
AUDIO-TO-SCORE ALIGNMENT AT NOTE LEVEL FOR ORCHESTRAL
RECORDINGS

Marius Miron, Julio José Carabias-Orti, Jordi Janer
Music Technology Group, Universitat Pompeu Fabra

marius.miron,julio.carabias,jordi.janer@upf.edu

ABSTRACT

In this paper we propose an offline method for refining
audio-to-score alignment at the note level in the context
of orchestral recordings. State-of-the-art score alignment
systems estimate note onsets with a low time resolution,
and without detecting note offsets. For applications such as
score-informed source separation we need a precise align-
ment at note level. Thus, we propose a novel method that
refines alignment by determining the note onsets and off-
sets in complex orchestral mixtures by combining audio
and image processing techniques. First, we introduce a
note-wise pitch salience function that weighs the harmonic
contribution according to the notes present in the score.
Second, we perform image binarization and blob detection
based on connectivity rules. Then, we pick the best com-
bination of blobs, using dynamic programming. We finally
obtain onset and offset times from the boundaries of the
most salient blob. We evaluate our method on a dataset
of Bach chorales, showing that the proposed approach can
accurately estimate note onsets and offsets.

1. INTRODUCTION

Audio-to-score alignment concerns synchronizing the notes
in a musical score with the corresponding audio rendition.
An additional step, alignment at the note level, aims at ad-
justing the note onsets, in order to further minimize the
error between the score and audio. In the context of or-
chestral music, this task is challenging; first, because of
the complex polyphonies, and, second, because of the tim-
ing expressivity of classical music.

As possible applications of note alignment, deriving the
exact locations of the note onsets and offsets could improve
tasks as score-informed source separation [6], [2], [7].

State-of-the-art score alignment methods use Non-
negative matrix factorization (NMF) [14], [11], template
adaptation through expectation maximization [9], dynamic
time warping (DTW) [3], and Hidden Markov Models
(HMM) [4, 6]. The method described in [11, p. 103] is
the only one addressing explicitly the topic of fine note

c© Marius Miron, Julio José Carabias-Orti, Jordi Janer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Marius Miron, Julio José Carabias-
Orti, Jordi Janer. “Audio-to-score alignment at note level for orchestral
recordings”, 15th International Society for Music Information Retrieval
Conference, 2014.

alignment as a post-processing step. A factorization is per-
formed to obtain the onsets of the anchor notes. The basis
vectors are trained with piano pitches models, and the on-
sets are obtained from the activations matrix. Furthermore,
an additional step is performed in order to look for onsets
between anchors.

However, the methods listed above have certain limita-
tions. First, accurately detecting the offset of the note is a
challenging problem and none of these methods claim to
solve it. Second, the scope of the NMF-based systems is
solely piano recordings. Third, except [11], the algorithms
consider a large window to evaluate detected onsets. Note
that the MIREX Real-time Audio-to-Score Alignment task
considers a 2000 ms window size.

With respect to image processing techniques deployed
in music information research, a system to link audio and
scores for makam music is presented in [13]. In this case,
Hough transform is used for picking the line correspond-
ing to the most likely path from a binarized distance ma-
trix. Additionally, the same transform is used in [1] to find
repeating patterns for audio thumbnailing.

In this paper we propose a novel method for audio-to-
score alignment at the note level, which combines audio
and image processing techniques. In comparison to classi-
cal audio-to-score alignment methods, we aim to detect the
offset of the note, along with its onset. Additionally, we do
not assume a constant delay between score and audio, thus
we do not use any information regarding the beats, tempo
or note duration, in order to adjust the onsets. Therefore,
our method can align notes when dealing with variable de-
lays, as the ones resulting from automatic score alignment
or the ones yielded by manually aligning the score at the
beat level.

