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ABSTRACT 
Musical ensembles, such as a string quartet, are a clear case of music 
performance where a joint interpretation of the score as well as joint 
action during the performance is required by the musicians. Of the 
several explicit and implicit ways through which the musicians 
cooperate, we focus on the acoustic result of the performance – in 
this case in terms of dynamics and intonation - and attempt to detect 
evidence of interdependence among the musicians by performing a 
computational analysis. We have recorded a set of string quartet 
exercises whose challenge lies in achieving ensemble cohesion rather 
than correctly performing one’s individual task successfully, which 
serve as a ‘ground truth’ dataset; these exercises were recorded by a 
professional string quartet in two experimental conditions: solo, 
where each musician performs their part alone without having access 
to the full quartet score, and ensemble, where the musicians perform 
the exercise together following a short rehearsal period. Through an 
automatic analysis and post-processing of audio and motion capture 
data, we extract a set of low-level features, on which we apply 
several numerical methods of interdependence (such as Pearson 
correlation, Mutual Information, Granger causality, and Nonlinear 
coupling) in order to measure the interdependence -or lack thereof- 
among the musicians during the performance. Results show that, 
although dependent on the underlying musical score, this 
methodology can be used in order to automatically analyze the 
performance of a musical ensemble. 

I. INTRODUCTION 
Joint performance in a musical ensemble is a very 

interesting case of social collaboration, since communication 
between the musicians is mostly implicit. It is generally 
difficult to assess to which degree the actions of one musician 
are driven by his/her own personal choices rather than by 
external influences. Broadly speaking, one can expect that the 
joint performance of a musical ensemble will sound different 
from an artificially synchronized collection of solo 
performances – and the reasons behind this expectation as 
well as the processes behind music performance that make it 
valid have been a popular research question in many fields.  

However, little work has been carried out in quantifying 
how well an ensemble is collaborating, given the musical 
score they are tasked with performing. This question goes 
beyond the concept of temporal synchronization, and can be 
potentially crucial for research purposes as well as educational 
or artistic applications. This article presents our ongoing work 
towards building a methodology capable of answering the 
above question – how strong is the interdependence among 
the members of a musical ensemble. By focusing on the 
acoustic result of the performance, it is our goal to assess the 
degree to which an ensemble is truly collaborating in shaping 
the final performance (as opposed to each musician simply 

performing their part in time with the others). Of course, 
answering this question by itself will not shed much light in 
the inner workings of joint music performance; however, it 
can be argued that such a step can assist in understanding such 
a complex phenomenon more thoroughly. 

A. Related work 
A significant amount of research has been carried out on 

the topic of ensemble performance synchronization. One 
strong trend of research deals with the theoretical modeling of 
the synchronization mechanisms, while there is also a large 
amount of empirical work based on experimental data. 
Naturally, synergies between the above represent a large 
amount of the existing literature. 

A theoretical description of joint musical performance can 
be found in (Keller, 2008), where the author focuses on three 
main sub-processes: auditory imagery, where the musician has 
his/her own anticipation of their own sound as well as the 
overall sound of the ensemble, prioritized integrative attention, 
where the musician divides his/her attention between their 
own actions and the actions of others, and adaptive timing, 
where the musician adjusts the performance to maintain 
temporal synchrony. The final process, essentially an error 
correction model where discrepancies between timing 
representations are detected, has its mathematical foundation 
in phase and period synchronizations. This description has 
been inspiring in designing an experimental framework where 
by manipulating the conditions of a controlled experiment we 
expect to measure differences in interdependence in different 
musical facets, such as intonation, articulation, dynamics, 
rhythm and/or timbre. 

An example where such experimental conditions are 
manipulated can be found in (Goebl & Palmer, 2009). Several 
interaction paradigms of a leader-follower relationship have 
there been tested for a piano duet, showing differences 
between providing solely audio, audio-visual or solely visual 
feedbacks for tempo synchronization. 

