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Abstract

We present a novel study on the behavior of human finger-tapping. This technique
can be understood as the casual and rhythmic hitting of objects for the expression
of a musical idea, even when it is unconscious or sometimes just for stress relief or
because of nervousness. The idea that underlies this project is the connection of
spontaneous finger-tapping with human-computer interaction and automatic ar-
rangement of percussion. An application under this functional concept would
certainly be a useful tool for the home-studio producer. Our first step was to study
the behavior of spontaneous rhythmic expression as well as the needs of inexpe-
rienced users in the context of rhythm expression. To this end, we first collected
a dataset by recording spontaneous finger-tapping patterns performed by subjects
from different music backgrounds. Then, an online survey gathering information
about the recording was submitted to the volunteers. Further analysis of the sur-
vey answers and several spectro-temporal features extracted from the audio con-
tent allowed to infer meaningful information about this behavior. Results of this
experiment suggested that there are two clear ways for finger-tapping depending
on the music training of the performer. We demonstrate the former hypothesis by
conducting a classification task between onsets from both finger-tapping methods.
We achieved a 99% of accuracy in recognizing drumming expertise levels (expert
vs. nave) by means of using onset-related acoustic features. This suggested that
people with percussion training are more concerned about timbre aspects and,
thus, they take advantage of this quality of sound to provide differences to each
stroke when finger-tapping, as opposed to non-expertise individuals. Secondly,
we aimed to convert all the gathered knowledge into a creative tool for arranging
drum patterns. Therefore, we describe a system for finger-tapping transcription as
an underlying step in the usage of this behavior as a mean for improving human-
computer interaction in the context of computer music creation. The system can
be divided into three parts: an onset detection and feature extraction step, in which
a set of frame-wise time-dependent features are calculated. These features are fed
into a k-Means clustering/classification step, in which the feature representation
of the finger-tapped onsets are clustered, assigned to a drum sound class and then
translated into a drum MIDI-like symbolic representation.

Keywords: human finger-tapping, rhythm expression analysis, human-computer
interaction, interfaces, music creation
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Chapter 1

INTRODUCTION

Finger-tapping, also known as tap picking, is popularly known as a guitar and
bass technique in which the strings of the instrument are fretted against the finger-
board in order to produce legato notes [2]. This technique can be understood in a
more general sense though, not only in the context of string music instruments but
from a more cognitive perspective, defining it as the casual and rhythmic hitting
of objects for the expression of a musical idea, even when it is unconscious or
sometimes just for stress relief or because of nervousness. Moreover, and given
that the hands and feet are human’s main limbs for interacting with the environ-
ment, it can be assumed that finger-tapping, together with foot-tapping, is one of
the most straightforward ways for the spontaneous expression of rhythm. Notice
the behavioral connotation of the provided definition; beyond a simple technique
for playing a certain instrument, we are referring to it as a human habit and as
such, widely extended. In fact, this enjoyable behavior can be clear for all to see
in everyday situations such as listening or composing music, killing time in long
waits, speaking on the telephone, and many more. Despite being a broad and in-
nate habit granted by our physiology, few music technologies take advantage of
this trend for improving human-computer interaction, specially, and surprisingly
given the clear suitability of those technologies for the creation of digital drums
in computer music production.

Drum composition represents one of the most arduous tasks in computer music
production. Particularly for those producers that do not have a deep percussion ex-
perience or may not be familiar with digitized drum editing and sequencing, many
difficulties appear when it comes to project a conceived and ideal drum pattern,
in the performer’s mind, to the Digital Audio Workstation (DAW). This is due
either to the lack of knowledge from the part of the producer or to the unavailabil-
ity or limitations of the commercial equipment for interacting with this musical
dimension. An example of these devices are drum machines, MIDI (Musical In-
terface for Digital Instruments) trigger pads, MIDI drums and other user-oriented



technologies such as Air-drums' or sensor gloves that take advantage of the er-
gonomics of the hands?. In general, the interface design baseline for this tools is
to provide a set of sensitive surfaces that trigger a certain sound in the computer
when they are hit. Many drum machines implement a second layer for creating
patterns in time (e.g. Roland TR-808, Akai MPC 2000, etc). In other words,
there are “pads” that just trigger, but there are also “step sequencers”, that trigger
in time. In addition to their relative high cost, these technologies are generally
constrained to their specific mode of use, which is hard for non-experienced users
and, of course, does not provide any further processing other than the translation
of the sequence of strokes into a MIDI-like symbolic representation. Any further
arrangement in the MIDI pattern is left in the user’s hands. Also, the existence
of a huge amount of drum sounds and rhythm patterns has added the challenge of
choosing style, as the combination and musical interplay of these two aspects of
percussion. Deciding the appropriate drum sound set given a certain pattern re-
quires a great music experience and is crucial to the good cohesion of any musical
piece.

Music academia has traditionally understood arrangement or transcription as
a process aiming to adapt a certain song, composed for an ensemble or a specific
instrument, for a different target instrument [3]. From a general perspective, it
refers to the “musical reconceptualization of a previously composed work™ [4].
Generally, there are two major approaches for music arrangement. One is rewrit-
ing a piece of existing music with additional material. Apart from this, score
reduction approach reduces the original work from a larger score to a smaller
one. In other words, arranging is a process that adds new thematic material for
conferring musical variety (e.g. introductions, transitions, or modulations, and
endings) to a certain piece, through compositional techniques. In this work we
are particularly interested in the arrangement of rhythm. However, rhythm itself
has been source of debate, partly because it has often been identified with one or
more of its constituent (such as accent, metre, and tempo), but not wholly sep-
arated elements. Some theories require periodicity as the foundation of rhythm,
other include in it even non-recurrent configurations of movement. Moreover, the
concept of ‘rhythm varies between cultures (Indian music, Turkish, Arabian, etc).
On this basis, it is difficult to strictly define the role of rhythm arrangement. The
elements that make rhythm are pulse beat and measure; unit and gesture; alterna-
tion and repetition; tempo and duration; metric structure®. However, many music
producers do not know about rhythm theory and may not stick to this terminol-
ogy. Thus, we can expect that some of these elements may not be perceived or

"http://aerodrums.com/aerodrums-product-page/
Zhttps://learn.adafruit.com/midi-drum-glove/overview
3For further definitions of rhythm elements you may refer to [5, 4, 6]
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be imprecise in the context of spontaneous finger-tapping. For now, as conven-
tional wisdom would understand, the arrangement of rthythm can be understood
as a process aiming at bringing over an ideal rhythmic pattern, conceived in a par-
ticular subjects mind, to the one actually performed and recorded. The idea that
underlies this project is the connection of spontaneous finger-tapping with human-
computer interaction and automatic arrangement of percussion. We believe that
an application under this functional concept would certainly be a useful tool for
the home-studio producer.

1.1 Motivation and goals

In the above described context, the interest for studying this particular human
behavior emerges. As we will see in the next Chapter, research on human finger-
tapping is very limited. Also, my experience into computer music production has
made me aware of the difficulties that involves drum composition. The selection
of the appropriate drum-kit, deciding the number of percussion layers, the interac-
tion with the controller (if you have!), creating coherent variations of the pattern
you played, etc. These facts motivate the study of finger-tapping from a perceptual
perspective as well as within the framework of human-computer interaction. The
purpose is to gather knowledge about this topic and, hopefully, develop a new cre-
ative tool for interacting with drums taking advantage of these preexisting human
habits. To this end, we have stated the following preliminary goals:

e Study the behavior of spontaneous rhythmic expression
e Study the needs of inexperienced users in the context of rhythm expression

e Convert this knowledge into a creative tool for arranging drum patterns

1.2 Structure of the document

In Chapter two it is provided a deep insight into the state of the art related with
finger-tapping or with other general aspects that may contribute to the understand-
ing of rhythm and percussion. In Chapter three the methodology applied in the
research is presented, including the study of the user properties and context as
well as the development and evaluation of the potential software. In chapters four
results are presented and discussed. Chapter five provides a summary of the con-
tributions made in the scope of our research and presents suggestions for future
work.






Chapter 2

STATE OF THE ART

Different research fields have undertaken the study of human finger-tapping, in an
indirect way though. Most of the work that we found belongs to the following
areas:

e In medicine, as mean in the diagnose of hyperactivity [7] or Parkinson’s
disease [8] and other diseases.

e In the field of music cognition, as a mean for studying human beat tracking
[9] and other perceptual aspects of rhythm.

e Few research has been focused towards the understanding of this behavior
itself, specially from the perspective of musical expression. It can only
be found some psycho-motor studies on the velocity of finger-tapping for
percussionists against non-percussionists [10].

General tapping is characterized by a consecutive and rhythmic hitting of a
surface or several surfaces producing different sounds. The beater can either be a
stick, our extremities or any other object. Thus, we can expect that dynamics (i.e.
the strength of each stroke), the relative timbre between strokes (i.e. the acousti-
cal characteristics of the objects involved) and time (i.e. the relative location in
time of each stroke within the pattern) play an important role in the description
of human finger-tapping. Moreover, it is necessary the symbolic representation
of this information for attempting further arrangement processing. For this rea-
son, we find it useful as well as inspiring to get a general scope of the contribu-
tions made so far in the field of percussion sound analysis, rhythm classification
and other audio-driven technologies that integrate feasible human conducts, with
special emphasis in those involving finger-tapping. First we review some of the
works focusing on the description of timbre spaces for drum sound characteri-
zation and symbolic representation, which will provide a good insight into the
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feasible techniques for the classification and transcription of finger-tapping pat-
terns. Following, a deep insight of the different approaches for rhythm descrip-
tion and classification is provided. This topic could be useful for providing the
system with rhythm-wise knowledge for further high-level capabilities (symbolic
representation, pattern recommendation, event sound recommendation, intelligent
drum pattern enrichment, etc). Next, following the thread of applications that
make use of finger-tapping and other human common habits, we describe some of
the existent techniques for audio content retrieval based on query by tapping and
beat-boxing techniques. To conclude this section, it is provided an overview of
some high level applications such as sound recommendation and, from a general
perspective, automatic music arrangement systems.