The proposed method is based on two stages. First, the
audio processing stage involves filtering the spectral peaks
in time and frequency for every note. Consequently, the
filtering occurs in the time interval restricted for each note
and in the frequency bands of the harmonic partials corre-
sponding to its fundamental frequency. Furthermore, we
decrease the magnitudes of the peaks which are overlap-
ping in time and frequency with the peaks from other notes.
Using the filtered spectral peaks, we compute the pitch
salience for each note using the harmonic summation algo-
rithm described in [10]. Second, we detect the boundaries
of the note using an image processing algorithm. The pitch
salience matrix associated to each note is binarized. Then,
blobs, namely boundaries and shapes, are detected using

the connectivity rules described in [12, p. 248]. From all
the blobs candidates associated to every note, we pick the
best combination of consecutive blobs using dynamic pro-
gramming. The image processing part has the advantage
that the blob boundaries will define the note onsets along
with the corresponding offsets.

The remainder of this paper is structured as follows. In
the first section we describe the note-wise pitch salience
computation, followed by the blob selection using image
processing methods. Then, we evaluate our algorithm on a
dataset of Bach chorales [6] and we discuss the results.

2. METHOD

The proposed method aims to detect the onsets and offsets
of the notes from a monaural audio recording, where the
score is assumed to be automatically or manually aligned
a priori, assuming an error up to 200 ms.

Figure 1. The two main sections of our method: audio and
image processing, and the corresponding steps.

Figure 2 shows the block diagram of the proposed
method. As can be seen, the method is subdivided in two
stages. First, in the audio processing stage, a filtered pitch
salience matrix is obtained for each of the notes in the
score, and for every instrument. Second, in the image pro-
cessing stage, the pitch salience matrix is regarded as a
greyscale image, and blobs are detected in the binarized
image. Moreover, we construct a graph with all the blobs
and we pick the best combination of blobs by using Dijk-
stra’s algorithm to find the best path in the graph. Finally,
we refine the time boundaries for the blobs that overlap,
using an adaptive threshold binarization.

2.1 Note-wise pitch salience computation

For each input signal, we first compute the Short time
Fourier transform (STFT) and we extract the spectral
peaks. Then, we analyze each single note in the score
and we select only the spectral peaks in the frames around
its approximate time location and the frequency bands as-
sociated to its harmonic partials (i.e. multiples of the
fundamental frequency). Finally, we compute the pitch
salience, using the harmonic summation algorithm de-
scribed in [10].

To select the time intervals at which we are going to
look for the note onsets and offsets, we analyze the pre-
aligned score that we want to refine. We start from the
assumption that the note onsets are played with an error
lower than 200 ms from the actual onset in the score. In
other words, we set the search interval to ±200 ms from
the note onset at the score. Additionally, in the case of
the offset, we extend the possible duration of a note in the
score by 200 ms or until another note in the score appears.
In the rest of the paper, this search interval will be referred
to as Ton(n) and Toff (n).

Then, we analyze the spectral peaks within the time in-
terval defined for each note, and we filter them according
to the harmonic frequencies of the MIDI note F̂n(i), where
F̂n(0) is the fundamental frequency of note n. Namely, we
take the first 16 of the harmonic partials of this frequency,
F̂n(i) with i ∈ [0, ..., 15]. Taking into account vibratos,
we set a 1.4 semitone interval around each of the harmonic
partials. Consequently, we select a set of candidate peaks
Pn(k) and the associated amplitudes An(k) for note n at
frame k such that Pn(k) ∈ [F̂n(i) − L̂n(i), ..., F̂n(i) +
L̂n(i)], where L̂n(i) is a frequency band equivalent to 0.7
of a semitone.

As a drawback, some of the selected peaks could over-
lap in time and frequency. To overcome this problem, we
distribute the amplitude An(k) of the overlapped peaks
Pn(k) using a factor gi(Pn(k), Pm(k)), where n and m
are the overlapped notes, gi is a gaussian centered at the
corresponding frequency F̂n(i) of the note n and the har-
monic partial i. The standard deviation equals to L̂n(i)

2 ,
thus:

gi(x) = w ∗ 0.8i ∗ e
−(x−F̂n(i))

2
/

L̂n(i)
2

2

(1)

Note that the magnitude of the gaussian decreases with
the order of the harmonic, i, and is proportional to w, the
weight of the rest of the instruments in current audio file, or
the coefficient extracted from a pre-existing mixing matrix.
For example, if we align using solely a monaural signal in
which all four instruments have the same weight, 0.25 for
all four instruments, the coefficient will be w = 0.75.