Other works focus their analysis on selected musical 
excerpts requiring specific skills. In (Moore & Chen, 2010), 
gesture data of two string quartet musicians performing a 
challenging synchronized fast sequence of note is analyzed. 
Their results show that the repetitive up-down bowing pattern 
of the two musicians exhibits the properties of an alternating 
renewal process related to the metrical structure of the piece. 

Another approach that is contextually similar has been 
carried out in (Glowinski et al, 2010). Their work focuses 
more on the social interactions between the musicians 
(specifically dominance) by studying the musicians’ head 
movements, suggesting that the leader in a musical ensemble 
is the musician whose movement is the least complex. 



Less work has been carried out in studying specific aspects 
of the produced sound. An important contribution can be 
found in for the case of singing voice in (Kalin, 2005), where 
the difference between singing solo versus singing in a 
barbershop quartet is investigated; his findings demonstrate 
that singers tend to separate their formants one from the other 
when singing together, as this helps to hear oneself better and 
thus facilitate intonation. Regarding the specific case of 
intonation adjustments, (Mason, 1960) discussed about the 
effect of joint performance on the choice of tuning 
temperament from a musicological point of view.  

However, to our knowledge, there exists no literature 
involving a computational approach to intonation adaptations 
or dynamics fluctuations. 

B. Outline 
In this article, we focus on validating a methodology for 

assessing the strength of interdependence in a string quartet,  
in terms of intonation and dynamics. Such a validation is 
carried out by applying the same methodology to recordings 
of joint performance and artificially synchronized solo 
recordings, and comparing the results of that methodology for 
both cases. 

Our methodology can be described as follows: first, a series 
of analysis and post-processing steps is performed on 
recorded music performance data originating from a set of 
specifically designed experiments. Through this procedure, 
we extract a set of low-level features describing the aspect of 
performance we want to focus on (dynamics or intonation). 
Finally, we apply a set of numerical methods for quantifying 
interdependence, in order to assess the overall strength of the 
interdependence among the ensemble. 

The rest of this article is structured as follows: in chapter 2, 
we describe our methodology for experimental data 
acquisition and analysis. In chapters 3 and 4, we present our 
interdependence analysis methodology and the obtained 
results for the case of Intonation and Dynamics, respectively. 
Finally, in chapter 5 we briefly discuss the implications of the 
obtained results as well as the future directions towards which 
we can expand our approach. 

II. METHODOLOGY 
Our experiments are based on an exercise handbook for 

string quartets (Heimann, 1995), specifically designed to 
assist in improving the ensemble’s capabilities for 
collaborative expression. These exercises consist of short, 
simple musical tasks whose challenge lies in achieving overall 
synchrony rather than correctly performing one’s individual 
task successfully. The material is divided into six categories, 
with each category containing a number of exercises dealing 
with a different aspect of ensemble performance: Intonation, 
Dynamics, Unity of Execution, Rhythm, Phrasing, and Tone 
production/Timbre; depending on the exercise, there can also 
be instructions/annotations on what is the specific goal that 
must be achieved by the quartet. 

During the recordings we simultaneously capture two types 
of data: the sound produced by the musicians via piezoelectric 
pickups and conventional microphones, as well as the 
sound-producing gestures of each musician via a wired 
motion tracking system. Although only audio features are 
used in this particular study, the low-level features extracted 

from the motion capture data are used in the data 
post-processing steps. 

Following signal acquisition, the acquired data is 
post-processed by performing a note level score-performance 
alignment as well as a temporal matching between the 
different experimental conditions. 

Finally, we employ a number of computational methods for 
assessing the strength of the interdependence among the four 
musicians.  

A. Experimental material 
For the present work, we focus our study on one Intonation 

exercise and two Dynamics exercises; Figures 1, 2, and 3 
show a small excerpt from each exercise. 

