trumpet,
and bassoon. All tracks from a single instrument were joined
into a single track for each of the pieces.

For the selected instruments, we list the differences
between the four pieces in Table 1. Note that in the original
dataset the violins are separated into two groups. However,
for brevity of evaluation and because in our separation frame-
workwe do not consider sources sharing the same instrument
templates, we decided tomerge the violins into a single group.
Note that the pieces by Mahler and Bruckner have a divisi
in the groups of violins, which implies a larger number of
instruments playing different melody lines simultaneously.
This results in a scenariowhich ismore challenging for source
separation.

We created a ground truth score, by hand annotating
the notes played by the instruments. In order to facilitate
this process, we first gathered the scores in MIDI format
and automatically computed a global audio-score alignment,
using the method from [13] which has won the MIREX
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Table 1: Anechoic dataset [30] characteristics.

Piece Duration Period Instrument sections Number of tracks Max. tracks/instrument
Mozart 3min 47 s Classical 8 10 2
Beethoven 3min 11 s Classical 10 20 4
Mahler 2min 12 s Romantic 10 30 4
Bruckner 1min 27 s Romantic 10 39 12

Anechoic
recordings

Score
annotations

Denoised
recordings recordings

Multichannel

Figure 3: The steps to create the multichannel recordings dataset.

score-following challenge for the past years. Then, we locally
aligned the notes of each instrument by manually correcting
the onsets and offsets to fit the audio. This was performed
using Sonic Visualiser, with the guidance of the spectro-
gram and the monophonic pitch estimation [38] computed
for each of the isolated instruments. The annotation was
performed by two of the authors, which cross-checked the
work of their peer. Note that this dataset and the proposed
annotation are useful not only for our particular task but
also for the evaluation of multiple pitch estimation and
automatic transcription algorithms in large orchestral set-
tings, a context which has not been considered so far in the
literature.The annotations can be found at the associated page
(http://mtg.upf.edu/download/datasets/phenicx-anechoic).

During the recording process detailed in [30], the gain
of the microphone amplifiers was fixed to the same value
for the whole process, which reduced the dynamic range of
the recordings of the quieter instruments. This led to noisier
recordings for most of the instruments. In Section 6.2, we
describe the score-informed denoising procedure we applied
to each track. From the denoised isolated recordings, we then
used Roomsim to create a multichannel image, as detailed in
Section 6.3. The steps necessary to pass from the anechoic
recordings to the multichannel dataset are represented in
Figure 3.The original files can be obtained from the Acoustic
Group at Aalto Univeristy (http://research.cs.aalto.fi/acou-
stics/). For the denoising algorithm, please refer to http://mtg
.upf.edu/download/datasets/phenicx-anechoic.

6.2. Dataset Denoising. The noise related problems in the
dataset were presented in [30]. We remove the noise in the
recordings with the score-informed method in [39], which
relies on learned noise spectral patters.Themain difference is
that we rely on a manually annotated score, while in [39] the
score is assumed to be misaligned, so further regularization
is included to ensure that only certain note combinations in
the score occur.

The annotated score yields the time interval where an
instrument is not playing. Thus, the noise pattern is learned
only within that interval. In this way, the method assures that
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Figure 4: The sources and the receivers (microphones in the
simulated room).

the desired noise, which is a part of the actual sound of the
instrument, is preserved in the denoised recording.

The algorithm takes each anechoic recording of a given
instrument and removes the noise for the time interval where
an instrument is playing, while setting to zero the frames
where an instrument is not playing.

6.3. Dataset Spatialization. To simulate a large reverberant
hall, we use the software Roomsim [31]. We define a configu-
ration file which specifies the characteristics of the hall and,
for each of the microphones, their position relative to each
of the sources. The simulated room has similar dimensions
to the Royal Concertgebouw in Amsterdam, one of the
partners in the PHENICX project, and represents a setup in
which we tested our framework.The simulated room’s width,
length, and height are 28m, 40m, and 12m. The absorption
coefficients are specified in Table 2.

Thepositions of the sources andmicrophones in the room
are common for orchestral concerts (Figure 4). A config-
uration file is created for each microphone which contains
its coordinates (e.g., (14, 17, 4) for the center microphone).
Then, each source is defined through polar coordinates rel-
ative to the microphone (e.g., (11.4455, −95.1944, −15.1954)
radius, azimuth, and elevation for the bassoon relative to
the center microphone). We selected all the microphones
to be cardioid, in order to match the realistic setup of
Concertgebouw Hall.
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Table 2: Room surface absorption coefficients.