The factor gi penalizes frequencies which are in the al-
lowed bands but are further away from the central frequen-
cies. In this way, we eliminate transitions to other notes or
energy which can add up noise later on in the blob detec-
tion stage.

Finally, for each note n and its associated Pn(k) and
An(k) where k ∈ [Ton(n), ...Toff (n)], we use the pitch
salience function described in [10]. The algorithm calcu-
lates a salience measure for each pitch candidate, starting
at F̂n(0) − L̂n(0), based on the presence of its harmonics
and sub-harmonics partials, and the corresponding magni-
tudes. Finally, the salience function for each time window
is quantized into cent bins, thus the resulting matrix Sn

has the dimensions (Toff (n) − Ton(n), Q) , where Q is
the number of frequency bins for the six octaves. In our
case, we experimentally choose Q = 600 bins.

2.2 Blob selection using image processing

The goals of the image processing stage are to obtain the
location of the note onset and offset by binarizing the note-
wise pitch salience, and to detect shapes and contours in
the binarized image.

Accounting that the image binarization is not a robust
process [12], different results are expected as a function of
the amount of time overlap between notes, the salience of
the pitch and its fundamental frequency. Therefore, as the
shape and contour detection heavily relies on this step, we
need a robust binarization, which would finally give us the
best information for detecting the boundaries of the note.

Previous approaches to improve binarization rely on
background subtraction or local binarization [12]. There-
fore, we propose a binarization method similar to the local
binarization, but adapted to our context: the pitch salience
matrix. On the assumption that the bins closer to the funda-
mental frequency, F̂n(0), are more salient than the ones at
higher frequencies, we split the binarization areas in sub-
areas related to the harmonic partials F̂n(i). Thus, the
salience matrix Sn is binarized gradually and locally, ob-
taining a binary matrix Bn. Moreover, we consider l as
the binarization step, moving gradually from 50 to 600 in
steps of 50 bins.

Furthermore, we compute Bn in l steps, each time only
for the columns in the interval [l − 50...l].

Bn(i, j) =

{
0,Sn(i, j) < mean(Sl

n)
1,Sn(i, j) ≥ mean(Sl

n)
(2)

where i ∈ [Ton(n), ..., Toff (n)] , j ∈ [l−50...l], and Sl
n

is a submatrix of Sn, obtained by extracting the columns
of Sn in the interval [0..l].

As an example, a pitch salience matrix Sn for a bassoon
note is plotted in the Figure 2A. The green rectangles mark
the submatrices Sl

n for various values of l. The resulting
binarized image is depicted in Figure 2B.

fr
e
q
u
e
n
cy

 r
e
la

ti
v
e
 t

o
 n

o
te

's
 f

0
 (

ce
n
t

b
in

s)

time (seconds)

➩

100

200

300

400

500

0

100

200

300

400

500

0
0.2 0.80.6 0.2 0.80.6

A B

time (seconds)

Figure 2. Binarizing the spectral salience matrix (figure
A) and detecting the blobs in the resulting image (figure
B). Binarization is done gradually and locally, relative to
the green squaresáreas in figure A. The ground truth onset
and offset of the note are marked by vertical red lines.

The next step is detecting boundaries and shapes on the
binarized image. We use the connectivity rules described

in [12, p. 248] in order to detect regions and the boundaries
of these regions, namely the blobs. Thus, we want to label
each pixel of the matrix Bn with a number from 0 to r,
where r is the total number of detected blobs.