 
Figure 1.  Short excerpt from the Intonation exercise 

 
Figure 2.  Short excerpt from the first Dynamics exercise 

(dynamics1) 

 
Figure 3.  Short excerpt from the second Dynamics exercise 

(dynamics2) 

 
We record the musicians’ performance in two experimental 

conditions: solo and ensemble. In the first condition (solo), 
each musician must perform their part alone without having 
access to the full ensemble score nor the instructions that 
accompany the exercise. In this way we wish to eliminate any 
type of external influence on the performance, be it 
restrictions imposed by other voices of the ensemble or 
instructions by the composer that are not in relation to the 
individual score of the performer. Following the solo 
recordings of each quartet member, the group of musicians is 
provided with the full ensemble score plus the composer 
instructions; they are then left to rehearse for a short period 
(~10 minutes) until they are able to fulfill the requirements of 



the exercise. Following the rehearsal, the quartet is recorded 
in the second experimental condition (ensemble) performing 
the exercise as a group. 

In the case of exercises with annotations on the score, as in 
the Intonation exercise studied in this article (see Fig. 1), we 
split the ensemble condition in two sub-conditions: ensemble1, 
where the quartet rehearses and performs the exercise without 
the annotations, and ensemble2, where the quartet rehearses 
the exercise again with the annotations added to the score and 
then records the final take. 

B. Data acquisition 
Both audio and motion capture data are acquired 

simultaneously and synchronized in real time using a master 
clock generator as well as a linear timecode audio signal.  

Individual audio for each musician is captured through the 
use of piezoelectric pickups attached to the bridge of the 
instrument. The overall sound of the ensemble is captured 
using a cardioid medium diaphragm condenser microphone, 
as well as a binaural stereo recording dummy head; the 
binaural stereo recording is then used to set the gain of each 
individual pickup signal so that the audio level of each 
instrument corresponds to the overall acoustic result. For each 
individual pickup signal, we extract two audio features: the 
fundamental frequency (F0) as an estimation of pitch (using 
the YIN (de Cheveigne & Kawahara, 2002) algorithm), and 
the root mean square audio energy as an estimation of audio 
intensity. 

Besides the audio signals, instrumental - i.e. 
sound-producing - gestures are also acquired through the use 
of a wired MOCAP system, as detailed in (Maestre, 2009). By 
analyzing the raw MOCAP data, a set of bowing features is 
extracted; such features include bow transversal velocity, bow 
pressing force, bow-bridge distance, bow tilt & inclination, et 
cetera. 

C. Data post-processing 
For every recording, a semi-automatic alignment between 

the performance and the music score is performed using a 
dynamic programming approach, a variation of the 
well-known Viterbi algorithm. This approach focuses into 
three main regions of each note: the note body and two 
transition segments (onset and offset). Different costs are 
computed for each segment, using features extracted by the 
audio (RMS audio energy, Fundamental frequency) as well as 
the bowing features described above. Finally, the optimal note 
segmentation is obtained so that a total cost (computed as the 
sum of the costs corresponding to the complete sequence of 
note segments) is minimized. This method, which can be seen 
in more detail in (Maestre, 2009), has so far provided robust 
results that only in few occasions require manual correction. 

Since in the solo case the musicians were not performing 
simultaneously, there is no temporal coordination to ensure 
that the recordings are temporally matched; even if the four 
signals are manually shifted so that the first note onsets 
coincide, given time they will start to drift apart up to the 
point where the same sample corresponds to different points 
in the score. In order to focus on one aspect of the 
performance at a time, it is necessary to eliminate the above 
phenomenon by artificially synchronizing the recordings. 

Our solution is to perform a non-destructive temporal 
warping of the solo recordings of each experiment in order to 
impose the note onsets and offsets of their respective 
ensemble recordings; the warping is not applied directly to the 
recorded sound, but rather to the features that are extracted 
from it. This is achieved by resampling the solo feature 
between each note onset and the note offset to match the 
duration of the equivalent ensemble note; then, this segment is 
temporally shifted so that the temporal position of the note 
onset and offset matches that of the ensemble note. 