2.1 Analysis and classification of timbre in percus-
sion instruments

Research on the classification of percussion sounds provides a good hint of the
kind of descriptors that are feasible for describing timbre in finger-tapping. Tim-
bre “is the quality of a musical note, sound, or tone that distinguishes different
types of sound production, such as voices and musical instruments, string instru-
ments, wind instruments, and percussion instruments” [11]. To our knowledge,
it is not straightforward the definition of a finger-tapping timbre space. We ex-
pect a common timbre component between different recordings derived from the
use of the hands, which provide a particular texture to the strokes. However, the
main contribution to the timbre quality of the generated sound will depend on the
surface and shape of the object being hit. Moreover, the transcription of each dif-
ferent stroke to sounds from a drum-set is not clear. On one side, we are interested
on classifying finger-tapped strokes into a set of classes from a drum-set family
taxonomy, but at the same time, the assignation of a drum class to a given stroke is
constrained to perceptual aspects. Thus, a general revision of the methods for per-
cussive sound description and its symbolic representation, both from a perceptual
and taxonomic perspective, is provided.

2.1.1 Taxonomic classification of percussive sounds

In 2002 there were already very accurate studies in the classification of drum
sounds. Herrera [12] studied the classification of standard isolated drum sounds
from a set of 634 drum samples and a taxonomy of up to nine instrument classes.
They carried out three category level classification with different machine learning
algorithms and feature selection techniques. Results demonstrated the relevance
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of Zero Crossing Rate (ZCR), third and fourth moments (Skewness and Kurtosis),
spectral and temporal centroid, relative energy in specific bands, and some low-
order Mel-Frequency Cepstral Coefficients (MFCC'’s), in the classification of this
kind of sounds. The same author reported very good performance rate at identi-
fying 33 different classes of acoustic and electronic drum sounds from a dataset
of 1976 sound samples [13]. Results show that log-transformed spectral features
perform considerably better than other combination, achieving a 84% of accuracy
and regardless of using or not feature selection. Further results show that it can
be described instrumental sounds beyond the class label to some more detailed
and idiosyncratic level: in this case, the name of two manufacturers. More recent
studies attempted to discriminate sounds produced by the same percussion idio-
phone instrument [14]. More specifically, sounds produced by different cymbal
types such as China, Crash, Hi-hat, Ride and Splash. The authors propose the use
of spectral features from non-negative matrix factorization to train an I-Nearest
Neighbor algorithm to classify specific combinations of cymbals with a very lim-
ited amount of training data. In this sense, another related work is presented in
[15] that proposes a more challenging investigation with a two-level classifica-
tion of cymbal sounds. In the first level corresponds to the cymbal type and the
second level classifies how the sound was made. The overall classification rate
obtained for three cymbal combinations was 86%. These works try to provide
some first steps towards the building of systems for detailed drum transcription
from polyphonic music.

2.1.2 Perceptual description of percussive sounds

Research on perceptual similarity of sounds provides useful information for ad-
dressing the problem of automatic classification of drum sounds. In perceptual
studies, dis-similarity judgments between pairs of sounds are derived from human
subjects. With multidimensional scaling techniques, researchers find the dimen-
sions that underlie to the dis-similarity judgments. Even further, with proper com-
parison between those dimensions and physical features of sounds, it is possible
to discover the links between perceptual and physical dimensions of sounds [12].
A three dimensional perceptual space for percussive instruments, depicted in Fig-
ure 2.1, has been hypothesized by Lakatos [1]. This percussive perceptual space
spans three related physical dimensions: log-attack time, spectral centroid and
temporal centroid. These physical dimensions are also used in the MPEG-7! de-
scription format as descriptors for timbre. However, experiments concluded that

'"MPEG-7 is a multimedia content description standard. It was standardized in ISO/IEC 15938
(Multimedia content description interface). This description will be associated with the content
itself, to allow fast and efficient searching for material that is of interest to the user. MPEG-7 is
formally called Multimedia Content Description Interface.
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the quality of these descriptors was insufficient to distinguish fine details in the
samples [16]. Same authors accomplished the implementation of a hierarchical
user interface for efficient exploration and retrieval of drum sound libraries based
on a computational model of similarity and Self-Organizing Maps (SOM). The
model follows a perceptual approach by considering on its computation the im-
pulse response of the outer and middle ear as well as masking aspects of the audi-
tory system. The similarity method is based on simple distance after an alignment
process. The user interface enables to navigate through the drum sound collec-
tion by means of a visual representation of the model based on SOM. Herrera et
al. [17], presented several music content descriptors that are related to percussion
instrumentation and are subjected to semantic aspects of percussive-like sounds
perception. The percussion index estimates the amount of percussion that can be
found in a music audio file and yields a (numerical or categorical) value that rep-
resents the amount of percussion detected in the file. A further refinement is the
percussion profile, which roughly indicates the existing balance between drums
and cymbals.
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Figure 2.1: Three-dimensional feature representation of the unpitched percussion
sound classes [1].

2.1.3 Transcription of percussion sound patterns

Recent research on the description of percussion sounds has been drawn towards
the transcription of unpitched percussion instruments found in Western popular
music, with special emphasis on standard pop-rock drum kits (snare drum, kick
drum, toms, hi-hats, and cymbals). A notable exception to this is the work on
tabla and djembe transcription [18]. Drum transcription methods attempt to pro-
vide a symbolic representation of a rhythmic content. To this end, it is required
to recognize the different kind of sound sources that produce each stroke within
a percussion loop. In general, the percussion transcription problem has been
addressed through three different strategies [19, 20]: onset detection approach,



segmentation-based approach or combination of these. Systems in the first cate-
gory first detect multiple streams corresponding to drum types, usually via a signal
or spectral decomposition approach, e.g. [21, 22], or simpler sub-band filtering
[23, 24], and then identify onsets in the individual streams. Systems in the sec-
ond category detect a regular or irregular event grid in the signal, segment the
signal according to the grid, extract features such as MFCCs [25, 26] or multiple
low-level features [27, 18] and then classify the segments using Gaussian Mixture
Models [25], k nearest neighbor classification [28], or Support Vector Machines
[27, 18]. Other methods combine aspects of both categories, via adaptation [29]
or joint detection of onsets and drums [30]. To ensure temporal consistency many
approaches make use of high-level statistical models that encode some musical
knowledge by means, for instance, of hidden Markov models [30, 31, 18, 26].
The methods greatly differ in terms of the number of instruments they are capable
of detecting; most detect only bass drum, snare drum and hi-hat [30, 27].

Apart from the mentioned studies focusing on drum or other percussion instru-
ments, we dedicate some space to those focusing particularly on the transcription
of body percussion sounds. These works are more connected with the goal of this
project.

Classification and transcription of body percussion sounds

In 2005, Hazan [32] approaches the transcription of voice generated percussive
sounds in a similar way to previous mentioned methods. The system consists of a
simple energy based onset detection system which segments the input into percus-
sive events from which spectral and temporal descriptors are computed. Finally,
a machine learning component assigns to each of the segmented sounds of the
input stream a symbolic class. This approach achieves a classification accuracy
of 90% 1in a test using performers which where not in the training set and with a
taxonomy of four different drum sound classes. Different approaches are based
on Autonomous Classification Engine (ACE) and incorporate one more category
in the classification taxonomy [33]. A total of five voiced percussion sounds were
recorded and manually segmented. ACE was used to compare various classifi-
cation techniques, both with and without feature selection. The best result was
95.55% accuracy using AdaBoost with C4.5 decision tress. Continuing this path,
a comparative study of human beat-box with speech [34] together with other stud-
ies regarding the mechanisms for producing beat-boxing [35], lead to the work
described by Hipke [36]. The former article attains the implementation of an end-
user interactive interface for recognizing beat-box sounds, enabling to control or
trigger, for instance, a drum kit sample.

There exist few commercial applications that make use of finger-tapping for
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providing interactivity with drums. ’Table-drum’? is an augmented audio applica-
tion for iphone which enables the user to play drums from the mobile phone when
hitting the objects that are surrounding, without the need of touching the screen.
The user can train on the fly a machine learning algorithm for detecting the sounds
captured through the microphone of the mobile, which are then synchronized with
real drum sounds. This technology works as an audio-driven MIDI controller but
does not provide further processing over the generated pattern and has no intelli-
gent understanding about the rhythm played by the user. Moreover, is the user the
one in charge of defining the association between a certain finger-tapping sound
and its correspondent drum instrument that is triggered from the mobile. So, the
user must have good percussion skills in order to achieve a good representation of
the rhythm.

2.2 Description of rhythm

In this section we review some of the most meaningful work towards the descrip-
tion of rhythm. The goal is to study the feasibility of the existent state of the
art techniques in this topic for providing to the pursuit system with rhythm-wise
capabilities for the arrangement of drum patterns. Several proposals have been
made so far for attempting the description of this musical dimension. The main
differences between them are the type of data that is used to capture the rhythm
information, the way of representing it or the algorithm used to compare rhythm
[37].

2.2.1 Similarity Matrix-Based Approach

Self-Similarity Matrix (SSM) is a Data Analysis technique that enables to iden-
tify similar sequences within an audio data series. The main difference between
the methods that follow this approach is the type of information (STFT coef-
ficients, MFCCs, etc) and the way for computing similarity (Distance Matrix,
Auto-Correlation, histograms or spectral properties comparison). Foote proposes
the use of the amplitude coefficients of the short-time Fourier transform (STFT)
or Mel-Frequency Cepstral Coefficients (MFCCs) of the audio signal [38]. SSM
is computed using either Matrix Distance methods (Euclidean or cosine distance)
and summing the values along diagonals at specific time lags or computing Auto-
Correlation. Following this path, the same author accomplish the implementation
of a system for retrieving rhythm based on the previous proposal [39]. Similar ap-
proach considers chroma-based MFCC features, extracted either from the whole

Zhttp://www.appsafari.com/music/17007/tabledrum/
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signal or from an estimated segment [40]. The resulted rhythmic signatures are
compared using Dynamic time warping to compute the similarity distance. Eval-
uation is performed on Greek Traditional Dance and African music.