Having a pixel (i, j) with i ∈ [Ton(n), ..., Toff (n)]
and j ∈ [0, ..., Q], where Q is the number of frequency
bins, we need to consider all the neighboring pixels and
we have to take into account their connectivity with the
current pixel. The 4-way connectivity rules account for the
immediate neighbors, as compared to 8-way connectivity
which account for all the surrounding pixels. Because we
are not interested in modeling transitions between notes,
we discard diagonal shapes by using the 4-way connec-
tivity rules. Hence, the connectivity matrix, which deter-
mines the neighborhood of the pixel (i, j), can be written
as:

M =

0 1 0
1 1 1
0 1 0

For the matrix M, the central pixel with the coordinates

(2,2) represents the origin pixel (i, j), and all the other non-
zero pixels are the considered positions for the neighbors.

The algorithm, described in [12, p. 251], takes one pixel
at a time and visits its non-zero neighbors. Then, we move
sequentially from one pixel to its neighbors, setting bound-
aries for the pixels having neighbors equal to zero. Finally,
the shape is enclosed when the algorithm reaches the pixel
of origin.

Furthermore, once we have detected a set of blobs bn
for each note n, we need to compute the best combination
of the blobs for all notes. Because search intervals for con-
secutive notes can overlap in time, choosing the best com-
bination of blobs is not as trivial as picking the best blob
in terms of area or salience, and the decisions that we take
for a current note, should take into account the decisions
we take for the previous and the next note. This kind of
problem, which chains up a set of decisions can be solved
with dynamic programming.

Consequently, we consider the blobs to be the vertices
of an oriented graph, in which the edges are assigned a cost
depending on the area of the two blobs and the overlapping
between them, as seen in Figure 3. Basically, blobs with
bigger area and little overlapping will have a lower cost,
which makes them ideal candidates when we find the best
path in the graph. Additionally, we can have an edge only
between blobs of consecutive notes, and we can remove
the edges between blobs which overlap more than 50% in
time.

Therefore, we compute the area of each blob of the note
n by summing up the values in the binarized matrix Bn,
enclosed by the corresponding blob contours. Addition-
ally, we exclude the blobs which have the duration less than
100 ms, and the ones starting after the allowed interval for
the attack time.

The normalized area of blob i for the note n is H(bin)
and is a value inversely proportional with the actual area,
because we want the larger blobs to have a lower cost,

b1

b2

b3

b1

b2

b3

b4

b5

b1

b2

note n note n+1note n-1

Figure 3. A sample of the graph between three consecutive
notes. b[1..5] are the blobs detected for each note. Thicker
lines represent lower costs. The red line represents the best
path in the graph.

when picking the best path. In the same manner, we must
increase the cost as the overlapping between the blobs
increases. Thus, for two adjacent notes n and n + 1,
O(bin, b

i
n+1) has cost 1 if there is no overlapping, and an

increased value summing up the ratio of the the area of the
two overlapping blobs. For instance, if 20% of the area of
the first blobs overlaps with 70% of the area of the second
blob, O = 1 + 0.2 + 0.7 = 1.9.

Thus, the cost for the edges has the expression

cost(bni , b
n
i+1) = O(bin, b

i
n+1) ∗ (H(bin) +H(bin+1))

In order to find the shortest path between the vertices of
the first note in the score and the last one, we use Dijkstra’s
algorithm described in [5]. The algorithm finds the shortest
path for a graph with non-negative edges by assigning a
tentative distance to each of the vertices and progressively
advancing by visiting the neighboring nodes.