Standard measurement frequencies (Hz) 125 250 500 1000 2000 4000
Absorption of wall in 𝑥 = 0 plane 0.4 0.3 0.3 0.3 0.2 0.1
Absorption of wall in 𝑥 = 𝐿𝑥 plane 0.4 0.45 0.35 0.35 0.45 0.3
Absorption of wall in 𝑦 = 0 plane 0.4 0.45 0.35 0.35 0.45 0.3
Absorption of wall in 𝑦 = 𝐿𝑦 plane 0.4 0.45 0.35 0.35 0.45 0.3
Absorption of floor, that is, 𝑧 = 0 plane 0.5 0.6 0.7 0.8 0.8 0.9
Absorption of ceiling, that is, 𝑧 = 𝐿𝑧
plane 0.4 0.45 0.35 0.35 0.45 0.3
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Figure 5:The reverberation time versus frequency for the simulated
room.

Using the configuration file and the anechoic audio files
corresponding to the isolated sources, Roomsim generates
the audio files for each of the microphones along with the
impulse responses for each pair of instruments and micro-
phones. The impulse responses and the anechoic signals are
used during the evaluation to obtain the ground truth spatial
image of the sources in the corresponding microphone.
Additionally, we plot Roomsim the reverberation time RT60
[31] across the frequencies in Figure 5.

We need to adapt ground truth annotations to the audio
generated with Roomsim, as the original annotations were
done on the isolated audio files. Roomsim creates an audio
for a given microphone by convolving each of the sources
with the corresponding impulse response and then summing
up the results of the convolution. We compute a delay for
each pair of microphones and instruments by taking the
position of the maximum value in the associated impulse
response vector. Then, we generate a score for each of
the pairs by adding the corresponding delay to the note
onsets. Additionally, since the offset time depends on the
reverberation and the frequencies of the notes, we add 0.8 s
to each note offset to account for the reverberation, besides
the added delay.

6.4. Evaluation Methodology

6.4.1. Parameter Selection. In this paper, we use a low-level
spectral representation of the audio data which is generated
from a windowed FFT of the signal. We use a Hanning
window with the size of 92ms and a hop size of 11ms.

Here, a logarithmic frequency discretization is adopted.
Furthermore, two time-frequency resolutions are used. First,
to estimate the instrument models and the panning matrix,
a single semitone resolution is proposed. In particular, we
implement the time-frequency representation by integrating
the STFT bins corresponding to the same semitone. Second,
for the separation task, a higher resolution of 1/4 of semitone
is used, which has proven to achieve better separation
results [6]. The time-frequency representation is obtained by
integrating the STFT bins corresponding to 1/4 of semitone.
Note that in the separation stage, the learned basis functions
𝑏𝑗,𝑛(𝑓) are adapted to the 1/4 of semitone resolution by
replicating 4 times the basis at each semitone to the 4 samples
of the 1/4 of semitone resolution that belong to this semitone.
For image binarization, we pick for the first Gaussian 𝜙 = 3
as the standard deviation and for the second Gaussian 𝜅 = 4
as the position of the central frequency bin and ] = 4 as the
standard deviation, corresponding to one semitone.

We picked 10 iterations for the NMF, and we set the beta-
divergence distortion, 𝛽 = 1.3, as in [6, 11].

6.4.2. Evaluation Setup. We perform three different kind of
evaluations: audio-to-score alignment, panning matrix esti-
mation, and score-informed source separation. Note that, for
the alignment, we evaluate the state-of-the-art system in [13].
This method does not align notes but combinations of notes
in the score (a.k.a states). Here, the alignment is performed
with respect to a single audio channel, corresponding to
the microphone situated in the center of the stage. On the
other hand, the offsets are estimated by shifting the original
duration for each note in the score [13] or by assigning the
offset time as the onset for the next state. We denote these
two cases as INT or NEX.