2.2.2 Feature-based Approach

Many contributions are based on feature extraction, either from a beat histogram
[41, 42, 43] or from the audio content itself [44, 45, 46]. An example of the for-
mers [41] is based on a BPM histogram obtained by collecting over time the con-
tribution of the dominant peaks in the auto-correlation function, computed from
a down-sampled and filtered version of the Discrete Wavelet Transform of the
audio excerpt. Various features are derived from this histogram providing infor-
mation about the inter-peak relative energy as well as the periodicity, and used in
combination with other timbre and pitch content features for music genre classi-
fication. Other mentioned proposals include features derived from the Periodicity
Histogram [42], and from an Inter-Onset-Interval Histogram (IOIH) tempo[47].
Recently, in [44] it is provided a set of features that capture not only amplitude,
but also tonal and general spectral changes in the signal in order to obtain a com-
plete description of rhythm. A novelty function is then applied to the computed
features aiming to identify prominent changes in the temporal evolution and ex-
tract the beat histograms. Another study considers tempo estimation errors as part
of the estimation process [48]. From those methods based exclusively in features
obtained from the audio content, Paulus attempts to characterize thythm by means
of acoustic features that gather information about the fluctuation of loudness and
brightness within the pattern [45]. Dynamic Time Warping (DTM) is then applied
to align the patterns to be compared. More recently, Pikrakis [46] proposed the
use of a model based in deep neural networks architecture consisting of a stack
of Restricted Boltzmann Machines (RBM) on top of which lies an associative
memory. This model is fed with MFCC rhythmic signatures of music recording
samples.

2.2.3 Temporal Pattern Based Approach

A limitation of the feature-based approach based on beat histograms or periodicity
distributions, is that these encode information about the relative frequency of var-
ious time inter-onset intervals, but discard the information about their sequence in
time. Thus, many proposals have been made so far for attempting a representation
of rhythm that beholds the above-mentioned criteria. One of the first contributions
that addresses this issue, proposes to extract rhythmic patterns directly from the
audio rather than from features [49]. This work accomplishes a temporal rhythmic
pattern representation obtained from the temporal evolution of the energy inside
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each bar of the audio signal. To this end, the authors describe the use of Beat-
Root method [50] for finding the first bar, however, some manual corrections had
to be introduced. Once the bar positions are calculated, simple segmentation of
the energy envelope between start and end points is carried out. Based on this
representation, features describing meter, syncopation and swing factor, are also
calculated.The authors report, testing in a dance music dataset of a 50% correct
recognition using only the pattern, 84% when including other automatically com-
puted features and up to 96% when using also the correct tempo. Another outlook
considers the rhythmic pattern an timing in recordings of Afro-Cuban Music, par-
ticularly focusing on Clave. Clave, apart from being a percussion instrument,
is a repeated syncopated rhythmic pattern that is often explicitly played, but of-
ten only implied; it is the essence of periodicity in Cuban music [51]. Using a
matched-filtering approach, they first enhance the presence of claves in the audio
signal. The derived positions of the discrete onsets are then compared to a set
of temporal-templates representing the theoretical positions of claves at various
tempi and pattern rotations. A rotation-aware dynamic programming algorithm is
then used to find the tempo, beat, and down-beat positions.

2.2.4 Periodicity Measures Approach

Periodicity representations are tempo-dependent measures that provide a mea-
surement of the periodic content in a given rhythmic pattern. Several propos-
als have been made so far regarding this method for describing rthythm. Some
propose the use of dynamic periodicity warping (DPW) over a frame-wise Dis-
crete Fourier Transform (DFT), with frequency resolution sub-multiple of the
tempo for independence, and then compute rhythmic similarity using different
methods [52]. Similar study proposes the use of Melin Transform (MT) [53]
over the Auto-correlation (AC) of the onset-function to provide a theoretically
tempo-independent representation. Jensen [54] also proposes the use of the auto-
correlation of the onset-function to exponentially group the lags. Each track is
represented by the values of 60 exponentially spaced bands representing the lags
between 0.1 s and 4 s. While this representation is robust against small tempo
changes, it is not completely tempo independent. Another approach is based on
the beat histogram computed from the auto-correlation of the onset function [55]
. They propose the use of a logarithmically-spaced lag-axis in order to get rid of
tempo changes. In order to compute it, they propose an algorithm for the estima-
tion of a reference point. Results on two private test-sets show improvements over
the usual linear-lag beat histogram for task of classification and similarity. More
recent studies [37] demonstrate that the use of simple rhythm representations such
as the DFT or a concatenated version of the DFT and Auto Correlation Function
(ACF), allows achieving high recognition rates for a task of genre classification.
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2.3 Retrieving audio content from Rhythm

Due to the increasing number of digital audio collections available, both online
and in personal libraries, new interfaces for navigating through all this content
have to be proposed to users, allowing the retrieval based on musical properties
instead of only text. Investigation in content-based music retrieval via acoustic
input, focus on the development of retrieval tools that enable users to sing or
whistle an excerpt of the musical piece searched. In particular, most people do
not have professional music skills and the best way to specify an intended song is
to sing or hum it. As a result, this kind of systems are the most natural tools for
common people interaction with music. Among such strategies, query by tapping
(QBT) and query by beat-boxing are inherently related to rhythm pattern retrieval
and are closely related with the endeavor of this project.

2.3.1 Query by tapping

Query by tapping is a mechanism for retrieving audio content based on finger-
tapped audio recordings from the user. These techniques generally extract the
note onset time from a recording, computes some kind of rhythmic fingerprint
which is then compared against a song database to retrieve the correct song. Other
techniques for content-based audio retrieval like the above mentioned query-by-
singing/humming (QBSH) or whistling, take into consideration just the melody
pitch for comparison and no rhythmical information is contemplated [56]. The
first step towards QBT [57] allowed a user to clap or tap the rhythm of a re-
quested song and, by recording it with a microphone to the computer, an offline
process extracts the notes durations and compares them by Dynamic Program-
ming to a database for retrieval. Another study [58] proposes a similar approach
but in which rhythm is tapped on a MIDI keyboard or on an e-drum. The sys-
tem operates in real time and online, which means that after every tap made by
the user, the system presents the actual search result list. The database content is
represented in an MPEG-7 compliant manner from which, for this system, only
the beat descriptor is evaluated. The Descriptor Beat contains a vector of inte-
gers, describing the melodys rhythm. The vector is formed by numbering every
note with the integer number of the last full beat. Similarity of two vectors is also
compared through Dynamic Programming. Following this work [59], it is intro-
duced the computation of efficient similarity measures (Direct Measure and Wring
Measure), which yielded good results for comparing MPEG-7 compliant rhythms.
Peters [60] implements an interactive web site where visitors can tap the rhythm
of a songs melody using the space bar on their computer keyboard. A Java applet
generates a MIDI file, which is sent to their application server for analysis, and
the database will be searched.The MIDI file containing a monophonic sequence
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of notes is analyzed to generate a rhythmic contour string. Rhythmic characteriza-
tion is understood as a sequence of note durations and rests in the MIDI file; "beat’
is considered to be the time taken from the start of a note to the beginning of the
next note. Normalization of the durations of the beats is done in order to eliminate
any global tempo dependence when searching for matches. Then, the approximate
string matching algorithm from Sun Manber (1992) is used to calculate the edit
distance between the input string and each string in the database.

2.3.2 Query by Beat-boxing

Beat-boxing (also beat boxing or b-boxing) is a form of vocal percussion origi-
nated in 1980s within Hip-hop culture. Primarily involves the vocal imitation of
drum machines, drums and other percussion, using mouth, lips, tongue, and voice.
The term beatboxing” is sometimes used to refer to vocal percussion in general.
It may also involve vocal imitation of turn-tablism, and other musical instruments
such as bass-lines, melodies, and vocals, to create an illusion of polyphonic music.
Beat-boxing developed outside academia and separated from other vocal styles
commonly studied by universities and conservatories. Therefore, there is very few
academic work on the topic. A remarkable study on Human Beat-boxing (HBB)
[34] describes the acoustic properties of some sounds used in HBB compared to
speech sounds based on authors observations. Also, some investigations focus on
the use of HBB as a query mechanism for music information retrieval [61], the
automatic classification of HBB sounds amongst kick/hi-hat/snare categories [62]
as well as interactive tools for creating drums by beat-boxing [36, 63, 64, 32].
Further experiments, analyzed the repertoire of a human beat-boxer by real-time
magnetic resonance imaging [35], where the articulatory phonetics involved in
HBB performance were formally described. The vocal tract behavior in HBB was
analyzed through fiberscopic imaging [65], to understand how they manage in-
strumental, rhythmic and vocal sounds at the same time. More recently, various
pitch tracking and onset detection methods are compared and assessed against an
annotated HBB audio dataset [66]. Moreover, Hidden Markov Models are eval-
uated, together with an exploration of their parameters space, for the automatic
recognition of different types of vocal sounds.

2.4 Sound recommendation

The research so far in sound and, particularly, music recommendation systems
has been mainly focused on its application to music web pages with large-scale
audio data-bases. The goal of this technology is to help users find music content
or information in accordance with their interests in a personalized manner. The
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main difference between the existing approaches is the type of information con-
sidered. Common recommender approaches are mainly based on collaborative
[67, 68] or item-based filtering algorithms [69] or hybrid combinations [70] with
textual information enrichment [71]. We are specially interest in those based on
acoustic features extracted from the audio content [72]. This approach generates
high quality meta-data based on the similarity of the extracted features. Following
this work, we are interested in the use of features extracted from the finger-tapping
signals for providing further recommendation related with sound or even time in-
formation.