Additionally, after the best path is computed, we can
face the situation where two consecutive blobs overlap in
time due to the inaccuracy in binarization and the fact that
the minimum cost path does not guarantee no overlapping.
Because the melody for a particular instrument is consid-
ered to be monophonic, we do not allow overlapping be-
tween two consecutive notes. Thus, we ought to find a
splitting point between the starting point of the blob asso-
ciated with the next note and the ending point of the blob
associated with the current note.

blob note before blob note after

t=0.2

t=1

t=1.4

time(analysis windows)

ce
n

t
bi

n
s

Figure 4. Blob refinement using adaptive threshold bina-
rization of two consecutive overlapping blobs in the best
path. The minimum overlapping is achieved for threshold
t = 1.4

Having two consecutive blobs from the best path, bn
and bn+1, we take the image patches surrounding their
boundaries and we adaptively increase the threshold of bi-

narization until the minimum overlapping is achieved. Con-
sequently, we consider the submatrices Ŝn and Ŝn+1 of the
corresponding pitch salience matrices Sn and Sn+1, and
for a variable threshold t = [0.2..2], we compute the bi-
nary matrices B̂t

n and B̂t
n+1.

B̂t
n(i, j) =

{
0, Ŝn(i, j) < t ∗mean(Ŝn)

1, Ŝn(i, j) ≥ t ∗mean(Ŝn)
(3)

As seen in Figure 4, the higher the threshold t, the less
pixels are be assigned to value 1 in the binary matrices,
thus we increase the threshold gradually until no overlap-
ping is achieved.

Finally, the note onset and offset are extracted from the
leftmost and the rightmost pixels of the refined blobs in the
best path.

3. EVALUATION

3.1 Experimental setup

The dataset used to evaluate our proposal consists of 10
human played J.S. Bach four-part chorales, and is com-
monly known as Bach10 . The audio files are sampled
from real music performances recorded at 44.1 kHz that
are 30 seconds in length per file. Each piece is performed
by a quartet of instruments: violin, clarinet, tenor saxo-
phone and bassoon. Each musician’s part was recorded in
isolation. Individual lines were then mixed to create 10
performances with four-part polyphony. More information
about this dataset can be found in [6].

We observe that the dataset has a few particularities.
First, every recording presents fermatas, where the final
duration of the note is left at the discretion of the performer
or the conductor, making it more difficult to detect the on-
set and offsets of the notes. Second, the chorales have a
peculiar homophonic texture. Third, the annotated note
onsets and offsets in the ground truth can have more or
less notes than the actual score. We discovered that this
mismatch comes from repeating notes, which in the origi-
nal score are represented by a single larger note. This step
also makes the detection of the note offsets more difficult.

In order to perform alignment at the note level, we gen-
erate a misaligned score by introducing onset and offset
time deviations for all the notes and all the instruments in
the ground-truth score. The deviations are randomly and
uniformly distributed in the intervals [−200, ...,−100] and
[100, ..., 200] ms. Moreover, we aim at refining the align-
ment of the algorithm proposed by [3]. Thus, we correct
the onset times and we detect the offsets around the begin-
ning of the next note. For both of these tasks we consider
the interval [−200, ..., 200] ms.

Furthermore, the STFT is computed using a Blackman-
Harris 92dB window with a size of 128 ms and, a hop size
of 6 ms. Additionally, we zero-pad the window by three
times its length. Moreover, frequencies and magnitudes
of the spectral peaks are extracted with the algorithm de-
scribed in [8], which uses parabolic interpolation to accu-
rately detect positive slopes in the spectrum computed at
the previous step.

3.2 Results

We aim at correctly aligning the onsets and offsets of the
misaligned score described in Section 3.1 and we add up
200 ms before and after the note boundaries in order to
search for the exact starting and ending point of the note.
Thus, our algorithm can have up to 400 ms in error for the
onsets, and a larger error for the offset, because we are not
constraining the duration of the note to any interval.

For each piece, aligned rate (AR) or precision is defined
as the proportion of correctly aligned notes in the score and
ranges from 0 to 1. A note is said to be correctly aligned
if its onset does not deviate more than a threshold from the
reference alignment. To test the reliability of our method,
we tried different threshold values ranging form 15 to 140
ms. Other measures as the average offset (i.e. average
absolute-valued time offset between a reported note onset
by the score follower and its real onset in the reference file)
and the std offset (i.e. standard deviation of sign-valued
time offset) are also considered.