Regarding the initialization of the separation framework,
we can use the raw output of the alignment system. However,
as stated in Section 4 and [3, 5, 24], a better option is to extend
the onsets and offsets along a tolerancewindow to account for
the errors of the alignment system and for the delays between
center channel (on which the alignment is performed) and
the other channels and for the possible errors in the alignment
itself. Thus, we test two hypotheses regarding the tolerance
window for the possible errors. In the first case, we extend
the boundaries with 0.3 s for onsets and 0.6 s for offsets (T1)
and in the second with 0.6 s for onsets and 1 s for offsets (T2).
Note that the value for the onset times of 0.3 s is not arbitrary
but the usual threshold for onsets in the score-following in
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Table 3: Score information used for the initialization of score-
informed source separation.

Tolerance window size Offset estimation

T1: onsets, 0.3 s; offsets, 0.6 s INT: interpolation of the offset
time

T2: onsets, 0.6 s; offsets, 0.9 s NEX: the offset is the onset of
the next note

MIREX evaluation of real-time score-following [40]. Two
different tolerance windows were tested to account for the
complexity of this novel scenario. The tolerance window is
slightly larger for offsets due to the reverberation time and
because the ending of the note is not as clear as its onset.
A summary of the score information used to initialize the
source separation framework is found in Table 3.

We label the test case corresponding to the initialization
with the raw output of the alignment system as Ali. Con-
versely, the test case corresponding to the tolerance window
initialization is labeled as Ext. Furthermore, within the
tolerance window, we can refine the note onsets and offsets
with the methods in Section 4.1 (Ref1) and Section 5.2 (Ref2),
resulting in other two test cases. Since method Ref1 can only
refine the score to a single channel, the results are solely
computed with respect to that channel. For the multichannel
refinement Ref2, we report the results of the alignment of
each instrument with respect to each microphone. A graphic
of the initialization of the framework with the four test cases
listed above (Ali, Ext, Ref1, and Ref2), along with the ground
truth score initialization (GT), is found in Figure 7, where
we present the results for these cases in terms of source
separation.

In order to evaluate the panning matrix estimation stage,
we compute an ideal panning matrix based on the impulse
responses generated by Roomsim during the creation of
the multichannel audio (see Section 6.3). The ideal panning
matrix gives the ideal contribution of each instrument in each
channel and it is computed by searching the maximum in the
impulse response vector corresponding to each instrument-
channel pair, as in

𝑚ideal (𝑖, 𝑗) = max (IR (𝑖, 𝑗) (𝑡)) , (19)

where IR(𝑖, 𝑗)(𝑡) is the impulse response of source 𝑖 in channel
𝑗. By comparing the estimated matrix 𝑚(𝑖, 𝑗) with the ideal
one 𝑚ideal(𝑖, 𝑗), we can determine if the algorithm picked a
wrong channel for separation.

6.4.3. Evaluation Metrics. For score alignment, we are inter-
ested in a measure which relates to source separation and
accounts for the audio frames which are correctly detected,
rather than an alignment rate computed per note onset, as
found in [13]. Thus, we evaluate the alignment at the frame
level rather than at a note level. A similar reasoning on the
evaluation of score alignment is found in [4].

We consider 0.011 s the temporal granularity for this
measure and the size of a frame. Then, a frame of a musical
note is considered a true positive (tp) if it is found in the
ground truth score and in the aligned score in the exact

time boundaries. The same frame is labeled as a false positive
(fp) if it is found only in the aligned score and a false
negative (fn) if it is found only in the ground truth score.
Since the gains initialization is done with score information
(see Section 4), lost frames (recall), and incorrectly detected
frames (precision) impact the performance of the source
separation algorithm, precision is defined as 𝑝 = tp/(tp + fp)
and recall as 𝑟 = tp/(tp + fn). Additionally, we compute the
harmonic mean of precision and recall to obtain 𝐹-measure
as 𝐹 = 2 ⋅ ((𝑝 ⋅ 𝑟)/(𝑝 + 𝑟)).

The source separation evaluation framework and metrics
employed are described in [41, 42]. Correspondingly, we
use Source to Distortion Ratio (SDR), Source to Interference
Ratio (SIR), and Source to Artifacts Ratio (SAR). While SDR
measures the overall quality of the separation and ISR the
spatial reconstruction of the source, SIR is related to rejection
of the interferences and SAR to the absence of forbidden
distortions and artifacts.