2.5 Automatic arrangement of music

In the music industry, there are many applications of music arrangement. Al-
ready in 1995, Aoki and Maruyama [73] released a patent concerning an auto-
matic arrangement apparatus and an electronic musical instrument for performing
an automatic operation while arranging notes in real time and, more particularly,
to a technique for automatically generating additional notes such as contrapuntal
notes, countermelody notes and the like on the basis of melody notes. Nagashima
and Kawashima [74] employed chaotic neural networks to create variations on
melodies. The examples of the variations of an original music object are sent to
train chaotic neural networks. The networks model the characteristics of the varia-
tions and make a new variation of the original music. Berndt et al. [75] presented
the strategies to synchronize and adopt the game-music with player interaction
behaviors. The approach to arrange music in the context of the interaction of ap-
plications is to vary the rhythmic, harmonic, and melodic elements of the basic
theme. Chung [76] proposed a real-time music-arranging system that reacts to the
affective cues from a listener. The system re-assembles a set of music segments
according to the inferred affective state of a listener. Based on a probabilistic state
transition model, the target affective state can also be induced. Ka-Hing [77] pro-
poses a music arrangement engine for games and interactive applications, in which
orchestral music can be automatically arranged from musical materials, rules and
parameters provided by composers, subjected to the emotional requirements in a
game or an interactive application. Since the research on guitar fingering became
mature [78, 79] presented an approach for guitar arrangement. The main concept
is to choose a set of important notes by a search algorithm, with the constraint on
the playability of the guitar. However, this approach is dedicated to a solo guitar
and cannot arrange for various roles in music. Huang [80] proposes the use of
score reduction for implementing a system for piano score arrangement.
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2.6 Conclusions

We have provided a general overview of the different state of the art techniques
for classification of percussion timbre, with special emphasis in human body per-
cussion timbre. Also, we reviewed some of the work on drum transcription and
rhythm description as well as other high level applications such as sound recom-
mendation and automatic arrangement of music. Through this knowledge, our
main goal is to study the feasibility of finger-tapping behavior for the develop-
ment of new creative tools for interacting with digital drums. We understand that
the first step to accomplish, previous to implementing any kind of rhythm arrange-
ment, is to generate a MIDI-like symbolic representation of human finger-tapping
signals. In the following Chapter, we present the undertaken methodology for
attempting the study of this human behavior.
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Chapter 3

METHODOLOGY

In this chapter we describe the methodology applied in our research. Efforts en-
compassed four main targets: obtaining the dataset, the study of the properties
and context of the average music producer when composing drums, the imple-
mentation of a creative and interactive tool for the arrangement of digitized drum
patterns via finger-tapping input, and the evaluation of the same.

3.1 Audio collection acquisition

A group of 47 western people were asked to record a rhythmic pattern by finger-
tapping in a given surface. Recording was carried out using a ‘““‘Yamaha pocketrak
PR7” portable stereo recorder at 44100 Hz sampling rate. The only constraint de-
manded to the performer was to tap a repetitive pattern and to only use hands and
fingers so as to preserve spontaneity. Also, in order preserve timbre as constant
as possible between different recordings, it was provided an empty cardboard box
for tapping. Audio recordings where then segmented in a fix number of phrase
repetitions.

3.2 User study

The study of the user properties and context has the purpose of understanding
how people finger-tap and, foremost, how do they project a conceived percussion
rhythm into their hands or fingers. To this end it was submitted an online survey to
the same people that recorded their finger-tapping. This survey gathered general
information concerning the respondent’s experience with music, the conception
of the performed finger-tapping and the potential capabilities that users would
demand to a hypothetical expert software for the arrangement of drums. The
goal is to understand the musical context of the user, what exactly is the subject
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thinking when he is finger-tapping, what he actually performs in comparison to
the former, and what kind of processing would like to be done in the performed
rhythm. The whole test was designed based on the Likert scale, which is answered
in a five-level option of agreement or disagreement, so as to correlate the answers
to different questions. For gathering this information, the survey was divided into
three parts:

1. The first part formulated questions concerning the musical training of the
subject, specially in the percussion domain, as well as some demographic
details (Fig 3.1).

2. The second part of the survey was aimed to gather information about the
subject’s conceived rhythm and the way he actually tapped it (Fig 3.2). The
formulated sentences are:

e [ used my hands for tapping the rhythm

e | used my fingers for tapping the rhythm

e | was thinking on a percussive instrument when tapping

e [ was particularly thinking on a real drum instrument when tapping
e There are overlapping voices/strokes in my tapping

e How many instrument voices does your rhythm encode

e There was a straight match between the hand or finger used for each
stroke and the voice that it represented

e [ took advantage of the timbral possibilities of the box to encode dif-
ferent percussive voices within the rhythm

e In general, I used my palm or thumb to play the role of a kick or other
bass percussion instrument

e In general I used my fingers to play the role of bright percussion in-
struments such as a snare or hats

3. The last part was dedicated to collect information about the potential ca-
pabilities that users would demand to a hypothetical drum-expert software
for the arrangement of percussion. The purpose is to understand the real
problems that average users have to overcome when producing rhythm in
the computer 3.3. In addition, it was provided a free section for suggesting
new capabilities. The formulated sentences in this part are:

e [ would like to be able to convert my tapped rhythm into a real drum
sound pattern.
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Have you got any musical background?

i.e. Music production, attending instrument lessons, playing in bands, ete.

O More than five years experience.

(O Between one and five years experience.
(O MNone
O Otra:

Have you got any percussion or drum background?

(O More than five years experience.

C} Between one and five years experience.

O None
O Otra:

Do you use drum machines and/or are familiar with digital drum
manipulation?

O Yes
O Ne
O Otra:

Do you pay special attention to rhythmic aspects when listening
to Music?

O Always!
O Very often.
(O Often

O Never

O Otra:

Figure 3.1: First part of the survey.

e [ would like the software to recommend drum or percussive sounds for

each of the voices in my rhythm.

e [ would like the software to automatically enrich the rhythm by adding

new drum lines to the basic rhythm I played.

e [ would like the software to improve my rhythm by correcting events

out of tempo or other clear mistakes.
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| was particularly thinking on a real drum instrument when

tapping.
1 2 3 4 5
Strongly
disagree O O O @] (O  Strongly agree

There are overlapping voices/strokes in my tapping.

1 2 3 - 5

St I
di;::g?ei o) O O O (O  strongly agree

How many instrument voices does your rhythm encode?
O One
O Two
O Three
O Mare

O Not sure/l don't know

There was a straight match between the hand aor finger used for
each stroke and the voice that it represented.

1 2 3 - 5

5t I
di;::g?ei O O O O O Strongly agree

Write here any clarification you would like to do about the
previous question (optional).

| took advantage of the timbral possibilities of the box to encode
different percussive voices within the rhythm.

1 2 3 - 5

Strongly O (@) O O (@) Strongly agree

disagree

Figure 3.2: Fragment of the second part of the survey.

e [ would like the software to recommend new patterns as variations of
the rhythm I played.

e [ would like the software to recommend an entirely new drum pattern
approaching the style I played.
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| would like to be able to convert my tapped rhythm into a real
drum sound pattern.

You can listen to the example centained in the ZIP file. {“tapping_ej 1-Audio.wav' and “tapping_ej
2-Kit-707 Classicway’ )

1 2 3 - 5

Strongly O O O O O Strongly agree

dizagree

| would like the software to recommend drum or percussive
sounds for each of the voices in my rhythm.

1 2 3 - 5

Strongly O o O o O Strongly agree

disagree

| would like the software to automatically enrich the rhythm by
adding new drum lines to the basic rhythm | played.

‘You can listen to the example contained in the ZIP file. {"tapping_sj 3-Kit-707 Classicwav”)

1 2 3 - 5

Strongly O (@] O (@] ()  strongly agree

disagree

| would like the software to improve my rhythm by correcting
events out of tempo or other clear mistakes.

‘You can listen to the example contained in the ZIP file. {"tapping_sj 3-Kit-707 Classicwav”)

1 2 3 = 5

Strongly O O C) O (:) Strongly agree

disagree

| would like the software to recommend new patterns as
variations of the rhythm | played.

1 2 3 - 5

Strongly O o O O (:) Strongly agree

disagree

Figure 3.3: Fragment of the third part of the survey.

This survey, together with subsequent analysis of the results, provides the
baseline for a solid and substantiated implementation of the proposed algorithm'.

'The full survey can be found in:

BIAuHQdfTsoq7aB2HKVSNNSyBhXjBDifhBeEfvslzw/viewform
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3.3 Algorithm development

Analysis of the collected information and the finger-tapping recordings in con-
junction with the above described state of the art in the topic, enables to set the
basis for the design of the proposed algorithm. The purpose is to determine which
information needs to be considered from the part of the user and its relevance for
the appropriate functioning of the software.

The proposed method is illustrated in Figure 3.4. It can broadly be divided
into three parts: an onset detection and feature extraction step, in which a set of
frame-wise features are calculated and fed into a clustering/classification step, in
which the feature representation of the finger-tapped onsets are clustered, assigned
to a drum sound class and then translated into a drum MIDI-like symbolic repre-
sentation. For the sake of this study, we assume that finger-tapped recordings start
at the beginning of a beat.

Finger-tapped
audio signals

Training Data _ _ _

Performance

Figure 3.4: Algorithm block diagram

3.3.1 Onset detection and feature extraction

For each of the audio files in the finger-tapping collection, the first step is to detect
onsets. This onsets, in the best of the cases, correspond to the times at which a
stroke is detected in the audio signal. We used Super Flux algorithm implemented
in Essentia Standard library?. This algorithm is based on spectral flux feature,
which provides a measurement of fast energy changes in the spectrum of an au-
dio signal. The next step is to extract descriptors from each onset. Following
Herrera et al. [12], we choose, RMS, spectral centroid, Mel-frequency cepstral
coefficients (MFCCs) as basis features for our experiments. Apart from the men-
tioned features, other descriptors have been considered for experimentation: the
energy effective duration of the onset, the Spectral Centroid, 21 Bark-bands, spec-
tral spread, flux and kurtosis. We also considered interesting to include some time

Zhttp://essentia.upf.edu/
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dependent features. A simple way of doing this is by considering, for each onset,
the relative energy with respect its previous and next onset within the pattern. We
also applied a normalization and quantization step into a set of ten values rang-
ing from O to 1. Features are extracted from audio sampled at 44.1 kHz with a
frame size of 2048 samples (46ms) and a hop size of 1024 samples (23ms) using
Essentia.

e Spectral Centroid Average: Average of the spectral centroid for the whole
signal

e Spectral Centroid Variance: Variance of the spectral centroid for the whole
signal

e Energy effective duration: effective duration of an envelope signal. The
effective duration is a measure of the time the signal is perceptually mean-
ingful. This is approximated by the time the envelope is above or equal to a
given threshold and is above the -90db noise floor.

e Quantized relative energy of previous onset
e Quantized relative energy of following onset

e Mel-Frequency Cepstrum Coefficients: MFCCs are the coefficients of the
Mel-cepstrum. They can be used as a compact representation of the spectral
envelope.