D. Methods for assessing interdependence 
Following the post-processing steps, we obtain a set of four 

time series (one per each musician). Since our goal is to assess 
the strength of the interdependence among the musicians, we 
utilize four different numerical methods of measuring 
interdependence on our time series: Pearson correlation, 
Mutual Information, Nonlinear coupling coefficient, and 
Granger Causality. 

Each of the above methods is based on a different 
methodology and originates from different fields of research. 
It is not practical to include an in-depth formulation of each 
method in the current article; for an excellent review we 
redirect the reader to (Pereda et al., 2005). However, for the 
sake of coherence, we provide a summary of each method in 
the following paragraphs; the first two methods that are 
presented are symmetrical and the last two directional; the 
difference between the two being that a directional method 
can also assess the direction of influence between two 
interacting systems besides the strength of the 
interdependence. 

The Pearson correlation coefficient is the most common 
method utilized for quantifying the linear dependence 
between two variables. The method’s output is a value in the 
[-1,1] range, with a value of zero denoting a complete absence 
of linear dependence while positive or negative values denote 
direct or inverse correlation, respectively. Four our case of 
four interacting time series, we calculate the average 
correlation value of the whole ensemble by taking the mean of 
all six correlation values, one for every possible unordered 
pair between the time series. 

Mutual Information, a method originating from Information 
Theory, measures the difference between two types of joint 
entropy; the joint entropy of the two variables as measured 
from the data, and the joint entropy of the two variables as if 
they were independent. The method’s output is equal to zero 
for independent time series, or a non-bounded positive value 
representing the amount of information that one gains about 
one time series by knowing the outcome of the other. For our 
case, the overall Mutual Information value for the four time 
series is calculated in the same way as for the Pearson 
Correlation. 

Granger Causality, a statistical concept originating from 
the field of Econometrics, follows the formulation that if one 
time series is causal to another, its past values should help in 
predicting future values of the time series it is causes. Our 
estimation for the overall causality of the ensemble uses the 
total causal density measure, a [0,1] bounded value with zero 
denoting a complete lack of causal interactivity. 

The Nonlinear coupling coefficient, a measure originating 
from the field of Computational Neuroscience, consists of a 



variety of nonlinear interdependence measures that quantify 
the signature of directional couplings between two time series; 
it is assumed that the processes behind the time series are 
characterized by separate deterministic dynamics which both 
exhibit an independent self-sustained motion. Past values of 
both time series are used to reconstruct their dynamics in 
order to assess the coupling strength. Of these measures, we 
use the measure L, which was recently shown to be of higher 
sensitivity and specificity for directional couplings than 
previous approaches. For a more in depth explanation of the 
method as well as its mathematical formulation, we direct the 
reader to (Chicharro & Andrzejak, 2009) where the method 
was originally introduced. Since this method is directional, we 
calculate the average coupling strength of the whole ensemble 
by taking the mean of all twelve coupling values, one for 
every possible ordered pair between the time series. 

 

III. INTONATION 
The intonation exercise studied in this article consists of 

consecutive four-note chords, with each note performed by 
one musician. A short excerpt of the exercise can be seen in 
Figure 1; the reader can observe that there are annotations on 
the score, which instruct the musicians on how they must 
adjust their intonation as well as on whom they must adjust it 
to, alternating between an equal temperament system to just 
intonation. An upward-facing arrow signifies slightly sharper 
intonation, while a downward-facing arrow signifies a slightly 
flatter one. 

Selective adjustments to each musician’s intonation are 
fundamental in order to achieve harmonic consonance for the 
overall sound; these adjustments can be attributed to many 
factors, starting from the musicians’ own perception of correct 
intonation besides external influences. Given the complexity 
of the problem, a first goal is to develop a methodology that is 
capable of quantifying the degree to which the intonation 
adjustments in a group of musicians are a result of 
interdependence among them; a previous attempt at 
addressing this problem can be found in (Papiotis et al., 
2011). 