The evaluation of source separation is a computationally
intensive process. Additionally, to process the long audio files
in the dataset would require large memory to perform the
matrix calculations. To reduce thememory requirements, the
evaluation is performed for blocks of 30 s with 1 s overlap to
allow for continuation.

6.5. Results

6.5.1. Score Alignment. We evaluate the output of the align-
ment Ali, along the estimation of the note offsets: INT and
NEX in terms of 𝐹-measure (see Section 6.4.3), precision,
and recall, ranging from 0 to 1. Additionally, we evaluate
the optimal size for extending the note boundaries along the
onsets and offsets, T1 and T2, for the refinement methods,
Ref1 and Ref2, and the baseline, Ext. Since there are lots of
differences between pieces, we report the results individually
per song in Table 4.

Methods Ref1 and Ref2 depend on a binarization thresh-
oldwhich determines howmuch energy is set to zero. A lower
threshold will result in the consolidation of larger blobs in
blob detection. In [11], this threshold is set to 0.5 for a dataset
of monaural recordings of Bach chorales played by four
instruments. However, we are facing a multichannel scenario
where capturing the reverberation is important, especially
when we consider that offsets were annotated with a low
energy threshold. Thus, we are interested in losing the least
energy possible and we set lower values for the threshold: 0.3
and 0.1. Consequently, when analyzing the results, a lower
threshold achieves better performance in terms of𝐹-measure
for Ref1 (0.67 and 0.72) and for Ref2 (0.71 and 0.75).

According to Table 4, extending note offsets (NEX),
rather than interpolating them (INT), gives lower recall in
all pieces, and the method leads to losing more frames which
cannot be recovered even by extending the offset times in T2:
NEX T2 yields always a lower recall when compared to INT
T2 (e.g., 𝑟 = 0.85 compared to 𝑟 = 0.97 for Mozart).

The output of the alignment system Ali is not a good
option to initialize the gains of source separation system. It
has a high precision and a very low recall (e.g., the case INT
Ali has 𝑝 = 0.95 and 𝑟 = 0.39 compared to case INT Ext
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Table 5: Instruments for which the closest microphone was incorrectly determined for different score information (GT, Ali, T1, T2, INT, and
NEX) and two room setups.

GT INT NEX
Ali T1 T2 Ali T1 T2

Setup 1 Clarinet Clarinet, double bass Clarinet, flute Clarinet, flute, horn Clarinet, double bass Clarinet, flute
Setup 2 Cello Cello, flute Cello, flute Cello, flute Bassoon Flute Cello, flute

which has 𝑝 = 0.84 and 𝑟 = 0.84 for Beethoven). For the
case of Beethoven, the output is particularly poor compared
to other pieces. However, by extending the boundaries (Ext)
and applying note refinement (Ref1 or Ref2), we are able to
increase the recall and match the performance on the other
pieces.

When comparing the size for the tolerance window for
the onsets and offsets, we observe that the alignment is more
accurate with detecting the onsets within 0.3 s and offsets
within 0.6 s. In Table 4, T1 achieves better results than T2
(e.g., 𝐹 = 0.77 for T1 compared to 𝐹 = 0.69 for T2,
Mahler). Relying on a large window retrieves more frames
but also significantly damages the precision. However, when
considering source separation we might want to lose as less
information as possible. It is in this special case that the
refinement methods Ref1 and Ref2 show their importance.
When facing larger time boundaries as T2, Ref1 and especially
Ref2 are able to reduce the errors by achieving better precision
with the minimum amount of loss in recall.

The refinement Ref1 has a worse performance than Ref2,
the multichannel refinement (e.g., 𝐹 = 0.72 compared to
𝐹 = 0.81 for Bruckner, INT T1). Note that, in the original
version [11], Ref1 was assuming monophony within a source
as it was tested in the simple case of Bach10 dataset [4]. To that
extent, it was relying on a graph computation to determine
the best distribution of blobs. However, due to the increased
polyphony within an instrument (e.g., violins playing divisi),
with simultaneous melodic lines, we disabled this feature and
in this case Ref1 has lower recall, it loses more frames. On
the other hand, Ref2 is more robust because it computes a
blob estimation per channel. Averaging out these estimations
yields better results.

The refinement works worse for more complex pieces
(Mahler and Bruckner) than for simple pieces (Mozart
and Beethoven). Increasing the polyphony within a source
and the number of instruments, having many interleaving
melodic lines, a less sparse score, also makes the task more
difficult.