3.3.2 Onset clustering and classification

The next step before transcriptions is to group together types of onsets. As we
saw , this fact is in many cases user dependent. For this reason, we considered
that K, the number of clusters, may be an input parameter provided by the user.
Because of this and the low dimensionality of the features data we found sim-
ple and feasible to use k-means algorithm for clustering the data, provided in the
sklearn.cluster. KMeans package of the Python machine learning library, scikit-
learn. The classification is done by simply assigning the class corresponding to
the nearest cluster centroid, this is [-Nearest neighbor classifier. Many contribu-
tions in drum sound classification have proven to perform accurately using this
algorithm. The next step is to associate each stroke class to a MIDI event, this is
the transcription of the sequence. Following General MIDI percussion Key Map*

3this kind of temporal modeling approaches have no sense with continuous magnitudes. There-
fore we need to discretize the energy values.
*http://www.onicos.com/staff/iz/formats/midi-drummap.html
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we used keys 35, 40 and 42 for the bass drums, the snare and closed Hi-hat re-
spectively. The effective duration, and the overall energy of the onset are used to
compute time and velocity of the MIDI event.

3.4 Evaluation

Given that our experiment depends depends in large extent to perceptual aspects,
it is necessary the collaboration of a group of subjects for evaluating the per-
formance of the implemented algorithm. To this end it is submitted an online
questionnaire. This questionnaire, in first instance, provides to the respondent a
recording of a specific finger-tapped example. For this recording, a set of four
different transcriptions are provided, from which one is the output of the imple-
mented system and the rest manual transcriptions of the same. The respondent
has to rate the degree of subjective accuracy of each of the transcriptions follow-
ing Likert scale.
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Chapter 4

RESULTS AND DISCUSSION

4.1 User study

As it was described in 3.2, we carried out a study on the behavior of finger tap-
ping by recording a group of western people with different musical backgrounds
and submitting each participant an online survey inquiring about their perfor-
mance. The main goal of this experiment was to study the survey answers and
spectro-temporal features obtained from the audio dataset and infer meaningful
information about finger-tapping behavior. The collected dataset contained 47
sounds. Further analysis over the recordings allowed comparison of the audio
content with the provided answers. Lastly, we discuss its feasibility for improving
human-computer interaction in the context of computer music by attempting the
implementation of a finger-tapping transcription system. In the following pages
we present the results of this experiment.

4.1.1 Survey results

Following we analyze the results of the different parts in the survey.

Analysis of background questions

The first part of the survey aimed to gather demographic information about the
subjects. Table 4.1 contains the percentage of answers to questions 1 through 4
(Q1 to Q4). This information enabled to group individuals according to different
aspects, such as their music knowledge or their attention to rhythmic aspects when
listening to music, as well as to deduct useful information and establish patterns
within the different subgroups.

In Q1: “Have you got any musical background?, over 65% of the subjects
ensured to have taken formal musical training for more than five years, which
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Table 4.1: Demographic questions and percentages

Questions Answers Percentage
Q1: Have you got any musical background? >5 years 65,2%
Between 1 and 5 years 0%
None 34,8%

Q2: Have you got any percussion

or drum background? >3 years 21,7%

Between 1 and 5 years 8,7%

None 56,5%
Other 13,0%

Q3: Do you use drum machines and/or are
familiar with digital drum manipulation? Yes 43,5%
None 52,2%
Not sure/not know 4,3%
Q4: Do you pay speglal aFtenUon to .rhythmlc Always 30.4%

aspects when listening to Music?

Very often 34,8%
Often 26,1%
Never 8,7%

suggests that they are familiar with terms such as timbre, pattern, loop, instrument
voice, etc. From the total polled, around 30% were at least one-year experienced
in percussion and 13% claim to have taken some other kind of percussion training
(minor education or self taught skills), as shown in answers to Q2. In Q3: “Do
you use drum machines and/or are familiar with digital drum manipulation? we
considered other kinds of percussion experience and, as we can see, 43.5% ad-
mited to have used drum machines or manipulated digital drums. In Q4: “Do you
pay special attention to rhythmic aspects when listening to Music?” it is revealed
that over 65% of the respondents pay attention to rhythmic aspects when listening
to music.

Analysis of self-appraisal of tapping behavior

The second part of the survey covered questions 5 to 14 (Q5 to Q14). The
demographic information presented in Table 4.1 allowed to group individuals
in terms of their experience in percussion instruments, digitized drum and/or
drum machine manipulation. From the 24 respondents, 14 turned out to be non-
experienced in percussion (NEP), regardless of their music experience in other
kinds of instrument, and 10 belonged to the group of experienced in percussion
(EP). Considering this group subdivision, we can see in Figure 4.1 that EP clearly
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tend to use equally fingers and hands (50%) or mainly their fingers (30%) when
tapping, while NEP use mainly, or to a large extent, their hands (50%). Figure 4.2
shows the number of different voices that are encoded in the finger-tapped pat-
terns. The NEP appear not be able to play more than two voices since they mainly
use their hands for tapping. Surprisingly, despite using a more complex tech-
nique, in Q6 EP subjects claimed to have only played up to three different voices
in the pattern. As depicted in 4.3, there is a common trend among EP subjects to
use the timbre characteristics of the object being tapped (a simple cardboard box
in this particular experiment) to reflect different percussion voices. Conversely,
NEP users do not take into account this property of the surface to provide timbre
differences to each stroke.

Tapping method
60,00%
50,00%
40,00%

30,00%
B No percussion training

20,00% ‘ ‘ , _
‘ B Experienced in percussion
10,00% u u I L
0,00% . — .

Used only Used mainly Used equally Used mainly Used only
hands hands hands and fingers fingers
fingers

Figure 4.1: Q5: Finger-tapping method. Derived from the answers to the first two
sentences of the survey.

As depicted in Figure 4.4, most of EP subjects claimed that there is a match
between groups of similar timbre strokes and a particular voice. On the contrary,
NEP respondents were neutral (more than 30%) or in disagreement with this state-
ment (more than 50%). Following these results, Figure 4.5 shows that there is a
trend among EP subjects to associate strokes played with particular parts of the
hand with a certain type of percussion instrument. For instance, we can see in
the figure that strokes played with fingers are more commonly associated with
high pitch percussion instruments among EP subjects. This fact, in addition to the
eyewitness of the author, suggests that EP individuals take advantage of fingers’
ergonomics to perform fast and successive strokes as in a snare-roll. In Q10, half
of EP respondents seem to be in agreement with the role of the thumb or the palm
as a low-pitch percussion instrument and the other half disagree. NEP subgroup
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Number of encoded percussion voices
60,00%
50,00%

40,00%

30,00%

® No percussion training
20,00% ) . .

B Experienced in percussion
10,00% I .

0,00%
More than three not
three sure/don't
know

Figure 4.2: Q6: Number of encoded voices in the finger-tapped pattern.

Use of timbral possibilities

45,00%
40,00%
35,00%

30,00%

25,00%

20,00%

15,00%

10,00% M No percussion trainin
5,00% B . I P ¢
0,00%

| Experlenced in percussion
<
%?4
e

Figure 4.3: Q7: Percentage of responses to the sentence “I took advantage of the
timbral possibilities of the box to encode different percussive voices within the
rhythm”.




appears to be in disagreement with statement Q10. Figure 4.6 suggest that EP
subjects are inspired by general percussion instruments rather than drums when
conceiving the finger-tapped pattern. Similarly, around 50% of NEP respondents
agree to statement Q11 but rejects Q12. In Figure 4.7 we can see that neither EP
nor NEP subgroups tend to overlap strokes when finger-tapping.
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Figure 4.4: Q8: Percentage of responses to the sentence “There was a straight
match between the hand or finger used for each stroke and the voice that it repre-
sented”.

Roles of thumb/palm and fingers
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role of bass percussion)
25,00% B No percussion training (fingers play role
20,00% of bright percussion)
,00%
® Experienced in percussion (thumb/palm
15,00% .
5,00% play role of bass percussion)
10,00% B Experienced ind percussion (fingers play
5 00% I I I II role of bright percussion)
,00%
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Completely Agree Neutral Disagree ~ Completely Not sure/Do
agree disagree not know

Figure 4.5: Q9: “In general, I used my palm or thumb to play the role of a kick or
other bass percussion instrument” and Q10: “In general I used my fingers to play
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the role of bright percussion instruments such as a snare or hats‘”.
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Roles of thumb/palm and fingers
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Figure 4.6: Q11: “I was thinking on a percussive instrument when tapping” and
Q12: “I was particularly thinking on a real drum instrument when tapping”.

Presence of overlapping stokes

M No percussion training

M Experienced in percussion

Figure 4.7: Q13: “There are overlapping voices/strokes in my tapping”.




Table 4.3 shows the average, median, mode and standard deviation of the the
survey responses. Some of the results appear to be redundant with others previ-
ously discussed, thus we will focus on some of the most relevant ones. Regarding
the way of tapping, we can see that the average and median are equal to 3 and the
deviation is 0.9 among EP subjects. A value of 3 for this particular question cor-
responds to an approximately equal use of hands and fingers for finger-tapping.
The standard deviation is considerably low, which suggests a consensus among
the EP subgroup. In the case of NEP subgroup, the standard deviation is slightly
higher; the mode raises to 4 and the average lowers down to 2.7. This reveals
that these individuals, despite mostly using their hands, may also use fingers or
even only their fingers for finger-tapping, but rarely both!. In Q6, we can see
that NEP subjects are able to play between one and two different voices. EP
subgroup differentiated up to three, as previously discussed. In some cases they
played two or even less voices since the deviation is 1.1 and the average number
of voices played is 2. Due to the small amount of participants in the survey, it
is risky to make a generalization of the previous result, but we can expect that a
system for finger-tapping transcription will not require to discriminate between
more than three voices. Further results show that EP subjects clearly finger-tap
using the timbre characteristics of the surface, as opposed to NEP subjects. Re-
garding Q8, statistics suggest that, in general, neither NEP nor EP subjects tend
to overlap strokes. This is an interesting result considering that many percussion
instruments, such as a drum set, allow overlapping strokes. This suggests that EP
subjects conceive the provided surface (the box) as if it were a single membrane
instrument. With regard to the role of the palm and/or the thumb and fingers, EP
subjects understand the role of fingers as a high-frequency percussion instrument
and disagree, or are neutral, with respect to the role of the thumb or palm as a
low-frequency percussion instrument; NEP subjects disagree with both facts. The
way in which the pattern is conceived in the mind of the participant appears to
be more complex: most of NEP individuals agree or are neutral to think of a per-
cussion instrument different from drums when performing the finger-tapping. A
similar trend applies to the results for EP subjects. This suggests that participants
understand the provided box as an instrument itself and, rather than emulate a
typical drum pattern, conceive the finger-tapping as if they were playing a general
percussion instrument such as a djembe?.