A. Extraction of intonation adjustments 
The pitch contour of each recorded excerpt is obtained by 

applying a logarithmic transformation to the extracted 
fundamental frequency (akin to pitch cent conversion). In 
order to extract the adjustments of each musician’s intonation, 
we consider the score as ’reference pitch’, i.e. perfect, 
non-adjusted intonation according to the equal temperament 
system; this representation of the performance-aligned score 
is then subtracted from the obtained pitch contour (or the 
warped pitch contour for the solo condition). This final feature 
is our estimation of intonation adjustment, with positive 
values indicating a note played slightly sharper and negative 
values indicating a note played slightly flatter than equal 
tempered intonation, respectively. 

B. Overall intonation statistics 
As an overview of the differences between the three 

experimental conditions (solo, ensemble1 for the recordings 
without annotations and ensemble2 for the recordings with 
annotations), we calculated the standard deviation of the 

intonation adjustments of each musician; the result can be 
seen in Table 1 : 

Table 1.  Standard deviation (SD) of intonation adjustments per 
musician, in all three experimental conditions. 

SD (in octaves), intonation Musician 
 ensemble2 ensemble1 solo 

V1 0.0081 0.0076 0.0059 
V2 0.0083 0.0068 0.0070 

VLA 0.0082 0.0059 0.0070 
CLO 0.0063 0.0047 0.0049 

 
It can be observed that the standard deviation is slightly 

increased in the ensemble2 condition in comparison to the 
solo condition, with ensemble1 located between the above 
conditions. This suggests that after being provided with the 
score annotations and practicing, the musicians tended to 
move away from an equal temperament tuning system; we 
have not focused on this phenomenon for the time being, 
although it is an important future step. 

C. Interdependence results 
We apply the four previously introduced interdependence 

methods on the intonation adjustments data, in the manner 
that was described in fourth section of chapter II.  

Correlation values per musician pairs as well as average 
correlation values can be seen in Table 2: 

Table 2. Correlation coefficient of intonation adjustments per 
musician, for all three experimental conditions. 

Pearson correlation, 
intonation 

Musician 
pair  

 ensemble2 ensemble1 solo 
V1, V2 0.315 0.297 0.098 

V1, VLA -0.045 0.037 -0.350 
V1, CLO -0.210 -0.365 -0.086 
V2, VLA -0.212 0.021 0.090 
V2, CLO -0.421 -0.508 -0.010 

VLA, CLO -0.100 -0.145 -0.099 
Average -0.112 -0.110 -0.059 
 
One can definitely observe similarities among the two 

ensemble set-ups as well as dissimilarity between the solo and 
ensemble set-ups; it can also be observed that the correlation 
values for the two ensemble set-ups is sporadically higher 
than the solo set-up. Nevertheless, this is not particularly 
consistent (such as the case of the violin1/viola pair in the 
solo condition); this keeps us still cautious against making an 
assumption regarding interdependence from the correlation 
values. 

For the rest of the interdependence methods, we performed 
a sliding window analysis of interdependence; there are three 
main reasons behind this choice. First, as we are studying 
variables that change with time it is natural that the amount of 
interdependence will also vary; something which can 
potentially reveal the role of the musical score in the 
performance, as the collaborative task that must be jointly 
carried out by the musicians. Second, by windowing the 
signals by the average note length, we can reduce possible 
non-linearities and non-stationarities in out data, thus making 



the interdependence measures more reliable. Finally, we can 
deal with a smaller amount of data at a time, which removes 
the need to downsample our signals in order to cope with 
memory requirements. The analysis window was set equal to 
the average note length.  

The mean value of interdependence across all analysis 
windows for each method following this analysis can be seen 
in Table 3 : 

Table 3.  Nonlinear coupling (NC), Mutual Information (MI) and 
Causal Density (CD) of intonation adjustments, for all three 
experimental conditions. 