6.5.2. Panning Matrix. Estimating correctly the panning
matrix is an important step in the proposed method, since
Wiener filtering is performed on the channel where the
instrument has the most energy. If the algorithm picks a
different channel for this step, in the separated audio files we
can find more interference between instruments.

As described in Section 3.1, the estimation of the panning
matrix depends on the number of nonoverlapping partials of
the notes found in the score and their alignment with the
audio. To that extent, the more nonoverlapping partials we
have, the more robust the estimation.

Initially, we experimented with computing the panning
matrix separately for each piece. In the case of Bruckner the
piece is simply too short, and there are few nonoverlapping
partials to yield a good estimation, resulting in errors in the
panning matrix. Since the instrument setup is the same for
Bruckner, Beethoven, and Mahler pieces (10 sources in the
same position on the stage), we decided to jointly estimate the
matrix for the concatenated audio pieces and the associated
scores. We denote Setup 1 as the Mozart piece played by 8
sources and Setup 2 the Beethoven, Mahler, and Bruckner
pieces played by 10 sources.

Since the panning matrix is computed using the score,
different score information can yield very different estimation
of the panning matrix. To that extent, we evaluate the
influence of audio-to-score alignment, namely, the cases INT,
NEX, Ali, T1, and T2, and the initialization with the ground
truth score information, GT.

In Table 5, we list the instruments for which the algorithm
picked the wrong channel. Note that, in the room setup
generated with Roomsim, most of the instruments in Table 5
are placed close to other sources from the same family of
instruments: for example, cello and double bass, flute with
clarinet, bassoon, and oboe. In this case, the algorithmmakes
moremistakes when selecting the correct channel to perform
source separation.

In the column GT of Table 5, we can see that having a
perfectly aligned score yields less errors when estimating the
panningmatrix. Conversely, in a real-life scenario, we cannot
rely on hand annotated score. In this case, for all columns of
the Table 5 excluding GT, the best estimation is obtained by
the combination of NEX and T1: taking the offset time as the
onsets of the next note and then extending the score with a
smaller window.

Furthermore, we compute the SDR values for the instru-
ments in Table 5, column GT (clarinet and cello), if the
separation was to be done in the correct channel or in the
estimated channel. For Setup 1, the channel for clarinet is
wrongly mistaken toWWL (woodwinds left), the correct one
being WWR (woodwinds right), when we have a perfectly
aligned score (GT). However, the microphones WWL and
WWR are very close (see Figure 4), and they do not capture
significant energy from other instrument sections and the
SDR difference is less than 0.01 dB. However, in Setup 2, the
cello is wrongly separated in the WWL channel, and the
SDR difference between this audio and the audio separated
in the correct channel is around −11 dB for each of the three
pieces.

6.5.3. Source Separation. We use the evaluation metrics
described in Section 6.4.3. Since there is a lot of variability
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Figure 6: Results in terms of SDR, SIR, SAR, and ISR for the instruments and the songs in the dataset.

between the four pieces, it is more informative to present the
results per piece rather than aggregating them.

First, we analyze the separation results per instruments
in an ideal case. We assume that the best results for score-
informed source separation are obtained in the case of a
perfectly aligned score (GT). Furthermore, for this case, we
calculate the separation in the correct channel for all the
instruments, since, in Section 6.5.2, we could see that picking
a wrong channel could be detrimental. We present the results
as a bar plot in Figure 6.

As described in Section 6.1 and Table 1, the four pieces
had different levels of complexity. In Figure 6, we can see
that the more complex the piece is, the more difficult it is
to achieve a good separation. For instance, note that cello,
clarinet, flute, and double bass achieve good results in terms
of SDR on Mozart piece but significantly worse results on
other three pieces (e.g., 4.5 dB for cello in Mozart, compared
to−5 dB inMahler). Cello anddouble bass are close by in both
of the setups, similarly for clarinet and flute, and we expect

interference between them. Furthermore, these instruments
usually share the same frequency range which can result in
additional interference. This is seen in lower SIR values for
double bass (5.5 dB SIR forMozart, but−1.8,−0.1, and−0.2 dB
SIR for the others) and flute.

An issue for the separation is the spatial reconstruction,
measured by the ISR metric. As seen in (9), when applying
theWienermask, themultichannel spectrogram ismultiplied
with the panning matrix. Thus, wrong values in this matrix
can yield wrong amplitude values of the resulting signals.