Table 4.2 shows the mean and variance values from tempo estimations manu-
ally computed using a regular Digital Audio Workstation (DAW). Results reveal

'In fact, during the recordings, it was evident that most of the people that had not taken any
percussion training either used their hands (sometimes even only one) or some of their fingers
(mainly thumb, middle and index fingers), but never both.

ZHowever, the recordings show that participants (even EP), in many cases performed a typical
drum pattern like the one notated in Figure 4.8
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Table 4.2: Statistics of tempo measurements

_y No percussion
Statistics of tempo P

Experienced in

annotations experience percussion
Av. Dev. Av. Dev.
BPM 109,5 | 14,3 | 110,0 | 15,0

a clear pattern in the average and variance values of the BPM for both subgroups,
reinforcing previous research on human preferred tempo [81]. We can see that

most of the estimated tempos range from 95 to 125 bpm.
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Figure 4.8: Basic notation of the most typical rhythmic pattern that can be listened

in the recordings.
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Table 4.3: Average, mode and standard deviation of the answers to the second part of the survey.

Average Mode Deviation

NEP | EP | NEP | EP | NEP | EP

Q5: Method for finger-tapping 27 30| 40 (3.0 1.1 |09
Q6: Number of encoded voices 1.3 120 20 |30 1.1 |1.2
Q7: Use of timbre 25 |38 20 [(40] 1.2 |15
Q8: Match between stroke and voice 26 |41 30 |50 1.1 |12
Q9: palm/thumb role of bass percussion | 2.5 |32 | 20 [20] 1.3 |15
Q10: fingers role of bright percussion 23 (40| 20 (40| 14 |08
Q11: Thinking on percussion instrument | 29 [ 4.1 | 40 [1.0| 13 |15
Q12: thinking particularly on drums 24 127110 [1.0| 1.3 |15
Q 13: Escistance of overlapping strokes | 2.6 |24 | 20 | 10| 1.1 |13

1 Completely disagree (* Only fingers)
2 Disagree (* Mainly fingers)

3 Neutral (* Equally fingers and hands)
4 Agree (* Mainly hands)

5 Completely agree (* Only hands)

** values indicate the number of voices
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Table 4.4: Cross-correlation of the answers provided by percussion experienced subjects

Thinking on percussion | Thinking particularly | Existance of overlapping | Number of encoded | Match between voice | Use of timbral | Palm/thumb role of bass | Fingers role of bright
instrument on drums strokes voices and stroke possibilities percussion sound percussion sound
Finger-tapping method 0.08 0.15 - -0.09 0.27 -0.15 -0.38 0.00
Thinking on percussion - -0.13 0.47 -0.12 -0.36 0.16 0.33 0.00
instrument
Thinking particularly - - -0.30 -0.28 0.29 0.66 -0.11 0.43
on drums
Existance of overlapping ) . : 041 0.16 0.02 076 027
strokes
Number of encoded - - - - 0.35 0.17 0.35 -0.11
voices
Match between voice . . . ) . 0.46 038 0.53
and stroke
Use o timbral - - - - - - 048 0.4
possibilities
Palm/thumb role of bass ) . : : : } . 0.61

percussion sound

Table 4.5: Cross-correlation of the answers provided by non-percussion experienced subjects

Thinking on percussion | Thinking particularly | Existance of overlapping | Number of encoded | Match between voice | Use of timbral | Palm/thumb role of bass | Fingers role of bright
instrument on drums strokes voices and stroke possibilities percussion sound percussion sound
Finger-tapping method -0.32 0.01 -0.08 0.02 -0.65 0.10 -0.15 -0.22
Thinking on percussion - 0.64 0.06 -0.44 0.13 0.71 -0.11 0.19
instrument
Thinking particularly - - -0.17 -0.55 -0.49 0.63 -0.07 0.07
on drums
Existance of overlapping ) . . 0.28 0.08 031 012 024
strokes
Number of encoded - - - - 028 -0.05 0.4 0.09
voices
Match between voice ) ) } ) ) -0.19 023 032
and stroke
Use of timbral - - - - - - 0.14 0.09
possibilities
Palm/thumb role of bass . . . . . . . 0.63

percussion sound




Tables 4.4 and 4.5 show the cross-correlation coefficients of the answers pro-
vided by both subgroups to each of the questions. This measurement enables to
interrelate results, as well as to find behavioral patterns within both types of sub-
jects. We can see, for instance, a moderate correlation (0.66 and 0.63) between
the use of the timbre characteristics of the box to play different voices and the fact
of thinking particularly on drums among both subgroups. This suggests that those
individuals that are inspired by drums when finger-tapping take advantage of the
timbre characteristics of the surface to play different voices. On the other hand,
those that are not inspired by drums do not consider timbre. In the case of NEP
subjects, we find a slight negative correlation between the type of technique used
for finger-tapping and the existence of overlapping strokes (-0.65). This indicates
that those NEP subjects that mainly use their hands for finger-tapping tend to per-
form less overlapping strokes than those that mainly use their fingers. Further
results show that those NEP subjects that thought about a percussion instrument
tend to think particularly in a drum instrument (0.64), as opposed to EP subjects
(-0.13). Also, we can see negative correlations between the number of encoded
voices in the pattern and the fact of thinking in a percussion and a drum instrument
among NEP subgroup (-0.44 and -0.55 respectively). This raises that those NEP
subjects that are inspired by these kind of instruments tend to express less instru-
ment layers in the pattern in comparison with those that simply finger-tap without
thinking on any particular instrument. Notice the moderately negative correla-
tion (-0.65) between the answers to Q8 and Q5 among NEP subjects. This means
that those subjects that mainly finger-tap with their hands do not tend to match
each type of different stroke with a particular instrument voice. Conversely, those
NEP subjects that mainly use their fingers tend to match each different stroke
with a particular voice. Further interrelations among EP subjects show that, for
instance, those that take advantage of the timbre of the surface tend to match dif-
ferent strokes with different voices as well as using their thumb/palm and fingers
to play bass and bright percussion instruments respectively. Furthermore, those in
both subgroups that associate the use of the palm and/or the thumb to play the role
of a bass percussion instrument think as well that fingers play the role of a bright
percussion instrument, such as snares or high-hats.

Analysis of user needs and potential functionality

The last part of the survey aimed to gather potential capabilities that respondents
would expect from a hypothetical software for creating and arranging drum pat-
terns. The goal was to ensure the validity and feasibility of our current ideas and
encourage the respondents to provide new ones.

Figures 4.9 through 4.14 show the percentages of answers to Q14 through
Q17. In general, we can see that both EP and NEP subgroups appear to be in
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Drum transcription
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Figure 4.9: Percentage of responses to the sentence “I would like to be able to
convert my tapped rhythm into a real drum sound pattern”.
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Figure 4.10: Percentage of responses to the sentence “I would like the software to
improve my rhythm by correcting events out of tempo or other clear mistakes”.




agreement with all the proposals. Nevertheless, as depicted in Table 4.6, the least
rated option among EP are the enrichment of the pattern by adding new instru-
ment layers, while the NEP do not consider necessary the recommendation of
drum sounds. This suggests that EP do not find so useful to enrich the number
of percussion layers in a transcribed version of the finger-tapped pattern. Also,
NEP appear to be less concerned about the timbre aspects in the pattern (as it was
already noticed in previously discussed results). In addition, many respondents
took the time to suggest valuable ideas (but out of the scope of this project) such
as to enable the use of the surface as a simple controller, following the idea of the
Tabledrum mentioned in 2.1.3 and also to enable the variation of the measure or
even apply the groove of a given drummer.

Drum sound recommendation
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Figure 4.11: Q14: “I would like the software to recommend drum or percussive
sounds for each of the voices in my rhythm”.
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Figure 4.12: Q15: “I would like the software to automatically enrich the rhythm
by adding new drum lines to the basic rhythm I played”.

45,00%
40,00%
35,00%

30,00%
25,00%
20,00%
15,00%
10,00%
5,00% l
Q,Q’ Q/Q/

N N
$

Pattern recommendation
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Figure 4.13: Q16: “I would like the software to recommend new patterns as vari-
ations of the rhythm I played”.




Pattern variations
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Figure 4.14: Q17: “I would like the software to recommend an entirely new drum
pattern approaching the style I played”.