Interdependence strength, 
intonation Method 

 
ensemble2 ensemble1 solo 

NC 0.334 0.307 0.166 
MI 0.574 0.521 0.224 
CD 0.034 0.025 0.024 

 
It can be seen that the nonlinear methods are successful at 

separating the solo and two ensemble set-ups. We ran a 1-way 
ANOVA test to quantify the separation between the three 
set-ups: the results showed that both the Nonlinear coupling 
coefficient as well as Mutual Information could successfully 
separate the interdependence means of one set-up from the 
other at a confidence level larger than 95%, with the solo set- 
up showing significantly less interdependence than the two 
ensemble set-ups for both interdependence methods. One the 
other hand, Granger causality failed to provide significant 
separation for the three experimental set-ups; although we 
hypothesize that this is due to the nonlinearity of our data, it is 
necessary to investigate towards the validation of this 
hypothesis in future work. 

IV. DYNAMICS  
For the case of dynamics, two different exercises have been 

studied (referred to as dynamics1 and dynamics2 from here 
on). Short excerpts of these exercises can be seen in Figures 2 
and 3. Both exercises consist of consecutive four-note chords; 
in dynamics1, the quartet is tasked with simultaneously 
changing the dynamics value from one bar to the other, while 
keeping the dynamics steady for the duration of the bar. In 
dynamics2, the quartet must perform a series of crescendos 
and decrescendos to and from different dynamics values for 
every bar. 

A. Estimation of dynamics intensity 
For each one of the bridge pickup recordings, the Root 

Mean Square (RMS) Energy of the audio signal is computed 
in the time domain over a sliding window of 40 milliseconds. 
The values of RMS energy are converted to a logarithmic 
scale, in order to obtain an estimation of loudness that is 
closer to human auditory perception (as per Fechner’s law). 
Finally, the log-RMS energy of the signal is smoothed using a 
median filter with a window of 300 milliseconds. 

It has been reported (Cheng, 2008) that consecutive values 
of musical dynamics (such as the transition from pianissimo to 
piano of from forte to fortissimo) are equally distanced by a 
margin of roughly 10 dB – which is consistent with our use of 
log-RMS as an descriptor for dynamics intensity. However, it 

is understood that musical dynamics belong on a relative scale 
rather than being tied to absolute values of loudness. 

B. Overall dynamics statistics 
As an overview of the differences between the solo and 

ensemble experimental conditions, we have calculated two 
statistics: the mean standard deviation of the dynamics of each 
musician, as well as the mean absolute difference between 
performers, in terms of dynamics. 

1)  Mean standard deviation of dynamics. 
For every note of a recording, we calculate the standard 

deviation of the log-RMS feature; the mean standard deviation 
is obtained by averaging this value over all notes. Table 4 
shows the obtained values. 

Table 4. Mean standard deviation (MSD) of dynamics per 
musician, for both exercises and experimental conditions. 

MSD (in dB), 
dynamics1 

MSD (in dB), 
dynamics2 Musician 

 
ensemble solo ensemble solo 

V1 2.7906 2.3865 3.8656 2.3026 
V2 3.5746 1.7824 3.2393 1.6585 

VLA 2.9497 2.2292 3.8071 2.3192 
CLO 1.8997 1.4412 3.2745 1.6118 

 
It can be observed that for both exercises, the mean 

standard deviation of the solo condition is consistently lower 
than that of the ensemble condition. This hints at a more 
steady behaviour for the solo case, presumably due to the lack 
of external perturbations from the other musicians. 

2)  Mean absolute difference between performers. 
For every note of a recording, we calculate the absolute 

difference of log-RMS values between every possible pair of 
performers; the mean of these values is calculated as the mean 
absolute difference among the performers, as an estimation of 
how consistently similar are the values of dynamics among 
the ensemble. Table 5 shows the obtained values. 

Table 5.  Mean absolute difference (MAD) between performers, 
for both exercises and experimental conditions. 