This is the case for trumpet, which is allocated a
close microphone in the current setup, and for which we
expect a good separation. However, trumpet achieves a
poor ISR (5.5, 1, and −1 dB) but has a good separation
in terms of SIR and SAR. Similarly, other instruments as
cello, double bass, flute, and viola face the same problem,
particularly for the piece by Mahler. Therefore, a good
estimation of the panning matrix is crucial for a good
ISR.
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Figure 7: The test cases for initialization of score-informed source
separation, for the submatrix 𝑝𝑠𝑗,𝑛(𝑡).

A low SDR is obtained in the case ofMahler that is related
to the poor results in alignment obtained for this piece. As
seen in Table 4 for INT case, 𝐹-measure is almost 8% lower
in Mahler than in other pieces, mainly because of the bad
precision.

The results are considerably worse for double bass for the
more complex pieces of Beethoven (−9.1 dB SDR), Mahler
(−8.5 dB SDR), and Bruckner (−4.7 dB SDR), and, for further
analysis, we consider it as an outlier, and we exclude it from
the analysis.

Second, we want to evaluate the usefulness of note refine-
ment in source separation. As seen in Section 4, the gains
for NMF separation are initialized with score information or
with a refined score as described in Section 4.2. A summary
of the different initialization options and seen in Figure 7.
Correspondingly, we evaluate five different initializations of
the gains: the perfect initialization with the ground truth
annotations (Figure 7 (GT)), the direct output of the score
alignment system (Figure 7 (Ali)), the common practice of
NMF gains initialization in state-of-the-art score-informed
source separation [3, 5, 24] (Figure 7 (Ext)), and the refine-
ment approaches (Figure 7 (Ref1 and Ref2)). Note that Ref1 is
the refinement done with the method in Section 4.1 and Ref2
with the multichannel method described in Section 5.2.

We test the difference between the binarization thresholds
0.5 and 0.1, used in the refinement methods Ref1 and Ref2.
One-way ANOVA on SDR results gives 𝐹-value = 0.0796
and 𝑝 value = 0.7778, which shows no significant difference
between both binarization thresholds.

The results for the five initializations, GT, Ref1, Ref2,
Ext, and Ali, are presented in Figure 8, for each of the
four pieces. Note that, for Ref1, Ref2, and Ext, we aggregate
information across all possible outputs of the alignment: INT,
NEX, T1, and T2. Analyzing the results, we note that themore
complex the piece, the more difficult to separate between the
instruments, the piece by Mahler having the worse results,
and the piece by Bruckner a large variance, as seen in the
error bars. For these two pieces, other factors as the increased
polyphony within a source, the number of instruments (e.g.,
12 violins versus 4 violins in a group), and the synchronization
issues we described in Section 6.1 can increase the difficulty
of separation up to the point that Ref1, Ref2, and Ext have
a minimal improvement. To that extent, for the piece by

Bruckner, extending the boundaries of the notes (Ext) does
not achieve significantly better results than the raw output of
the alignment (Ali).

As seen in Figure 8, having a ground truth alignment
(GT) helps improving the separation, increasing the SDR
with 1–1.5 dB or more for all the test cases. Moreover, the
refinement methods Ref1 and Ref2 increase SDR for most of
the pieces with the exception of the piece by Mahler. This
is due to an increase of SIR and decrease of interferences
in the signal. For instance, in the piece by Mozart, Ref1 and
Ref2 increase the SDR with 1 dB when compared to Ext. For
this piece, the difference in SIR is around 2 dB. Then, for
Beethoven, Ref1 and Ref2 increase 0.5 dB in terms of SDR
when compared to Ext and 1.5 dB in SIR. For Bruckner, solely
Ref2 has a higher SDR; however SIR increases with 1.5 dB in
Ref1 and Ref2. Note that not only do Ref1 and Ref2 refine
the time boundaries of the notes, but also the refinement
happens in frequency, because the initialization is done with
the contours of the blobs, as seen in Figure 7. This can also
contribute to a higher SIR.