As illustrated in figure 5, the proposed system is able
to accurately align more than the 30% of the onsets with a
detection threshold lower than 15 ms. Furthermore, more
than 80% of the onsets are accurately detected with a thresh-
old of 60 ms. Because the search time interval for the note
allows for error larger than 200 ms, the AR for the onset
does not reach 100% in t = 200ms, as less than 2% of the
onsets have larger errors.

Furthermore observe that we less accurate in detecting
the offsets, particularly when we do not know the approxi-
mate note offset and we estimate it around the onset of the
next note, as when we take as input the alignment of the
algorithm proposed by [3]. The drop in performance of the
offset detection can also be explained by the fact that the
energy of a note can decay below a threshold, thus exclud-
ing it when binarization is performed.

Figure 6 shows boxplots of the average offset and the
std error for each instrument, and for the note onset and off-
set, for the misaligned dataset. The lower and upper lines
of each box show 25th and 75th percentiles of the sample.
The line in the middle of each box is the average offset.
The lines extending above and below each box show the
extent of the rest of the samples, excluding outliers. Out-
liers are defined as points over 1.5 times the interquartile
range from the sample median and are shown as crosses.

We observe that performance is lower for violin com-
pared to the other instrument. This can be explained by
the fact that for this dataset the violin has noisier or soft
attacks, which do not yield a high enough value in terms of
pitch salience, and is lost when binarizing the image.

Moreover, the fact that we are able to detect most of
the onsets in the interval 0.06 seconds, which is an accept-
able interval for the attack of the instruments aligned, point
us on some limitation on using the pitch salience function,
which is not able to be accurate enough with noisier at-
tacks, as it happened for the violin.

Furthermore, we want more insight on how the errors
are distributed across the time range. Thus, we plot the 2-
d histogram of the onset errors, as seen in Figure 7. We

Figure 5. The proposed system improves the align rate of
(A) the system proposed by [3] and of (B) the misaligned
dataset, for onset errors, as well as offset errors

observe that even though the original dataset had large er-
rors, our method was able to detect the note onsets within
a small time frame, as most of the errors are in the bin cen-
tered at zero.

Moreover, our method is better at fixing the delays in
the note onsets. In comparison, we can commit more errors
if the onset of the note is thought to be before the actual
onset, because the window in which we have to look for it
overlaps more with the previous note, hence we have more
interference.

Additionally, for every note and every instrument, we
compute the percentage of correctly detected frames with
respect to ground truth. Our algorithm is able to correctly
detect 89% of the frames of the ground truth notes. In com-
parison, the notes in the misaligned dataset have a degree
of 66% correctly detected frames.

Finally, we compute the percentage of frames which are
erroneously detected as part of the notes. We observe that
solely 0.07% of frames from the notes we refine are out-
side the boundaries of the ground truth notes, compared to
the misaligned dataset, for which 34% of the frames are
displaced outside the time boundaries of the notes.

Therefore, our algorithm is more likely to shorten the
notes, rather than making erroneous decisions regarding
their time frame. This is due to the way we are picking
the best sequence of blobs, which penalizes the overlap-
ping, thus picking blobs which have a smaller area but less
overlapping with the blobs from neighboring notes.

4. CONCLUSIONS

We proposed a method to refine the alignment of onsets
and offsets in orchestral recordings, using audio and im-

Figure 6. The average offset and the std offset in terms of
25th and 75th percentile of the proposed system for bas-
soon, clarinet saxophone, and violin, for note onsets, as
well as note offsets

Figure 7. The histogram of error distribution in the onset
alignment

age processing techniques. We compute a note-wise pitch
salience function and we binarize it. Moreover, we detect
blobs in the binarized image, and we pick the best blob
candidate for each note by finding the best path in the asso-
ciated graph. Furthermore, as offset detection is regarded
as a more difficult problem, the proposed method addresses
this issue by detecting image blobs to simultaneously label
note onsets and offsets.