MAD (in dB), 
dynamics1 

MAD (in dB), 
dynamics2 

Musician 
pair  

 ensemble solo ensemble solo 
V1, V2 8.2125 5.8849 9.3396 4.5758 

V1, VLA 14.5180 17.0905 13.7721 18.7440 
V1, CLO 18.6416 19.5397 23.4995 21.2992 
V2, VLA 6.6795 17.7792 4.3054 14.9096 
V2, CLO 10.8925 20.3437 12.9974 17.2552 

VLA, CLO 4.7863 3.1215 8.2695 4.4603 
Average 9.5525 17.4348 11.1685 16.0824 
 
It can be observed that for both exercises, the mean 

absolute difference of the solo condition is generally higher 
than that of the ensemble condition; which hints at a lack of 
cooperation between performers in order to achieve similar 
dynamics throughout the exercise. 

3)  Comments. 



The above statistics, while indicative of the differences 
between the two experimental conditions solo and ensemble, 
are by no means sufficient for decidedly separating them; 
moreover, their potential to provide insight into the strength of 
interdependence among the performers is limited. The next 
section will attempt to approach this problem. 

C. Interdependence results 
Correlation values per musician pairs as well as average 

correlation values can be seen in Table 6: 

Table 6. Correlation coefficient of log-RMS per musician, for 
both exercises and experimental conditions. 

Pearson correlation, 
dynamics1 

Pearson correlation, 
dynamics2 

Musician 
pair  

 ensemble solo ensemble solo 
V1, V2 0.9267 0.8806 0.9427 0.9615 

V1, VLA 0.9207 0.8719 0.9042 0.8895 
V1, CLO 0.9291 0.8658 0.9081 0.8595 
V2, VLA 0.9094 0.8880 0.9210 0.9346 
V2, CLO 0.9002 0.8844 0.9247 0.9140 

VLA, CLO 0.9345 0.9584 0.9212 0.9400 
Average 0.9237 0.8825 0.9211 0.9243 
 
It can be seen by the above table that correlation is not 

capable of showing a significant difference between the 
ensemble and solo conditions. Besides that, it is clear that all 
of the studied features are very correlated. 

For the rest of the interdependence methods, we performed 
a sliding window analysis of interdependence, in this 
particular case using a short (1 second) as well as a long (5 
seconds) analysis window. The mean value of 
interdependence for each method across all analysis frames 
can be seen in Table 7: 

Table 7. Nonlinear coupling (NC), Mutual Information (MI) and 
Causal Density (CD) of log-RMS, for both exercises and 
experimental conditions. 

Interdependence 
strength, 

dynamics1 

Interdependence 
strength, 

dynamics2 
Method 

 

ensemble solo ensemble solo 
NC, short window 0.8276 0.7438 0.9333 0.8589 
NC, long window 0.7441 0.6212 0.8257 0.6943 
MI, short window 0.7149 0.6398 0.9123 0.7680 
MI, long window 0.7801 0.7463 1.2372 0.9763 
CD, short window 0.0046 0.0011 0.0063 0.0018 
CD, long window 0.0059 0.0044 0.0041 0.0040 
 
It can be observed that the interdependence strength is 

consistently higher for all ensemble conditions – with some 
reservation for the case of Granger Causality where the 
separation between ensemble and solo is small. However, a 
1-way ANOVA analysis of the interdependence strength of 
each analysis window failed to provide significant separation 
between the ensemble and solo conditions at a 95% 
confidence level. Another observation is that the larger 
analysis window provides better separation between the two 
experimental conditions for the nonlinear coupling coefficient; 
a logical outcome given the fact that the calculation of the 

nonlinear coupling coefficient relies on past values in order to 
assess the coupling strength. 

It is evident by looking at the two last tables is that values 
of interdependence are generally high, compared to those 
obtained for the intonation analysis; an important difference 
between the two cases being that in the intonation case the 
analyzed feature is not pitch itself but pitch adjustments, 
which to a certain degree eliminates the effect of the score on 
the interdependence strength. For the current case of 
dynamics, merely the existence of synchronized crescendi as 
well as simultaneous changes in dynamics is bound to 
increase the overall interdependence strength, making 
significant separation between solo and ensemble difficult. 
The following section deals with our attempt to reduce the 
effect of the score on the interdependence strength. 