Third, we look at the influence of the estimation of note
offsets: INT and NEX, and the tolerance window sizes, T1
and T2, which accounts for errors in the alignment. Note
that for this case we do not include the refinement in the
results and we evaluate only the case Ext, as we leave out
the refinement in order to isolate the influence of T1 and
T2. Results are presented in Figure 9 and show that the best
results are obtained for the interpolation of the offsets INT.
This relates to the results presented in Section 6.5.1. Similarly
to the analysis regarding the refinement, the results are worse
for the pieces by Mahler and Bruckner, and we are not able
to draw a conclusion on which strategy is better for the
initialization, as the error bars for the ground truth overlap
with the ones of the tested cases.

Fourth, we analyze the difference between the PARAFAC
model for multichannel gains estimation as proposed in
Section 5.1, compared with the single channel estimation of
the gains in Section 3.4. We performed a one-way ANOVA
on SDR and we obtain a 𝐹-value = 1.712 and a 𝑝-value =
0.1908. Hence, there is no significant difference between
single channel and multichannel gain estimation, when we
are not performing postprocessing of the gains using grain
refinement. However, despite the new updates rule do not
help, in the multichannel case we are able to better refine
the gains. In this case, we aggregate information all over
the channels, and blob detection is more robust, even to
variations of the binarization threshold. To account for that,
for the piece by Bruckner, Ref2 outperforms Ref1 in terms of
SDR and SIR. Furthermore, as seen in Table 4 the alignment
is always better for Ref2 than Ref1.

The audio excerpts from the dataset used for evaluation,
as well as tracks separated with the ground truth annotated
score are made available (http://repovizz.upf.edu/phenicx/
anechoic multi/).

7. Applications

7.1. Instrument Emphasis. The first application of our ap-
proach for multichannel score-informed source separation
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Figure 8: Results in terms of SDR, SIR, AR, and ISR for the NMF gains initialization in different test cases.

is Instrument Emphasis, which aims at processing multitrack
orchestral recordings. Once we have the separated tracks,
it allows emphasizing a particular instrument over the full
orchestra downmix recording. Our workflow consists in
processing multichannel orchestral recording from which
the musical score is available. The multitrack recordings are
obtained froma typical on-stage setup in a concert hall, where
multiple microphones are placed on stage at certain distance
of the sources.The goal is to reduce leakage of other sections,
obtaining enhanced signal for the selected instrument.

In terms of system integration, this application has
two parts. The front-end is responsible for interacting with
the user in the uploading of media content and present
the results to the user. The back-end is responsible for
managing the audio data workflow between the different
signal processing components. We process the audio files
in batch estimating the signal decomposition for the full
length. For long audio files, as in the case of symphonic
recordings, the memory requirements can be too demanding
even for a server infrastructure. Therefore, to overcome
this limitation, audio files are split into blocks. After the

separation has been performed, the blocks associated with
each instrument are concatenated, resulting in the separated
tracks. The separation quality is not degraded if the blocks
have sufficient duration. In our case, we set the block duration
to 1 minute. Examples of this application are found online
(http://repovizz.upf.edu/phenicx/) and are integrated into the
PHENICX prototype (http://phenicx.com/).

7.2. Acoustic Rendering. The second application for the sep-
arated material is augmented or virtual reality scenarios,
where we apply a spatialization of the separated musical
sources. Acoustic Rendering aims at recreating acoustically
the recorded performance from a specific listening location
and orientation, with a controllable disposition of instru-
ments on the stage and the listener.

We have considered binaural synthesis as the most suit-
able spatial audio technique for this application. Humans
locate the direction of incoming sound based on a number of
cues: depending on the angle and distance between listener
and source, the sound will arrive with a different intensity
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offsets (T1 and T2). GT is the ground truth alignment and Ali is the
output of the score alignment.

and at different time instances at both ears. The idea behind
binaural synthesis is to artificially generate these cues to be
able to create an illusion of directivity of a sound source
when reproduced over headphones [43, 44]. For a rapid
integration into the virtual reality prototype, we have used
the noncommercial plugin for Unity3D of binaural synthesis
provided by 3DCeption (https://twobigears.com/index.php).

Specifically, this application opens new possibilities in
the area of virtual reality (VR), where video companies
are already producing orchestral performances specifically
recorded for VR experiences (e.g., the company WeMakeVR
has collaborated with the London Symphony Orchestra
and the Berliner Philharmoniker https://www.youtube.com/
watch?v=ts4oXFmpacA). Using a VR headset with head-
phones, theAcoustic Rendering application is able to perform
an acoustic zoom effect when pointing at a given instrument
or section.