The evaluation shows that our method is able to re-
fine the alignment in a misaligned dataset, having detected
more than 80% of the onsets with an error of 60 ms. More-
over, we analyzed the performance across all four instru-
ments, and we discovered that the accuracy drops for a vi-
olin, as being higher for the other instruments. Thus, as a
future step, we need to analyze what limitation has the al-
gorithm regarding certain instrument classes. Additionally,
the proposed method should be tested with another dataset,
with more complex polyphonies and tempo variations.

Furthermore, our method can be improved by using tim-
bre models when filtering the spectral peaks and decreas-
ing their magnitude. Additionally, choosing the best se-
quence of blobs can be improved by using a better cost
function for the Dijkstra’s algorithm. In addition, one could
use image processing with other data obtained by audio
processing means, as the spectrogram or come with a more
robust approach than the pitch salience which does not cap-
ture noisy note attacks or noisy spectrum.

Finally, the note refinement can be used to improve the
performance of score informed source separation, in the
situation where the score is not well aligned with the audio.

5. ACKNOWLEDGEMENTS
This work was supported by the European Commission, FP7 (Sev-
enth Framework Programme), STREP project, ICT-2011.8.2 ICT
for access to cultural resources, grant agreement No 601166. Phenicx
Project

6. REFERENCES

[1] J.-J. Aucouturier and M. Sandler. Finding repeating patterns
in acoustic musical signals. VIRTUAL, SYNTHETIC, AND
ENTERTAINMENT AUDIO, pages 412–421, 2002.

[2] J.J. Bosch, K. Kondo, R. Marxer, and J. Janer. Score-
informed and timbre independent lead instrument separa-
tion in real-world scenarios. In Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th European, pages
2417–2421, Aug 2012.

[3] J.J. Carabias-Orti, P. Vera-Candeas, F.J. Rodriguez-Serrano,
and F.J. Canadas-Quesada. A RealTime Audio to Score
Alignment System using Spectral Factorization and On-
line Time Warping. IEEE Transactions on Multime-
dia(submitted), 2014.

[4] A. Cont. A coupled duration-focused architecture for real-
time music-to-score alignment. Pattern Anal. Mach. Intell.
IEEE . . . , 32:974–987, 2010.

[5] E. W. Dijkstra. A note on two problems in connexion
with graphs. NUMERISCHE MATHEMATIK, 1(1):269–271,
1959.

[6] Z. Duan and B. Pardo. Soundprism: An online system for
score-informed source separation of music audio. Selected
Topics in Signal Processing, IEEE . . . , pages 1–12, 2011.

[7] S. Ewert and M. Muller. Using score-informed constraints for
NMF-based source separation. Acoustics, Speech and Signal
Processing (. . . , 2012.

[8] J. O. Smith Iii and X. Serra. Parshl: An analysis/synthesis
program for non-harmonic sounds based on a sinusoidal rep-
resentation . 1987.

[9] C. Joder and B. Schuller. Off-line refinement of audio-to-
score alignment by observation template adaptation. Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on, pages 206–210, 2013.

[10] A. Klapuri. Multiple fundamental frequency estimation by
summing harmonic amplitudes. In in ISMIR, pages 216–221,
2006.

[11] B. Niedermayer. Accurate Audio-to-Score Alignment Data
Acquisition in the Context of Computational Musicology.
PhD thesis, Johannes Kepler Universität, 2012.

[12] M. Nixon. Feature Extraction and Image Processing. Elsevier
Science, 2002.

[13] S. Senturk, A. Holzapfel, and X. Serra. Linking Scores and
Audio Recordings in Makam Music of Turkey. Journal of
New Music Research, pages 35–53, 2014.

[14] T.M. Wang, P.Y. Tsai, and A.W.Y. Su. Score-informed
pitch-wise alignment using score-driven non-negative ma-
trix factorization. In Audio, Language and Image Processing
(ICALIP), 2012 International Conference on, pages 206–211,
July 2012.