1)  Score-Independent analysis of interdependence 
Separating the effect of the score is a feasible task for the 

case of intonation, since the ‘reference pitch’ of each note is 
already known from the score. In the case of dynamics 
however, there is no absolute value for dynamics intensity and 
therefore no objective reference through which ‘dynamics 
adjustments’ can be estimated and removed from our features. 

In order to reduce the effect of the underlying score as 
much as possible, we employed a rough ‘dynamics 
adjustments’ extraction method which is outlined as follows: 
for every note in the musical score, we subtract a linear trend 
from the log-RMS feature; this way, the note-to-note changes 
in dynamics are greatly reduced, making temporal fluctuations 
of dynamics within each note’s boundaries much more 
prevalent. It must be noted however, that this affects the 
studied features in a biased way since the removed linear 
trend does not necessarily coincide with the ‘reference’ 
dynamics value for each note, which remains undefined. 
Mean interdependence values for the above scenario are 
shown in Table 8: 

Table 8. Score-independent Nonlinear coupling (NC), Mutual 
Information (MI) and Causal Density (CD) of log-RMS, for both 
exercises and experimental conditions. 

Interdependence 
strength, 

dynamics1 
(score-independent) 

Interdependence 
strength, 

dynamics2 
(score-independent) 

Method 
 

ensemble solo ensemble solo 
NC 0.6427 0.4698 0.7302 0.5186 
MI 0.3076 0.0896 0.6272 0.0288 
CD 0.0209 0.0202 0.0159 0.0163 

 
Two observations can be made from the above table. First, 

the overall strength of interdependence has been reduced. 
Second, the separation between ensemble and solo is much 
larger, again with the exception of Granger Causality. An 
1-way ANOVA analysis of the interdependence strength for 
each note did show significant separation at a 95% confidence 
level, for the Nonlinear coupling as well as the Mutual 
Information interdependence methods.  

The above can point to two main conclusions; first, that the 
musical score is indeed a very important factor in a musical 
ensemble’s interdependence. Second, that the non-linear 
interdependence methods are not only capable at detecting 



higher interdependence strength for the ensemble condition as 
compared to the solo condition, but also at quantifying the 
overall strength of interdependence. 

V. DISCUSSION 
In this article we have presented a methodology for 

assessing the strength of interdependence in a string quartet, 
in terms of intonation and dynamics. A set of methods of 
assessing interdependence have been tested and presented; the 
results show that it is possible to, solely by studying one of 
these aspects at a time, distinguish between joint performance 
and artificially synchronized solo performances.  

For the case of intonation, we have shown that the methods 
suited for nonlinear interactions (Mutual Information, 
Nonlinear coupling coefficient) are capable of detecting 
increased interdependence in the ensemble experimental 
condition as compared to the solo condition. Moreover, the 
addition of annotations on the score denoting a change from 
an equal-tempered system to just intonation caused a slight 
increase in interdependence, which helps in shedding some 
light on how the music score affects the ensemble’s behavior. 

For the case of dynamics, we have shown that the same 
interdependence methods are capable of showing higher 
levels of interdependence for the ensemble condition; it was 
also demonstrated that by reducing the importance of the 
score over the temporal fluctuations of dynamics, the 
separation between ensemble and solo was clearer, while the 
overall strength of interdependence was reduced. 

However, despite the above encouraging results, there are 
still many directions in which we can advance and improve 
our methodology. For example, although we can successfully 
detect the overall interdependence strength, we have so far not 
addressed its temporal evolution in connection to the score.  

Another direction in which we wish to advance is in 
characterizing inter-ensemble relationships and their 
fluctuations along the piece; one obvious next step would be 
to attempt to extract information on leadership, although the 
social aspect of a leader may not coincide with what is 
measured using our tools. 

Although this article is focused on testing and validating a 
methodology, such a methodology is of little use without 
application. One can envision the application of the above 
both in revealing the inner workings of collaborative 
performance, as well as aiding in its realization; we intend to 
investigate towards bringing such a scenario closer to reality. 
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