7.3. Source Localization. The third application aims to esti-
mate the spatial location of musical instruments on stage.
This application is useful for recordings where the orchestra
layout is unknown (e.g., small ensemble performances) for
the instrument visualization and Acoustic Rendering use-
cases introduced above.

As for inputs for the source localization method we need
the multichannel recordings and the approximate position
of the microphones on stage. In concert halls, the recording
setup consists typically of a grid structure of hanging over-
headmics.The position of the overheadmics is therefore kept
as metadata of the performance recording.

Automatic Sound Source Localization (SSL) meth-
ods make use of microphone arrays and complex signal

processing techniques; however, undesired effects such as
acoustic reflections and noise make this process difficult,
being currently a hot-topic task in acoustic signal processing
[45].

Our approach is a novel time difference of arrival
(TDOA) method based on note-onset delay estimation. It
takes the refined score alignment obtained prior to the
signal separation (see Section 4.1). It follows two steps:
first, for each instrument source, the relative time delays
for the various microphone pairs are evaluated, and, then,
the source location is found as the intersection of a pair
of a set of half-hyperboloids centered around the different
microphone pairs. Each half-hyperboloid determines the
possible location of a sound source based on the measure of
the time difference of arrival between the two microphones
for a specific instrument.

To determine the time delay for each instrument and
microphone pair, we evaluate a list of time delay values
corresponding to all note onsets in the score and take the
maximum of the histogram. In our experiment, we have
a time resolution of 2.8ms, corresponding to the Fourier
transform hop size. Note that this method does not require
time intervals in which the sources to play isolated as SRP-
PHAT [45] and can be used in complex scenarios.

8. Outlook

In this paper, we proposed a framework for score-informed
separation of multichannel orchestral recordings in distant-
microphone scenarios. Furthermore, we presented a dataset
which allows for an objective evaluation of alignment and
separation (Section 6.1) and proposed a methodology for
future research to understand the contribution of the different
steps of the framework (Section 6.5). Then, we introduced
several applications of our framework (Section 7). To our
knowledge, this is the first time the complex scenario of
orchestral multichannel recordings is objectively evaluated
for the task of score-informed source separation.

Our framework relies on the accuracy of an audio-to-
score alignment system. Thus, we assessed the influence of
the alignment on the quality of separation. Moreover, we
proposed and evaluated approaches to refining the alignment
which improved the separation for three of the four pieces
in the dataset, when compared to other two initialization
options for our framework: the raw output of the score
alignment and the tolerance window which the alignment
relies on.

The evaluation shows that the estimation of panning
matrix is an important step. Errors in the panning matrix
can result into more interference in separated audio, or to
problems in recovery of the amplitude of a signal. Since
the method relies on finding nonoverlapping partials, an
estimation done on a larger time frame is more robust.
Further improvements on determining the correct channel
for an instrument can take advantage of our approach for
source localization in Section 7, provided that the method is
reliable enough in localizing a large number of instruments.
To that extent, the best microphone to separate a source is the
closest one determined by the localization method.
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When looking at separation across the instruments, viola,
cello, and double bass were more problematic in the more
complex pieces. In fact, the quality of the separation in our
experiment varies within the pieces and the instruments, and
future research could provide more insight on this problem.
Note that increasing degree of consonance was related to
a more difficult case for source separation [17]. Hence, we
could expect a worse separation for instruments which are
harmonizing or accompanying other sections, as the case of
viola, cello, and double bass in some pieces. Future research
could find more insight on the relation between the musical
characteristics of the pieces (e.g., tonality and texture) and
source separation quality.

The evaluation was conducted on the dataset presented
in Section 6.1. The creation of the dataset was a very
laborious task, which involved annotating around 12000 pairs
of onsets and offsets, denoising the original recordings and
testing different room configurations in order to create the
multichannel recordings. To that extent, annotations helped
us to denoise the audio files, which could then be used
in score-informed source separation experiments. Further-
more, the annotations allow for other tasks to be testedwithin
this challenging scenario, such as instrument detection, or
transcription.

Finally, we presented several applications of the proposed
framework related to Instrument Emphasis or Acoustic Ren-
dering, some of which are already at the stage of functional
products.
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