Table 4.6: Statistical measurements of the preferences of respondents regarding the capabilities of a hypothetical software

for the arrangement of drum patterns

ov

Average Mode St. Deviation
Respondent profile NEP | EP | NEP | EP | NEP | EP
Q14: Drum transcription 33 |42 40 50| 1.2 1.2
Q15: Drum sound recommendation | 3.0 | 4.1 | 3.0 |50 | 1.6 1.0
Q16: Enrich rhythm 34 |37 40 30| 09 1.0
Q17: Basic corrections 37 40| 40 40| 0.7 0.9
Q18: Recommend variations 38 40| 40 |40 0.7 1.1
Q19: Recommend new patterns 32 |34 40 |50 0.8 1.5

1 Completely disagree (* Only fingers)
2 Disagree (* Mainly fingers)

3 Neutral (* Equally fingers and hands)
4 Agree (* Mainly hands)

5 Completely agree (* Only hands)

** values indicate the number of voices



In conclusion, the results so far suggest the existence of two general strate-
gies for human finger-tapping: the NEP and EP profiles. The former subgroup is
characterized by mainly using the hands for tapping, which constraints to two the
number of percussion voices that they are able to play in the pattern. Also, they
appear not to be concerned about timbre aspects when it comes to hit different
spots of the given surface and that way confer timbre differences to each stroke.
Moreover, they do not think of each different stroke as a different voice but actu-
ally do play different voices, as evidenced from the recordings. In general, NEP
do not think of a drum or a percussion instrument for conceiving the pattern. The
latter profile is characterized by using equally hands and fingers for finger-tapping.
In spite of using a more elaborated technique, EP subgroup states not to play more
than three voices in the pattern. Moreover, they claim to take advantage of timbre
to provide differences to each stroke as well as to associate different strokes with a
particular voice. Even though they do not think of a drum to conceive the rhythm,
they may think of a general percussion instrument. We can conclude that there
are two considerably different ways of finger-tapping depending on the musical
training of the performer. These differences are not only evident in the method
used for tapping but can also be perceived by hearing. This suggests that a poten-
tial software for transcribing finger-tapping could have different implementation
approaches depending on the type of final user. Particularly in the case of timbre,
we conclude that the system should not be so sensitive to this music aspect. Not
only because of the gathered results on this matter, but also because we expect
that timbre will depend mostly on the characteristics of the object being tapped,
rather than the tapping technique. This issue and others related with the acoustic
properties of finger-tapping are better understood by studying the audio content,
as follows.

4.1.2 Audio content analysis

This Section presents the results from the analysis of the finger-tapping record-
ings. The goal is to find relationships between the audio content and previously
discussed results, as well as to infer useful information for the implementation of
the desired system.

Previous discussion on the survey answers revealed the existence of two gen-
eral finger-tapping profiles: one that includes people with no experience at all
in percussion and another composed of people with at least two years of experi-
ence in some percussion facet. Some of the mentioned differences between both
groups can also be seen in low-level features derived from the audio content. In
the previous section it was stated that EP subjects used the timbre characteris-
tics of the surface to confer different sound to each stroke, contrary to NEP par-
ticipants. Conversely, NEP subjects use loudness variations to provide different
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sound to each stroke, as it can be perceived by listening the audio. Thus, our hy-
pothetical software should not rely so much on timbre variations to discriminate
between different voices. Figures 4.15 and 4.16 show the temporal evolution of
the spectral centroid, spectral kurtosis, spectral flux and RMS for an excerpt of
a finger-tapping recording of a NEP and an EP subject respectively. The audio
features were computed using MIR.EDU open source vamp plug-in in Sonic Vi-
sualizer (Hanning window with size equal to 2048 samples and hop-size of 1024
samples). We can see that RMS clearly identifies the audio onsets while spectral
features appear to be more noisy for both excerpts. It can be derived from the evo-
lution of the kurtosis and spectral centroid that these magnitudes are negatively
correlated. In general, during the attacks of the finger-taps, the spectral centroid is
high, while kurtosis remains low. This means that the spectrum during the attack
has higher frequency content and tends to flatten while, during the release, high
frequency content weakens and the energy spectrum tends to concentrate sym-
metrically around a fundamental frequency, so the kurtosis grows. However, we
can see some strange inter-onset behavior for both magnitudes which could be
attributed to noise. Spectral flux looks more reliable for the task of onset iden-
tification, although it still appears to be slightly noisy in some parts. Below we
compare these measurements with those derived from real drums.
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Figure 4.15: Example of NEP Finger-tapping recording. Green: evolution of the
spectral centroid; purple: spectral kurtosis; orange: spectral flux; black: evolution
of the RMS.
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Figure 4.16: Example of EP Finger-tapping recording. Green: evolution of the
spectral centroid; purple: spectral kurtosis; orange: spectral flux; black: evolution
of the RMS.

Figure 4.17 shows the same measurements as in Figures 4.15 and 4.16 but
in the case of real drum loops. We can see that RMS has a similar behavior to
previous examples, while spectral features clearly have a smoother shape. This
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small example, together with a precise and repeated listening of the recordings,
suggest that regular spectral features which have been used in previous research
on the classification of percussion instruments will not be so accurate in the task of
finger-tapping transcription. Deeper analysis over the computed descriptors and
classification of onsets, in terms of the performer (by EP or NEP), will provide a
better insight of the characteristics of finger-tapping.

Figure 4.17: Excerpts of a drum loop. Green: evolution of the spectral centroid;
purple: spectral kurtosis; orange: spectral flux; black: evolution of the RMS.

Table 4.7 compares the inter-onset mean and variance measurements of the
computed descriptors for both EP and NEP subgroups. Features were computed
with Essentia library, using a Hanning window with a length of 2048 samples and
a hop-size of 1024. Notice the differences between both subgroups in the variance
of the Bark-bands kurtosis (5.111E04 in EP against 1.337E02 in NEP subjects),
the Bark-bands skewness, the spectral roll-off and the inharmonicity. In contrast,
the spectral centroid appears to be distributed in a similar range of values for both
EP and NEP subgroups (in the range of 2200-2300 Hz) as depicted in Figure
4.18. We can expect from this results that, except for spectral centroid, the above
mentioned descriptors contain information to be considered in a finger-tapping
classification task as the one presented in the following pages.

4.1.3 Finger-tapping method classification

A database containing 343 finger-tapped strokes from 14 recordings was used in
this study. Even though we recorded a total of 47 finger-tapping excerpts, many
had to be discarded due to the level of noise or because the performer did not an-
swer the test, critical for the correct annotation of the categories being classified.
Both NEP and EP classes were derived from the demographic information pre-
sented in section 4.1 and manually annotated. Figure 4.19 details the distribution
of sounds across both classes.
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Table 4.7: Inter-onset mean and variance measurements of spectral and temporal
low-level features.

NEP EP

. Inter-onset | Inter-onset | Inter-onset | Inter-onset

Descriptor . .
mean variance mean variance
Bark_bands
. 1.718 e01 | 2.991e01 | 1.337e02 | 5.111e04

Kurtosis
Bark_bands 2.901e00 | 2.153e01 | 5.524¢00 | 1.287 €01
Skewness
Bark-bands 1.094¢01 | 2.112¢01 | 9.024¢00 | 1.846 01
Spread
HFC 5.250e-01 | 1.689e-01 | 1.450e-01 | 2.235¢-02
Spectral centroid 2.196 e03 | 7.086 e00 | 2.293 e03 1.023 e01
Spectral complexity | 1.411e00 | 9.199 e-01 | 4.841e-01 | 3.952 e-01
Spectral crest 1.353e01 | 9.384e00 | 1.548e01 | 7.564 00
Spectral _decrease -3.968 e-10 | 1.077 e-19 | -1.722 e-10 | 1.415 e-20
Spectral energy 1.545e-03 | 1.586e-06 | 6.631 e-04 | 2.076 e-07
f’jﬁ"“almergy 3742 -04 | 7.899 e-08 | 1.724 e-04 | 2.104 e-08
Spectralenergy 9.253 ¢-04 | 9.093 ¢-07 | 3.066 e-04 | 1.256 ¢-07
mid-low
Spectral energy 1.119 e-04 | 1.277 e-08 | 2.740 e-05 | 1.197 e-09
mid-high
Eipg‘;f“alenergy 1.404 e-05 | 3.570e-10 | 2.224¢-05 | 8.213 e-12
Spectral flatness 1.836e-01 | 1.809 e-03 | 2.185e-01 | 2.427 e-03
Spectral flux 2.167e-02 | 1.044e-04 | 1.444e-02 | 2.919 e-05
Spectral RMS 8.006e-04 | 1.919¢-07 | 5.042 e-04 | 4.554 ¢-08
Spectral _rolloff 449202 | 3.491e04 | 3.642¢02 | 3.665 04
Spectral 2970 e-02 | 4.025¢-04 | 1.435e-02 | 1.837 e-04
strong_peak
Zero_crossing_rate 2.196e-02 | 6.211e-05 | 1.852e-02 | 4.730 e-05
Inharmonicity 9.456e-02 | 8.620e-04 | 7.730e-02 | 7.755 e-04
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Figure 4.18: Distribution of the spectral centroid (blue: EP subjects; red: NEP
subjects).

Figure 4.19: Onset class distribution. In blue: 295 EP onsets; in red: 148 NEP
onsets.
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Table 4.8: Hit rates for different learning algorithms (rows) and different feature
selection strategies (columns)

BestEirst 4 Greed?f R?nker.+ Ranker.+
All features CFS (5) Step-Wise | GainRation InfoGain
+ CFS attribute attribute
NaiveBayes 83.74 % 83.5 % 84.0 % (20) | 84.0 % (20) | 77.6 % (20)
C4.5 98.64 % 98.2 % 98.2 % 98.9 % (10) | 99.1 % (20)
SVM 99.09 % 82.8 % 82.2 % (20) | 99.5 % (30) | 99.1 % (30)
AdaBoost 99.32 % - - - -

Table 4.9: Confusion matrix; Support Vector Machine with Information Gain
Ranking filter (30 best features)

a b <— classified
2951 0 a = Onset-EP
2 146 | b = Onset-NEP

Table 4.8 summarizes the main results. We have first tested a set of 67 de-
scriptors including those that were also used in previous studies on percussive
sound classification. Regarding the feature selection technique, we compared sev-
eral attribute evaluators and search methods. Except for Naive Bayes, we mostly
obtained very high accuracies for all classification strategies. Correlation Feature
Selection (CFS) drives down the accuracy regardless of using Best First or Greedy
Step-wise as searching method, and also regardless of the classification method.
Only using Information Gain or Gain Ratio filters with 10 to 30 attributes and a
Ranker search yielded best hits, with an overall maximum of 99.5% using Support
Vector Machine (SVM). Only two NEP-onsets where confused as depicted in Ta-
ble 4.9, achieving an relative absolute error of 1% using 10-fold cross validation
procedure (4.10). A very high accuracy is also obtained using C4.5 decision tree
classifier with only 20 selected features using Information Gain Ranker filter. In
Figure 4.21 we can see the visualization of the former decision tree, which only
considers the energy at Bark-band 9 and the inharmonicity. Moreover, in Figure
4.22 it is depicted the decision tree only using the best features selected by Infor-
mation Gain Evaluation algorithm. The best ten features ranked by the filter are
shown in Figure 4.20.

Information Gain Ranking evaluation measures the change in the information
entropy from a prior state to a state that takes the evaluated feature for attempting
the classification of a given attribute class. Then, features are ranked in decreasing
order of entropy. As depicted in Figure 4.20, all the ranked attributes belong to the
spectral domain: three Bark bands, second, third and fourth moments of the Bark
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Table 4.10: Stratified cross-validation. Support Vector Machine and feature selec-
tion

Figure 4.20: Ranking of the ten best features according to Information Gain algo-

rithm.

Correctly Classified Instances 441
Incorrectly Classified Instances 2

Kappa statistic 0.9898
Mean absolute error 0.0045
Root mean squared error 0.0672
Relative absolute error 1.014 %
Root relative squared error 14.2448 %
Total Number of Instances 443

Lttribute Evaluatcr (supervised, Class (nominal):

Information Gain Ranking Filter

Ranked attributes:

0.903 35
0.898 33
0.898 7
0.887 G4
0.882 34
0.881 a7
0.876 29
0.878 46
0.873 18
0.873 65

Bark_band Spread.mean
Bark_band Kurtosis.mean
Bark band3.mean
Spectral_Rolloff.mean
Bark_band Skewness.mean
inharmonicity.mean
Bark_band2S.mean

MFCC 9.mean
Bark_bandld.mean
Spectral_Strong_ Peak.mean
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99.5485 %
0.4515 %
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Figure 4.21: Visualization of the decision tree using C4.5 classifier with InfoGain
Evaluation feature selection.
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Figure 4.22: Visualization of the decission tree using C4.5 classifier with just 1
feature selected by InfoGain Evaluation algorithm.




scale spectrum, the spectral strong peak, inharmonicity, spectral roll off, spectral
spread and the ninth MFCC. Notice that many of these descriptors coincide with
the ones pointed out in section 4.1.2. These descriptors are closely linked with the
timbre characteristics of the sound. In this regard, the ranking suggests that timbre
descriptors underlie the main differences between both finger-tapping methods. It
can, thus, be concluded that the finger-tapping technique over the provided box,
confers some timbre quality that characterizes unequivocally the profile of the
performer. Also, it can be definitely stated that NEP subjects do not consider
timbre in the same extent as those belonging to EP subgroup when finger-tapping.

4.2 Finger-tapping onset transcription

The aim of this system is to transcribe human finger-tapping signals into a higher
level of representation for improving human-computer interaction in drum com-
position applications. The information automatically extracted from the signal
includes the voice category played on each stroke (differentiate between types of
stroke), the onset time of each event and several spectral and temporal features.
The system architecture is thus based on three major parts:

1. a segmentation module
2. afeature extraction module
3. and a clustering module for which different approaches were tested

The database used for this study consists of 27 finger-tap recordings from
which 372 strokes were extracted. To segment each finger stroke, we used an onset
detection algorithm based on Super Flux [82] implemented in Essentia Standard
library. Since finger-tap signals consist of localized events with abrupt onsets, this
algorithm obtains very satisfying results.

To select an appropriate features set, we experimented with several group com-
binations of those descriptors mentioned in 3.3.1. A simple clustering classifier
(k-Means and I-Nearest Neighbor) was then used for differentiating between types
of stroke. Experimental results on the different feature sets have, for a large part,
confirmed previously discussed hypothesis on the use of time-depending energy
descriptors rather than timbre descriptors for the transcription of finger-tapping
signals. Therefore, the best transcription result is achieved using as input feature
for a given onset the 10-step quantized version of the normalized energy of the
current, previous and next onsets. The main disadvantage of this approach is that
it constraints real-time applicability.
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In Figures 4.23 through 4.25 we can see the visualization of the onset cluster-
ing into three different classes using exclusively time-dependent descriptors. Each
color represents a different class.

aNextRMs

Figure 4.23: Visualization of the clusters obtained using k-Means algorithm with
3 classes (a).

4.3 Discussion

The results in 4.1 have proven the existence of two overall finger-tapping strate-
gies: one addressed by people with no percussion training and another by people
with at least two year of experience in some percussion facet, as stated in 3.2.
By analyzing the gathered data and the recorded audio content, we have deeply
described the behavior and characteristics of finger-tapping for each of them. We
suggested that a potential software for the arrangement of drums through finger-
tapping would be approached in different ways depending on the type of user that
would make use of it. Our first approach focuses in the individuals from the for-
mer group. In a condensed form, this finger-tapping strategy is characterized by
not considering timbre to confer differences to each stroke when finger-tapping,
we can normally distinguish 2 different voices in the pattern and there are no
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Figure 4.24: Visualization of the clusters obtained using k-Means algorithm with

3 classes (b).
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Figure 4.25: Visualization of the clusters obtained using k-Means algorithm with
3 classes (c).
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overlapping strokes. For this reason, time-dependent energy descriptors have re-
sulted to provide more accurate transcription than with timbre descriptors. Timbre
descriptors have resulted to work well for differentiating between finger-tapping
strategies but not between type of onsets within a particular pattern.
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Chapter 5

CONCLUSIONS AND FUTURE
WORK

5.1 Conclusions

We have presented a conducted study on the behavioral and acoustic properties of
human finger-tapping. This work has been drawn towards the implementation of
an audio-driven software for the automatic arrangement of drums, capable of us-
ing this human behavior as a mean for interaction. The general goal was to study
the feasibility of finger-tapping for improving human-computer interaction in the
context of computer-music. To this end we have accomplished different sub-tasks.
First, we have collected a data-set of 43 finger-tapping recordings performed by
individuals with different music backgrounds. Secondly, we have gathered de-
mographic details as well as information about the finger-tapping performance by
submitting an online survey to 23 subjects from the total. In this survey we also
collected user-context information by requesting people’s preferences and needs
with regard to a hypothetical interactive software for the arrangement of drum-
sets. Thirdly, we detected onsets and computed several low-level descriptors from
the recordings. Analysis over the survey results and the extracted audio features
suggested the existence of two general strategies for finger-tapping: one that in-
cludes people with no experience at all in percussion (NEP) and another com-
posed of people with at least two years of experience in some percussion facet
(EP). These two profiles presented considerable differences in the answers to the
survey as well as in many timbre descriptors. Further experiments allowed us to
prove previous hypothesis through the classification of both strtegies, achieving an
encouraging accuracy of 99%. Finally, we implemented a simple finger-tapping
transcription system as a first step on the overall software for the arrangement
of drums. The system, differently from other transcription methods, implements
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as feature the relative 10-step quantized energy of a given onset with respect to
the next and previous onsets within the pattern. Although this method does not
allow real-time performance, it was proven to achieve encouraging results in the
transcription of finger-tapping excerpts without the use of timbre descriptors.

5.2 Future work

Following the idea of understanding finger-tapping behavior, directions for future
work may be in different subjects. First, we propose to approach experiments
from a functional perspective (i.e. for the purpose of implementing an audio-
driven drum arrangement software) rather than from a cognitive or more general
perspective. For example, we propose to submit a group of volunteers to listen
a certain drum pattern and, after some time, ask them to perform it by finger-
tapping. Through this experiment it would be clear the types of instrument within
a drum-set that match with each stroke in the finger-tapping pattern. Results have
shown that neither subjects with experience in percussion nor inexperienced tend
to think in a drum or percussion instrument in the conditions of the undertaken
tests. In this regard, contextualizing the experiments may be useful for gathering
more significant data for the application under consideration. Secondly, we pro-
pose to increase the finger-tapping collection with new recordings. Unfortunately,
collecting the data has been one of the most arduous tasks in this thesis since most
of the people felt overwhelmed when asked to be recorded. For this reason and
due to time-line limitations we have not been able to acquire the expected data-set.
From the implementation perspective, we propose the following points that may
improve the performance of our finger-tapping transcription function:

e Add some pre-processing based on timbre that keeps frequencies where
finger-tapping percussion is more likely to happen and discards informa-
tion from other bands.

e Experiment with features derived from rhythmic pattern representations such
as IOIH, ACF, DFT and other spectral and temporal representations (see
2.2).

e Experiment with time-dependent modeling algorithms such as Hidden-Markov
Models or Dynamic Bayesian Networks.

e Carry out the perceptual evaluation of the generated finger-tapping tran-
scriptions.

Assuming that these suggestions would enhance the transcription of finger-
tapping transcription, the next direction to work on is on the development of high
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level features based on the sequence of MIDI events for music information re-
trieval. Concretely, and following the general prospect of the project, we propose
to include automatic arrangement capabilities such as onset time correction, ad-
dition of new percussion layers, audio-driven drum-kit recommendation, etc. We
also hope, after attempting the first finger-tapping transcription system, that this
extended behavior will be considered in the future for improving human-computer
interaction in the field of interfaces for rhythm expression.
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Appendix A

CODE AND DATA
DEVELOPED/GENERATED

Below we provide a link to the full finger-tapping survey' as well as to a git-hub
repository? containing the following contributions:

e Finger-tapping recordings collection: a set of 40 spontaneous finger-tapping
excerpts recorded by western people of many different music backgrounds.

e Python script for extracting onset-based descriptors and generating a feature-
set in JSON, CSV and ARFF formats. This script needs certain external
python modules in order to work: ARFF?, Essentia* and Scikit-learn’. This
script receives as input the path to the folder containing the finger-tapping
audio files and outputs an onset-based feature-set in the above mentioned
formats.

e Python script for finger-tapping transcription. This script receives as input
the path to a finger-tapping audio recording, the name and path of the output
file and generates a MIDI file (.mid) with the symbolic transcription of the
input pattern.

e Already computed feature-sets in csv, json and arff format.

Thttps://docs.google.com/forms/d/1 LpuaNHymt2gEgjqjIBupo2wk F's jpbn50m4AN InTY B8 /view form
Zhttps://github.com/cukinhou/Rhythmic-arrangement-from-finger-tapped-audio-recordings
3https://pypi.python.org/pypi/liac-arff

“http://essentia.upf.edu/

Shttp://scikit-learn.org/
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